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Abstract— This paper presents a slope level-
crossing sampling analog-to-digital converter that
selects key sampling points for quantization in real
time during sensing. It only performs quantization
for the turning points in the input analog waveform
and provides quantization results of the selected
sampling points and timestamps between the se-
lected sampling points. When the input analog sig-
nal is sparse, the proposed method reduces digital
output data throughput. The processing unit gen-
erates a dynamic prediction of the input signal as
well as an upper threshold and a lower threshold
to form a tracking window. A comparator compares
the input signal with the upper and lower threshold
to determine if the prediction is successful. Quan-
tization is performed only on unsuccessful predicted sampling points, which are considered key sampling points. A
counter records timestamps between the unsuccessful predictions which are the selected key sampling points. The
processing unit also includes a neighbor amplitude filter and a slope filter to further reduce the number of sampling points
and data throughput when the input signal is associated with high-frequency low-amplitude noise and high-amplitude
low-frequency baseline wandering. Reconstruction of the analog signal can be achieved using linear interpolation or
polynomial interpolation. The system has been implemented and tested using off-the-shelf components. The simulation
and experimental results show that the proposed system can reduce the data throughput and achieve a data compression
ratio of 7.1 compared to a conventional successive approximation register analog-to-digital converter with a 10-bit
resolution when sampling an ECG signal.

Index Terms— Analog to Digital Converter, Slope Level-crossing Sampling, Prediction-based Sampling, Low Power
Circuits.

I. INTRODUCTION

THE development of advanced data acquisition sys-
tems and internet-of-things (IoT) technologies have been

greatly expected for the next generation wearable biomedical
devices and sensing systems, especially in modern human
health condition monitoring applications [1]–[3]. For example,
the diagnostics of cardiovascular disease (CVD) and cere-
brovascular diseases (CeVD) require monitoring Electrocar-
diogram (ECG) and Electroencephalogram (EEG). However,
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current hospitalized monitoring of ECG and EEG costs time
and already limited medical resources. Moreover, short-time
monitoring may not catch the symptom essential to diagnosis.
Thus, long-term real-time ECG and EEG home-monitoring
devices play increasingly important roles, which rely on low-
power wearable sensors to record and process the analog ECG
waveform. Similar applications can be found in other biomed-
ical and internet-of-things applications, such as monitoring
brain activities, electrical power consumption, and vibration
of buildings and bridges, etc. Therefore long-term real-time
data acquisition systems are expected in biomedical and IoT
applications with the abilities of digitization, processing, and
communication while saving data amount and computing
overhead for extended battery lifetime.

Conventional data acquisition systems such as wearable
biomedical sensors consist of several main building blocks,
including an analog front-end that senses the input analog
signals and suppresses the noise, a mid-resolution analog-
to-digital converter (ADC), usually realized in Delta-sigma
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or successive approximation register (SAR) form to convert
the analog signal into digital format, and a radio-frequency
(RF) transmitter that sends out simultaneous data. Such a
system reports the recorded raw data to the central processing
station, which is usually at a server on the cloud. The data is
then processed by algorithms or human experts, to reconstruct
the original analog signal and perform related processing
and decision-making. For general applications, a conventional
data acquisition system records all raw data of the input
signal. However, when the signal is sparse, which means it
contains a large part of nonessential data, the general sensor
or sensing systems waste efforts on sensing, processing, and
communication. For example, in ECG monitoring, since only
the fiducial points are important for arrhythmia classification,
recording and transmitting all raw data does not help improve
the classification performance while increasing the system
processing and communication cost.

Moreover, data storage, processing, and communication are
also challenging design issues for wearable sensors. Since
wearable sensors usually have a small physical size and
are powered by batteries, the on-sensor resources are often
limited. RF communication is usually one of the most power-
hungry units in the system, whose power is proportional to
the data throughput of the system. Raw data communication
can greatly shorten the battery life of the sensor. The small
physical size also restricts the memory size and computation
overhead of the on-sensor processing algorithms. In order to
solve these problems, efficient sensing methods are proposed
to reduce data throughput from the sensor. For example,
the event-based level-crossing sampling method was applied
for sensing sparse signals [4]–[8]. However, level-crossing
sampling cannot detect the turning point of the system, and
usually brings insertion-deletion errors [9]. These also bring
challenges to wearable sensing and data acquisition systems.
More details comparing different nonuniform sampling meth-
ods in wearable sensing applications are presented in the next
section.

To address the aforementioned problems, this paper pro-
poses a non-uniform sampling method for sensing and data
acquisition systems. The proposed method uses active predic-
tions to select the turning points, which are also considered
the key sampling points for quantization, instead of using
conventional passive sampling and quantization processes. The
primary advantage is that by doing so, only critical sampling
points are digitized, which reduces digital data throughput.
This is important to alleviate the workload of the following
digital signal processing circuits. In conventional data acqui-
sition systems, sampling is directly linked to quantization,
which is unnecessary in sensing sparse signals. Since quan-
tization consumes much more power than sampling, in the
proposed method, power and data throughput can be saved by
skipping unnecessary quantization processes. Moreover, the
proposed method can be implemented as a fully digital circuit
that could be benefited from scaling down using advanced
technologies. The circuits can be integrated into the analog-
to-digital converter or applied after an ADC, which brings
design flexibility. Furthermore, the processing can be achieved
in real-time during sensing.

The primary contribution of this paper includes (1) in-
troducing a slope level-crossing sampling mechanism for
selecting key sampling points for quantization in order to
save output data throughput of the sensor; (2) implementing
the proposed slope level-crossing sampling method using
discrete components and presenting the measurement results;
(3) designing two additional digital filters including neighbor
amplitude filter and slope filter to solve the high-amplitude
low-frequency baseline wandering problem and low-amplitude
high-frequency noise problem. The rest of this paper is or-
ganized as follows. Section II presents related work of non-
uniform sampling. System Design is introduced in Section III
followed by the analysis of the system performance in Section
IV. Hardware experimental setup and results are presented
in Section V. VI discusses the advantages and compares the
results with other recent methods. VII concludes the paper.

II. RELATED WORK

A conventional data acquisition system sensing general
signals usually applies for a Nyquist rate ADC. The ADC
samples at a fixed sampling rate and converts each sampling
into binary digital bits, as shown in Fig. 1 (a). However, many
biomedical signals are sparse in the time domain while most
valuable information comes from turning points of the analog
signal, which are also called fiducial points in the ECG signal.
To catch these key sampling points, a Nyquist rate ADC needs
a fast sampling clock. Since the sampling rate is fixed, it results
in wasted efforts when sampling the non-essential episode of
the signal. Especially, the quantization process of the sampling
points during the inactive period of the signal costs much
more power if the signal is very sparse. Moreover, such wasted
quantization generates many unnecessary bits, which overloads
the following digital signal processing and communication
circuits. Data savings in ADC is more important than power
savings since ADC power is usually a small portion of a whole
data acquisition system. The primary challenge of the system
is to reduce the data throughput while extracting critical
information about the waveform during the analog-to-digital
conversion using a low-complexity and low-power fashion.

One popular method to relieve this issue is applying the
event-based level-crossing sampling that samples using am-
plitude thresholds instead of a constant clock [6], [10]–[14],
as shown in Fig. 1 (b). A recent comprehensive review paper
presents the history, advantages, and challenges of the level-
crossing method [15]. Using this method, the input signal is
always compared with a group of threshold levels. Sampling
is performed only when the input signal crosses a threshold,
which is called an “event”. A “positive” event means the input
signal is increasing while a “negative” event means the input
signal is decreasing. Therefore, sampling and quantization
are performed simultaneously. Such single-bit binary infor-
mation (“positive” or “negative”) and the multi-bit timestamp
measuring the duration between “events” forms the digital
output of the sensor. If the input analog signal’s amplitude
variation is below a certain threshold, no sampling and digital
quantization are performed. This is an efficient method to
save power and sampling data when the input signal is sparse
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Fig. 1. Differences in Sampling and Quantization Methods: (A) Nyquist
Sampling uses a fixed sampling clock and digitizes every sampling
result; (B) Level-crossing sampling records the one-bit polarity of each
sampling using reference voltages with the associated timestamp in
digital format; (C) The proposed slope Level-crossing sampling tracks
the input signal and digitizes the turning points and the associated
timestamp in digital format.

in the time domain. However, the level-crossing sampling is
susceptible to high-amplitude low-frequency baseline wander-
ing, and low-amplitude high-frequency noise. In these two
cases, the level-crossing sampling may also generate many
unnecessary samplings. Moreover, the level-crossing sampling
is not able to identify the turning points (fiducial points) of
the input signal since it is only sensitive to the slope but not
the slope variation. Another challenge using this method is
to record the timing between the level-crossing events. As
shown in Fig. 1 (b), the output of level-crossing sampling
usually consists of both one-bit binary event data and multi-
bit timestamp data. Although some systems use asynchronous
processing, most digital processing algorithms still require
digitized timing information for each event. Therefore, a level-
crossing sampling system usually requires a fast sampling
clock to record precise timing data.

Another alternative method to extract key information dur-
ing the sensing process is using Delta Modulator as the
quantizer in low-power sensors [16]. This method converts the
input analog signal into a digital bit stream, in which the bit
density is proportional to the slope of the input analog signal.
Using this method, slope information can be obtained using
a counter to identify the morphology of the input signal. So
that the total digital data throughput can be reduced. Signal
processing algorithms were proposed for such signals [17].
However, the Delta Modulator can not identify the fiducial
point since it is only sensitive to the slope but not the
slope variation of the input signal. Therefore, a second-order
Delta Modulator was invented to localize the turning point
of the input signal [18] with the related signal processing
algorithm [19]. The second-order Delta modulation converts
the input analog signal into a digital pulse stream, whose pulse
density is proportional to the input slope variation. Although it
could achieve a low-power circuit design, this method is also
susceptible to high-frequency noise. The first and the second-

order Delta Modulators can also be combined to compensate
for each other to improve the real-time sensing capability [20].
Nevertheless, the primary challenge of the Delta-Modulator-
based sensors is that it is difficult to reconstruct the original
input waveform due to insertion and deletion errors [21], [22].

A third candidate is a slope-tracking method that only
samples the signal when the slope prediction is incorrect [23]–
[25]. This method relies on computing the slope difference
between samplings and ignores a sampling if its segment has
small slope variation compared to the slope of the previous
segment. However, if the input signal’s slope is varying
slightly in one direction for a long time, this method may
introduce accumulated errors due to unnecessarily discarding
sampling points. So it needs an additional correction circuit
to prevent accidental sampling drop. Besides, this method
involves complicated analog circuit structures to calculate
divisions for obtaining the slope data, so the tolerance of
analog noise in the waveform is also a problem in the slope
tracking method.

Another related work is piece-wise linear transformation
[26] which seeks to use a minimum number of piece-wise
linear waveforms to represent the input. The primary goal is
to achieve data compression. However, the traditional piece-
wise linear transform methods still require the collection of all
the input data to form the error channel. The search method
has a high computing overhead. These made it not suitable
to be applied for low-power sensors running for real-time
applications. Another way to save power in reducing transmit-
ting biomedical data volume is to apply the data compression
technique. For example, compressed sensing encoders based
on sparse measurement matrices [27] and optimal Boolean
sampling matrix [28] have been proposed. However, they rely
on more data compression techniques and do not take the most
advantage of the biomedical signal feature mentioned above.

III. SYSTEM DESIGN

To avoid or alleviate the problems of the methods presented
in the previous section, the primary design goal of slope
level-crossing sampling is to select only the turning points
in the input waveform for quantization during sensing. This is
achieved using active predictions of the sampling value. This
section presents the algorithm, the circuit implementation, and
additional filters to further reduce the effects of high-amplitude
low-frequency baseline wandering and low-amplitude, high-
frequency noise.

A. Slope Level-crossing Sampling Algorithm
The proposed sensing system records the timing data and

amplitude data of the key sampling points of the input analog
signal. This process is done in real-time and both the recorded
timing and amplitude values are in digital format. The key
idea is that the system separates sampling and quantization
processes. Although the input signal is always sampled at a
fixed sampling rate, only the selected key sampling points are
converted into digital data.

When the sensing process begins, the first two analog
sampling points are digitized using a standard analog-to-
digital conversion process. Then the digital prediction of
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Fig. 2. Slope Level-crossing Sampling Algorithm and Simulation
Result. (a) Using prediction and thresholds to select sampling points for
quantization only when the prediction is unsuccessful. (b) An example
of the selected sampling points using an ECG signal as the input.

the next input analog value is computed using the digital
values from the prior two samples with linear extrapola-
tion. Specifically, the Predicted Digital V alue is calculated
using twice the Last Sampled Digital V alue minus the
Second Last Sampled Digital V alue. As shown in Equa-
tion (1).

PD = 2× L1D − L2D (1)

Here PD is the Predicted Digital V alue; L1D
is the Last Sampled Digital V alue; L2D is the
Second Last Sampled Digital V alue. Equation (1)
does not involve an actual multiplication operation since
in binary format, multiplying by two can be performed by
shifting digital bits to the left. The predicted digital value is
then applied to calculate the upper and lower threshold digital
values using Equations (2).{

UTD = PD +∆D

LTD = PD −∆D

(2)

Here UTD is the Upper Threshold Digital V alue, LTD

is the Lower Threshold Digital V alue, and ∆D is the
predefined Delta Step Digital V alue.

The upper and lower threshold values are then converted
into analog values using digital-to-analog conversion (DAC).
The analog values of these thresholds are compared with the
next sampled analog input value. Analog comparisons are

made between the analog input signal, the upper threshold
value, and the lower threshold value using one comparator or
two comparators. The comparison results decide if the analog
input signal is between the Upper Threshold Analog V alue
and the Lower Threshold Analog V alue, which is repre-
sented in Equation (3).

LTA < InputA < UTA (3)

Here LTA is the Lower Threshold Analog V alue,
InputA is the Input Analog V alue, and UTA is the
Upper Threshold Analog V alue. LTA and UTA are ob-
tained by the DAC based on digital values LTD and UTD,
respectively.

If the input analog value is between the two thresholds,
i.e., Equation (3) is valid, the prediction is correct and no
analog-to-digital conversion is performed for the input analog
signal. The next L1D is then replaced by the current PD

while the L2D is replaced by the current L1D. Then the
next predicted digital value is calculated using Equation (1).
No data is recorded and sent as an output of the system. If
the InputA is not between the two thresholds, i.e., Equation
(3) is not invalid, which means the prediction is incorrect, or
the InputA is higher than the UTA or lower than the LTA.
Then two full analog-to-digital conversions are performed
for the input analog samplings to obtain the L1D and the
L2D to generate the new PD. Fig. 2 (a) presents a typical
slope level-crossing sampling process with both successful and
unsuccessful predictions. Using this method, the turning points
of the input analog signal can be selected, an example ECG
waveform is illustrated in Fig. 2 (b) with the selected turning
points using this algorithm.

B. Hardware Implementation
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Fig. 3. Block diagrams of slope level-crossing sampling system im-
plemented using mixed-signal circuits (top) DAC-based implementation
(bottom) ADC-based implementation.

The slope level-crossing sampling method can be imple-
mented using either an Analog-to-Digital Converter (ADC) or
a Digital-to-Analog Converter (DAC) with a comparator, as
shown in Fig. 3. The comparator does not necessarily have to
be continuous time, it can be controlled by the ADC clock



AUTHOR et al.: REAL-TIME IN-SENSOR SLOPE LEVEL-CROSSING SAMPLING FOR IOT DEVICES 5

and the prediction result. If the prediction is successful, the
comparator is not turned on during the quantization sessions
so power can be saved. The hardware system selects key
sampling points for quantization based on the input analog
signal and the digital Delta step value. The output of the
system contains both data output and timestamp output. Data
output is a multi-bit digital value of the selected sampling
point when the prediction is unsuccessful, while the timestamp
output records the timestamp between two selected sampling
points. This is achieved using a digital timer counting the
number of cycles of the sampling clock. Once a prediction
is unsuccessful, the digital timer is reset to zero. At the next
unsuccessful prediction, the timer sends the recorded timing
to the timestamp output.
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Fig. 4. Flowchart of the DAC-based implementation of slope level-
crossing sampling system.

The flow chart of the DAC-based system is shown in Fig.
4. In the DAC-based system, the input analog signal is com-
pared to the analog thresholds that are generated by a digital
predicted value and the delta step. The DAC-based prediction
and threshold computing circuit are fully digital while the only
mixed-signal component is the DAC and the comparator. The
system can be implemented using one comparator or two com-
parators. In a system with two comparators, the digital logic
generates both upper and lower thresholds simultaneously.
The analog input signal is compared with both thresholds

simultaneously to obtain the result of whether the prediction is
successful or not. In a single comparator system, as shown in
Fig. 4, the digital logic computes two thresholds consecutively
for the DAC and the analog input signal compares with one
threshold at a time to decide if the prediction is successful.
In the case that the prediction is successful, the digital logic
computes the next prediction without sending output data and
timestamps. When the prediction is unsuccessful, the digital
logic runs a successive approximation logic to obtain the
digital value of the analog input while resetting the timer. The
digital value and the timer data before resetting are sent to the
data and timestamp output.
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crossing sampling system.

In an ADC-based implementation, the ADC samples at a
fixed sampling rate. The digital value of each sampling is
processed in the digital domain. When the process starts,
the digital values of the first two samplings are used as the
L1D and the L2D. The digital prediction is calculated using
Equation (1). The upper and lower thresholds are calculated
using Equation (2). The difference between the ADC-based
system and the DAC-based system is that in the ADC-based
system, the digital values of the upper and lower thresholds
are not converted into analog. The comparison is then directly
performed in the digital domain using Equation (3). The flow
chart of the ADC-based system is shown in Fig. 5. The
ADC-based system has a simple digital logic compared to the
DAC-based system, which is essentially the same as in [25].
However, since the ADC is running at a fixed sampling rate
and performs quantization of every sampling, it costs more
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power than the DAC-based implementation. The system can
be implemented either with single-ended input or differential
input.

C. Additional Filters

The two primary challenges for the proposed slope level-
crossing samplings are low-amplitude high-frequency noise
and high-amplitude low-frequency baseline wandering. The
primary goal is to further reduce the number of sampling
points in the original input waveform while keeping a rea-
sonable signal-to-noise ratio in the reconstructed waveform.
Two types of filters can be applied to remove the unnecessary
samples after the slope level crossing sampling. One filter is
a neighbor amplitude filter to remove samples in an episode
of low-amplitude high-frequency noise and the other filter is
a slope filter to remove samples in a high-amplitude low-
frequency baseline wandering. Both filters are implemented
digitally after the slope level-crossing sampling system. Al-
though it may require extra memory and digital processing
power, these algorithms do not contain complicated arithmetic
operations and therefore have low computing overheads.
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Fig. 6. Neighbor Amplitude Filter can remove more sampling points
from the output when there is low-amplitude high-frequency noise in the
input signal.

The neighbor amplitude filter removes sampling points that
are too close to their neighboring sampling points in both time
and amplitude. As shown in Fig. 6, a protection window for a
starting sampling point is set with a certain time and amplitude
to identify other sampling points after the starting point within
the window. All the other sampling points after the starting
point that are located within the window are removed. An
“exception” is if a sampling point has a high amplitude
difference compared to its consecutive sampling point. All
sampling points after such a “different point” are preserved and
the neighbor amplitude filter stops for the starting sampling
point. The neighbor amplitude filter then searches for the next
starting sampling point.

The slope filter calculates the slopes of certain sampling
points with their prior and later sampling points. As shown in
Fig. 7, if the relative difference between the prior slope and the
later slope is lower than a slope threshold, this sampling point
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Removed Points
Researved Points

Filtering Window
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Time Time

Fig. 7. Slope Filter can remove more sampling points from the output
when there is high-amplitude low-frequency baseline wandering in the
input signal.

can be removed. Since both the neighbor amplitude filter and
slope filter can be cascaded in the system, each time a new
filter is applied, the time stamp would be re-calculated using
the sampling points that were dropped from the filter. Both
timestamp data and the amplitude data of the selected sampling
points from the original input waveform are applied for further
processing or reconstruction. Since the filters only remove
high-amplitude low-frequency baseline wandering and low-
amplitude high-frequency noise, it will not affect the timing
intervals, such as PR, ST, and QRS, since all fiducial points
are recorded.

In reconstruction, the selected sampling points are con-
nected using a first-order approximation to form a piece-wise
linear waveform. In many data acquisition applications that
involve time-series signals, such as biomedical, speech, and
audio signal processing, the original analog waveform could
be simplified into a piece-wise-linear waveform without losing
key information. Advanced reconstruction methods can also be
applied to further reduce the errors introduced by removing
certain sampling points, at a cost of increased computing
overhead.

IV. PERFORMANCE EVALUATION
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Fig. 8. Trade-off between compression factor and distortion of the
reconstructed signal by adjusting Delta level. The input signal is ECG
data from the MIT-BIH database. A higher Delta value results in more
data saving at a cost of a worse distortion.

The primary advantage of the proposed slope level crossing
sampling comes from the reduced digital data throughput. This
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is achieved by actively predicting the analog input value of
the future samplings and the error range of the prediction
defined by the predefined ∆D. The successful prediction
results in the reduction of the efforts to perform quantization.
In particular, in each sampling, the prediction costs two ad-
ditional comparisons between the input sampling and the two
thresholds, but it has the potential to waive ten comparisons
which are required for each sampling in a 10-bit SAR ADC.
This property is signal-dependent, which brings more data and
power savings when the signal is sparse or has more linear
portions than turning portions. Therefore, the performance
evaluation depends not only on the system but also on the
input signal. We note that although this system could save
the power of the ADC since ADC power is usually a small
portion of a data acquisition system, the primary advantage
is data saving and key sampling points selection during the
sensing process.

Data saving can be evaluated using the compression factor,
which is defined by the ratio of the data amount between the
conventional Nyquist sampling and the proposed slope Level-

crossing sampling. We should note that for each sampling
point, a 10-bit conventional Nyquist sampling records ten bits
of data, while the slope Level-crossing sampling needs to
record the 10-bit amplitude data and the additional timestamp
data. Here we assume the timestamp data has the same size
as the amplitude data. Therefore, for each sampling point,
the data amount from the Level-crossing sampling is doubled.
Data saving in the slope Level-crossing sampling only comes
from the reduced number of sampling points for quantization.
In the case that a higher-resolution ADC is used, the proposed
system can have even better performance since it can save
more bits. This is because for each sampling, if the prediction
is successful, the quantization process is skipped and the
system does not generate output digital bits. For example,
when a 24-bit resolution ADC is applied instead of a 10-bit
resolution ADC, each successful prediction can save 24 bits
instead of 10 bits.

The cost of achieving data savings comes from the addi-
tional error when reconstructing the input signal using the
selected sampling points. The error performance is evaluated
by comparing the reconstructed signals between the proposed
slope level crossing sampling and conventional Nyquist rate
ADC. The root-mean-square (RMS) error is calculated using
the difference between the two reconstructed signals. Com-
pared to a conventional Nyquist rate ADC, since some of
the sampling points are skipped for quantization, the recon-
structed signal-to-error ratio also depends on the reconstruc-
tion method. In this study, we use the simple piece-wise-
linear method to reconstruct the signal, which represents the
worst-case scenario. When advanced reconstruction methods
are applied, we expect the error performance can be improved.

Both the data saving and RMS error depend not only on the
input signal but also on the predefined ∆D. A larger ∆D re-
sults in fewer selected sampling points for quantization, which
means a higher data compression factor. However, a larger
∆D may skip some potentially important sampling points,
resulting in a higher RMS error in the reconstructed signal.
On the other hand, a smaller ∆D that causes more sampling
points and data throughput reduces the compression ratio but
reduces RMS error. Fig. 8 shows simulated ECG waveforms
using slope level-crossing sampling with different Delta steps,
which shows that a higher compression ratio may result in
a distorted reconstructed waveform. Therefore, balancing the
trade-off between RMS error and data compression ratio by
choosing the ∆D value is critical in specific applications.

Another parameter applied in evaluating the data saving
and RMS error performance is the number of steps between
two quantized sampling points for prediction. In the case
when the input signal is smooth, the system can use two
consecutive sampling points for prediction. However, when
the input signal contains high-frequency low amplitude noise,
using consecutive sampling points for prediction may result
in wrong predictions. In such a case, the system can use a
predefined number “skip count” skipc to skip a few sampling
points and use the first and the last sampling points between
the episode of skipc to calculate the prediction. Such a design
brings the benefit of a more accurate prediction, results in
fewer sampling points and a higher compression ratio, with
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Fig. 11. Experiment Setup (a) Measurement Setup diagram. (b) The
prototype of the slope level-crossing sampling system was implemented
using discrete components and tested using a signal generator and an
oscilloscope, which shows both the input and reconstructed waveform.

the cost of a higher RMS error and additional computing
overhead. Both the ∆D and the skipc are used for evaluating
the system performance of data compression ratio and RMS
error for specific input signals.

We use both sinusoidal signal and ECG signal for evalu-
ating the system performance. Fig. 9 (a) and (b) present the
simulation result of using a sinusoidal input while Fig. 9 (c)
and (d) illustrate the simulation result of ECG input. In both
simulations, we study the effects of parameters including the
Delta Step value ∆D and “skip count” skipc in terms of their
effects in data compression ratio and RMS error. From the
simulation result shown in Fig. 9(a), the output data volume
can be reduced by more than 50%. Signal difference increases
with a more significant value of parameter setup, due to the
loss of more data samples from ADC.

A sinusoidal signal is not a good representation of sparse
signals in biomedical applications. To evaluate data-saving
performance on spare signals, ECG data from the MIT-BIH
Arrhythmia database is also applied as the input signal, and
the results are shown in Fig. 9 (c) and (d). The simulation
result shows that even with the smallest skipc and delta,
i.e., with the least information loss, we can save more than
56.5% of data. skipc and delta have similar influences on
data saving performance, while skipc has a more significant

impact on signal quality than delta. A higher data saving can
be achieved if the signal has a higher sparse level as shown in
Fig. 10 simulated using ECG signals with different beat rates.V. EXPERIMENTAL SETUP AND RESULTS

The system was implemented and tested using off-the-shelf
components. For the processing unit used to generate the
slope level-crossing sampling logic, an Opal Kelly XEM 6001
integration module was used. The XEM6001 uses a Xilinx
Spartan-6 FPGA. The DAC-based system was implemented
using an AD7399 Quad, serial-input 10-bit DAC, along with
an LM393 Dual Comparator. The ADC-based system used
an AD9214 10-bit 65-MSPS ADC. The testing equipment
used included a RIGOL DG4162 waveform generator and
a RIGOL MSO4014 Digital Oscilloscope. Fig. 11 shows
the components and equipment used. In the oscilloscope a
reconstructed waveform, using a ∆D of 25mV, could be seen
in yellow.

For testing a 1.2-Hz 600 mVpp ECG signal was used.
Reconstruction of the analog input is done by using an
additional DAC, if a prediction is successful the predicted
value is sent as a data output. If the prediction fails the actual
digital value is sent as the data output. Fig. 12 shows the results
from the ADC-based system. The reconstructed signal shows
that with a 25mV and 50mV Delta, the system is able to keep
the morphology of the waveform for arrhythmia classification.
Higher Delta discards important sampling points, as seen on
both the 100mV and 200mV waveforms, with the last one
completely missing the critical P and T waves.

VI. DISCUSSION

The main difference between slope level-crossing sampling
and regular level-crossing sampling is that in slope level-
crossing sampling, the thresholds are updated after every
sample using two prior sampling values to form virtual
slopes. Even if the prediction is successful, the threshold
value changes over time and tracks the input analog slope.
While in regular level-crossing sampling, the thresholds are
calculated using only one sampling value while the thresh-
olds are constants over time if the prediction is successful.
Using slope level-crossing sampling, the system achieves a
low computing overhead by removing multiplication, since
multiplying by 2 can be realized using shift registers. Also,
the computing of predictive value and thresholds is performed
in the digital domain, which reduces the noise effects of
the analog circuitry. Moreover, the proposed method provides
a guaranteed maximum error that avoids the accumulated
errors introduced by small slope variations using the signal-
depending sampling method. The Delta Step in the second-
order level-crossing sampling can also be adjusted digitally.

A comparison between typical non-uniform sampling meth-
ods for biomedical sensing is summarized in Table I. Com-
pared to regular level-crossing sampling [11], slope level-
crossing sampling is able to select the turning points in the
waveform in real-time during sensing, which is critical for
the following digital signal processing. Delta Modulator [16]
can detect the slope of the input analog waveform but cannot
precisely identify the turning point. Although the second-order
Delta Modulator [20] can detect the turning point, it is difficult
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Fig. 12. Experimental Results of the recorded input and reconstructed output signal using different delta values.

TABLE I
COMPARISON BETWEEN THE PROPOSED WORK AND RECENT REFERENCES OF NON-UNIFORM SAMPLING SENSING SYSTEMS.

This
Work

TCASI
2020 [24]

Sensors Journal
2022 [25]

TBCAS
2018 [16]

Sensors Journal
2022 [20]

TCASI
2013 [11]

JBHI
2018 [29]

Method Slope Level
Crossing

Analog Slope-
Dependent

ADC + Slope-
Dependent

First Order
Delta Modulator

Second Order
Delta Modulator

Level Crossing
Sampling

Digital Second
Order Derivative

Fiducial
Point Yes Yes Yes No No No Yes

Sampling
Value Real Real Real No No No Yes

Analog
Division No Yes Yes No No No No

System
Implementation

Off-the-Shelf
Components

Integrated
Circuit

Off-the-Shelf
Components

Integrated
Circuit

Integrated
Circuit

Integrated
Circuit

Off-the-Shelf
Components

Sampling
Rate 1 kHz 1 kHz 1 kHz 1 kHz 1 kHz 20 kHz 1 kHz

Digital
Resolution 10 bits 12 bits 12 bits N/A N/A 4.8 bit >12 bit

Compression
Factor 6.17 6.1 1-29 N/A N/A N/A N/A

to reconstruct the signal since it uses pulse density modulation,
which is not able to precisely measure the amplitude of the
turning point. Compared to digital signal processing methods
following the ADC such as derivative calculation [29] and
slope tracking methods [25], slope level-crossing sampling
saves power and computing overhead since the linear portion
of the input signal is not quantized. Finally, the proposed level-
crossing sampling method is integrated into the digital circuit
inside the ADC, which avoids complicated analog division
circuitry in [24].

Drifting is a problem of reconstructing non-uniformed sam-
pling systems such as in level-crossing sampling. However, the
proposed method solved this problem since it is essentially
a constant sampling system. There is a fixed-rate sampling
clock that always samples the signal at the sampling rate. The
difference between a conventional Nyquist sampling system
and the proposed system is that the system automatically

skips the quantization process for certain sampling points for
saving data. The recorded signal can be reconstructed without
any drift errors. Even if there are errors during sampling or
quantization, the reconstructed signal will have an error point,
which could also happen in other systems with a constant
sampling rate, but it does not affect the following points.

Both IoT systems and wearable systems face the simi-
lar challenge of limited power supply while tracking sparse
signals. In IoT applications, using the proposed method, the
variation of the input signal can be monitored more efficiently
since only turning points of the input signal are recorded, this
can greatly reduce the power consumption of data communi-
cation and signal processing. For example, when tracking the
maximum and minimum value of the input, which are both
turning points, the system can simply select the maximum
and minimum value from the recorded turning points, without
paying attention to the slope or linear portion of the input
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signal. For low-frequency input signals, the system can apply
a slower clock to save power. As long as the signal is sparse
(as in most IoT applications), the frequency of the input signal
does not change the advantage of the proposed method.

VII. CONCLUSION

This paper presents a slope level-crossing sampling method
for reducing data throughput in sensors for IoT devices. The
system is able to select turning points in the input waveform
for quantization in real-time during sensing. Two additional
filters are also presented to further reduce the number of sam-
pling points during baseline wandering and noise. Simulation
results report the trade-off between data compression ratio and
root-mean-square error as a function of the Delta threshold
and the skip count during sensing. Hardware implementation
is achieved using off-the-shelf components for a proof-of-
concept demonstration. The proposed system provides unique
features and reasonable performance compared to other non-
uniform sampling methods for sensing and data acquisition
systems.

REFERENCES

[1] J. De Roose, H. Xin, M. Andraud, P. J. Harpe, and M. Verhelst, “Flex-
ible and self-adaptive sense-and-compress for sub-microwatt always-on
sensory recording,” in ESSCIRC 2018 - IEEE 44th European Solid State
Circuits Conference (ESSCIRC), 2018, pp. 282–285.

[2] Y. Liu, P. M. Furth, and W. Tang, “Hardware-efficient delta sigma-based
digital signal processing circuits for the internet-of-things,” Journal of
Low Power Electronics and Applications, vol. 5, no. 4, p. 234, 2015.
[Online]. Available: http://www.mdpi.com/2079-9268/5/4/234

[3] Y. He, F. Corradi, C. Shi, S. van der Ven, M. Timmermans, J. Stuijt,
P. Detterer, P. Harpe, L. Lindeboom, E. Hermeling, G. Langereis,
E. Chicca, and Y.-H. Liu, “An implantable neuromorphic sensing system
featuring near-sensor computation and send-on-delta transmission for
wireless neural sensing of peripheral nerves,” IEEE Journal of Solid-
State Circuits, vol. 57, no. 10, pp. 3058–3070, 2022.

[4] P. Martı́nez-Nuevo, S. Patil, and Y. Tsividis, “Derivative level-crossing
sampling,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 62, no. 1, pp. 11–15, 2015.

[5] J. Van Assche and G. Gielen, “Power efficiency comparison of event-
driven and fixed-rate signal conversion and compression for biomedical
applications,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 14, no. 4, pp. 746–756, 2020.

[6] C. Weltin-Wu and Y. Tsividis, “Event-driven clockless level-crossing adc
with signal-dependent adaptive resolution,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 9, pp. 2180–2190, 2013.

[7] H. Wang, F. Schembari, and R. B. Staszewski, “An event-driven quasi-
level-crossing delta modulator based on residue quantization,” IEEE
Journal of Solid-State Circuits, vol. 55, no. 2, pp. 298–311, 2020.

[8] J. Van Assche and G. Gielen, “A 10.4-enob 0.92-5.38 w event-driven
level-crossing adc with adaptive clocking for time-sparse edge appli-
cations,” in ESSCIRC 2022- IEEE 48th European Solid State Circuits
Conference (ESSCIRC), 2022, pp. 261–264.

[9] Q. Hu, C. Yi, J. Kliewer, and W. Tang, “Asynchronous communication
for wireless sensors using ultra wideband impulse radio,” in 2015
IEEE 58th International Midwest Symposium on Circuits and Systems
(MWSCAS), 2015, pp. 1–4.

[10] B. Schell and Y. Tsividis, “A Continuous-Time ADC/DSP/DAC System
With No Clock and With Activity-Dependent Power Dissipation,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2472–2481, 2008.

[11] W. Tang, A. Osman, D. Kim, B. Goldstein, C. Huang, B. Martini, V. A.
Pieribone, and E. Culurciello, “Continuous Time Level Crossing Sam-
pling ADC for Bio-Potential Recording Systems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 60, no. 6, pp. 1407–1418,
2013.

[12] Y. Li, D. Zhao, and W. A. Serdijn, “A Sub-Microwatt Asynchronous
Level-Crossing ADC for Biomedical Applications,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 149–157, 2013.

[13] N. Ravanshad, H. Rezaee-Dehsorkh, R. Lotfi, and Y. Lian, “A Level-
Crossing Based QRS-Detection Algorithm for Wearable ECG Sensors,”
IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 1, pp.
183–192, 2014.

[14] X. Zhang, Z. Zhang, Y. Li, C. Liu, Y. X. Guo, and Y. Lian, “A 2.89 µ
W Dry-Electrode Enabled Clockless Wireless ECG SoC for Wearable
Applications,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp.
2287–2298, 2016.

[15] Y. Zhao and Y. Lian, “Event-driven circuits and systems: A promising
low power technique for intelligent sensors in aiot era,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp.
3122–3128, 2022.

[16] X. Tang, Q. Hu, and W. Tang, “A Real-Time QRS Detection System
With PR/RT Interval and ST Segment Measurements for Wearable
ECG Sensors Using Parallel Delta Modulators,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 12, no. 4, pp. 751–761, 2018.

[17] X. Tang, Z. Ma, Q. Hu, and W. Tang, “A Real-Time Arrhythmia Heart-
beats Classification Algorithm Using Parallel Delta Modulations and
Rotated Linear-Kernel Support Vector Machines,” IEEE Transactions
on Biomedical Engineering, vol. 67, no. 4, pp. 978–986, 2020.

[18] X. Tang and W. Tang, “A 151nW Second-Order Ternary Delta Modula-
tor for ECG Slope Variation Measurement with Baseline Wandering Re-
silience,” in 2020 IEEE Custom Integrated Circuits Conference (CICC),
2020, pp. 1–4.

[19] ——, “An ecg delineation and arrhythmia classification system using
slope variation measurement by ternary second-order delta modulators
for wearable ecg sensors,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 15, no. 5, pp. 1053–1065, 2021.

[20] X. Tang, S. Liu, P. Reviriego, F. Lombardi, and W. Tang, “A near-sensor
ecg delineation and arrhythmia classification system,” IEEE Sensors
Journal, vol. 22, no. 14, pp. 14 217–14 227, 2022.

[21] Y. Liu, W. Tang, and D. G. Mitchell, “Efficient Implementation of a
Threshold Modified Min-Sum Algorithm for LDPC Decoders,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. Early
Access, pp. 1–5, 2020.

[22] Y. Liu, X. Tang, D. G. M. Mitchell, and W. Tang, “Ternary ldpc error
correction for arrhythmia classification in wireless wearable electrocar-
diogram sensors,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 69, no. 1, pp. 389–400, 2022.

[23] H. Mafi, M. Yargholi, M. Yavari, and S. Mirabbasi, “Digital Calibration
of Elements Mismatch in Multirate Predictive SAR ADCs,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 12,
pp. 4571–4581, 2019.

[24] E. H. Hafshejani, M. Elmi, N. TaheriNejad, A. Fotowat-Ahmady, and
S. Mirabbasi, “A low-power signal-dependent sampling technique: Anal-
ysis, implementation, and applications,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 12, pp. 4334–4347, 2020.

[25] E. Hadizadeh Hafshejani, N. TaheriNejad, R. Rabbani, Z. Azizi, S. Mo-
hin, A. Fotowat-Ahmady, and S. Mirabbasi, “Self-Aware Data Pro-
cessing for Power Saving in Resource-Constrained IoT Cyber-Physical
Systems,” IEEE Sensors Journal, vol. 22, no. 4, pp. 3648–3659, 2022.

[26] K. Konstantinides and B. Natarajan, “An architecture for lossy com-
pression of waveforms using piecewise-linear approximation,” IEEE
Transactions on Signal Processing, vol. 42, no. 9, pp. 2449–2454, 1994.

[27] W. Zhao, B. Sun, T. Wu, and Z. Yang, “On-chip neural data compression
based on compressed sensing with sparse sensing matrices,” IEEE
transactions on biomedical circuits and systems, vol. 12, no. 1, pp. 242–
254, 2018.

[28] Y. Wang, X. Li, K. Xu, F. Ren, and H. Yu, “Data-driven sampling matrix
boolean optimization for energy-efficient biomedical signal acquisition
by compressive sensing,” IEEE transactions on biomedical circuits and
systems, vol. 11, no. 2, pp. 255–266, 2016.

[29] J. M. Bote, J. Recas, F. Rincón, D. Atienza, and R. Hermida, “A mod-
ular low-complexity ecg delineation algorithm for real-time embedded
systems,” IEEE Journal of Biomedical and Health Informatics, vol. 22,
no. 2, pp. 429–441, 2018.


