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Abstract—This paper reports high-dimensional time-series
data processing for gait analysis using data from a full-body
wireless wearable motion sensing system with machine learning
models. The wearable sensing system consists of ten sensors
deployed on limb landmarks, which record quaternion data
at 59 sample/Second. Two pilot clinical studies have been de-
signed to investigate the capability of the sensors for accurately
differentiating normal gait parameters in healthy individuals.
The two studies are interlimb coordination correlation and gait
task classification. The interlimb coordination study calculates
the correlation coefficient between the left and the right joints
to evaluate interlimb coordination. The gait task classification
uses a five-layer convolutional neural network to test the clas-
sification accuracy of four tasks selected from the Functional
Gait Assessment. Clinical experiments show that the system is
able to identify the correlation coefficient between normal and
synthesized abnormal gaits. The convolutional neural networks
have the ability to differentiate functional gait tasks with up to
90% accuracy.

Index Terms—Gait Analysis, Wearable Sensor, Motion Sensor,
Convolutional Neural Network, High Dimensional Data, Time
Series Data

I. INTRODUCTION

Wearable technology has become a widely researched and
popular method of data collection in many applications in-
cluding clinical, sports, military, and commercial fields [1].
These uses include gait analysis, balance, and range of motion
[2]. Although other objective clinical measures are currently
being used to measure changes in movement quality, there are
several associated challenges that limit their clinical utility.
Clinical outcome measures and observations are subject to
bias and may not be sensitive enough to capture some of the
more subtle changes in motion. Moreover, objective methods
of motion analysis such as high-speed motion capture systems
have shown to be a reliable method of analyzing gait but may
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not be feasible in a small private clinic or a hospital setting.
Their use is limited to the laboratory/indoor settings, which
do not accurately simulate the daily physical demands of the
patient [1], [3]. Because of these limitations, larger laboratory
technologies may fail to transfer data obtained from the lab to
real-life conditions experienced.

Clinically, wearable sensors have given clinicians the op-
portunity to supplement their mostly subjective methods of
collecting motion data to monitor progress with more quantifi-
able and reliable measures [4]. In addition to cutting cost and
time in the clinic, the use of wearable technology helps provide
clinicians with quantitative data from the home and community
to address the patient’s most immediate and specific needs to
ensure a safe living environment [4], [5]. Among the most
clinically relevant uses for wearable sensors in the physical
therapy field is the analysis of gait for the diagnosis of neu-
romusculoskeletal dysfunction. Many different orthopedic and
neurological pathologies seen every day in the clinical setting
are associated with gait deficits, therefore gait analysis is an
essential component in any physical therapist’s examination.

Data from full-body wearable motion sensors also have
the potential for evaluating the prognosis of Mild Traumatic
Brain Injury (mTBI). mTBI is a time-evolving injury featuring
a neurometabolic cascade, self-reported symptoms, cognitive
dysfunction, and physical signs such as poor static balance and
gait [6]. These problems seem to recover over several days and
weeks. However, consistent results across studies have shown
that for some patients, some subtle, cognitive, and gait ab-
normalities, especially assessed concurrently using multimodal
tasks, are present for 90 or more days, critically interfering
with function [7], [8]. Therefore, objective assessment of
various complex gait tasks may be particularly helpful in
identifying high-level mobility deficits and offer great clinical
utility for the clinical management of mTBI during post-acute
timeframes. Progressing gait assessment beyond subjective
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Fig. 1. Full-body wireless wearable motion sensing system.

evaluations toward clinically feasible objective quantifications
should be a primary goal that requires full-body motion data.
In-depth and comprehensive gait analysis is essential for a
physical therapist to identify specific gait impairments and for
creating the most effective plan of care specific to the patient’s
needs. However, not even the most experienced clinician
will have a trained eye sensitive enough to identify some
of the subtle gait deviations through observation alone. The
recent trend in the use of technology to objectively assess
gait parameters has led to extensive research to address the
safety and functional limitations in many different clinical
populations. The development of wearable technologies has
addressed some of these issues, but the research suggests that
wearable sensors still have many barriers to overcome. Some
of the current issues faced with wearable technologies for real-
time data collection are wearing discomfort due to awkward
designing, mobility impediments, and poor sensing accuracy
[9]. Bulky rigid designs and wires may impede normal gait
and can cause inaccurate and unreliable data collection.
Currently, there are some challenges in performing com-
prehensive gait analysis using wearable motion-sensing sys-
tems. Firstly, most commercially available sensing systems are
limited to only lower extremities [10] or upper extremities
[11]. Some of the available full-body solutions also have
a limited number of sensors such as 4 or 6 sensors [12]-
[16], which are not able to report angles of each joint and
detailed gaits of each limb for complicate gait analysis or
classification. Moreover, the commercial solutions only record
limb movement data without a real-time reconstruction and
playback functions for clinicians. Furthermore, the cost of such
systems is usually very expensive for small clinics or at-home
usage. Power consumption and battery lifetime are also design
challenges for fully wireless sensors [17]-[19]. In our prior
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Fig. 2. 3D Human Model tracking gait parameters and interlimb coordination.

work [20], we reported a full-body wireless motion-sensing
system based on the hardware sensor and data collection
system. In this work,we extend the data processing and applied
machine learning models to evaluate the performance of gait
classification using high-dimensional real-time data obtained
from clinical recordings.

The primary contribution of this paper includes (1) collect-
ing clinical data from a full-body wearable wireless motion-
sensing system for gait analysis, (2) performing an interlimb
coordination correlation study that demonstrated the capability
of the sensing system’s ability to evaluate interlimb coordi-
nation using correlation coefficient, and (3) conducting gait
classification of four tasks selected from the Functional Gait
Assessment (FGA) and evaluated the classification accuracy
of high-dimensional time-series gait data using convolutional
neural network. The results show that the quality of data from
the full-body wearable motion sensors is adequate for compli-
cated gait analysis using machine learning models that achieve
acceptable accuracy for detecting normal gait parameters in
healthy individuals.

II. FULL-BODY WIRELESS WEARABLE MOTION SENSORS

The full-body wireless wearable motion-sensing system ap-
plied in this study is based on our prior work [20]. The overall
system consists of the hardware sensing and communication
subsystem, and the software processing and control subsystem
as shown in Fig. 1. The hardware includes ten sensors and one
receiver. Each sensor contains a BNOOSS inertial measurement
unit (IMU), an XBee Explorer transmitter with an XBee
trace antenna, a PRO Trinket microcontroller, and a battery.
The ten wireless sensors sample at 59 sample/second form
a star network with the receiver with Carrier-sense multiple
access with collision avoidance (CSMA/CA) mechanism [21].
The sensor data are processed in a laptop computer which
reconstructs a 3D human model and calculates the gait pa-
rameters and correlation coefficients between limbs. The real-
time processing of interlimb coordination and abnormal limb



classification in a graphical user interface (GUI) is illustrated
in Fig. 2.

The ten sensors are strapped onto various anatomical land-
marks that allow the medical practitioners to continuously
capture data in real-time. The system records angular and
linear displacement of limbs and trunk in four dimensions
using accelerometers, magnetometers, and gyroscopes. The
XBee antennas were set up using XCTU (6.4.4) software
[20] and are displayed in Fig. 1 (a). Sensors were fastened
using Velcro straps to (1) right upper arm; (2) left upper arm;
(3) right forearm; (4) left forearm; (5) right thigh; (6) left
thigh; (7) right shank; (8) left shank; (9) right dorsal foot;
(10) left dorsal foot. Dycem was used to protect the limbs,
provide a supportive adhesive for the sensors, and to provide
an antimicrobial surface that could be cleaned before and
after each use. The capture of real-time motion data from the
sensor set can be controlled from the laptop as it is wirelessly
streamed to the central processor for storage and interpretation.
The central processor is able to organize the captured data
and reconstruct a real-time 3D model to simulate the subject’s
motion profile.

III. HIGH-DIMENSIONAL TIME-SERIES GAIT ANALYSIS

Each wearable motion sensor generates four-dimension
quaternion data at a sampling rate of 59 Samples/Second. Data
from ten sensors collect a 40-dimension time-series data for
gait analysis. In this work, we focus on interlimb coordination
correlation and machine-learning-based gait classification. In
the study of interlimb coordination, the collected quaternion
vector data from wearable motion sensors are processed in
real-time to obtain the interlimb coordination coefficient. The
sensor data are converted into Cartesian coordinate systems
to reassemble and animate the limbs of the human model
and obtain the angles of the shoulder, elbow, hip, knee, and
ankles. Second, the angle minimums and maximums in the
time domain are located to calculate the gait parameters.
Third, correlation coefficients between angles are computed
to determine interlimb coordination using analytical cross-
correlation equations. The correlation coefficients are only
calculated between the left and right sides of the joints.

For complex gait analysis, high-dimensional machine learn-
ing models are applied to classify different gaits. In this study,
Gait analysis required participants to complete several tasks
selected from the Functional Gait Assessment (FGA), which
include (1) gait on a level surface (LS); (2) gait with head
turns (HT); (3) gait with stepping over an obstacle (OB); (4)
and tandem stance walking (TD). These tasks were selected
due to their ability to simulate everyday tasks associated with
a normal gait. All tasks were performed within a 20-foot-long
and 1-foot-wide area that was taped off for the participants.
The obstacle used for task 3 was a wooden box measuring 9
inches in height. Participants were only given 1 opportunity
to complete each task successfully.

Given the data generated from our motion tracking system,
there are rich details on each gait task, and the data is in
the manner of high dimension (40 dimensions) and high

frequency (59 sample/second), which is difficult to explore
the temporal-spatial dependence structures by classic statistical
models. Deep Neural Networks (DNNs), using hierarchical ar-
chitectures of multiple nonlinear transformations, is a powerful
tool for gait recognition problems. In this study, we build a
Convolutional neural network (CNN) classifier to recognize
different gait tasks. Based on our input size (40-dimension)
and referring some successful CNNs for gait recognition [22]-
[24], we defined a 5-layer CNN model, which are three
temporal convolution layers (ConviD), one pooling layer
(GlobalAveragePooling1D) with drop-off rate 0.3 to prevent
over-fit, and a dense layer with softmax for classification.
Detailed parameters of the CNN model are listed in Table
L

TABLE I
CNN STRUCTURE: LAYERS, OUTPUT SHAPE AND PARAMETER #

Layer (type) Output Shape  Param #

convld (ConvlD) (None, 125, 128) 41088
batch_normalization
(BatchNormalization) (None, 125, 128) 512

activation (Activation) (None, 125, 128) 0
convld_1 (ConvilD) (None, 125, 256) 164096
batch_normalization_1
(BatchNormalization) (None, 125, 256) 1024

activation_1

(Activation) (None, 125, 256) 0
convld_2 (ConvlD) (None, 125, 128) 98432
batch_normalization_2
(BatchNormalization) (None, 125, 128) 512

activation_2
(Activation)
global_average_poolingld

(None, 125, 128) 0

(GlobalAveragePoolinglD) (None, 128) 0
dropout (Dropout) (None, 128) 0
dense (Dense) (None, 2) 258

IV. EXPERIMENTAL SETUP AND RESULTS

The experiment on interlimb coordination was conducted
at New Mexico State University while the experiment on gait
classification was performed at the University of Texas at El
Paso. The ethical approvals for the experiments were granted
by the internal review boards (IRBs) of the two universities.
For the interlimb coordination experiment, Fig. 3 shows the
normal and abnormal interlimb correlation coefficients for the
five joints (shoulder, elbow, hip, knee, and ankle), where the
abnormal data was constructed by mixing limb data between
samples from different subjects. From the experimental results,
a threshold of correlation coefficient has been identified. If the
correlation coefficient is under 0.1, the angles are determined
uncorrelated and the limbs are not coordinating as normal.

For the study of the FGA analysis experiment, forty-
three subjects were recruited to participate in the pilot study.
A majority of subjects were students currently enrolled in
the UTEP Physical Therapy program falling in the 22-27
age range. Demographic information is included in Table
II. During the experiments, motion data collected from each
of the mounted antennas were continuously and wirelessly
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Fig. 3. Recorded joint angles of normal and abnormal limb coordination between left and right joints. Normal correlation coefficient is higher than 0.1.

transmitted to the central processor where it is stored for
further analysis. Input data were then sorted using a binary
classification to classify each task against one another based
on predefined categories. Once the binary classifier is trained,
it is able to make predictions using input data to classify into
one of two groups [25]. Each gait task used in this study was
predefined and classified using the prediction model of the
binary classification system. The accuracy for which the neural
networks were able to correctly classify each gait task against
one another was recorded (with a 95% confidence interval)
and compared for each neural network system.
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Fig. 4. Confusion matrices of binary classifications for HT vs. LS, HT vs.
OB, HT vs. TD (the first row from left to right) and LS vs. OB, LS vs. TD
and OB vs. TD (the second row from left to right)

In this study, we have 43 subjects who had completed 4
different gait tasks with tracking systems (HT: 41, LS: 40, OB:
42, and TD:43). So the total number is 166. We split the data
into training data (80%) and testing data (20%). The confusion
matrix and evaluation metrics for testing data are presented in
Fig. 4 and Table III. The classification results show that the
motion tracking system can capture sufficient information on
distinguishing the gait type with acceptable accuracy.

TABLE II
DEMOGRAPHICS SUMMARY
Demographics N =43
Gender
Male Female
18 25
Age
18-26 27-37 50+
36 6 1
Race
White Asian Black
36 6 1
Ethnicity
Hispanic = Non-Hispanic = Decline to Answer
22 20 1
TABLE III

TESTING RESULTS AND EVALUATION METRICS

Accuracy Sensitivity Specificity F7 Score
HT vs. LS 942 (71.3,99.9) .8889 1.000 9412
HT vs. OB 72.2 (46.5,90.3)  .6667 1778 7059
HT vs. TD  77.8 (52.4,93.4)  .6667 .8889 7500
LS vs. OB 88.2 (63.4,98.5)  .8889 .8750 .8889
LS vs. TD  70.6 (44.0,89.7)  .6250 1778 6667
OB vs. TD ~ 83.0 (58.6,96.4)  .8889 1778 .8421

V. CONCLUSION

This paper reported a high-dimensional time-series data
analysis for a real-time full-body wearable motion-sensing
system in conjunction with a convolutional neural network to
classify gait patterns. The results show that the combination of
hardware and algorithm is able to accurately classify different
gait tasks and evaluate the interlimb coordination through
correlation coefficient between left and right joint angles.
The ultimate goal of future research is to detect the subtle
abnormalities of patients with mild traumatic brain injury to
determine the need for earlier intervention.
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