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a b s t r a c t 

Both the sharp interface and diffuse interface Poisson-Boltzmann (PB) models have been 

developed in the literature for studying electrostatic interaction between a solute molecule 

and its surrounding solvent environment. In the mathematical analysis and numerical 

computation for these PB models, a significant challenge is due to singular charge sources 

in terms of Dirac delta distributions. Recently, based on various regularization schemes for 

the sharp interface PB equation, the first regularization method for the diffuse interface 

PB model has been developed in [S. Wang, E. Alexov, and S. Zhao, Mathematical Biosciences 

and Engineering , 18 , 1370–1405, (2021)] for analytically treating the singular charges. This 

work concerns with the convergence of a diffuse interface PB model to the sharp inter- 

face PB model, as the diffused Gaussian-convolution surface (GCS) approaches to the sharp 

solvent accessible surface (SAS). Due to the limitation in numerical algorithm and mesh 

resolution, such a convergence is impossible to be verified numerically. Through analyzing 

the weak solution for the regularized PB equations, the convergences for both the reaction- 

field potential and electrostatic free energy are rigorously proved in this work. Moreover, 

this study provides a unified regularization for both sharp interface and diffuse interface 

PB models, and clarifies the connection between this unified formulation and the exist- 

ing regularizations. This lays a theoretical foundation to develop regularization for more 

complicated PB models. 

© 2022 Elsevier Inc. All rights reserved. 

 

1. Introduction 

As an implicit solvent approach, the Poisson-Boltzmann (PB) model [1–3] is a widely used for studying electrostatic in- 

teractions between a macromolecule, such as protein, DNA, and RNA, and its surrounding solvent environment. Such an 

electrostatic analysis is indispensable for understanding various solvated biological processes at the atomic level; this in- 

cludes DNA recognition, transcription, translation, protein folding, protein ligand binding, etc. By assigning partial charges at 

atom centers of the macromolecule, the PB model treats the solute and solvent as dielectric continuum, and assumes that 

the mobile ions in the water follow the Boltzmann distribution. Such a mean field approach leads to the PB equation, which

is a nonlinear elliptic partial differential equation (PDE) with singular source terms [4] . 
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In the classical PB model [1–3] , a two-dielectric setting is commonly assumed, i.e., the biomolecule is assigned with a

low dielectric constant while the water phase is considered as a high dielectric constant medium. The solute and solvent 

subdomains are separated by a sharp interface, which is usually modeled as a molecular surface. Commonly used molecular 

surfaces include Van der Waals (VdW) surface, solvent accessible surface (SAS) [5] , solvent excluded surface (SES) [6] , and

Gaussian surface [7] . In the sharp interface PB model, the potential and its flux are continuous across the dielectric boundary,

while the normal derivative of the potential is discontinuous. Thus, special attention is needed in numerical solution of the 

elliptic interface problem governed by the PB equation [8,9] . 

Recently, several smooth solute-solvent boundary or diffuse interface PB models have been developed based on different 

physical and mathematical modeling approaches [10–17] . In these models, the dielectric function remains to be constants in 

the molecule and water regions, and changes smoothly from one constant to another over a narrow transition band or dif-

fuse interface. It is well known that the dielectric coefficient of a medium is determined by the polarizability of the medium

in responding to local electrostatic field. At the molecular level, the existence of a sharp dielectric boundary seems to be

unphysical. Instead, it makes more physical sense by assuming polarizability to be a smooth function at the solute-solvent 

boundary. This is the physical reasoning behind the development of diffuse interface PB models [10–17] . Furthermore, het- 

erogeneous dielectric distributions have been constructed in the PB modeling to mimic the effect of the conformational 

changes of the macromolecule so that the ensemble average solvation energy could be captured by using a single structure 

[18–21] . 

More recently, a Gaussian convolution surface (GCS) has been proposed in [22] to efficiently generate a diffuse interface 

for the PB modeling. Based on a Heaviside function defined over the SAS, a convolution with a Gaussian kernel is conducted

to provide a level set function to characterize the solute and solvent subdomains, as well as the transition layer. Moreover,

this convolution is realized via the fast Fourier transform (FFT), so that the complexity scales linearly with respect to the

spatial degree of freedom. Thus, the GCS algorithm is very efficient in treating large protein systems. We note that the width

of the Gaussian kernel or the transition layer can be controlled by the variance parameter σ . As σ goes to zero, the GCS

diffuse interface will converge to a sharp interface. 

In the mathematical analysis and numerical computation for both sharp interface and diffuse interface PB models, a 

significant challenge is due to singular charge sources in terms of Dirac delta distributions [1–3] . Mathematical analysis 

becomes more compliciated, because the electrostatic potential blows up at the atom centers [4,23,24] . The discretization 

of singular charge sources in grid based computations has drawn much attention in the PB literature. For finite difference 

methods, a trilinear approach is commonly used, in which the singular charges are distributed to the neighboring grid nodes 

with finite values [25] . In a finite element variational form, the definition of the delta function can be applied so that a point

charge can be evaluated through the trial function [26] . These numerical approaches may produce an acceptable estimate 

of electrostatic free energy when certain error cancellation can be taken advantage of in solving both the PB equation and

Poisson equation with the same singular sources [22,26] . Nevertheless, the direct discretization of the PB equation remains 

to be problematic from the numerical point of view, because one essentially approximates an unbounded potential solution 

by finite numerical values. 

The regularization approach is known to be the most successful method for treating the singular charge sources of the 

PB equation. For the sharp interface PB model, various regularization methods have been developed [8,23,24,27–33] . The 

main idea of the regularization methods is to decompose the potential into two or three components, and analytically 

capture the singularity by using one component. This singular component is actually the Coulomb potential and satisfies 

a Poisson’s equation with the same singular sources. Mathematically, the singular component can be expressed as Green’s 

functions, which are unbounded at atom centers, but can be analytically calculated at other places. After removing the 

singular component, other potential components in all regularization methods become bounded so that their mathematical 

analysis and numerical computation become easier. While all regularization formulations are consistent with the original 

PB equation, some regularization methods are known to be significantly less accurate than the others [31] . To understand

this discrepancy, four popular regularizations were analyzed and compared in [34] . Through tracking the source of error, an

accuracy recovery technique has been proposed in [34] so that all four methods yield the same high precision. 

For the diffuse interface PB models [10–17] , the trilinear approach is commonly used for approximating Dirac delta distri-

butions. The development of regularization formulation is hindered by the fact that the fundamental solution with a space 

dependent dielectric function is unavailable. Recently, this difficulty has been resolved in [22] by conducting a dual decom- 

position for both potential and dielectric functions [35] . By splitting the dielectric profile into a constant base plus space

changing part, the Coulomb component is defined with the constant dielectric coefficient, and can be captured analytically 

via Green’s functions. The reaction field component then becomes bounded, and satisfies a regularized PB equation with a 

smooth source. This regularization method was validated by using the GCS model in [22] , and is applicable to other diffuse

interface PB models [10–17] . 

In this work, we will investigate the convergence of the GCS diffuse interface PB model to the sharp interface PB model.

In particular, through analyzing the weak solutions for the regularized PB equations, we will rigorously prove that the reac- 

tion field potential in the regularization for the diffuse interface model converges to its counterpart for the sharp interface 

model. Convergence in electrostatic free energy will also be established. A numerical illustration of energy convergence for 

real molecular systems will be considered. However, the actual convergence cannot be realized computationally, because 

an infinitesimal mesh size has to be used. This is essentially why a theoretical proof is indispensable in diffuse interface

implicit solvent modeling. 
2 
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The theoretical convergence of diffuse interfaces to the sharp interface has been examined in other type of PB models. In

[15] , the convergence of a phase-field variational model defined via the Van der Waals-Cahn-Hilliard functional to its sharp 

interface limit is studied. The �-convergence of the phase-field free energy functionals to their sharp interface limit has been 

proved, together with the convergence of potential solution and dielectric boundary force. In [17] , a diffuse interface energy

functional is constructed by using a characteristic function representing the volume ratio of the solute in the solvent-solute 

transition region. Then, as the width of the transition region tends to zero, the convergences of the electrostatic potential 

and free energy to the sharp interface ones have been studied. 

We note that the above theoretical studies [15,17] concern with the convergence in the potential by means of a trilinear

approach. Driven by the popularity of the regularization in the implicit solvent simulations, the present study investigates 

the convergence of the reaction field potential in the presence of singular sources. In fact, this work unifies the regularization

formulation for both sharp and diffuse interface PB models, which could provide a theoretical foundation for formulating 

regularization of more complicated problems, such as the Gaussian and super-Gaussian PB models with heterogeneous di- 

electric distributions [18,20] . Therefore, the insight revealed in our theoretical study will play an important role in future 

development of the PB model and its regularization. 

The rest of this paper is organized as follows. We will first establish notations at the end of this section. In Section 2 , we

first review the diffuse interface and sharp interface PB models and their regularization. We then present our convergence 

analysis and the main theorems. Numerical study on several molecular systems will be considered in Section 3 , together

with a discussion on molecular surfaces. Finally, this paper ends with a conclusion. 

Notations: Given 1 ≤ p ≤ ∞ and m ∈ N , L p (�; R 
m ) denotes the set of all p-integrable (Lebesgue) measurable functions

defined on � taking value in R 
m . We denote its norm by ‖ · ‖ L p (�) . W 

k,p (�; R 
m ) stands for the Sobolev space consisting

of functions whose weak derivatives up to k th order belong to L p (�; R 
m ) . Additionally, H 

k (�; R 
m ) = W 

k, 2 (�; R 
m ) for k ∈ N ,

whose norm is denoted by ‖ · ‖ H k (�) . W 

k,p 
0 

(�; R 
m ) and H 

k 
0 
(�; R 

m ) stand for the closures of C ∞ 

0 (�; R 
m ) in W 

k,p (�; R 
m )

and H 
k (�; R 

m ) , respectively. When m = 1 , we abbreviate the notations to L p (�) , W 
k,p (�) , W 

k,p 
0 

(�) , H 
k (�) and H 

k 
0 
(�) ,

respectively. In addition, H 
−1 (�) is the dual space of H 

1 
0 
(�) with respect to the inner product in L 2 . 

In this article, r = (x, y, z) denotes the coordinates in R 
3 . For any two open subsets U, V ⊂ R 

3 , V ⊂⊂ U means that V ⊂ U .

Given any two Banach spaces X, Y , the notations 

X ↪→ Y, X 
c 

↪ −→ Y 

mean that X is continuously and further compactly embedded into Y , respectively. Given a sequence { u k } ∞ 

k =1 
=

(u 1 , u 2 , . . . ) in X , u k ⇀ u in X means that u k converge weakly to some u ∈ X . 

2. Mathematical modeling and analysis 

In this section, we will first review the sharp and diffuse interface PB models, and discuss the corresponding regulariza- 

tion and weak solutions. Then, we will prove the convergence of the reaction-field potential and electrostatic free energy. 

2.1. The sharp interface PB model 

Consider a 3-dimensional solute-solvent system contained in a bounded Lipschitz domain � ⊂ R 
3 satisfying a uniform 

exterior ball condition, which is fulfilled by any bounded C 2 domain; see [36, Exercise 2.11] for example. We further assume

that � is composed of two disjoint subdomains with Lipschitz boundaries: 

• �m : inner solute (molecular) region, and 
• �s : outer solvent region, 

i.e. � = �m ∪ � ∪ �s , where � = ∂�m ∩ ∂�s is the solute-solvent interface. Denote by ∂� the boundary of �. Assume that

the solute region �m contains N m solute atoms centered at r 1 , . . . , r N m . Characteristic functions χ�s 
and χ�m 

will be used

to identify solvent and solute subdomains, respectively. For instance, χ�s 
(r ) = 1 when r ∈ �s and χ�s 

(r ) = 0 otherwise. 

In the PB model [1–3] , charges in �m are partial charges assigned to the centers of atoms by using force fields, while

charges in �s are mobile ions described by the Boltzmann distribution. Applying Gauss’s law to the charge distribution 

in both �m and �s , then the electrostatic potential u of the solute-solvent system is governed by the PB equation in the

dimensionless form Holst [4] {
−∇ · (ε∇u ) + χ�s 

κ2 sinh u = ρ in �;
u = u b on ∂�, 

(2.1) 

where the dielectric constant is defined by 

ε = εm χ�m 
+ εs χ�s 

, 

with εm and εs being dielectric constant, respectively, for the molecule and water. Here the source term is due to singular 

charges contained in the protein 

ρ(r ) = 4 π
e 2 c 
k B T 

N m ∑ 

j=1 

q j δ(r − r j ) , in �, (2.2) 
3 
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where N m is the total number of atoms in the solute molecule, k B is the Boltzmann constant, and T is the absolute tempera-

ture. For each atom, a partial charge q j in terms of the fundamental charge e c is located at the atom center r j . The modified

Debye-Hückel parameter κ takes a constant value 

κ2 = 

(
2 N A e 

2 
c 

100 k B T 

)
I = 8 . 486902807 ̊A −2 I, 

where N A is the Avogadro’s Number and I is the molar ionic strength. The boundary condition can be written as 

u b (r ) = 

e 2 c 
k B T 

N m ∑ 

j=1 

q j 

εs | r − r j | e 
−| r −r j | 

√ 

κ2 

εe , on ∂�. (2.3) 

The singular source term of (2.1) is a well known difficulty in analysis and computation of the PB equation. To overcome

the difficulty, a two-component regularization [8,23,27,34] will be employed. In particular, we decompose the solution, u � , 

of (2.1) into two parts: 

u � = ̃  u � + u C , 

where ˜ u � and u C are reaction field potential and Coulomb potential, respectively. The Coulomb potential u C captures the 

singularities by means of {
−εm �u C = ρ in R 

3 ;
u C (r ) → 0 as | r | → ∞ . 

(2.4) 

The solution to the above equation is given analytically by the Green’s function 

u C (r ) = G (r ) = 

e 2 c 
k B T 

N m ∑ 

j=1 

q j 

εm | r − r j | . 

It is well known that 

G ∈ C ∞ (R 
3 \ { r 1 , . . . , r N m } ) . 

For the present sharp interface PB model, we apply the dual decomposition idea originally developed for the diffuse 

interface PB model [22] . In particular, we will decompose the dielectric function as ε = ˆ ε + εm . Then we expect that the

reaction field potential ˜ u � solves {
−∇ · (ε∇u ) + χ�s 

κ2 sinh (u + u C ) = ∇ · ( ̂  ε∇u C ) in �;
u = u b − u C on ∂�. 

(2.5) 

A key observation is that despite of the singularities of u C inside �m , the coefficients χ�s 
and ˆ ε vanish in �m . As a direct

consequence, (2.5) is a well-defined nonlinear second order elliptic problem and the singularities of the solution u are 

captured by those of the Green’s function u C . For this reason, (2.5) is usually termed the regularized Poisson-Boltzmann

(RPB) equation. The term ∇ · ( ̂  ε∇u C ) ∈ H 
−1 (�) and thus, for any φ ∈ C 1 0 (�) , we have ∫ 

�
∇ · ( ̂  ε∇u C ) φ dr = −

∫ 
�

ˆ ε∇u C · ∇φ dr . 

This motivates the following definition of weak solutions. 

Definition 2.1. Consider the following Dirichlet problem of the semilinear strictly elliptic equation {
−∇ · (a ∇u ) + F (r , u ) = ∇ · f in �;

u = g on ∂�. 
(2.6) 

Suppose that 

a ∈ L ∞ (�) , f ∈ L 2 (�; R 
3 ) , g ∈ L 2 (∂�) 

and F (·, ·) is measurable in � × R , 

F (r , ·) ∈ C 1 −(R ) , ∀ r ∈ �, 

where C 1 −(R ) denotes the set of Lipschitz continuous functions on R ; and for any M > 0 , F (r , s ) is uniformly bounded for

(r , s ) ∈ � × [ −M, M] . Then we call u ∈ H 
1 (�) ∩ L ∞ (�) a weak solution to (2.6) if for any φ ∈ C ∞ 

0 (�) ∫ 
�
[ a (r ) ∇u (r ) · ∇φ(r ) + F (r , u ) φ(r ) + f (r ) · ∇φ(r ) ] dr = 0 (2.7) 

and 

u = g on ∂�
4 
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in the trace sense. 

It follows from [23, Theorems 4.5 and 5.1] that (2.5) has a weak solution ̃  u � , that is, ̃  u � ∈ H 
1 (�) ∩ L ∞ (�) with boundary

trace u b − u C and for any φ ∈ C ∞ 

0 
(�) ∫ 

�

[
ε∇ ̃  u � · ∇φ + χ�s 

κ2 sinh ( ̃  u � + u C ) φ + ˆ ε∇u C · ∇φ
]
dr = 0 

by the above definition. 

Remark 2.2. The difference between the present RPB Eq. (2.5) and that of the two-component regularization [23,27] is the

source term ∇ · ( ̂  ε∇u C ) . We note that ∇ · ( ̂  ε∇u C ) is a Radon measure supported only on �. In particular, following [34] ,

∇ · ( ̂  ε∇u C ) can be rewritten as ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∇ · ( ̂  ε∇u C ) = (εm − εm )�u C = 0 , in �m 

∇ · ( ̂  ε∇u C ) = (εs − εm )�u C = (εs − εm )�G, in �s 

[ u C ] = u + 
C 

− u −
C 

= 0 , on �[
ˆ ε ∂u C 

∂n 

]
= ˆ ε+ ∂u + C 

∂n 
− ˆ ε− ∂u −

C 

∂n 
= (εs − εm ) 

∂G 
∂n 

, on �

u C = G, on ∂�. 

(2.8) 

Since �G is vanishing in �s , this source term is omitted in [23,27] . However, as pointed out in [34] , the negligence of

such a source term will introduce a noticeable approximation error. Thus, in order to recover the accuracy, such a source

term should be kept in the numerical discretization. In fact, by keeping a source term which is essentially equivalent to

the present one [34] , the two-component regularization [23,27] yields the same high precision as the regularized Matched 

Interface and Boundary (rMIB) method [8,29] . Therefore, instead of implementing the source term ∇ · ( ̂  ε∇u C ) by means of

(2.8) , the existing rMIB package [8] will be employed, for simplicity, to demonstrate the regularization of the sharp interface

PB equation. 

2.2. A Diffuse Interface PB model 

Following the ideas in [22] , we will introduce a family of diffuse interface PB models with smooth solute-solvent bound-

aries. The solute-solvent boundary is constructed by using a smeared surface function S. Let U 1 and U 2 be two open Lipschitz

subsets of � satisfying 

U 1 ⊂⊂ �m ⊂⊂ U 2 ⊂⊂ � and { r 1 , . . . , r N m } ⊂ U 1 . (2.9) 

Recall that, for any two open subsets U, V ⊂ R 
3 , V ⊂⊂ U means that V ⊂ U . A smeared surface function S : � → [0 , 1] is a

 
2 −function with the following properties: 

1) S(r ) = 1 for all r ∈ U 1 , and 

2) S(r ) = 0 for all r ∈ � \ U 2 . 

Then the diffuse dielectric coefficient εd is given by 

εd (r ) = εm S(r ) + εs [ 1 − S(r ) ] . 

For the present setting, the electrostatic potential u is determined by the following diffuse interface PB problem [22] {
−∇ · (εd ∇u ) + (1 − S) κ2 sinh u = ρ in �;

u = u b on ∂�. 
(2.10) 

The regularization of the diffuse interface PB equation has been successfully formulated in [22] , by conducting a dual de-

composition of potential and dielectric function. In particular, we can decompose εd into 

εd = εm + ˆ εd with ˆ εd = (εs − εm )(1 − S) . 

We denote the solution to (2.10) by u d , which can be decomposed into 

u d = ̃  u d + u C . 

Proposition 2.3. The reaction field potential ˜ u d is the unique weak solution of {
−∇ · (εd ∇u ) + (1 − S) κ2 sinh (u + u C ) = ∇ · ( ̂  εd ∇u C ) in �;

u = u b − u C on ∂�. 
(2.11) 

Proof. Let us further introduce a three-component decomposition of ˜ u d . We first consider {
�H = 0 in �;
H = u b − u C on ∂�. 

(2.12) 
5 
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Extend (u b − u C ) | ∂� to be a function f ∈ C ∞ ( �) by possibly multiplying u b − u C by a smooth cut-off function to remove the

singularities. Then ˜ H := H − f solves {
�˜ H = � f in �;˜ H = 0 on ∂�. 

(2.13) 

It follows from [37, Corollary 1 and the remark on Page 9] that ˜ H ∈ H 
2 (�) ∩ H 

1 
0 
(�) . We put u BC = u C + H. Then {

−εm �u BC = ρ in �;
u BC = u b on ∂�. 

(2.14) 

It is worthwhile to point out that u BC is independent of the smeared surface function S. Moreover, by the Sobolev embed-

dings 

H 
2 (�) ↪→ W 

1 , 6 (�) ↪→ C( �) , 

it holds that 

‖ u BC ‖ L ∞ (�\ U 1 ) + ‖∇u BC ‖ L 6 (�\ U 1 ) < M 1 (2.15) 

for some M 1 > 0 independent of S. This is a crucial estimate in the proof of the convergence theorem, Theorem 2.6 , in the

next subsection. 

Subtracting u BC from u d motivates us to consider the weak solution, u R ,d , of {
−∇ · (εd ∇u ) + (1 − S) κ2 sinh (u + u BC ) = ∇ · ( ̂  εd ∇u BC ) in �;

u = 0 on ∂�. 
(2.16) 

We can introduce a further decomposition u R ,d = u L,d + u N,d in such a way that u L,d solves {
−∇ · (εd ∇u ) = ∇ · ( ̂  εd ∇u BC ) in �;

u = 0 on ∂�, 
(2.17) 

and u N,d solves {
−∇ · (εd ∇u ) + (1 − S) κ2 sinh (u + u BC + u L,d ) = 0 in �;

u = 0 on ∂�. 
(2.18) 

The existence and uniqueness of a weak solution to the Dirichlet problem (2.17) is an immediate result of the standard

elliptic theory, cf. [36, Theorems 8.3 and 8.16] . Observe that ˆ εd (r ) = 0 for all r ∈ U 1 . Therefore, we have a unique weak

solution u L,d to (2.17) with 

‖ u L,d ‖ L ∞ (�) ≤ ̂ M for some ̂ M > 0 . 

To study (2.18) , we consider the energy functional defined by 

I d [ u ] = 

∫ 
�

[ 
εd 
2 

|∇u | 2 + (1 − S) κ2 cosh (u BC + u L,d + u ) 
] 
dr , u ∈ H 

1 
0 (�) . 

The existence of a minimizer I d [ u N,d ] = min 
u ∈ H 1 

0 
(�) 

I d [ u ] follows from the direct method of Calculus of Variation. Note that u N,d 

weakly solves (2.18) if and only if it is a critical point of I d [ ·] that further belongs to L ∞ (�) . The uniqueness of a critical

point of the functional I d [ ·] is an immediate consequence of its strict convexity. We will show that u N,d ∈ L ∞ (�) . 

Define 

W = { r ∈ � : u N,d (r ) ≥ M 1 + 
̂ M } . 

Multiplying both sides of (2.18) by (u N,d − M 1 − ̂ M ) + and integrating over � yields ∫ 
W 

[
εd |∇u N,d | 2 + (1 − S) κ2 sinh (u N,d + u BC + u L,d )(u N,d − M 1 − ̂ M ) + 

]
dr = 0 . 

Because both terms in the integrand are non-negative, this implies that 

u N,d ≤ M 1 + 
̂ M a.e. on � \ U 1 . 

Similarly, we can show that 

u N,d ≥ −M 1 − ̂ M a.e. on � \ U 1 . 

Combining the above estimates with [36, Theorem 8.16] , we have proved that 

‖ u N,d ‖ L ∞ (�) ≤ ˜ M for some ˜ M > 0 . (2.19) 

Therefore, u N,d is indeed a weak solution of (2.18) . 
6 
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We have thus obtained a weak solution ̃  u d = H + u L,d + u N,d to (2.11) . By our construction, ̃  u d is the unique weak solution

to (2.11) . �

Remark 2.4. A few remarks are in order. 

(1) The three-component decomposition ˜ u d = H + u L,d + u N,d seems to be excessively complex. However, this decomposi- 

tion turns out to be useful in the proof of the convergence theorem, Theorem 2.6 . 

(2) In contrast with the discontinuity of ∇ ̃  u � across �, in the diffuse interface PB Eq. (2.10) , the gradient of the reaction

field potential is continuous throughout �. Indeed, applying [36, Theorem 8.10] to (2.11) , one can show that ˜ u d ∈ W 
3 , 2 (�′ )

for any subdomain �′ ⊂⊂ �. Then the assertion follows from the Sobolev embedding theorem. 

2.3. Convergence 

Arguably, sharp interface models are the most popular type of interface model in the mathematical analysis of multi- 

phase problems. One possible explanation is that the extensive research on the sharp interface based transmission problems 

and free boundary problems lay the solid foundation for analyzing multiphase problems. In the study of implicit solvation, 

diffuse interface PB models are nevertheless the more physical choice, as discussed in the introduction. It is a natural ques-

tion to ask whether they are analytically reasonable generalizations of the sharp interface PB model. To this end, we will

study the convergence of the electrostatic potentials and free energies of diffuse interface PB models to their sharp interface 

counterparts. 

Take a sequence of smeared surface functions S n : � → [0 , 1] satisfying, in addition, 

0) S n → χ�m 
in L 1 (�) as n → ∞ . 

Then the sharp interface dielectric coefficient ε can be approximated by the diffuse ones 

εn (r ) = εm S n (r ) + εs [ 1 − S n (r ) ] 

in L 1 (�) . Observe that S n and thus εn are uniformly bounded in L ∞ (�) . Therefore, the Riesz-Thorin interpolation theorem

implies that 

lim 

n →∞ 

‖ εn − ε‖ L r (�) = 0 , r ∈ [1 , ∞ ) . (2.20) 

Example 2.5. Consider the 3-dimensional Gaussian kernel 

K σ (r ) = 

1 (
σ

√ 

2 
)3 exp 

(
− | r | 2 
2 σ 2 

)
, σ > 0 . 

Given an arbitrary positive sequence { σn } ∞ 

n =1 with limit 0, put 

˜ S n (r ) = χ�m 
∗ K σn 

(r ) = 

∫ 
�m 

K σn 
(r − r ′ ) dr ′ . 

It is well known that ˜ S n → χ�m 
in L 1 (�) . 

Pick two smooth cut-off functions φ, ψ : � → [0 , 1] such that 

φ(r ) = 

{
1 , when r ∈ �m , 

0 , when r ∈ � \ U 2 , 

and 

ψ(r ) = 

{
1 , when r ∈ U 1 , 

0 , when r ∈ � \ �m . 

Now we define 

S n (r ) = φ(r ) 
[
ψ(r ) + ( 1 − ψ(r ) ) ̃  S n (r ) 

]
. 

Note that χ�m 
(r ) = φ(r ) 

[
ψ(r ) + ( 1 − ψ(r ) ) χ�m 

(r ) 
]
. Direct computations show that ∫ 

�
| S n (r ) − χ�m 

(r ) | dr ≤
∫ 
�

φ(r ) ( 1 − ψ(r ) ) 
∣∣˜ S n (r ) − χ�m 

(r ) 
∣∣dr 

≤
∫ 
�

∣∣˜ S n (r ) − χ�m 
(r ) 

∣∣dr . 
Therefore, the sequence { S n } ∞ 

n =1 
satisfies Conditions (S0)-(S2). { S n } ∞ 

n =1 
are exactly the Gaussian convolution surface (GCS) 

functions with convolution parameter { σn } ∞ , cf. [22] . 

n =1 
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A unified regularization formulation is considered as in the sharp interface PB model. As in Sections 2.1 and 2.2 , we

rewrite the approximating dielectric coefficients εn as 

εn = εm + ˆ εn with ˆ εn = (εs − εm )(1 − S n ) , 

and decompose the solution u n of {
−∇ · (εn ∇u ) + (1 − S n ) κ2 sinh u = ρ in �;

u = u b on ∂�
(2.21) 

into [22] 

u n = ̃  u n + u C . 

By Proposition 2.3 , ˜ u n is the unique weak solution of {
−∇ · (εn ∇u ) + (1 − S n ) κ2 sinh (u + u C ) = ∇ · ( ̂  εn ∇u C ) in �;

u = u b − u C on ∂�. 
(2.22) 

We note that the RPB Eq. (2.22) is basically the one proposed in [22] . Because the source term ∇ · ( ̂  εn ∇u C ) is smooth and

bounded, the standard finite difference is sufficient for solving the diffuse interface PB equation numerically, which is much 

simpler than the rMIB algorithm for the sharp interface PB equation [8,29,34] . In the present study, the finite difference

solver developed in [22] will be used to demonstrate the regularization of the diffuse interface PB model. 

Theorem 2.6. For each n , (2.21) has a unique solution of the form u n = ̃  u n + u C , where ˜ u n is the unique weak solution of (2.22) .

Moreover, 

‖ u n − u �‖ H 1 (�) → 0 as n → ∞ , 

or equivalently, 

˜ u n → ̃  u � in H 
1 (�) as n → ∞ , (2.23) 

where u � = ̃  u � + u C is the unique solution of (2.1) with ˜ u � weakly solving (2.5) . 

Proof. The existence and uniqueness of weak solutions u n = ̃  u n + u C of (2.21) is proved in Section 2.2 . 

To study the convergence (2.23) , we will first show that 

˜ u n → ̃  u � in L 2 (�) as n → ∞ . (2.24) 

Recall the definition of u BC , which solves (2.14) . Note that ∇ · [ ̂  εn (r ) ∇u BC (r ) ] = 0 for all r ∈ U 1 and the bound M 1 in (2.15) is

independent of n . 

As in the proof of Proposition 2.3 , we consider the weak solution, u R ,n = u n − u BC , of {
−∇ · (εn ∇u ) + (1 − S n ) κ2 sinh (u + u BC ) = ∇ · ( ̂  εn ∇u BC ) in �;

u = 0 on ∂�, 
(2.25) 

and the weak solution, u R , � = u � − u BC , of {
−∇ · (ε∇u ) + χ�s 

κ2 sinh (u + u BC ) = ∇ · ( ̂  ε∇u BC ) in �;
u = 0 on ∂�. 

(2.26) 

Given an arbitrary subsequence of u R ,n , not relabelled, we decompose them into u R ,n = u L,n + u N,n , where u L,n is the

unique weak solution of {
−∇ · (εn ∇u ) = ∇ · ( ̂  εn ∇u BC ) in �;

u = 0 on ∂�, 
(2.27) 

and u N,n is the unique weak solution of {
−∇ · (εn ∇u ) + (1 − S n ) κ2 sinh (u + u BC + u L,n ) = 0 in �;

u = 0 on ∂�. 
(2.28) 

Note that u L,n is a valid test function in (2.7) . Multiply both sides of (2.27) by u L,n and integrate over �. This yields ∫ 
�

εn |∇u L,n | 2 dr ≤
∣∣∣∫ 

�
ˆ εn ∇u BC · ∇u L,n 

∣∣∣dr . (2.29) 

By the Hölder and Young’s inequalities, the right hand side of (2.29) can be estimated as ∣∣∣∫ 
�

ˆ εn ∇ u BC · ∇ u L,n dr 

∣∣∣ ≤C 
∣∣∣∣∫ 

�\ U 1 
∇ u BC · ∇ u L,n dr 

∣∣∣∣

8 
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≤L (δ) ‖∇u BC ‖ 
2 
L 2 (�\ U 1 ) + δ‖∇u L,n ‖ 

2 
L 2 (�) (2.30) 

for any δ > 0 and a continuous and decreasing function L : R + → R + . 
Choosing δ > 0 sufficiently small, we can infer from (2.15), (2.29), (2.30) and the Hölder and Poincaré’s inequalities that 

‖ u L,n ‖ H 1 (�) < M 2 (2.31) 

for some constant M 2 > 0 uniform in n . 

Note that ˆ εn ∇u BC is uniformly bounded in L 6 (�) . We infer from [36, Theorem 8.16] that 

‖ u L,n ‖ L ∞ (�) < M 3 (2.32) 

for some M 3 > 0 independent of n . 

Applying a similar argument leading to (2.19) , we obtain 

‖ u N,n ‖ L ∞ (�) ≤ M 4 (2.33) 

for some constant M 4 > 0 independent of n . Multiplying both sides of (2.28) by u N,n and integrating over � give ∫ 
�

[
εn |∇u N,n | 2 + (1 − S n ) κ

2 sinh (u N,n + u BC + u L,n ) u N,n 

]
dr = 0 . 

In view of (2.15), (2.32) and (2.33) , we can again infer from the Poincaré inequality that 

‖ u N,n ‖ H 1 (�) < M 5 (2.34) 

for some constant M 5 > 0 independent of n . Combining (2.31) and (2.34) , we thus have 

‖ u R ,n ‖ H 1 (�) < M 2 + M 5 . (2.35) 

Therefore, there exists some u R , � ∈ H 
1 
0 (�) such that up to a further subsequence, not relabelled, 

u R ,n → u R , � in L 2 (�) and u R ,n ⇀ u R , � in H 
1 (�) . (2.36) 

Moreover, 

‖ u R , �‖ L ∞ (�) ≤ ‖ u R ,n ‖ L ∞ (�) < M 3 + M 4 . (2.37) 

Consider the weak formulation of (2.25) , i.e. for any φ ∈ C ∞ 

0 
(�) ∫ 

�

[
εn ∇ u R ,n · ∇ φ + κ2 (1 − S n ) sinh (u BC + u R ,n ) φ + ˆ εn ∇u BC · ∇φ

]
dr = 0 . (2.38) 

By the mean value theorem, (2.15), (2.32), (2.33) and (2.37) , we have ∣∣∣∫ 
�

[
κ2 (1 − S n ) sinh (u BC + u R ,n ) φ

]
dr −

∫ 
�

[
κ2 χ�s 

sinh (u BC + u R , �) φ
]
dr 

∣∣∣
≤C 

[ ∫ 
�\ U 1 

(1 − S n ) | sinh (u BC + u R ,n ) − sinh (u BC + u R , �) | dr 

+ 

∫ 
�\ U 1 

| (1 − S n ) − χ�s 
|| sinh (u BC + u R , �) | dr 

] 
≤C 

∫ 
�\ U 1 

[ 
| u R ,n − u R , �| + | (1 − S n ) − χ�s 

| 
] 
dr −→ 0 

as n → ∞ . In view of (2.15), (2.20), (2.35) and (2.36) , it is a simple task to verify that 

lim 

n →∞ 

∫ 
�

εn ∇ u R ,n · ∇ φ dr = 

∫ 
�

ε∇ u R , � · ∇ φ dr 

and 

lim 

n →∞ 

∫ 
�

ˆ εn ∇ u BC · ∇ u R ,n dr = 

∫ 
�

ˆ ε∇ u BC · ∇ u R , � dr . (2.39) 

Hence we can push n → ∞ in (2.38) and obtain ∫ 
�

[
ε∇ u R , � · ∇ φ + κ2 χ�s 

sinh (u BC + u R , �) φ + ˆ ε∇ u BC · ∇ φ
]
dr = 0 . (2.40) 

Therefore, u R , � is a weak solution to (2.26) . 

Next, we will prove that 

lim 

n →∞ 

∫ 
εn |∇ u n − ∇ u | 2 dr = 0 , 
�

9 



Y. Shao, M. McGowan, S. Wang et al. Applied Mathematics and Computation 436 (2023) 127501 

 

 

 

or equivalently, 

lim 

n →∞ 

∫ 
�

εn |∇ u R ,n − ∇ u R , �| 2 dr = 0 . (2.41) 

Since C ∞ 

0 (�) is dense in H 
1 
0 (�) , φ = u R ,n is a valid test function in (2.38) . We consider ∫ 

�
εn |∇u R ,n | 2 dr 

= − κ2 

∫ 
�
(1 − S n ) sinh (u BC + u R ,n ) u R ,n dr −

∫ 
�

ˆ εn ∇u BC · ∇u R ,n dr . (2.42) 

To study the first term on the right hand side of (2.42) , one can compute that ∣∣∣∫ 
�
(1 − S n ) sinh (u BC + u R ,n ) u R ,n dr −

∫ 
�

χ�s 
sinh (u BC + u R , �) u R , � dr 

∣∣∣
≤
∣∣∣∫ 

�
[ (1 − S n ) − χ�s 

] sinh (u BC + u R ,n ) u R ,n dr 

∣∣∣
+ 

∣∣∣∣∫ 
�s 

[ sinh (u BC + u R ,n ) − sinh (u BC + u R , �) ] u R ,n dr 

∣∣∣∣
+ 

∣∣∣∣∫ 
�s 

sinh (u BC + u R , �) ( u R ,n − u R , �) dr 

∣∣∣∣. 
By (2.15) and (2.37) , 

lim 

n →∞ 

∣∣∣∫ 
�
[ (1 − S n ) − χ�s 

] sinh (u BC + u R ,n ) u R ,n dr 

∣∣∣ = 0 . 

Similarly, by means of the mean value theorem, (2.15), (2.36) and (2.37) , one can show that 

lim 

n →∞ 

∣∣∣∣∫ 
�s 

[ sinh (u BC + u R ,n ) − sinh (u BC + u R , �) ] u R ,n dr 

∣∣∣∣ = 0 

and 

lim 

n →∞ 

∣∣∣∣∫ 
�s 

sinh (u BC + u R , �) ( u R ,n − u R , �) dr 

∣∣∣∣ = 0 . 

Combining with (2.39) and (2.40) , the above estimates imply that 

lim 

n →∞ 

∫ 
�

εn |∇u R ,n | 2 dr = 

∫ 
�

ε|∇u R , �| 2 dr . 
On the other hand, by the dominated convergence theorem, 

lim 

n →∞ 

∫ 
�

εn |∇u R , �| 2 dr = 

∫ 
�

ε|∇u R , �| 2 dr . 
Now it follows that 

lim 

n →∞ 

∫ 
�

εn |∇ u R ,n − ∇ u R , �| 2 dr 

= lim 

n →∞ 

∫ 
�

[
εn |∇u R ,n | 2 − 2 εn ∇u R ,n · ∇u R , � + εn |∇u R , �| 2 ]dr 

= 

∫ 
�

[
ε|∇u R , �| 2 − 2 ε∇u R , � · ∇u R , � + ε|∇u R , �| 2 ]dr = 0 . 

By the Poincaré inequality, this proves (2.23) . 

It remains to show that u � = u R , � + u BC is the unique solution of (2.1) , or equivalently, u R , � is the unique weak solution

to (2.26) . This follows from an analogous argument to the uniqueness part in the proof of Proposition 2.3 . �

The energy released when the solute molecule is dissolved in the solvent is known as the free energy of solvation.

The polar component of solvation free energy can be calculated in the linearized PB model by computing the difference

between the total electrostatic free energy of the macromolecule in the solvent and in the vacuum. Therefore, the polar 

solvation energy can be calculated as [3] 

E = 

1 

2 
k B T 

∫ 
�

N m ∑ 

j=1 

q j δ(r − r j ) [ u �(r ) − u C (r ) ] dr , 
10 
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where u � is the solution of (2.1) . Similarly, we can define the approximating polar solvation energy as 

E n = 

1 

2 
k B T 

∫ 
�

N m ∑ 

j=1 

q j δ(r − r j ) [ u n (r ) − u C (r ) ] dr 

for the solution u n of (2.21) . 

Theorem 2.7. lim 

n →∞ 

E n = E. 

Proof. Recall the decompositions u � = u C + H + u R , � and u n = u C + H + u R ,n . It clearly holds that 

E = 

1 

2 
k B T 

N m ∑ 

j=1 

q j H(r j ) + 

1 

2 
k B T 

∫ 
�

N m ∑ 

j=1 

q j δ(r − r j ) u R , �(r ) dr , (2.43)

and 

E n = 

1 

2 
k B T 

N m ∑ 

j=1 

q j H(r j ) + 

1 

2 
k B T 

∫ 
�

N m ∑ 

j=1 

q j δ(r − r j ) u R ,n (r ) dr . (2.44)

We will prove that u R , � and u R ,n are indeed continuous in a neighbourhood of { r 1 , . . . , r N m } and thus the integrals in
(2.43) and (2.44) are well-defined. 

Observe that both (1 − S n ) and ˆ εn are identically zero in U 1 . We can thus infer from (2.25) that 

�u R ,n = 0 in U 1 . 

Choose any open subset V ⊂⊂ U 1 with C 2 −boundary such that { r 1 , . . . , r N m } ⊂ V . Then interior H 
2 -estimate, cf. [38, Sec-

tion 6.3.1] , implies that 

‖ u R ,n ‖ H 2 (V ) ≤ M 6 

for some constant M 6 > 0 independent of n . By the Rellich-Kondrachov embedding theorem, cf. [39, Theorem 6.3] , we have 

H 
2 (V ) 

c 
↪ −→ W 

1 , 5 (V ) ↪→ C(V ) . 

Together with (2.36) , this implies that u R ,n converge to u R , � pointwise in V . We thus conclude that 

lim 

n →∞ 

∫ 
�

N m ∑ 

j=1 

q j δ(r − r j ) u R ,n (r ) dr = lim 

n →∞ 

N m ∑ 

j=1 

q j u R ,n (r j ) 

= 

N m ∑ 

j=1 

q j u R , �(r j ) 

= 

∫ 
�

N m ∑ 

j=1 

q j δ(r − r j ) u R , �(r ) dr . 

Due to the expressions (2.43) and (2.44) , this completes the proof. �

Remark 2.8. We will state several extensions of the results in Sections 2.2 and 2.3 in this remark. 

(1) The reason to assume that { S n } ∞ 

n =1 satisfy (S2) and are C 
2 -continuous is to keep the definition of smeared surface

functions consistent with those in [22] . A careful examination of the proofs of Proposition 2.3, Theorems 2.6 and 2.7 reveals

that they do not rely on these two conditions. Therefore, assuming that { S n } ∞ 

n =1 
: � → [0 , 1] is a sequences of L ∞ −functions

satisfying Properties (S0) and (S1), the assertions in Proposition 2.3, Theorems 2.6 and 2.7 remain valid. 

(2) Proposition 2.3, Theorems 2.6 and 2.7 are still true when � is a general bounded Lipschitz domain. This can be 

observed from the following way of decomposing ˜ u d = ̃  u L,d + ̃  u N,d such that ˜ u L,d solves {
−∇ · (εd ∇u ) = ∇ · ( ̂  εd ∇u C ) in �;

u = u b − u C on ∂�, 
(2.45) 

and ˜ u N,d solves {
−∇ · (εd ∇u ) + (1 − S) κ2 sinh (u + u C + ̃  u L,d ) = 0 in �;

u = 0 on ∂�. 

[36, Theorems 8.3 and 8.16] imply that ˜ u L,d ∈ H 
1 (�) with ‖ ̃  u L,d ‖ L ∞ (�) ≤ M 7 for some constant M 7 independent of S. Pick

w ∈ H 
1 (�) with trace u b − u C on ∂�. Then multiplying both sides of (2.45) by ˜ u L,d − w and integrating over � yield ∫ [

εd ∇ ̃  u L,d ∇( ̃  u L,d − w ) + ˆ εd ∇u C ∇( ̃  u L,d − w ) 
]
dr = 0 . 
�

11 
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Then we can apply Hölder and Young’s inequalities to obtain that 

−
∫ 
�

εd ∇ ̃  u L,d ∇w dr ≥ −δ‖∇ ̃  u L,d ‖ 
2 
L 2 (�) − L 1 (δ) ‖∇w ‖ 

2 
L 2 (�) 

and similarly ∣∣∣∫ 
�

ˆ εd ∇ u C ∇ ̃  u L,d dr 

∣∣∣ ≤ δ‖∇ ̃  u L,d ‖ 
2 
L 2 (�) + L 2 (δ) ‖∇u C ‖ 

2 
L 2 (�\ U 1 ) , 

for any δ > 0 and a continuous and decreasing functions L i : R + → R + . Choosing δ sufficiently small, we infer that 

‖∇ ̃  u L,d ‖ L 2 (�) ≤ M 8 

for some M 8 > 0 independent of S. On the other hand, by the Poincaré inequality 

‖ ̃  u L,d ‖ L 2 (�) ≤‖ ̃  u L,d − w ‖ L 2 (�) + ‖ w ‖ L 2 (�) ≤ C‖∇( ̃  u L,d − w ) ‖ L 2 (�) + ‖ w ‖ L 2 (�) 

≤C ‖∇ ̃  u L,d ‖ L 2 (�) + C ‖∇w ‖ L 2 (�) + ‖ w ‖ L 2 (�) ≤ M 9 

for some M 9 > 0 independent of S. Then following the proof of Theorem 2.6 , one can show that 

‖ ̃  u N,d ‖ H 1 (�) + ‖ ̃  u N,d ‖ L ∞ (�) ≤ M 10 

for some M 10 > 0 independent of S. Combining the above discussions, we thus obtain a uniform estimate for ˜ u d , which is

independent of S. Then the assertions in Proposition 2.3, Theorems 2.6 and 2.7 follow by similar arguments to their original

proofs. 

(3) The energy convergence actually holds for more general forms of electrostatic solvation energy that include the en- 

tropic contributions from the ionic concentrations, e.g. [40, Equation (5.5)] . Based on (2.23) and (2.37) , the convergence of

the entropic terms can be established by using the dominated convergence theorem. 

3. Numerical experiments 

In this section, we will numerically investigate the convergence of the diffuse interface PB model to the sharp interface 

one. In all studies, the dielectric coefficients are chosen as εm = 1 and εs = 80 , and the ionic strength is taken as I = 0 . 15 M.

A uniform mesh with the spacing h being the same in x , y , and z directions is used. The unit of all lengths is Å. 

We first consider a diatomic system with both radii being R = 2 . Two test sets are studied with centers being (±2 , 0 , 0)

and (±3 , 0 , 0) , respectively, for Set 1 and Set 2. In our computations, we take a fixed domain [ −9 , 9] × [ −6 , 6] × [ −6 , 6] and

h = 0 . 1 for both sets. Following [22] , the diffuse interfaces in both sets are constructed by using the Gaussian convolution

surface (GCS), in which the limiting sharp interface � is defined as the solvent accessible surface (SAS) [5] with the probe

radius being 1.5. Define the molecule domain �m to be the region enclosed by the SAS. Consider a sequence of σn values

of the Gaussian kernel approaching zero. For each σn value, the diffuse interface is generated by convoluting χ�m 
with the 

Gaussian kernel. After post-processing [22] , this generates the smeared surface function S n (r ) . The GCS diffuse interfaces for

Set 1 and Set 2 are illustrated, respectively, in Figs. 1 and 2 . It is clear in both sets that as σn goes to zero, the GCS diffuse

interface approaches to the corresponding SAS. We note that the SAS involves two cusps for the diatomic system. By pulling

two balls away from each other, the cusps of the Set 2 is more evident. On the other hand, we can see that the GCS surfaces

are all very smooth, including at corner points. Because of smooth dielectric profile, a simple finite difference algorithm is 

sufficient for solving the diffuse interface PB equation [22] . 

By considering a diffuse interface with a given σ 2 
n value, the corresponding electrostatic free energy E n of the diatomic 

system is numerically calculated by solving the linearized PB equation with the regularization method developed in [22] . 

The calculated energies are listed in Table 1 . It can be seen that as σ 2 
n becomes smaller, E n becomes larger. Moreover, the

energies of two sets are plotted against σ 2 
n in part (a) and (b) of Fig. 3 . A convergence pattern is clearly seen for both sets. 

For a comparison, the regularized Matched Interface and Boundary (rMIB) method [8] is employed to solve the linearized 

PB equation for both diatomic systems. Numerically, the rMIB method utilizes a sophisticated finite difference algorithm for 

treating the complex geometry of the molecular surface and for enforcing interface jump conditions so that a second order 

of accuracy can be guaranteed. Moreover, as mentioned above, the regularization utilized in the rMIB method is essentially 

equivalent to the regularized PB Eq. (2.5) . 

However, the existing rMIB package cannot handle the SAS directly. Instead, the rMIB method is designed for the solvent 

excluded surface (SES) which is known to be smoother than the SAS [6] . In the present study, to mimic the sharp interface

limit of the GCS, we first augment the atom radii by adding 1.5 ̊A for each ball. Then a SES is generated based on the

augmented diatomic structure by using the software MSMS [41] with a probe radius being 1.5 ̊A. The resulting molecular

surface will be called rMIB sharp interface in this paper. The rMIB sharp interfaces of Set 1 and Set 2 are shown, respectively,

in Figs. 1 and 2 . It is seen that the rMIB sharp interface is identical to the SAS for most regions. However, at the overlapping

region between two balls, the rMIB molecular surface becomes fatter, and is free of the cusps. Physically, because the solute 

domain enclosed by the rMIB sharp interface is larger than that of the SAS, the rMIB energy is larger than the limiting

energy of the GCS method. Consequently, the rMIB energies for both sets are well above those of the GCS, as can be seen in

both Table 1 and Fig. 3 . 
12 



Y. Shao, M. McGowan, S. Wang et al. Applied Mathematics and Computation 436 (2023) 127501 

Fig. 1. Heat-map plots for the diatomic system Set 1. In (a) - (e), the GCS diffuse interface is generated by setting σ 2 = 1 , 1 × 10 −5 , 1 × 10 −10 , 1 × 10 −15 , 

and 1 × 10 −20 , respectively. In (f), the rMIB sharp interface is shown. In all figures, the SAS is shown as dash lines. 

Table 1 

Electrostatic free energies (kcal/mol) calculated by using the GCS diffuse interface 

with different σ 2 
n values. For a comparison, the energies calculated by the rMIB 

method with a sharp interface are also given. 

Method σ 2 
n E n 

Set 1 Set 2 1AHO 1CBN 

GCS 1 -210.3648 -191.8235 -630.5557 -243.2320 

5 × 10 −1 -208.3573 -190.0311 -611.1638 -233.5578 

1 × 10 −1 -204.2312 -186.2760 -575.5727 -215.9419 

1 × 10 −3 -195.7454 -178.7213 -516.5366 -187.2860 

1 × 10 −5 -190.4240 -174.0887 -485.0368 -172.6137 

1 × 10 −10 -183.1100 -167.8359 -437.8402 -151.6080 

1 × 10 −15 -179.2319 -164.5767 -410.6039 -139.2410 

1 × 10 −20 -176.7700 -162.5300 -400.4246 -133.3438 

rMIB – -156.4009 -145.0452 -228.3870 -71.7445 

 

 

 

 

 

 

 

Next, we consider the convergence of electrostatic free energy for two real proteins with protein databank (PDB) ID: 

1AHO and 1CBN. The protein structures are prepared as explained in [19] . The rMIB sharp interfaces of two proteins are

shown in Fig. 4 , which are the SES generated based on enlarged atoms. For a comparison, the GCS surfaces of two proteins

are illustrated at S(x, y, z) = 0 . 5 for σ 2 
n = 1 . The GCS isosurfaces are obviously very smooth with σ 2 

n = 1 , while the rMIB

sharp interfaces contain many atomic features. In protein computations, we take h = 0 . 5 Å, and a large enough cubic domain

� is employed for each protein. The GCS and rMIB energies are also reported in Table 1 and Fig. 3 . Again, the GCS energy is

approaching certain limit as σ 2 
n goes to zero, which shall be smaller than the corresponding rMIB energy, because the rMIB 

sharp interface is always larger than the SAS. 

The present studies indicate that the energy convergence of the GCS diffuse interface cannot be precisely verified in 

numerical computations. This is limited by two numerical factors. First, due to the limitation of numerical algorithms, one 

cannot use the SAS in the rMIB algorithm. Instead, an enlarged sharp interface has to be used, which produces a large

energy value as the reference for the sharp interface case. The second limiting factor is the numerical resolution. When σn 

is very small, ∇ε undergoes a rapid while smooth change at the solute-solvent boundary. Unless an extremely small mesh 

spacing h is used, the finite difference method is unstable to capture such change. However, such a computation involves an

extremely dense mesh, and becomes prohibitively expensive. In summary, it is concluded that the convergence of the GCS 

energy towards its sharp interface limit is impossible to be realized numerically. This is essentially why a theoretical proof 

is needed, which is the motivation of this study. 
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Fig. 2. Heat-map plots for the diatomic system Set 2. In (a) - (e), the GCS diffuse interface is generated by setting σ 2 = 1 , 1 × 10 −5 , 1 × 10 −10 , 1 × 10 −15 , 

and 1 × 10 −20 , respectively. In (f), the rMIB sharp interface is shown. In all figures, the SAS is shown as dash lines. 

Fig. 3. As σ goes to zero, the electrostatic free energy E n calculated by the GCS regularization method is approaching certain limit. For a comparison, the 

energy calculated by the rMIB algorithm for a sharp interface is also plotted. (a). Diatomic system Set 1; (b). Diatomic system Set 2; (c). 1AHO; (d). 1CBN. 

14 



Y. Shao, M. McGowan, S. Wang et al. Applied Mathematics and Computation 436 (2023) 127501 

Fig. 4. Molecular surfaces of two proteins. In (a) and (c), the rMIB sharp interface is plotted for 1AHO and 1CBN, respectively. In (b) and (d), an isosurface 

S(x, y, z) = 0 . 5 is plotted for the GCS surfaces of 1AHO and 1CBN, respectively, which are generated by using σ 2 
n = 1 . 

 

 

 

 

4. Conclusion 

The significance of the work is twofold. First, we investigated the convergence of a diffuse interface PB model to the sharp

interface PB model, both numerically and theoretically. Due to the limitation in numerical algorithm and mesh resolution, 

we found that the convergence of electrostatic free energy is impossible to be realized numerically. Instead, we rigorously 

proved the convergence for both the regularized potential and electrostatic free energy. 

Second, the regularizations for both diffuse interface and sharp interface PB models are unified into one framework. 

For the diffuse interface model, we adopted the two-component regularization of [22] to decompose the potential into a 

reaction-field component and a Coulomb component, with the latter being calculated analytically by Green’s functions to 

account for singular charges. The reaction-field component then satisfies a regularized PB equation with a smooth source. 

The regularization for the sharp interface PB equation is formulated in the same manner, in which the source term is the

sharp interface limit of the one for the diffuse interface model. The connection between the present sharp interface PB 

regularization and the existing two-component scheme [23,27] has been discussed. In particular, the preserved source term 

for accuracy recovery in [34] is essentially equivalent to the present formulation. 

In summary, the unified regularization of this work will provide a theoretical foundation for treating charge singularities 

for more complicated PB models, such as various diffuse interface PB models [10–17] and the concentration dependent di- 

electric PB model [42] . For the modified PB model [42] , the numerical discretization of the new source term ∇ · ( ̂  εd ∇u C )

demands further studies in dealing with a heterogeneous dielectric function in the solvent region and a dielectric jump 

at the solute-solvent boundary. On the other hand, the present regularization has been further advanced in treating par- 

tial charges in the super-Gaussian PB model, in which the dielectric function is heterogeneous in the solute region, but is

required to be almost flat in a small neighborhood surrounding each atom center [43] . 
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