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A Survey on Safety-Critical Driving Scenario
Generation – A Methodological Perspective

Wenhao Ding, Chejian Xu, Mansur Arief, Haohong Lin, Bo Li, Ding Zhao

Abstract—Autonomous driving systems have witnessed signifi-
cant development during the past years thanks to the advance in
machine learning-enabled sensing and decision-making algorithms.
One critical challenge for their massive deployment in the real
world is their safety evaluation. Most existing driving systems are
still trained and evaluated on naturalistic scenarios collected from
daily life or heuristically-generated adversarial ones. However,
the large population of cars, in general, leads to an extremely
low collision rate, indicating that safety-critical scenarios are rare
in the collected real-world data. Thus, methods to artificially
generate scenarios become crucial to measure the risk and
reduce the cost. In this survey, we focus on the algorithms of
safety-critical scenario generation in autonomous driving. We
first provide a comprehensive taxonomy of existing algorithms
by dividing them into three categories: data-driven generation,
adversarial generation, and knowledge-based generation. Then, we
discuss useful tools for scenario generation, including simulation
platforms and packages. Finally, we extend our discussion to five
main challenges of current works – fidelity, efficiency, diversity,
transferability, controllability – and research opportunities lighted
up by these challenges.

Index Terms—Autonomous vehicles, Safety, Robustness, Deep
Generative Models

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) has been widely used in
software products such as facial recognition [1] and voice-

print verification [2]. But as AI continues to grow and research
has expanded to physical products like autonomous vehicles
(AVs), the question of safety is now at the forefront of this
cutting-edge field. The reason why intelligent physical systems
are much harder to be deployed is that our world is complicated
and long-tailed, causing too much uncertainty to the intelligent
agents. The driving skills would take several months to learn,
even for us humans, due to the complex traffic scenarios.
Therefore, the AVs should be trained and evaluated on lots of
different scenarios to demonstrate their safety and capability
of dealing with diverse situations [3], [4].

According to the 2020 disengagement report from the
California Department of Motor Vehicle [5], there were
at least five companies (Waymo, Cruise, AutoX, Pony.AI,
Argo.AI) that made their AVs drive more than 10,000 miles
without disengagement. These results are usually recorded in
normal driving scenarios without risky situations. It is a great
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achievement that current AVs are successful in normal cases
trained by hundreds of millions of miles of training. However,
we are still not sure whether AVs have enough safety and
robustness in distinct scenarios. For example, when one AV
is driving on the road, a kid suddenly runs into the drive lane
chasing a ball. This emergency case leaves the AV a very
short time to react, and even a subtle misbehave could cause
vital damage. This kind of situation is named safety-critical
scenarios and is usually extremely rare in the normal driving
case, as shown in Figure 1.

To efficiently evaluate the safety of AVs, more and more peo-
ple from the government, industry, and academia start to focus
on the generation of safety-critical scenarios. National Highway
Traffic Safety Administration (NHTSA), a government agency
of the United States Department of Transportation, summarized
driving system testable cases [6] and pre-crash scenarios [7]
as well as published a review of simulation frameworks and
standards related to driving scenarios [8]. Waymo, one of
the leading companies in autonomous driving, released a
safety report to illustrate how they reconstruct fatal crashes
in simulations from collected data [9]. Meanwhile, academic
research aims to generate safety-critical scenarios [10], [11]
surges by developing methods in Deep Generative Models
(DGMs) [12] and adversarial attack techniques [13]. With the
upcoming massive deployment of self-driving cars, an overview
that systematically summarizes existing works in safety-critical
scenario generation is urgently demanded.

The objective of this survey is to thoroughly review
the literature on safety-critical scenario generation from a
methodological perspective and provide a panorama of the
approaches developed so far. The key contributions are as
follows:

• We built a taxonomy to categorize existing algorithms
of safety-critical scenarios generation according to the
information and general framework they leverage.

• We summarized the tools used for scenario generation, in-
cluding autonomous driving simulators and open-sourced
packages for scenario design, as well as commonly used
scenario datasets.

• We identify five challenges of safety-critical scenario
generation and corresponding future directions to further
push the frontier.

Existing surveys. There have existed surveys [3], [4], [14]
summarizing the scenario-based method for autonomous ve-
hicle evaluation. Among these previous works, [4] gives a
clear and inspiring definition and categorization of traffic
scenarios. Their framework divide the scenario generation
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Fig. 1. The overview of autonomous vehicle evaluation. (a) Most of the scenarios that happen in the real world are typical scenarios; safety-critical scenarios are
extremely rare. (b) AVs are supposed to have higher average safety than human drivers, but the gap is not easy to be evaluated and measured. (c) Comparison
between different generation methods. Most existing methods cannot satisfy the fidelity and safety-critic metrics simultaneously.

problem into two processes: (1) scenario collection, where
the scenarios either come from expert abstract knowledge or
real-world collected dataset; (2) scenario selection, where the
scenario is selected by sampling or feedback optimization. A
recent survey [3] about scenario-based testing algorithms for
autonomous driving systems divides a scenario into five layers
(road level, traffic infrastructure, manipulation of previous
two layers, object, environment) and discusses the parameters
searching in each layer separately. In [14], the authors propose
another perspective by categorizing traffic scenarios into three
layers: functional, logical, and concrete. This is a hierarchical
structure since the abstracting level decreases from left to right,
and the number of scenarios increases at the same time. These
categorizations provide inspiring yet different perspectives on
scenario-based testing. These works provide a great overview of
the entire framework of the evaluation of autonomous driving
systems.We want to emphasize that our work differs from them
in that we focus on the algorithms of safety-critical scenario
generation - the core component in evaluating safety and
robustness. Our taxonomy is built according to the information
that the generation algorithms leverage, focusing on how these
generation methods deal with the structure of traffic participants
in a scenario and how the autonomous vehicle interacts with
surrounding objects. Moreover, we identify five challenges that
limit the current generation method, which we hope would
inspire future directions.
Organization of this survey. Section II gives an overview of
safety-critical scenarios, including the definition, representation,
and metrics used for selecting the scenarios. Then, we divide the
generation methods into three types: Data-driven Generation
(Section III) purely samples collect dataset and uses density
estimation models for a generation; Adversarial Generation
(Section IV) considers the ego vehicle during the generation
and builds an adversarial learning framework. Knowledge-
based Generation (Section V) either uses pre-defined rules by
experts or integrates external knowledge during the generation.
We also summarize the traffic simulators, datasets, and open-
sourced packages that can accelerate the development of driving
scenarios in Section VI. In Section VII, we list five challenges
of safety-critical scenario generation and discuss the potential
research directions lighted up by these challenges. Section VIII
closes this survey with general conclusions and lessons learned

from the current stage.

II. OVERVIEW OF SAFETY-CRITICAL SCENARIO

A. Definitions
In this survey, we define a scenario with static and dynamic

contents in it and also consider the behavior of dynamic objects.
Formally, we have the following definition:

Definition 2.1 (Driving Scenario): The driving scenario is
defined by a combination of three sets: x 2 X = {S, I,B}. S
represents the static environment, including road shape, traffic
sign, traffic light, etc. I represents the initial condition and
properties of dynamic objects. B represents the sequential
behaviors of dynamic objects.

Separating the static and dynamic contents benefits the
representation and generation of scenarios and has shown great
success in [91]. The road geometry and static traffic objects
(e.g., traffic signs and traffic lights) determine the background of
the scenario and the long-term goal of the testing. The dynamic
objects that participate in the traffic enable complex interaction
with the AV and influence its short-term decisions of it. Note
that in this definition, we do not have any specific requirements
for the AV. Since modern AV algorithms are usually divided
into several important components, we consider the following
definition of an AV system:

Definition 2.2 (AV System): An AV system is denoted as
F , which consists of three modules: F = Fper � Fpla � Fcon.
Fper denotes the perception module that takes sensor data
in and outputs locations of surrounding objects. Fpla denotes
the planning module that provides a feasible trajectory using
the prediction of potential obstacles. Fcon denotes the control
module that executes control signals to follow given waypoints.

With the above two definitions, we then define the objective
of safety-critical scenario generation:

Definition 2.3 (Safety-critical Scenario Generation): Assume
the distribution of scenario x is parametrized by ✓, the safety-
critical scenarios can be generated by

✓̂ = argmaxEx⇠p✓(x) [g(F, x)] (1)

where g(·, ·) is the metric function that measures the risk level
and safety-related properties (e.g., collision rate and distance
driven out of road). F is the AV system that operates in scenario
x in and outputs a sequence of control signals.
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Fig. 2. Taxonomy of safety-critical scenarios generation methods. The colors of boxes denote the modules of the AV system that the generation algorithms
target on Perception, Planning, Control.

This optimization problem is not easy to solve mainly because
of two aspects: a) the representation of the distribution p✓(x),
and b) the selection of the metric g. We will discuss how
existing methods deal with these two problems in the following
two subsections, respectively.

B. Representation of Scenario

We have multiple choices to represent the scenario, and
generally, the selection depends on the module to be eval-
uated. If the target module is a perception module, we use
high-dimensional sensing data, such as images and LiDAR
point cloud. Directly generating high-fidelity sensing data is
quite difficult, and there are an increasing number of works
focused on this area [92]. An alternating method is leveraging
differential renderer [93], [94] and LiDAR simulator [46], [81]
to generate high-dimensional data with ray casting algorithms.
If we want to evaluate motion planning or control modules, we
can turn to lower dimensions. We can use either trajectories
or policy models of dynamic objects. Using a trajectory is
less flexible than using a policy model, but the scenarios with
trajectory representation are more controllable.

C. Metrics for Generation

The most important factor of solving the optimization
problem Definition 2.3 is the metric of risk g. A proper risk
metric makes the generated scenarios useful for discovering
failure cases of AV systems, while an improper risk metric
only provides useless scenarios that either are too trivial for
AV systems or too rare to happen in the real world. The
level of risk is mainly reflected by the interaction between the
autonomous vehicle and participants in the scenario, which can
be naturally described by the distance – a small distance means

the risk of collision is high. This intuition can be described by
Time-to-Collision (TTC) [95]:

TTCF (t) =
XL(t)�XF (t)� lL

ẊF (t)� ẊL(t)
, 8 ẊF (t) > ẊL(t), (2)

where X denotes the position, Ẋ denotes the derivative of
X with respect to time or the speed, and lL denotes the
leading vehicle’s length; L and F as subscripts refer to leading
and following vehicles in a car-following process. Following
this time-based metric, there are numerous variants of TTC
such as Time Exposed TTC (TET) [96] and Modified TTC
(MTTC) [97].

Another two main types of metrics are distance-based and
deceleration-based metrics. The first one uses the distance
available to avoid a collision, e.g., Proportion of Stopping
Distance (PSD) [98]. The second one defines dangerous
situations using the rate deceleration during an emergency, e.g.,
Deceleration Rate to Avoid the Crash (DRAC) [99]. Please
check [100] for more metrics belonging to these two types.
In addition, we can also use the posthoc analysis of unsafe
behavior to indicate the risk, for example, collision rate, average
distance driven out of the road, and the frequency of running
stop signs and red lights [73], [74].

However, measuring only the risk is not enough for scenario
generation. We need to ensure that the scenarios are realistic
and able to happen in the physical world. We also want to
discover as many as possible scenarios rather than a single
one. In fact, these kinds of constraints make the generation of
scenarios a much harder task. We will discuss this topic more
in Section VII.

Finally, we highlight the need to balance the effort in
modeling the input scenario with the effort in utilizing the
scenario to compute the final metrics. This is of particular
importance since the uncertainty in the final metrics is due to
both modeling uncertainty and sampling uncertainty. While the
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Fig. 3. Illustration of three types of generation methods. (a) Data-driven methods only use the collected data to sample directly or via generative models. (b)
Adversarial methods use the feedback from the autonomous vehicle that is deployed in the simulation. (c) Knowledge-based methods leverage the information
mainly from external knowledge as constraints or guidance to the generation.

former can be driven down by designing as accurate a model
as possible, the latter can only be reduced by running longer,
and a larger number of simulation runs [101]. A good review
of this input-induced uncertainty and ways to deal with it in
modeling can be found in [102]–[104].

III. DATA-DRIVEN GENERATION

In this section, we consider the algorithms that only leverage
information from the collected datasets. For example, we
control several vehicles to pass an intersection by making
them follow the trajectories recorded in the same intersection
in the real world. These methods are mainly divided into two
parts. The first part directly samples from the dataset x ⇠ D
to reproduce the real-world log, which usually suffers from
the problem of rareness. The second part is using density
estimation models (e.g. DGMs) p✓(x) parameterized by ✓ to
learn the distribution of scenarios, which enables the generation
of unseen scenarios. Usually, the learning objective of these
models is maximizing the log-likelihood

✓̂ = argmax
X

x

log p✓(x), (3)

and the sampling process is conducted by x ⇠ p✓(x) from
random noises.

A. Direct Sampling
An intuitive way of generation is directly sampling from

a collected dataset which reproduces the scenario from the
road test log. According to different algorithms used before
and during the sampling, we summarize the following three
groups.

1) Data Replay: Most autonomous driving companies
maintain scenario bases to store the scenarios they recognized
as important [105]. During this process, one crucial step is
the tools that can automatically convert the scenario from log
to virtual simulations [15]. In addition, efficiently selecting
the critical scenario from a huge number of scenarios is
another problem. [19] extracts useful scenarios according to
the cooperative actions for cooperative maneuver planning
evaluation. In [18], the authors developed a method to select a
testing ground to accelerate the performance estimation of AVs
performance on public streets, where the main contribution is
describing the risk intensities of the traffic system in an area of
interest with Non-Homogeneous Poisson Process model [106].

2) Clustering: To better categorize the collected scenario,
[20] and [21] propose to use unsupervised clustering methods
to put similar scenarios into groups, which helps improve
the efficiency of testing AVs on a specific type of scenario.
However, clustering the entire scenario might be inefficient
and inaccurate since the scenarios are usually complex and
composed of finite building blocks. The concept of Traffic
Primitive is proposed in [22] to represent those blocks. They use
the Hierarchical Dirichlet Process Hidden Markov Model (HDP-
HMM) [107], a non-parametric Bayesian learning method, to
unsupervised extract primitives from scenarios to better cluster
similar scenarios.

3) Random Perturbation: The main obstacle to direct
conversion is that the diversity of scenarios is limited. Therefore,
recent works from some leading companies have started to use
random perturbation to augment the number of scenarios. Baidu
creates a physical-based LiDAR model [16] to transfer a dense
point cloud to match the line-style output of the LiDAR sensor.
By randomly placing the Computer-Aided Design model of
vehicles and pedestrians, their algorithms can generate a huge
number of scenarios. Similarly, Uber builds a more precise
LiDAR model [17] using neural networks (NNs) to mimic
the reflection details of the real-world sensors. Besides the
high-dimensional representation, Waymo tries to reconstruct
more fatal crashes from collected data by randomly perturbing
important parameters [9].

B. Density Estimation Methods
Consider the driving scenarios following a distribution, and

then we can use collected data to learn a density model to
approximate this distribution. We divide this type of algorithm
into three categories according to the density model they use.

1) Bayesian Networks: Bayesian Networks is a probabilistic
graphical model that uses nodes to represent objects and
edges to represent the relation between nodes. This structured
model can naturally describe the objects in the scenario.
[38] uses Dynamic Bayesian Network [108] to model the
complex traffic scenarios, and [39] uses factor graphs to
model driving behaviors between multiple vehicles. In [41],
Importance Sampling (IS) is used to sample driving scenarios
represented by Bayesian Networks. In [40], the authors try
to find as many risky scenarios as possible and cluster them.
They first uniformly sample from the clusters and then use
IS to sample the specific scenarios represented by factor
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graphs. Besides using Dynamic Bayesian Network or factor
graphs to model the structures of traffic participants, Gaussian
Process (GP) is a powerful non-parametric method to model
the distribution of sequential scenarios [34]. Following this
direction, [35] combines GP and Dirichlet Process to build
a model with an infinite number of clusters to discover
traffic primitives [22], which can be combined to create new
scenarios. [27] generates point cloud sequential datasets via
minimizing the gap between real-world LiDAR and simulation
data. Similarly, Meta-sim [28] and Meta-Sim2 [29] try to
minimize the sim-to-real gap to reconstruct traffic scenarios
for automatic labeling. Their main contribution is that they use
a scene graph to represent the scenario, which is a hierarchical
structure that makes the generation more efficient. In [30], the
scene graph is also used to generate image scenarios.

2) Deep Learning Models: Deep learning models are also
introduced into the generation in [36] and [37]. [36] inputs the
current state of the AV and a high-definition map to a Long
Short Term Memory (LSTM) [109] module to sequentially
generate the trajectory of surrounding vehicles and pedestrians.
They train their model with normal traffic data since their
target is to generate naturalistic scenarios. [37] proposes a quite
complex system to generate scenarios in a simulator, which
uses Convolution Neural Network (CNN) [110] as a selector to
generate agents surrounding the AV. In TrafficSim [111], both
Gated Recurrent Unit (GRU) and CNN are used to learn the
behaviors of multi-agents from real-world data. This method
can generate realistic multi-agent traffic scenarios.

3) Deep Generative Models (DGMs): Recently, DGMs have
shown great success in generating image and voice data. There
are five types of modern generative models: Generative Adver-
sarial Nets (GAN) [112], Variational Auto-encoder (VAE) [113],
Autoregressive Models [114], [115], Flow-based model [116],
[117], Diffusion model [118], [119]. The readers can find
more details about DGMs in this survey [12]. An auto-encoder
structure is designed in [120] to separately generate vehicle
initial positions and vehicle trajectories. With the power of VAE,
[31] learns a latent space of encounter trajectories and generates
unseen scenarios by sampling from the latent space. However,
with less understanding of the latent code, the generation is
not controllable. In [33], the authors propose CMTS, which
combines normal and collision trajectories to generate safety-
critical scenarios by doing interpolation in the latent space. As
for the usage of GAN, [32] introduces recurrent models to
generate realistic scenarios of highway lane changes. They use
real-world data in the discriminator to help the improvement
of the generator. The advantage of DGMs is that they can
learn a low-dimensional latent space of high-dimensional and
structured data using NNs. Therefore, we can easily generate
high-dimensional sensing scenarios. SurfelGAN is proposed in
[23] to directly generate point cloud data to represent scenarios
from the view of the AV. [24] can add new vehicles to collected
driving videos to generate realistic video scenarios, where they
also consider the motion planning of vehicles. [25] generates
traffic videos with multi-object scene synthesis using a GAN
framework. To make the video realistic, they integrate physical
conditions into the generation. A data-driven scenario simulator
is designed in [26] to generate both LiDAR and trajectory data

to augment the diversity of driving scenarios.
4) Imitation learning: Another way of mimicking the dataset

is using imitation learning (IL) methods [121], which takes
the observation as input and directly outputs the behavior
to control agents. The training of IL is exactly the same as
supervised learning. After training, the IL model [42]–[44] can
reproduce the same behavior as real-world agents when the
model encounters the same observation. However, when the
observation is not covered by the dataset, the behavior of the
model could be unreasonable and unpredictable.

IV. ADVERSARIAL GENERATION

In this section, we consider a more efficient way for
generation, which actively creates risky scenarios by attacking
the AV system. For example, we control a pedestrian to cross
the road and intentionally make it collide with the AV. Although
the AV may avoid the collision in most cases, we can still
obtain safety-critical scenarios where accidents happen. This
framework, named adversarial generation, consists of two
components, one is the generator, and the other is the victim
model, i.e., the AV. Then the targeted generation process can
be formulated as

✓̂ = argminEp✓(x)[Q(x,⇡)] (4)

where Q(·,⇡) is a quantitative function to indicate the perfor-
mance of the policy ⇡ taken by the AV. We notice that the
adversarial generation will mainly focus on a specific small
set of scenarios therefore it would be good to consider the
diversity by adding constraint or entropy of the distribution
H(x). Since we consider the influence of AV, this type is also
named Vehicle-in-the-loop testing in previous work [122]. Since
the autonomous driving system consists of multiple modules,
we divide these methods according to the type of victim models.
When the model is used for single frame inputs, e.g., object
detection and segmentation, we only need to generate static
scenarios. When the victim model requires a sequential testing
case, we generate dynamic scenarios which contain the motion
of all objects.

A. Static Scenarios Generation
Under the adversarial framework, directly generating high-

dimensional data could be challenging. Thus most methods
generate the poses of objects and then use renders to get
the final output. [45] learns the poses of vehicles and uses a
differentiable render to get the first-point-view images to attack
object detection algorithms. [49] and [50] extend the original
Domain Randomization methods [123] to the adversarial
generation. [49] proposes Structured Domain Randomization,
which uses a Bayesian Network to actively generate the poses
of vehicles. [50] proposes Adversarial Domain Randomization,
which targets the scenario of parking lots.

All of the above methods focus on image generation, but
some works generate point cloud scenarios. [46] puts an
adversarial object on the top of a vehicle and optimizes the
shape of the object to make the vehicle disappear in LiDAR
detection algorithms. Similarly, [47] shares the same idea but
uses both LiDAR and image information. After the optimization
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of the shape of the object, [48] use 3D printing to build the
object in the real world. The experiment shows that the object
on the road is indeed ignored by the detection algorithms. In
addition to using renders, [51] tries to directly add new points
to the existing point cloud to attack segmentation algorithms.

B. Dynamic Scenario Generation

When the target is to evaluate planning and control modules,
the scenarios are required to be dynamic and sequential. For
these kinds of algorithms, we further divide current works into
two types according to the flexibility of the scenario.

1) Initial Condition: The first type is controlling the initial
conditions of the scenario (e.g., initial velocity and spawn
position) or providing the entire trajectory at the beginning.
The advantage is the low dimension of search space and
the little computational resource required. In [11] and [55],
the authors generate the initial poses of a cyclist attacking
the AV. [55] approximates the parameters with a Gaussian
distribution, which limits the diversity of generated scenario.
As a remedy, [55] use normalizing flow models to learn
a multi-modal distribution. It also uses the distribution of
real-world data as a constraint to improve fidelity. Parallel
work [56] generates a set of possible driving paths and identifies
all the possible safe driving trajectories that can be taken
starting at different times. Similarly, [57] and [124] directly
optimize existing trajectories to perturb the driving paths of
surrounding vehicles. They use Bayesian Optimization [125] for
the optimization, and the scenario is represented with a point
cloud. To generate real-world traffic scenarios, [65] optimizes
the adversarial trajectory in the latent space of a VAE model.
Besides controlling the dynamic objects, some works also focus
on searching the weather parameters (e.g., sun and rain) to
create different scenarios. [52] searches the type of weather
using REINFORCE [126] algorithm. [53] uses Generative
Adversarial Imitation Learning [43] to generate parameters
of weather and uses the cross-entropy method for efficient
scenario searching.

2) Adversarial Policy: The second type is building a policy
model to sequentially control the dynamic objects, which
contains the most number of existing works. This type is usually
formulated as a Reinforcement Learning (RL) problem [127],
where the AV belongs to the environment and the generator
is the agent we can control. Intuitively, we have much more
flexibility under this setting, but the complexity also increases.
Since the AV and objects in scenarios interact step-wise, this
problem can be formulated in an RL framework, and there
are lots of works using RL methods. [59] and [60] use Deep
Q-Network to generate discrete adversarial traffic scenarios.
[70] uses Advantage Actor-Critic (A2C) [128] to control one
surrounding vehicle in the car following scenarios. [68] uses
Deep Deterministic Policy Gradient (DDPG) [129] to generate
adversarial policy to control surrounding agents to generate
lane-changing scenarios. [69] uses Multi-agent DDPG [130]
to control two surrounding vehicles (which are called Non-
player Characters) to attack the ego vehicle. This method
also sets auxiliary goals for Non-player characters to avoid
generating unrealistic scenarios. [58] proposes CriSGen that

uses constraint-based optimization and [54] uses Bayesian
Optimization.

A series of works on generating risky and adversarial
scenarios in the context of IS also appear in the literature.
[131] uses heuristic approaches to generate dangerous lane
change scenarios. [132] constructs IS distribution to sample
dangerous AV lane change scenarios. [133] extends IS approach
to dynamic systems to sample dangerous AV car-following
scenarios. [134] uses piece-wise models to design a more
expressive IS distribution. [135] uses Gaussian Mixture Model
(GMM) for IS distribution and further analyzes the efficiency
of GMM-based IS distribution for random forest and NN
classifiers [136]. ReLU-activated NNs are considered in [137]
to estimate the dangerous set and compute an IS estimator for
a risk upper bound for Gaussian case, with a more general case
presented in [67]. The Adaptive IS approach is used to construct
adversarial environments to accelerate policy evaluation [138].
Finally, there is a series of works named Adaptive Stress
Testing (AST) that explores different ways to generate stress
testing scenarios. [71] uses Monte Carlo tree search (MCTS)
to search action of testing scenario, but this method does not
target autonomous driving systems. [61] generates a scenario
controlling a pedestrian to cross the road. [62] improves the last
paper by using LSTM to generate initial conditions and actions
in each step. Instead of defining heuristic reward functions,
[63] leverage the Go-Explore framework to find failure cases.
[64] extends previous works to high-fidelity simulation and
changes the learning algorithm to Proximal Policy Optimization
(PPO) [139].

V. KNOWLEDGE-BASED GENERATION

In Section III and Section IV, we discussed methods that
purely use data or interact with the AV to generate scenarios.
However, scenarios are constructed in the physical world,
therefore, need to satisfy traffic rules and physical laws.
The samples in the density we estimate or the adversarial
examples we generate could easily violate these constraints. In
addition, domain knowledge also improves the efficiency of the
generation. After traffic accidents happen, we humans analyze
the scenario and find the reasons that cause the accidents.
Finding the underlying causality, e.g., the view of the sensor
is blocked, is important to efficiently generate safety-critical
scenarios.

Therefore, in this section, we consider methods that incor-
porate external domain knowledge into the generation process.
We will first explore rule-based methods that artificially design
the structure and parameters of scenarios. Then, we turn to the
learning-based methods that use explicit knowledge to guide the
generation. Assume we can obtain certain domain knowledge
c 2 C from experts, then we can augment the learning with

✓̂ = argmaxEx⇠p✓(x|c) [g(F, x)] (5)

where the scenarios are sampled from a conditional distribution
p✓(x|c). In addition, we can also use C as constraints to
manipulate existing scenarios:

x̃ = argmax g(F, x) s.t. C(x) � 0 (6)

where C(x) � 0 means the constraint is satisfied.
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A. Pre-defined Rules
Driving scenarios are very common in daily life thus we

humans can easily design scenarios with pre-defined rules and
specific conditions to trigger events. [79] uses prior knowledge
to design random risk scenarios with equations. The authors
also conduct interventional experiments by training RL agents
on different scenarios to get comparable results. [14] focuses
on functional and logical scenarios, which can be represented
by natural language from human experts. [78] views ontologies
as knowledge-based systems in the field of AV and proposes
a generation of traffic scenes in natural language as a basis
for scenario creation. In [76], the authors combine formal
specification [140] of scenarios and safety properties to generate
test cases from formal simulation.

There are also a large number of works that build the
entire platform with pre-defined scenarios implemented. We
categorize them under the knowledge-based generation method
and will also discuss more details about these platforms in
Section VI. A 2D platform named SMARTS is developed in
[80] containing multiple diverse behavior models using both
rule-based and learning-based models. [74] proposes MetaDrive,
a 3D simulator that supports different road shapes defined by
users or directly imported from existing real-world datasets
(e.g. Argoverse [141]). [73] is a competition built on top of
CARLA [142] and [143], which consists of a large number of
pre-defined scenarios. In [144], the authors build a rule-based
scenario case zoo in CARLA [142], which shares some similar
scenarios with [143]. To manage complex traffic scenarios with
hundreds of objects, SUMMIT [72] is specifically designed for
generating massive mixed traffic with an autopilot algorithm.
To explore the causality between vehicles in the scenario,
CausalCity [77] is developed for evaluating causal discovery
algorithms. It builds an agency mechanism to define high-level
behaviors.

B. Knowledge-guided Learning
1) Knowledge as Condition: Combining learning methods

and domain knowledge is a popular trend in the machine
learning area. One of the biggest obstacles is how to define the
representation space of knowledge. This representation should
be easily integrated into NNs and still has interpretability.
In [90], the authors assume that diversity and high skill are
important for scenarios. They use RL methods to generate
diverse scenarios and show improvement of the AV trained in
their scenarios. [81] represent the explicit knowledge (e.g., the
vehicles should not have overlap, the orientation of vehicles
should follow the direction of the lane) as first-order-logic [145],
which can be embedded into a tree structure. Then they search
in the latent space of a VAE model and apply the knowledge
to the tree encoder to constraint the searching process. They
evaluate their scenarios on point cloud segmentation methods
and show that their scenario can cause failure to some models
that are not robust. In [82] and [146], the authors explore the
fundamental reason for the safety-critical scenario, which can
be represented by causality. This work assumes there is a causal
graph that can represent the relationships between objects in
a scenario. Then, they propose an autoregressive generative

model that can use this graph to increase the efficiency of the
generation.

2) Constraint Optimization: Another way of using explicit
knowledge is resorting to the constraint optimization framework.
We know that safety-critical scenarios are extremely rare
in the real-world log, and random augmentation could be
inefficient to generate safety-critical scenarios. One of the
heuristic metrics of risk is the drivable area for the autonomous
vehicle. [85] and [86] minimize the drivable area by controlling
the surrounding vehicles with an evolutionary method and
constraint optimization methods, respectively. To explore more
different kinds of scenarios, [87] generates the motion of other
traffic participants with a backtracking search. To make the
scenarios diverse, [88] build a pipeline that introduces the
road topology from OpenStreetMap [147]. Using the safety-
critical scenarios from [88], [89] designs a comprehensive
open-source toolbox to train and evaluate RL motion planners
for AVs with customized configuration from users. To obtain
a robust trajectory prediction model, [83] and [84] generate
adversarial trajectory by perturbing existing trajectory with
feasible constraints.

VI. DATASET AND TOOLS FOR SCENARIO GENERATION

In this section, we introduce the tools that are useful
for safety-critical scenario generation. We first discuss the
scenario datasets, then turn to the traffic simulators. Finally, we
review existing platforms that support the function of scenario
generation.

A. Scenario Dataset
For modern machine learning methods, datasets are crucial

and necessary. Specifically, for the scenario generation task,
there are also many published datasets by companies and
academic organizations. In Table I, we summarize and compare
available scenario datasets in various aspects that we are
especially interested in.

1) Fidelity: In Table I, we include datasets that are either
collected from onboard sensors on public roads or synthetic
virtual worlds simulated by traffic simulators. Collecting real-
world data is very time-consuming, which requires humans
to operate vehicles or drones to record data in the real world
in a variety of environments. However, these data are more
representative of real-world data distribution. Models developed
with these realistic data can be directly applied to the real world.
Synthetic datasets, on the other hand, are simple to collect.
But they heavily rely on the authenticity of traffic simulators,
which usually fail to accurately imitate and render real-world
data.

2) Collect View: In addition to different levels of reality,
we also present datasets with different views. For example,
HighD [158], InD [167], and RounD [168] datasets collect
data in bird’s-eye view (BEV), which is recorded from drone
cameras. KITTI [149] and Argoverse [174] datasets collect
data in first-person view (FPV), which is captured by cameras
in front of a car. The BEV data happens in a fixed region,
therefore it is more useful to analyze the behavior of objects
in a fixed background. In contrast, FPV data is more suitable
to train AV algorithms that take egocentric information.
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TABLE I
COMPARISON OF SCENARIO DATASETS. WE LIST EXISTING DATASETS AND DIFFERENT ASPECTS THAT WE ARE INTERESTED IN. X/⇥ IN THE WEATHER

COLUMN MEANS THE DATASET CONTAINS/DOESN’T CONTAIN DATA UNDER VARIOUS WEATHER CONDITIONS. BEV: BIRD’S-EYE VIEW, FPV: FIRST-PERSON
VIEW. D: DAYTIME, N: NIGHTTIME. H: HIGHWAY, I: INTERSECTION, RA: ROUNDABOUT, C: CAMPUS, U: URBAN, S: SUBURBAN, R: RURAL.

Dataset Year Real View Data Sensor Annotation Traffic Condition
Image LiDAR RADAR Traj. 3D 2D Lane Weather Time Region Jam

CamVid [148] 2009 X FPV RGB ⇥ ⇥ ⇥ ⇥ X X ⇥ D U ⇥
KITTI [149] 2013 X FPV RGB/Stereo X ⇥ X X X X ⇥ D U/R/H ⇥

Cyclists [150] 2016 X FPV RGB ⇥ ⇥ ⇥ ⇥ X ⇥ ⇥ D U ⇥
Cityscapes [151] 2016 X FPV RGB/Stereo ⇥ ⇥ X X X ⇥ ⇥ D U X
SYNTHIA [152] 2016 ⇥ FPV RGB ⇥ ⇥ ⇥ X X ⇥ X D/N U X

Campus [153] 2016 X BEV RGB ⇥ ⇥ X ⇥ X X ⇥ D C ⇥
RobotCar [154] 2016 X FPV RGB X ⇥ X X X ⇥ X D/N U ⇥
Mapillary [155] 2017 X FPV RGB ⇥ ⇥ ⇥ ⇥ X X X D/N U ⇥

P.F.B. [156] 2017 ⇥ FPV RGB ⇥ ⇥ X X X ⇥ X D/N U ⇥
BDD100K [157] 2018 X FPV RGB ⇥ ⇥ X ⇥ X X X D U/H ⇥

HighD [158] 2018 X BEV RGB ⇥ ⇥ X ⇥ X ⇥ ⇥ D H X
Udacity [159] 2018 X FPV RGB ⇥ ⇥ ⇥ ⇥ X ⇥ ⇥ D U ⇥
KAIST [160] 2018 X FPV RGB/Stereo X ⇥ X ⇥ X ⇥ ⇥ D/N U ⇥

Argoverse [161] 2019 X FPV RGB/Stereo X ⇥ X X ⇥ X X D/N U ⇥
TRAF [162] 2019 X FPV RGB ⇥ ⇥ X ⇥ X ⇥ X D/N U ⇥

ApolloScape [163] 2019 X FPV RGB/Stereo X ⇥ X X X X X D U X
ACFR [164] 2019 X BEV RGB ⇥ ⇥ X ⇥ X ⇥ ⇥ D RA ⇥
H3D [165] 2019 X FPV RGB X ⇥ X X ⇥ ⇥ ⇥ D U X

INTERACTION [166] 2019 X BEV RGB ⇥ ⇥ X ⇥ X X ⇥ D I/RA ⇥
InD [167] 2020 X BEV RGB ⇥ ⇥ X ⇥ X ⇥ ⇥ D I ⇥

RounD [168] 2020 X BEV RGB ⇥ ⇥ X ⇥ X ⇥ ⇥ D RA ⇥
nuScenes [169] 2020 X FPV RGB X X X X X ⇥ X D/N U ⇥

Lyft Level 5 [170] 2020 X BEV RGB X X X ⇥ X X ⇥ D S ⇥
Waymo Open [171] 2020 X FPV RGB X ⇥ X X X X X D/N U/S ⇥

A*3D [172] 2020 X FPV RGB X ⇥ ⇥ X X ⇥ X D/N U X
RobotCar Radar [173] 2020 X FPV RGB X X X ⇥ ⇥ ⇥ X D/N U ⇥
Argoverse 2 [174] 2021 X FPV RGB/Stereo X ⇥ X X ⇥ X X D/N U ⇥

PandaSet [175] 2021 X FPV RGB X ⇥ X X ⇥ ⇥ ⇥ D/N U ⇥
ONCE [176] 2021 X FPV RGB/Stereo X ⇥ X X X ⇥ X D/N U ⇥

3) Data Sensor: For each dataset, we examine whether
it has the following data types: RGB image, stereo image,
LiDAR data, Radar, and trajectory. All datasets included in
the table have RGB images since it is a common data type in
traffic scenarios. RGB images are usually collected by cameras
mounted on vehicles or drones, and they can be utilized for
a variety of computer vision tasks such as object detection
and image segmentation. Stereo images are captured by stereo
cameras and LiDAR data is collected by LiDAR sensors. Both
of them provide 3D information that is particularly useful in 3D
tasks such as 3D object detection. RADAR is also a common
sensor that returns similar 3D information as LiDAR but at a
cheaper price. It can work in harsher conditions (e.g., rain and
storm) due to the longer wavelength than LiDAR’s lights. The
trajectory data is either recorded by sensors such as GPS or
converted from object tracking. This type of data is frequently
used in trajectory prediction tasks for planning and control
purposes.

4) Annotation Type: The availability of various types of
annotations is crucial to each dataset, as it determines which
tasks the dataset may be used for. We explore three forms
of data annotations in Table I: 3D object annotations, 2D
object annotations, and lane annotations. 3D annotations can

be divided into two categories: 3D bounding box annotations
and 3D point cloud annotations. A 3D bounding box annotation
describes a cube that exactly holds one specific object. 3D
point cloud annotations assign point-wise labels to each point
in the point cloud, indicating the point’s category. Many tasks
in autonomous driving, such as 3D object detection and 3D
segmentation, require 3D annotations. Similarly, 2D annotations
include 2D bounding box annotations and pixel-wise 2D
semantic annotations. Lane annotations describe different types
of lanes in the data, as well as the boundaries of drivable
regions. This lane information can be used to integrate map
and traffic rule information into the algorithm of AVs, enabling
more efficient decision-making functions.

5) Traffic Condition: Datasets with a limited level of diver-
sity in conditions and situations are skewed to redundant and
highly safe scenarios, which leads to the long tail problem [177],
[178]. In order to evaluate the performance of AVs in various
scenarios, a dataset must include data under a variety of settings.
We mainly consider the following four key aspects: weather,
time, region, and traffic density. The weather conditions change
the entire world as well as the style of the data collected by
sensors. For example, the nuScenes dataset [169] includes data
from sunny, rainy, and cloudy conditions. As a result, the
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TABLE II
COMPARISON OF TRAFFIC SIMULATION

Simulator Year Open
Source

Realistic
Perception

Customized
Scenario Back-end Map Source API Support

Real World Human Design Python C++ ROS
TORCE [179] 2000 X X ⇥ None ⇥ X ⇥ X ⇥
Webots [180] 2004 X X X ODE X X X X X

CarRacing [181] 2016 X ⇥ ⇥ None ⇥ X X ⇥ ⇥
CARLA [142] 2017 X X X UE4 ⇥ X X X X

SimMobilityST [182] 2017 X ⇥ X None ⇥ X X ⇥ ⇥
GTA-V [156] 2017 ⇥ X X RAGE ⇥ ⇥ ⇥ ⇥ ⇥

highway-env [183] 2018 X ⇥ X None ⇥ X X ⇥ ⇥
Deepdrive [184] 2018 X X X UE4 ⇥ X X X ⇥

esmini [185] 2018 X X X Unity ⇥ X X X ⇥
AutonoViSim [186] 2018 ⇥ X X PhysX ⇥ X ⇥ ⇥ ⇥

AirSim [187] 2018 X X X UE4 ⇥ X X X X
SUMO [188] 2018 X ⇥ X None X X X X ⇥
Apollo [189] 2018 X ⇥ X Unity ⇥ X X X ⇥

Sim4CV [190] 2018 X X X UE4 ⇥ X X X ⇥
SUMMIT [72] 2020 X X ⇥ UE4 X X X ⇥ X

MultiCarRacing [191] 2020 X ⇥ ⇥ None ⇥ X X ⇥ ⇥
SMARTS [80] 2020 X ⇥ X None ⇥ X X ⇥ ⇥
LGSVL [192] 2020 X X X Unity X X X ⇥ X

CausalCity [77] 2021 X X X UE4 ⇥ X X ⇥ ⇥
MetaDrive [74] 2021 X X X Panda3D X X X ⇥ ⇥

L2R [193] 2021 X X X UE4 X X X ⇥ ⇥
AutoDRIVE [194] 2021 X X X Unity ⇥ X X X X

images have different appearances depending on the weather.
The time condition specifies whether the data was obtained
during the day or at night. The main distinction between
these two scenarios is the lighting. The region denotes the
location from which the data is gathered. For example, the
INTERACTION dataset [166] is collected at intersections and
roundabouts, whereas the KITTI dataset [149] is collected
in urban, rural, and highway settings. Finally, traffic density
considers the number of objects in traffic scenarios. Higher
density indicates a traffic jam or congestion, which requires
traffic participants to pay more attention to surrounding objects
and take action more carefully.

B. Traffic Simulation Platforms
In Table II, we summarize existing traffic simulators and

compare them in different aspects that we are particularly
interested in.

1) Open Source: Open-source simulators are easily cus-
tomized, which enables users to design and evaluate various
safety-critical scenarios easily, as these scenarios are typically
rare and sophisticated and require a high level of customization.
Therefore, whether the simulator is open source becomes
one of our primary considerations. Most of the simulation
platforms we list in Table II are open source. Simulators such
as AirSim [187] and SMARTS [80], for example, release their
source code to the public, making it easier for users to modify
and enrich the testing environment.

2) Realistic Perception: The realism and fidelity in the
virtual simulation have a significant impact on AV algorithms.
High-fidelity, photo-realistic simulators provide data that is
similar to the physical world, allowing for a more accurate

assessment of AV performance in the real world. For example,
SUMMIT [72] is able to simulate 3D towns with a large
number of vehicles, pedestrians, and buildings. Besides, weather
conditions can be further simulated, which include controlling
the strength of precipitation, cloudiness, fog density, etc. Simple
traffic simulators, on the other hand, are incapable of supporting
such detailed simulations. However, they are usually light-
weighted and easy to use (especially for RL algorithms),
where algorithms can be tested quickly without complicated
configurations. For example, Highway-env [183] is a 2D
simulator that can be installed using only one command and
provide preliminary experimental results in a short amount
of time. We provide screenshots of six typical simulators in
Figure 4.

3) Customized Scenario: The freedom to customize sce-
narios is of great importance since we mainly focus on the
generation and evaluation of safety-critical scenarios. The
customization of scenarios usually involves the modification
of vehicles’ positions, speeds, and behaviors. For example,
CARLA [142] offers a systematical way for users to define
a scenario, through which users can specify the number of
vehicles in a town as well as their own behaviors. Even weather
and the surrounding environment can be arbitrarily adjusted to
create variations in the visual appearance of the scene. These
functions provide higher flexibility for users and allow for
more comprehensive testing of the reliability of AVs.

4) Back-end Engine: The simulator engines have a direct
impact on the fidelity of the simulated vehicle dynamics and
the rendered 3D environment. Most simulation platforms are
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built upon Unreal Engine 4 (UE4) 1 or Unity 2, which are
popular and professional game engines. Other less popular
engines, such as Panda3D [195], are also considered. Some
non-realistic environments, such as Highway-env [183], do not
even need back-end engines due to the low requirement of
rendering. A simple graphical user interface (GUI) is sufficient
for such type of platform.

5) Map Source: Maps are critical components in AV testing
systems. The maps in these traffic simulators are either created
by humans or based on real-world data. For example, Learn-
to-Race (L2R) [193] platform has three racetracks in its racing
simulator, all of which are based on real-world racetracks.
Human-designed maps can be further classified into two types:
rule-based maps and procedurally generated maps. Highway-
env [183] incorporates 11 rule-based maps, including highways,
parking lots, roundabouts, etc., all of which are manually
written by humans. MetaDrive [74] maintains several basic
roadblocks and generates numerous maps in a procedural
manner by randomly selecting one roadblock at one time.

6) API Support: API support for specific programming
languages is crucial in large-scale automated evaluation since
it allows users to run batches of scenarios. Popular program-
ming languages like Python and C++ are supported by most
simulation platforms. Some simulators like CARLA [142] and
LGSVL [192] also provide support for Robot Operating System
(ROS) 3, allowing users to integrate other open-source modules
developed by the ROS community.

C. Scenario Design Platform
There are several user-friendly platforms that support sce-

nario design, which already implements a lot of rule-based
scenarios that are normal or safety-critical. We list some popular
platforms in this section.

CARLA Scenario Runner [143] provides traffic scenario
definitions and an execution engine for CARLA. Scenarios
can be defined through a Python interface that allows users to
easily describe sophisticated and synchronized maneuvers that
involve multiple entities like vehicles, pedestrians, and other
traffic participants. It also supports the OpenSCENARIO [196]
standard file format for scenario descriptions, making it simple
and efficient to incorporate a variety of existing traffic scenarios
from the community.

SCENIC [75] defines a language for scenario specification
and generation. It describes distributions over scenes and the
behaviors of their agents over time. One advantage of SCENIC
over other scenario languages is that it combines the concise,
readable syntax for spatiotemporal relationships with the ability
to impose hard and soft constraints over the scenario.

SafeBench [197] is an open-source platform focusing on sys-
tematically evaluating the safety and robustness of autonomous
driving algorithms based on diverse testing scenarios and
comprehensive evaluation metrics. The platform integrates eight
types of safety-critical scenarios and incorporates four genera-
tion algorithms. Users can also design their own traffic scenarios

1https://www.unrealengine.com
2https://www.unity.com
3https://www.ros.org

and scenario generation algorithms following the instructions.
SafeBench also provides several RL-based autonomous driving
algorithms with pre-trained RL model weights. Users can easily
test and improve the generated scenarios based on feedback
from diverse autonomous driving algorithms.

DI-Drive Casezoo [144] consists of a set of scenarios used
to train and evaluate diving policy in a simulator. Similar to
CARLA Scenario Runner [143], DI-drive Casezoo has a routing
scenario and multiple single scenarios that can be triggered
along the route. There are 18 route scenarios and 8 types of
single scenarios that can be triggered depending on the route
definition. Route scenario is defined in an XML file with its
corresponding scenarios. Trigger locations along the route are
defined in JSON files. A single scenario is defined in a Python
file, describing the behaviors of traffic participants.

SUMO NETEDIT [198] is a graphical scenario editor which
can be used to create traffic networks from scratch and to
modify all aspects of existing networks, including basic network
elements (junctions, edges, and lanes), advanced network
elements (e.g., traffic lights), and additional infrastructure (e.g.,
bus stops). This tool is specifically designed for SUMO [188],
which mainly generates large-scale traffic conditions without
high-fidelity rendering.

SMARTS Scenario Studio [199] is a scenario design
tool in the SMARTS [80] platform that supports flexible
and expressive scenario specification. Scenario definitions are
written in the Domain Specific Language, which describes the
traffic environment, such as traffic vehicles, routes, and agent
missions. Scenario Studio also supports configuration files from
SUMO’s NETEDIT [198]. Maps edited by NETEDIT [198]
can be easily included and reused in Scenario Studio, which
enriches the training and testing environments in the SMARTS
platform.

CommonRoad [89] is a simulator and an open-source
toolbox to train and evaluate RL-based motion planners for
AVs. Scenario configurations are written in XML files. Users
can read, modify, visualize, and store their own traffic scenarios
using the Python API provided by CommonRoad. In addition,
CommonRoad also supports more scenario specifications, such
as Lanelet2 [200] and OpenSCENARIO [196].

VII. CHALLENGES AND POTENTIAL SOLUTIONS

In previous sections, we discussed the safety-critical scenario
generation methods from three different views: data-driven,
adversarial, and knowledge-based. We notice that generating
safety-critical scenarios could be a hard problem due to the
many constraints and required properties. In this section, we
identify five main challenges that cover the difficulty of the
generating process, as shown in Figure 5. Digging into the
details of these challenges also helps us discover potential
directions that can improve existing algorithms. The five
challenges are as the following:

• Fidelity. Our ultimate goal is to develop safe AVs that
can run in the real world. Therefore, it is useless to make
AVs pass difficult but unrealistic scenarios. We need to
ensure that generated scenarios have the chance to happen
in real traffic situations.
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Fig. 4. Screenshots of six typical simulators.

• Efficiency. Safety-critical scenarios are extremely rare
in the real world. The generation needs to consider the
efficiency and increase the density of the scenarios we
are interested in.

• Diversity. Safety-critical scenarios are also diverse. The
generation algorithm should be able to discover and
generate as many different safety-critical scenarios as
possible.

• Transferability. Scenarios are dynamic due to the interac-
tion between the AVs and their surrounding objects. The
scenarios we generate should be variable for different AVs
rather than targeting one specific AV.

• Controllability. In most times, we want to reproduce or
repeat specific scenarios rather than random ones. The
generative model should be able to follow instructions or
conditions to generate corresponding scenarios.

We will discuss more details from the above five perspectives in
the following sections, and we will show that the combination
of the previous three types of generation methods could be
very promising ways to solve those challenges.

A. Fidelity

The generation algorithm can create infinite scenarios, but
not all of them are able to happen in the real world. Particularly,
under the adversarial generation framework, the searched
scenarios are likely to violate the basic traffic rules. The
intuitive way to avoid this problem is adding constraints during
the generation, but sometimes the constraints are not easy to
define. Another promising direction is combining real-world
data and adversarial generation, where the real-world data
can be used as a prior distribution or constraints. Metrics
such as Kullback–Leibler divergence [201] and Wasserstein
distance [202] can be used to minimize the gap between the
generated and real-world scenarios.

Fig. 5. Comparison between three types of generation under the five challenges.

The fidelity of the scenario is also reflected by the high-
dimensional sensing data, which usually requires powerful
DGMs to generate. The state-of-the-art methods mainly focus
on the generation of static images such as faces. Recently,
Neural Radiance Fields (NeRF) [203] is popular for visual
scene generation. This method uses NNs to learn the ray-
casting functions and then output different views of a scene.
Extending this method to large-scale traffic scenario generation
is also an interesting direction, which has been explored in
Block-NeRF [204]. Block-NeRF builds a large-scale traffic
scene from pure image data.

B. Efficiency
Due to the black-box property of most autonomous systems,

it is inefficient to generate adversarial examples without ac-
cessing the inner information of the systems. In the adversarial
attack area, methods with surrogate models [205] or gradient
estimation methods [206] are utilized to tackle this problem.
They either learn a differentiable surrogate model to imitate the
original autonomous systems or query the system to estimate
the approximate direction gradient.

It is also noticed that uniform sampling from collected data
is quite inefficient because of the rareness of safety-critical
scenarios. Therefore, previous methods propose to use IS,
which focuses on the region of the distribution that we are
interested in. However, it is difficult to extend IS methods to
high-dimensional cases. In addition, even for the adversarial
generation methods, the black-box property of victim AVs
is still the biggest obstacle. Without access to the internal
information of failure, the generation algorithms are unable to
update their scenarios efficiently.

one potential solution to this problem is leveraging the
symbolic reasoning [207] and causal discovery [208] techniques.
Instead of performing the optimization only in large numerical
space, using symbolic representation helps the generative
model to reason about the elements that make the scenario
safety-critical. Causal discovery methods can uncover the
underlying causality behind safety-critical scenarios, finding
the mechanisms that cause the risk.

C. Diversity
Safety-critical scenarios are rare but also diverse. Most of

the current generative methods focus on searching for the best
scenario that satisfies the requirements but ignores diversity.
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To comprehensively evaluate the performance of AV, we need
a large range of scenarios. It is easy to fall into the risk of
over-fitting if the testing scenarios are very similar. To increase
the diversity of the scenario, there are generally two directions.
One is from the optimization perspective, where sampled-
based methods, such as the evolutionary method or Bayesian
Optimization can be used to get feasible solutions from multiple
modes. The other direction is applying regularization to the
density estimation model or building multi-modal distribution
(e.g., Gaussian Mixture Model) to represent the scenario.

D. Transferability
In the safety and robustness areas, the adversarial attack is

considered a common way to generate risky examples. The
transferability, which means the generated samples are also
applicable to other algorithms, is a crucial factor in evaluating
the generation method. For example, the pixel-level adversarial
attack only works for the target victim. It is believed that
the attack should happen at group level [209] or semantic
level [210] to achieve better transferability. One example in the
safety-critical scenario is controlling one surrounding vehicle
(SV) to hit the AV step by step. After the policy of the SV is
trained, we change the target AV. The new AV shows a very
different behavior and follows a route that the SV has never
seen before. It is most likely that this scenario is not risky for
the new AV. In this example, we should let the SV learn at a
higher level, where it contains the semantic meaning of risk.
The SV can suddenly show up behind another vehicle, which
leaves the AV a very short time to react. Essentially, we need
to build a hierarchical scenario where the high level makes
a plan for the risky scenario, and the low level executes that
plan with control commands.

E. Controllability
Controllability is useful in two cases. One is that we want

to repeat one specific scenario with several parameters fixed,
and the other is generating different scenarios with similar
settings. For example, we want to test the performance in a
highway environment, and then we want to generate vehicles
that approach the AV from different directions. Conditional
generative models [211], [212] are widely used to generate
controllable samples, which learn a joint distribution of the
condition and the data. Sometimes, the condition could be
simple as numerical values or as complex as natural languages.
The challenge is that current NN-based models have poor
generalization, therefore, fail when the given unseen conditions
during the generating. One promising direction could be to
increase the generalizability under such a zero-shot setting.

F. Extension to Other Applications
Autonomous driving is essentially an application of mobile

robots. To make intelligent hardware widely used in the real
world, other types of applications should also be evaluated
on safety-critical scenarios – for example, household robots
and manipulation tasks. However, the generation of indoor
scenarios could be much more difficult. The traffic scenario

basically consists of dynamic objects on a 2D surface, but the
indoor scenarios contain a large number of objects interacting
in a 3D space. The relations between these objects are also
diverse and complex. The direction of how to extend scenario
generation methods to these applications is still challenging.

VIII. CONCLUSION AND DISCUSSION

In this survey, we review existing safety-critical scenario
generation methods and categorize them into three types. We
also review the simulation platforms and datasets that can be
used for scenario generation. Most importantly, we identify
five challenges for this topic and point out potential directions
to tackle these challenges. In the end, we summarize the
important message that the readers can take away from this
survey, including why is safety-critical scenario generation
important, how to select generation algorithms from so many
existing methods, and what are future directions to improve
existing algorithms.

A. Importance of This Topic
Most existing driving systems are still evaluated on natu-

ralistic scenarios collected from daily life or human-designed
scenarios. Even if they can autonomously drive more than
thousands of miles without disengagement, we are still not
sure about their safety and robustness, e.g., whether the
AV can keep safe when the surrounding vehicles behave
aggressively or whether the AV can successfully stop when
a pedestrian suddenly runs out from behind an object. The
generation methods accelerate the development and evaluation
of driving systems by creating diverse and realistic safety-
critical scenarios.

B. How to Select Generation Algorithms
Although we have categorized existing methods with a

taxonomy, it is still not clear how to select a specific algo-
rithm according to different situations. We summarized three
combinations to help make choices in general cases.

• Data-driven generation + Adversarial generation. If
the goal is to broadly evaluate your system under diverse
scenarios to discover the weakness, combining multi-
modal density models and adversarial training is preferred.
Randomly sample from the generative models and search
the safety-critical scenarios with adversarial generation.

• Data-driven generation + Knowledge-based generation.
When there are specific requirements that can be converted
into constraints, using constraint optimization to manipu-
late existing scenarios (e.g., trajectories) is preferred. In
that case, the scenarios will concentrate on one single
cluster with low diversity, which is helpful if the target is
to test the driving system on specific scenarios.

• Adversarial generation + Knowledge-based genera-
tion If we already have rules that can design safety-
critical scenarios but also want to increase the diversity
of generated scenarios by automatically learning the
parameters, combining the adversarial generation and rule-
based method is proffered.
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C. What are Future Directions
Properly integrate inductive bias. We want to emphasize

that driving scenarios are created by the relations of objects
and physical laws rather than being designed by the human
mind. Purely relying on NNs or optimization methods is
not the ultimate solution for generating realistic and critical
scenarios. Instead, the model should leverage as much external
knowledge and rules as possible to make the generated
scenarios interpretable and satisfy the goal. For instance, the
representation of the scenario is crucial and usually determines
the quality of the generation. A representation that naturally
embeds rules and laws within a structure could be easily
optimized by considering the complex relationship between
objects. In addition, correctly injecting the distribution of real-
world data is important to ensure the reality of generated
scenarios. Using Offline RL [213] and imitation learning could
be a potential direction to achieve this goal.

Use scenarios to increase robustness and safety. Another
aspect that is worth investigating is how to effectively use
the generated scenarios to improve robustness and safety. The
most intuitive way is training the autonomous system against
generated safety-critical scenarios under the adversarial training
framework. However, the adversarial scenarios usually represent
the worst cases, therefore, learning to a robust yet conservative
system. It is not easy to select the difficulty and category
of scenarios due to the problems of imbalanced data and
over-fitting. These problems bridge the topic discussed in this
survey to other areas such as robust optimization [214] and
distributional robust optimization [215], which have broad
literature to be explored.

Use scenarios to improve generalization. Besides increas-
ing the robustness, the generated scenarios could also be used
to improve the generalization of AVs. For instance, gradually
training AVs with increasing risk levels under curriculum
learning [216] framework may help systems easily generalize to
more types of safety-critical scenarios. One recent survey [217]
that investigates the generalization problem in RL emphasizes
the importance of environment generation in increasing the
similarity between training and testing domains. This direction
extends the scenario generation from safety to broader views
that require goal-conditioned environment generation.
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