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Batch Optimization for DNA Synthesis

Konstantin Makarychev, Miklós Z. Rácz , Cyrus Rashtchian , and Sergey Yekhanin

Abstract— Large pools of synthetic DNA molecules have been
recently used to reliably store significant volumes of digital
data. While DNA as a storage medium has enormous potential
because of its high storage density, its practical use is currently
severely limited because of the high cost and low throughput
of available DNA synthesis technologies. We study the role of
batch optimization in reducing the cost of large scale DNA
synthesis, which translates to the following algorithmic task.
Given a large pool S of random quaternary strings of fixed
length, partition S into batches in a way that minimizes the sum
of the lengths of the shortest common supersequences across
batches. We introduce two ideas for batch optimization that
both improve (in different ways) upon a naive baseline: (1)
using both (ACGT )∗ and its reverse (T GCA)∗ as reference
strands, and batching appropriately, and (2) batching via the
quantiles of an appropriate ordering of the strands. We also
prove asymptotically matching lower bounds on the cost of DNA
synthesis, showing that one cannot improve upon these two ideas.
Our results uncover a surprising separation between two cases
that naturally arise in the context of DNA data storage: the
asymptotic cost savings of batch optimization are significantly
greater in the case where strings in S do not contain repeats
of the same character (homopolymers), as compared to the case
where strings in S are unconstrained.

Index Terms— DNA synthesis, DNA storage, shortest common
supersequence, batch optimization.

I. INTRODUCTION

STORING digital data in synthetic DNA molecules has

received much attention in the past decade [1]–[11].

DNA data storage offers several orders of magnitude higher

information density compared to conventional storage media,

as well as the potential to store data reliably for hundreds or

thousands of years. However, the prohibitively high cost and

low throughput of modern DNA synthesis technologies present

a key barrier that needs to be addressed in order to make DNA

data storage a commonplace technology.
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For the purposes of the current paper we can think of a

DNA molecule as a string (strand) in the quaternary alphabet

{A, C, G, T}. Today the dominant method for producing

large quantities of DNA molecules is array-based DNA

synthesis [12], [13]. With this technology the DNA synthesizer

creates a large number of DNA strands in parallel, where

each strand is grown by one DNA base (character) at a time.

To append bases to strands, the synthesis machine follows a

fixed supersequence of bases, called a reference strand. As the

machine iterates through this supersequence, the next base

is added to a select subset of the DNA strands. This process

continues until the machine reaches the end of the super-

sequence. In particular, each synthesized DNA strand must

be a subsequence of the reference strand. The cost of DNA

synthesis is proportional to the length of the reference strand.

In applications to DNA data storage one typically needs to

synthesize very large quantities of DNA molecules, signifi-

cantly exceeding the capacity of any single DNA synthesizer.

Therefore the pool of strands that one aims to synthesize needs

to be partitioned into batches, where the size of each batch

corresponds to the maximum load of the synthesizer. In this

setting the total cost of DNA synthesis is proportional to the

sum of the lengths of the shortest common supersequences of

each batch. The focus of this paper is the algorithmic task of

batch optimization, where the goal is to partition the strands

into batches and assign every batch a reference strand in a

way that minimizes this cost.

The encoding process that generates the list of DNA strands

that need to be synthesized to store a given digital file varies

with the specific system [2], [5], [9], [14] and is usually quite

complex. The encoder adds redundancy to the data to allow

for the correction of various types of errors that occur during

DNA synthesis, storage, and sequencing, including insertions,

deletions, and substitutions of individual bases, as well as

missing DNA strands.

We now describe two aspects of encoding of digital data

in DNA that are relevant to our work. Commonly, input

digital data is randomized [9] using a seeded pseudorandom

number generator or compressed and encrypted [14]; this is

done in order to reduce the frequency of undesirable patterns

that may occur in strands that are used to represent the

data, for instance, patterns likely to cause the presence of

DNA secondary structure [15]. Ensuring that strands look

random also facilitates certain tasks that may be a part of

the decoding process such as clustering [9], [16] and trace

reconstruction [9], [17]–[21]. Another important aspect is as

follows. Algorithms that encode digital data in DNA [3], [9]

often ensure that the resulting strands do not contain long

runs of the same character (i.e., homopolymers), since such

runs are known to cause errors during the DNA sequencing
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stage. The length of the longest allowed homopolymer run

may be as low as one—that is, not allowing homopolymers—

or unconstrained, depending on the scenario.

Motivated by the above considerations, in the current paper

we model pools S of DNA strands that we aim to synthesise

as large collections of random quaternary strings. We consider

two key representative cases: the case where strings in S are

unconstrained and the case where strings in S do not contain

repeats of the same character.

A. Problem Statement

Fix a strand length n, and consider two different choices

for the strand universe U .

1) Unconstrained strands: U = {A, C, G, T}n.
2) Strands without homopolymers: U is the subset of

{A, C, G, T}n that contains all strands with no consec-

utively repeated characters.

Let S be a subset of elements of U , with M := |S|; this is

the pool of strands we wish to synthesize. Let k be an integer

that divides M, and let π be a partition of S into k subsets

(which we refer to as batches) B1, . . . ,Bk of size M/k.1 We

define cost(Bi), the cost of synthesizing elements of the batch

Bi, as the length of the shortest common supersequence of

all strands in Bi. Using this notation, we define the cost of

synthesizing the whole pool S as:

cost(S) := min
π

k∑

i=1

cost(Bi). (1)

We assume that elements of S are selected i.i.d. from U
uniformly at random, and we are interested in upper and lower

bounds for cost(S) that hold with high probability.

While in the practice of DNA synthesis the parameters n,

M , and k are concrete numbers, to facilitate the asymptotic

study of the problem we focus on the following relevant

scenario: n is growing, M is significantly larger than but

polynomial in n, and k is either a constant or a slowly growing

function of n.
Example 1.1: Consider the setting of strands with no

homopolymers. Let n = 4 and M = 4. Let the set of strands

to be synthesized be S = {AGCT, GCAT, CAGA, GAGC}.
Assume that k = 2, that is, there are two batches and each

batch contains two strands.

We can partition S into B1 = {AGCT, GCAT } and

B2 = {CAGA, GAGC}. The DNA synthesizer (printer)

first prints B1. It starts with two empty strings (∅, ∅). Then,

it appends A to the first strand and obtains strands (A, ∅).
It appends G to both strands and obtains (AG, G). Then,

it appends the letters C, A, and T as follows:

(∅, ∅) A−→ (A, ∅) G−→ (AG, G)
C−→ (AGC, GC)

A−→ (AGC, GCA)
T−→ (AGCT, GCAT ).

1The assumption that the batches are of equal size is made for simplicity.
Indeed, our techniques extend to a more general setting where the batches are
roughly the same size (e.g., up to a constant factor), and several results are
phrased in this more general setting.

After the last step, we get the set B1 = {AGCT, GCAT }.

The printer prints B2 as follows:

(∅, ∅) C−→ (C, ∅) G−→ (C, G)
A−→ (CA, GA)

G−→
(CAG, GAG)

A−→ (CAGA, GAG)
C−→ (CAGA, GAGC).

In this example, we used the reference strand AGCAT to print

the set B1 in five steps and the reference strand CGAGAC
to print the set B2 in six steps. Therefore cost(S) ≤ 11.

B. Main Results for Multiple Batches

Before describing our main results for multiple batches, we

briefly and informally discuss the setting of a single batch—

formal statements and proofs are in Section III. A natural

reference strand to use to print a pool of strands S is the

periodic strand (ACGT )∗, where ACGT repeats indefinitely.

For this reference strand, the cost of printing a random

strand can be written as
∑n

i=1 Xi, where {Xi}n
i=1 are i.i.d.

uniformly random on {1, 2, 3, 4} in the case of unconstrained

strands; in the case of strands without homopolymers, {Xi}n
i=1

are independent, with X1 uniformly random on {1, 2, 3, 4} and

Xi uniformly random on {1, 2, 3} for i ≥ 2. By using a stan-

dard concentration inequality we then obtain the upper bounds

cost (S) ≤ 2.5n + 3
√

n logM for unconstrained strands and

cost (S) ≤ 2n + 3
√

n log M for strands without homopoly-

mers, with both bounds holding with probability 1 − o(1).
Combining this with an appropriate stochastic domination

argument that compares random walks, we also obtain match-

ing lower bounds, for both choices of the strand universe U .

This shows that for a single batch no reference strand can do

asymptotically better than the periodic strand (ACGT )∗.

The setting of multiple batches, which is the focus of our

work, presents interesting challenges. As a simple baseline,

we could consider randomly partitioning S into k batches.

A direct application of the single batch upper bound would

provide a cost of roughly 2.5nk + O(k
√

n log(M/k)) for

unconstrained strands and 2nk + O(k
√

n log(M/k)) for

strands without homopolymers. We provide improvements in

both cases by using a slightly more sophisticated batching

method.

We first observe a symmetry property: For any strand

without homopolymers the cost of printing it using (ACGT )∗

and the cost of printing it using (TGCA)∗ add up to 4n + 1,

so the better choice of reference strand results in a cost

of at most 2n. This idea can be extended to a large set

of strands, by choosing for each strand the better reference

strand out of (ACGT )∗ and its reverse (TGCA)∗. We further

improve upon the cost by leveraging a second idea. After

partitioning strands based on which of the two reference

strands is better, we then sort the strands based on their cost

(with respect to the chosen reference strand). We then use a

quantile-based batching process to group the first M/k lowest

cost strands, then the next M/k, etc. We show that combining

these two ideas reduces the total cost to 2nk − Θ(k
√

n) for

k ≥ 3 batches.

In the case of unrestricted strands, such an improvement

is not possible, although we are able to show that with k
batches a similar partitioning strategy, based on appropriately
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ordering the strands and using quantiles, enables us to save

a factor of k in the deviation term and obtain a total cost of

2.5nk + O(
√

n log M). We now formally state our results.

Theorem 1.2 (Upper Bounds): Let S be a set of M random

strands in {A, C, G, T}n, and let k be an integer satisfying

3 ≤ k ≤ 1
4

√
M

log M . There exist absolute constants C1 > 0 and

C2 < ∞ such that the following hold.

1) (Strands Without Homopolymers): There exists a way

to efficiently partition S into k equal size batches

B1, . . . ,Bk such that with probability at least 1 − 1/M
we have that

k∑

i=1

cost(Bi) ≤ 2nk − C1k
√

n.

2) (Unconstrained Strands): There exists a way to effi-

ciently partition S into k equal size batches B1, . . . ,Bk

such that with probability at least 1−1/M we have that

k∑

i=1

cost(Bi) ≤ 2.5nk + C2

√
n log M.

We complement these results with almost tight lower bounds.

Proving the following theorem is the most technically chal-

lenging part of our work.

Theorem 1.3 (Lower Bounds): Let S be a set of M ≥
10n2 log n random strands in {A, C, G, T}n, and let k be a

positive integer satisfying k ≤ 1
10

√
log M/ log log M.

1) (Strands Without Homopolymers): There exists an

absolute constant c1 < ∞ such that the following holds

with probability at least 1−c1/M . For any partition of S
into k equal size batches B1, . . . ,Bk, we have that

k∑

i=1

cost(Bi) ≥ 2nk − c1k
√

n log k.

2) (Unconstrained Strands): Suppose that M ≤ exp(n).
There exists an absolute constant c2 > 0 such that the

following holds with probability at least 1−c−1
2 /M . For

any partition of S into k equal size batches B1, . . . ,Bk,

we have that

k∑

i=1

cost(Bi) ≥ 2.5nk + c2

√
n log M.

Comparing Theorems 1.2 and 1.3, we see that the upper

and lower bounds match up to the absolute constants in the

deviation term when k is small enough. As a consequence, this

provides evidence that our batching method is nearly optimal,

perhaps surprisingly.

Furthermore, Theorems 1.2 and 1.3 provide a clear separa-

tion between the two representative strand universes. On the

one hand, for unconstrained strands we have, with probability

1 − o(1), that cost(S) = 2.5nk + Θ
(√

n log M
)
; that is, the

cost exceeds the main term 2.5nk by the deviation term. On the

other hand, for strands without homopolymers we have, with

probability 1 − o(1), that 2nk − c1k
√

n log k ≤ cost(S) ≤
2nk−C1k

√
n; that is, the cost is smaller than the main term

2nk by the deviation term.

C. Related Work

For an overview of the biochemical DNA synthesis process,

we refer the interested reader to the surveys [10], [12]. Our

work is motivated by several experimental papers that address

the challenge of reducing the synthesis cost in both single

and multi-batch settings [22]–[31]. Variants of the problem

have also been studied that incorporate certain quality control

measures [32]–[35]. Much of this previous work considers the

(ACGT )∗ supersequence when analyzing the synthesis cost.

Rahmann first observed that in this case the single batch cost

of uniformly random strings is approximately Gaussian, but

he did not provide a formal analysis nor any asymptotic or

finite-size bounds [24]. In the multi-batch setting, previous

work uses the same cost function as we do, namely the sum

of the shortest common supersequence (SCS) lengths for each

batch [26], [30]. In general, a wide array of algorithms have

been proposed and empirically evaluated for selecting a short

reference string given the set of DNA strands to synthesize.

However, these heuristics do not come with provable guar-

antees, and many of them implicitly solve the SCS problem,

which is known to be NP-hard for a collection of strings [36],

[37].

From a theoretical point of view, a few recent works have

considered minimizing the synthesis cost through coding-

based approaches. Lenz et al. study reference strings that have

a large number of subsequences, and they consider mappings

to encode data by a set of strings while minimizing the

single-batch synthesis cost [38]. A slightly different synthesis

model has also been considered, where information is stored

based on run-length patterns in the strings [39]–[41]. Our work

also relates to combinatorial questions about the number of

distinct subsequences [42]–[46].

There is also a large body of prior work on the longest

common subsequence (LCS) of random strings [47]–[53].

The expected LCS length of two random length n strings

is known to be (γ + o(1))n for a value γ > 0 called the

Chvátal-Sankoff constant. Despite decades of effort, the exact

value of γ remains unknown for constant alphabet sizes. For

two length n strings, the LCS and SCS are related via the

equality SCS(S1, S2) = 2n−LCS(S1, S2), but for larger sets,

no analogous relationship is known. In particular, our results

show that the average SCS length for a large collection of

strings behaves very differently than for a pair of strings. While

we are not aware of prior results on the SCS for multiple

batches, our single batch results improve an existing bound

on the expected SCS length in the special case of M = n
strings (see Remark 3.4).

D. Organization

The rest of the paper is organized as follows. We begin

in Section II with a technical overview of our proofs.

In Section III, we provide both upper and lower bounds for

a single batch. In Section IV, we introduce the cost quantile

preliminaries that we use for our multi-batch results. We prove

the upper bounds for the multi-batch setting, Theorem 1.2,

in Section V. Finally, we prove the lower bounds for the

multi-batch setting, Theorem 1.3, in Section VI.
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II. PROOF OVERVIEW

In this section we give an overview of our results and the

associated proofs. Suppose we want to synthesize a DNA

strand S using a reference strand R. Denote the length of the

prefix of R which we use for synthesis by costR(S). Then,

the cost of printing a batch of strands B using R equals the

maximum cost of printing S for S ∈ B:

costR(B) = max
S∈B

costR(S).

We observe that the cost of printing any strand of length n
using the periodic reference strand (ACGT )∗ is at most 4n,

since the i-th base of S can be printed using the corresponding

base in the i-th quadruple of (ACGT )∗. Hence, the cost of

synthesizing any batch of strands of length n is bounded from

above by 4n. As we discuss later, the cost of every strand

without homopolymers with respect to the reference strand

(ACGT )∗ is at most 3n + 1. So the cost of any batch of

strands without homopolymers is also at most 3n + 1.

Since the cost of synthesizing every batch of strands is

upper bounded by 4n, we do not need to consider reference

strands of length more than 4n. However, for the sake of

analysis, we shall assume that all reference strands R have an

infinite length. The first 4n bases of these strands are arbitrary,

while the remaining infinite suffix is a repetition of the

pattern ACGT . We denote the set of all such strands by R∗.

Observe that every strand S can be synthesized using every

R ∈ R∗ because R contains the substring (ACGT )∗. Note

that when we synthesize a batch B using a reference strand

R ∈ R∗, we truncate R after costR(B) bases, so effectively

we use a reference strand of length costR(B).

A. Cost of a Single Batch

We first show how to estimate the cost of synthesizing a

single batch of DNA strands. We prove that for a random

strand S of length n and reference strand R̃ = (ACGT )∗, the

expected cost
�R(S) equals 2.5n. We then use concentration

inequalities to argue that the maximum cost of strands in B is

upper bounded by 2.5n+O(
√

n logM) with high probability,

where M is the batch size. Similarly, we show that for every

fixed strand R, we have that E[costR(S)] ≥ 2.5n. Hence,

for every fixed R the cost of B is also lower bounded by

2.5n+Ω(
√

n log M) with high probability. We obtain a lower

bound on the cost of a batch by taking the union bound over

all R ∈ R∗. Similarly, we get lower and upper bounds of

2n+Ω(
√

n logM) and 2n+O(
√

n logM) for random strands

without homopolymers.

We now discuss how to compute E[costR(S)] for a given

reference strand R and random S. Let τi(S, R) be the cost of

the prefix S1, . . . , Si. In other words, τi(S, R) is the index of

the base in R that is used for synthesizing the i-th base in S.

We let τ0(S, R) = 0. Observe that {τi(S, R)}i≥0 is a Markov

chain: the value of τi+1(S, R) depends only on the current

state τi(S, R) and the random value of Si+1. We denote the

increments of τi(S, R) by Xi(S, R): for i ∈ {1, . . . , n}, let

Xi(S, R) := τi(S, R) − τi−1(S, R).

Then, costR(S) = τn(S, R) =
∑n

i=1 Xi(S, R). For the

reference strand R̃ = (ACGT )∗, each increment Xi(S, R̃)
is a random variable uniformly distributed in {1, 2, 3, 4},

and all Xi(S, R̃) are mutually independent. Consequently,

E[Xi(S, R̃)] = 2.5 for all i and thus E[cost
�R(S)] = 2.5n.

Furthermore, by the central limit theorem, the deviation of the

cost from its expectation, cost
�R(S)− 2.5n, is approximately

Gaussian with mean 0 and variance 1.25n. Thus, we can use

Hoeffding’s inequality and other concentration inequalities to

obtain upper and lower bounds of on cost
�R(S). These bounds

imply that the cost of a single batch of M strands equals

2.5n + Θ(
√

n log M).
To show that E[Xi(S, R)] ≥ 2.5 for every R ∈ R∗ and

not only for R = R̃, we observe that the sequence of random

variables X1(S, R), . . . , Xn(S, R) stochastically dominates a

sequence of i.i.d random variables Y1, . . . , Yn, where each Yi

is uniformly distributed in {1, 2, 3, 4}. Hence,

E[X1(S, R) + · · · + Xn(S, R)] ≥ E[Y1 + · · · + Yn] = 2.5n.

For random strands without homopolymers, each jump

Xi(S, R̃) is uniformly distributed in {1, 2, 3} for i > 1;

and X1(S, R̃) is uniformly distributed in {1, 2, 3, 4}. Hence,

the expected cost cost
�R(S) is 2n + 1/2. Also, note that the

maximum possible value of Xi(S, R̃) is 3 (for i > 1). Hence,

the cost of every strand is upper bounded by 3n + 1.

B. Upper Bounds for Multiple Batches

We are going to use the same reference strand R̃ =
(ACGT )∗ for synthesizing all batches of unconstrained

strands and two different reference strands, R̃ = (ACGT )∗

and its reverse �R = (TGCA)∗, for synthesizing batches of

strands without homopolymers.

1) Naïve Approach: Suppose we assign strands randomly to

k batches. Then, each batch consists of M/k random strands

sampled uniformly from {A, C, G, T}n. Hence, the cost of

every batch is 2.5n + Θ(
√

n log M). Consequently, the total

cost of synthesising k batches is 2.5nk + k · Θ(
√

n logM).
We now show that by carefully assigning strands to batches

we can improve this cost to 2.5nk+Θ(
√

n log M) for uncon-

strained strands. Similarly, we show how to improve a naïve

solution of cost 2nk + k · Θ(
√

n logM) for strands without

homopolymers to a solution of cost 2nk − Ω(k
√

n).
2) Unconstrained Strands: Our strategy for splitting the set

of unconstrained strands S into k batches is quite simple.

For every strand S in S, we compute cost
�R(S) and then sort

strands by this cost. We put the first M/k strands in the first

batch, the second M/k strands in the second batch, and so on.

Then, the cost of the i-th batch is equal to the empirical i/k-

th quantile of
{
cost

�R(S)
}

S∈S . We formally define empirical

quantiles in Section IV. In Section IV, we also show that,

with high probability, empirical quantiles of
{
cost

�R(S)
}

S∈S
are very close to the corresponding quantiles of the distribution

of the random variable cost
�R(S), where S is randomly and

uniformly drawn from {A, C, G, T}n. The only exception is

the empirical 1-quantile of the sample S which corresponds to

the cost of the most expensive strand in S. This cost is approx-

imately equal to the (1 − 1/M)-quantile of the distribution of

cost
�R(S), where M is the size of S.
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As we discussed above, cost
�R(S) can be approximated by

the random variable 2.5n + g, where g is a Gaussian random

variable with mean 0 and variance 1.25n. The sum of the

1/k, 2/k, . . . , (k − 1)/k quantiles of a symmetric Gaussian

distribution equals 0, since the quantiles i/k and (k− i)/k are

symmetric around 0. However, the (1 − 1/M)-quantile of the

distribution of g is relatively large and approximately equals

c
√

n log M . Hence, the total cost of synthesizing k batches

approximately equals

2.5nk + c
√

n log M.

We make this argument formal in Section V.

3) Strands Without Homopolymers: If we use the same

batching strategy as we discussed above for strands without

homopolymers, we obtain a solution of cost 2nk+c
√

n log M
with high probability. However, somewhat surprisingly, we can

do better by utilizing two reference strands, R̃ = (ACGT )∗

and �R = (TGCA)∗, instead of just the single strand R̃.

We show that the random variables cost
�R(S) and cost

�R(S)
are anticorrelated. Specifically, for every strand S without

homopolymers, we (deterministically) have

cost
�R(S) + cost

�R(S) = 4n + 1.

This observation suggests the following strategy: We first

sort all strands S by their cost when printed with R̃. For the

first dk/2e batches, we print them with R̃, and we print the

remaining batches with �R. Overall, we will argue that this

batching process results in k − 2 batches having a cost of at

most 2n, and a constant fraction of these batches having an

additional savings of Ω(
√

n), which results in the ultimate

savings of Ω(k
√

n). The only challenging batches are the

“middle” two. We handle these by arguing that their costs are

coupled so that together they do not exceed 4n + 1. We next

explain the intuition behind the main savings. See Section V-A

for full details of the batching process and the analysis.

Since (Xi(S, R̃)+Xi(S, �R))/2 = 2 for all i > 1 and S does

not have homopolymers, the random variables cost
�R(S) and

cost
�R(S) can be approximated by correlated random variables

2n−g and 2n+g, where g is a Gaussian random variable with

mean 0 and variance 2/3 n. The cost of every strand is thus

approximately equal to min{2n−g, 2n+g} = 2n−|g|, and the

total cost of k batches is approximately equal to the sum of the
i/k-quantiles of the random variable 2n− |g| for i = 1, . . . , k.

For sufficiently large k, this sum is approximately equal to

k · (E[2n − |g|]) = k · (2n − E[|g|]) = 2nk − k

√
4

3π
n.

For small k (k > 2), the sum is upper bounded by 2nk −
Ω(k

√
n). We prove this bound for k ≥ 3 in Section V-A.

C. Lower Bounds for Multiple Batches

We now discuss how to obtain lower bounds on the cost of

batch synthesis. We start with lower bounds that are based on

the following observation: Every batch B must contain a 1/k

fraction of all strands in S. Consequently, its cost is lower

bounded by the empirical 1/k-quantile of {costR(S)}S∈S ,

which, in turn, approximately equals the 1/k-quantile of the

distribution of the random variable costR(S), where S is

a random strand. Here R is the reference strand used for

synthesising B. Using the notation (defined in Section IV) for

empirical q-quantiles Q̃q,R(S) and q-quantiles Qq,R(D) of a

distribution D, we can lower bound the cost of B as follows:

cost(B) ≥ min
R∈R∗

Q̃1/k,R(S) � min
R∈R∗

Q1/k,R(D1/4),

where D1/4 is the uniform distribution of strands of length n.

Using Hoeffding’s inequality for costR(S) along with bounds

on Q̃1/k,R(S) and Q1/k,R(D1/4) from Section IV, we then

show that Q1/k,R(D1/4) ≥ 2.5n − O(
√

n log k) which yields

a lower bound of k · (2.5n − O(
√

n log k)) on the total cost

of synthesizing k batches. For strands without homopolymers,

the same argument gives a bound of k · (2n − O(
√

n log k)).
1) Improved Lower Bound for Unconstrained Strands: We

then improve the lower bound on the cost of batch synthesis

of unconstrained strands by showing that while the cost of all

batches are lower bounded by 2.5n − O(
√

n log k), the cost

of the most expensive batch is at least 2.5n + Ω(
√

n logM).
Note that a similar statement does not hold for strands without

homopolymers. To prove that the cost of the most expensive

batch is 2.5n + Ω(
√

n log M), we consider a subset S′′ of

strands that have disproportionately many (roughly, n/4 +
c
√

n log M ) repeated bases. We show that a random set S
contains many such strands (approximately

√
M) and then

prove that for random strands S from S′′, the expected cost

costR(S) is at least 2.5n + c
√

n log M . This gives us a lower

bound of 2.5nk+c
√

n log M−O(k
√

n log k) on the total cost

of synthesising k batches (note, typically M � k).

III. SINGLE BATCH ANALYSIS

As a warm-up to the multiple batch setting, in this section

we analyze the single batch setting, that is, the setting where

k = 1. As discussed in Section I-B, by using the periodic

strand (ACGT )∗ as a reference strand, we obtain (assuming

M ≥ n) the upper bounds cost (S) ≤ 2.5n + 3
√

n logM
for unconstrained strands and cost (S) ≤ 2n+3

√
n log M for

strands without homopolymers, with both bounds holding with

probability 1− o(1). The formal statement and its short proof

are in Section III-A.

We also obtain matching lower bounds, for both choices of

the strand universe U , by an appropriate stochastic domination

argument that compares random walks. The formal statements

are in Section III-B and their proofs are in Section III-C.

A. Upper Bounds for a Single Batch

Theorem 3.1: Consider the problem setup in Section I-A

with k = 1. Let M ′ := max {M, n}.

1) (Unconstrained Strands): With probability at least 1 −
1/n we have that

cost (S) ≤ 2.5n + 3
√

n log M ′.

2) (Strands Without Homopolymers): With probability at

least 1 − 1/n we have that

cost (S) ≤ 2n + 3
√

n log M ′.
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Proof: Consider first the case of unconstrained strands.

We fix R := (ACGT )∗ as the reference strand with which

we print the strands in S. For a strand S ∈ U , let τi (S)
denote the index of the base of R that is used to print the ith
base of S. With this notation, R needs maxS∈S τn (S) bases to

print all strands in S. This shows that cost (S) ≤ costR (S) =
maxS∈S τn (S). Let λ := 3

√
n log M ′ and m := 2.5n + λ.

Combining the previous observation with a union bound we

thus have that

P {cost (S) > m} ≤ P {costR (S) > m}

= P

{
max
S∈S

τn (S) > m

}
≤ MP {τn (S) > m} .

The key observation is that if S is a uniformly random strand,

then τn (S)
d
=

∑n
i=1 Xi, where {Xi}n

i=1 are i.i.d. random

variables that are uniform on {1, 2, 3, 4}; here
d
= denotes

equality in distribution. Therefore, noting that E [X1] = 2.5,

by Hoeffding’s inequality (Theorem 1.1) we have that

P {τn (S) > m} = P

{
n∑

i=1

(Xi − E [Xi]) > λ

}

≤ exp

(
−2λ2

9n

)
=

1

(M ′)2
.

Combining the two displays above we have that

P {cost (S) > m} ≤ M/ (M ′)2 ≤ 1/n, as desired.

The case of strands without homopolymers is analogous,

the only change is that now {Xi}n
i=1 are independent random

variables with X1 uniformly random on {1, 2, 3, 4} and Xi

uniformly random on {1, 2, 3} for i ≥ 2. �

B. Lower Bounds for a Single Batch

The lower bounds for the two strand universes are analo-

gous, but we state them separately for clarity. In both cases

we present two bounds: one focusing on the constant of the

linear term, with weak assumptions on M , the other focusing

on the second order term, assuming slightly more about M .

1) Unconstrained Strands: Recall the upper bound of

2.5n+3
√

n log M from Theorem 3.1 (assuming M ≥ n). Our

first lower bound result says that the constant 2.5 cannot be

improved, even if the batch only consists of a (large enough)

constant amount of strands.

Theorem 3.2: Consider the problem setup in Section I-A

with k = 1 and unconstrained strands. Fix ε > 0 and let

M ≥ 21/ε2. Then, with probability at least 1 − exp (−n) we

have that

cost (S) ≥ (2.5 − ε)n.
This result can be significantly sharpened: if the number of

strands in S is at least linear in n (and at most exponential

in n), then not only is the main term 2.5n required in the cost,

but even the additional
√

n log M term is necessary.

Theorem 3.3: Consider the problem setup in Section I-A

with k = 1 and unconstrained strands. Let M satisfy

(5 exp (45))n ≤ M ≤ 5n exp (4n/25). Then, with probability

at least 1 − exp (−n) we have that

cost (S) ≥ 2.5n +
1

5

√

n log

(
M

5n

)
.

Remark 3.4 (Expected Shortest Common Supersequence

(SCS)): Since cost(S) = SCS(S), our results also provide

bounds on the SCS of a set of strings. Jiang and Li consider

the case when M = n, and they prove that ES [SCS(S)] =
2.5n ± O(n0.707) for a set S of n uniformly random length

n quaternary strings [37, Corollary 4.11]. Combining The-

orem 3.1 and Theorem 3.2 with � =
√

21/n we obtain

2.5n−
√

21n ≤ ES [SCS(S)] ≤ 2.5n + 3
√

n log n, tightening

the prior result.

2) Strands Without Homopolymers: Next, we state theorems

analogous to those in Section III-B.1, but in the constrained

setting where U contains strands without homopolymers. (We

allow the reference strand to potentially have homopolymers.)

Recall the upper bound of 2n+3
√

n logM from Theorem 3.1

(assuming M ≥ n). Our first lower bound result says that the

constant 2 cannot be improved, even if the batch only consists

of a (large enough) constant amount of strands.

Theorem 3.5: Consider the problem setup in Section I-A

with k = 1 and strands without homopolymers. Fix ε > 0 and

let M ≥ 9/ε2. Then, with probability at least 1 − exp (−n)
we have that

cost (S) ≥ (2 − ε)n.
This result can be significantly sharpened: if the number of

strands in S is at least linear in n (and at most exponential

in n), then not only is the main term 2n required in the cost,

but even the additional
√

n log(M) term is necessary.

Theorem 3.6: Consider the problem setup in Section I-A

with k = 1 and strands without homopolymers. Let M satisfy

(5 exp (45))n ≤ M ≤ 5n exp (4n/25). Then, with probability

at least 1 − exp (−n) we have that

cost (S) ≥ 2n +
3

20

√

n log

(
M

5n

)
.

C. Lower Bound Proofs for a Single Batch

We start with some definitions. Let Σ := {A, C, G, T}. For

two strands R, S ∈ Σ∗, let ER (S) denote the event that R is

a superstring of S. Let ER (S) denote the event that R is a

superstring of all strands in S, that is, ER (S) := ∩S∈SER (S).
For an integer m, let Em (S) denote the event that there exists

a strand R ∈ Σ≤m such that the event ER (S) holds. That is,

{cost (S) ≤ m} = Em (S) =
⋃

R∈Σ≤m

ER (S) =
⋃

R∈Σm

ER (S) ,

where the second equality holds because if R is a superstring

of S, then all superstrings of R are also a superstring of S.

1) Proofs for Unconstrained Strands:

Proof of Theorem 3.2: Fix m := (2.5 − ε)n. We start

with a union bound:

P {cost (S) ≤ m} = P {Em (S)} ≤
∑

R∈Σm

P {ER (S)}

=
∑

R∈Σm

(P {ER (S)})M
, (2)

where the equality is due to the fact that the strands in S are

i.i.d. Our goal now is to bound P {ER (S)}, where R ∈ Σm

is fixed and S ∈ Σn is uniformly random.
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To understand the probability of this event we introduce

some notation. First, we extend the reference strand R indef-

initely, by concatenating the strand (ACGT )∗ to the end of

R—this is done just so that everything in the following is

well-defined—we refer to this extended strand as R′. Note

that R′ is a superstring of S, and the original reference

strand R is a superstring of S if and only if the printing

of S using R′ succeeds in at most m steps. Let τi (S, R′)
denote the index of the base of R′ that is used to print the

ith base of S. We also define X1 (S, R′) := τ1 (S, R′), and

Xi (S, R′) := τi (S, R′) − τi−1 (S, R′) for i > 1. With this

notation we have that

ER (S) = {τn (S, R′) ≤ m} =

{
n∑

i=1

Xi (S, R′) ≤ m

}
.

Let {Yi}n
i=1 be i.i.d. random variables that are uniform

on {1, 2, 3, 4}. Note that for an arbitrary R the random

variables {Xi (S, R′)}n
i=1 are not i.i.d.—in fact, they are

not even necessarily independent. Specifically, given R′ and

{Xj (S, R′)}i−1
j=1, the support of Xi (S, R′) is determined.

However, no matter what, this support always consists of

four distinct positive integers—the distances to the next occur-

rences of the four bases A, C, G, and T in R. Moreover, the

distribution on this support is always uniform—this is because,

given R′ and {Xj (S, R′)}i−1
j=1, the value of Xi (S, R′) is

determined by Si, which is uniformly random on Σ. Since

at best (in terms of minimization) the four distinct positive

integers in the support of Xi (S, R′) are 1, 2, 3, and 4,

the random variable Xi (S, R′) stochastically dominates Yi.

Moreover, since the bases {Si}n
i=1 are independent, we also

have that
∑n

i=1 Xi (S, R′) stochastically dominates
∑n

i=1 Yi,

and so we have that

P {ER (S)}=P

{
n∑

i=1

Xi (S, R′)≤m

}
≤P

{
n∑

i=1

Yi≤m

}
.

(3)

We can now bound this latter quantity using standard esti-

mates. In particular, using Hoeffding’s inequality (Theo-

rem 1.1) we obtain that

P

{
n∑

i=1

Yi ≤ m

}
≤ exp

{
−2

9
ε2n

}
.

Plugging this back into (2) and (3), we have obtained the

bound

P {cost (S) ≤ m} ≤4m exp

(
−2

9
ε2Mn

)

≤ exp

({
2.5 log 4 − 2

9
ε2M

}
n

)
. (4)

If M ≥ 21/ε2, then this is at most exp (−n). �
Proof of Theorem 3.3: Let m := 2.5n + λ, where

λ = 1
5

√
n log

(
M
5n

)
. The proof is identical to the proof of

Theorem 3.2 until (3). At this point in the proof, we bound this

probability differently. Specifically, by applying Lemma 1.3

with ` = 4, we have that

P

{
n∑

i=1

Yi > m

}
≥ exp

(
−25λ2/n

)
=

5n

M
. (5)

In order to obtain this bound via Lemma 1.3 we must have

that (4/3)
√

n ≤ λ ≤ 2n/25; these inequalities hold due to the

condition (5 exp (45)) n ≤ M ≤ 5n exp (4n/25) assumed in

Theorem 3.3. Note in particular that we thus have m ≤ 2.58n.

From (5) we thus have that

P

{
n∑

i=1

Yi ≤ m

}
≤ 1 − 5n

M
.

Plugging this into (2) and (3), we have obtained—analogously

to (4)—the bound

P {cost (S) ≤ m} ≤ 4m

(
1 − 5n

M

)M

≤ exp ((2.58 log 4)n − 5n) ≤ exp (−n) .

�

2) Proofs for Strands Without Homopolymers:

Proof of Theorem 3.5: The proof is almost identical to

the proof of Theorem 3.2, so we only highlight the changes.

First, we set m := (2 − ε)n. Second, {Yi}n
i=1 are now

i.i.d. random variables that are uniform on {1, 2, 3}. Thus

Hoeffding’s bound gives that

P

{
n∑

i=1

Yi ≤ m

}
≤ exp

(
−1

2
ε2n

)
.

The rest of the proof is identical. �
Proof of Theorem 3.6: Let m := 2n + λ, where λ =

3
20

√
n log

(
M
5n

)
. The proof is identical to the proof of Theo-

rem 3.3, except {Yi}n
i=1 are now i.i.d. random variables that

are uniform on {1, 2, 3}, and thus Lemma 1.3 is applied with

` = 3. �

IV. EMPIRICAL QUANTILES

Consider a distribution D on strands, and a reference strand

R. For q ∈ (0, 1), we define the q-quantile of the distribution

of the printing cost costR(S), where S is distributed according

to D, as the minimum t such that P {costR(S) ≤ t} ≥ q:

Qq,R(D) := min
{
t : P

{
costR(S) ≤ t

}
≥ q

}
.

Similarly, for a set of strands S, we define an empirical variant

of Q as:

Q̃q,R(S) := min
{

t :
|{S ∈ S : costR(S) ≤ t

)
}|

|S| ≥ q
}

.

For a family of reference strands R, we let

Qq,R(D) := min
R∈R

Qq,R(D)

and

Q̃q,R(S) := min
R∈R

Q̃q,R(S).

Consider a random set SD,M that contains M i.i.d. samples

from the distribution D. By the Glivenko-Cantelli theorem,

we have Q̃q,R(SD,M ) ≈ Qq,R(D) for every R and a suf-

ficiently large M . We use the Dvoretzky-Kiefer-Wolfowitz

inequality to get a quantitative bound on Q̃q,R(SD,M ).
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Lemma 4.1: For every distribution D on strands, every

reference strand R, and every positive ε, we have

P

{
Qq−ε,R(D) ≤ Q̃q,R(SD,M ) ≤ Qq+ε,R(D)

for all q ∈ (ε, 1 − ε)
}

> 1 − 2e−2Mε2

. (6)

Furthermore, for every family of reference strands R, we have

P

{
Qq−ε,R(D) ≤ Q̃q,R(SD,M ) ≤ Qq+ε,R(D)

for all q ∈ (ε, 1 − ε)
}

> 1 − 2|R|e−2Mε2

. (7)

We prove this lemma in Appendix B.

V. UPPER BOUNDS FOR MULTIPLE BATCHES

A. Batching for Strands Without Homopolymers

Our approach is to define a quantile-based batching process

and to then split the strands into two groups based on whether

we use the reference strand R̃ = (ACGT )∗ or its reverse
�R = (TGCA)∗. We first observe that one of these two options

will lead to a cost of at most 2n if the strand does not contain

homopolymers (and this result holds deterministically).

Lemma 5.1: Let R̃ = (ACGT )∗ and �R = (TGCA)∗ be

the alternating sequence and its reverse. For a strand S ∈
{A, C, G, T}n without homopolymers, we have that

cost
�R(S) + cost

�R(S) = 4n + 1. (8)

Moreover, there exists a bijection ϕ : {A, C, G, T}n →
{A, C, G, T}n such that for every strand S ∈ {A, C, G, T}n

we have that

cost
�R(S) + cost

�R(ϕ(S)) = 4n + 1. (9)

Proof: Let τi(S, R̃) and τi(S, �R) be the time that the ith

character of S is printed using R̃ or �R, respectively. Consider

the per-character costs Xi(S, R̃) = τi(S, R̃)− τi−1(S, R̃) and

Xi(S, �R) = τi(S, �R) − τi−1(S, �R). Observe that Xi(S, R̃) +
Xi(S, �R) = 4 for i > 1 and X1(S, R̃)+X1(S, �R) = 5. Hence,

cost
�R(S)+cost

�R(S)=

n∑

i=1

(Xi(S, R̃) + Xi(S, �R)) = 4n + 1.

We now map every strand S to its compliment by replacing

each base A with T , C with G, G with C, and T with A.

Observe that if we renamed each base as above both in S and

the reference strand R̃, then the cost would not change. That

is, cost
�R(S) = cost

�R(ϕ(S)). Using (8) we thus obtain (9). �

The key ideas in the following proof are to (i) use a

quantile-based batching process to group the strands, and

then (ii) decide whether they will be printed with R̃ or �R to

reduce the overall cost. By using the above lemma, we know

that for strands that have cost larger than 2n under R̃, they will

have cost at most 2n under �R. Using this and properties of

the batching process construction, we argue that for k − 2 of

the batches the cost is at most 2n, with a constant fraction

of these batches having cost at most 2n − Ω(
√

n). For the

two “middle” batches, we only show that the sum of their

costs is at most 4n + 1. Overall, we achieve a total cost of

2nk − Ω(k
√

n) when summing over the k batches.

Proof of Theorem 1.2(1): For the proof, we assume that

k divides M ; otherwise, we could set the batches to have size

within M/k ± 1. Let D denote the uniform distribution of

length n strands without homopolymers.

We start by defining the batching process and the assign-

ment of reference strands (i.e., choosing between R̃ and �R
for each batch). To group the strands, we first sort the strands

in S in a nondecreasing order according to their cost with

respect to R̃. Then, we let Bi be the subset of strands placed

between positions (i − 1)M/k + 1 and iM/k (inclusive) in

the ordering (e.g., B1 contains the M/k lowest cost strands).

After the batches have been defined, we use R̃ to print the

first ` := dk/2e batches and we use �R for the remainder.

By Lemma 5.1, the batches with higher cost under R̃ have

lower cost under �R. Furthermore, with high probability, all

batches have cost at most 2n except perhaps the “middle” two

batches B� and B�+1. More precisely, we utilize the empirical

quantiles i/k for i ∈ [k], where we recall that Q̃i/k, �R(S)

denotes the minimum value ti such that an i/k fraction

of strands in S have cost at most ti with respect to R̃.

In particular, the bound

cost
�R(Bi) ≤ Q̃i/k, �R(S) (10)

for i ∈ {1, . . . , ` − 1} follows from the batch construction

process. Similarly, we have that

cost
�R(Bk−i) ≤ 4n + 1 − Q̃(k−i−1)/k, �R(S) (11)

for i ∈ {0, 1, . . . , k− `− 2}, due to Lemma 5.1 and the batch

construction process.

The bounds in (10) and (11) both involve empirical

quantiles, for which Lemma 4.1 provides uniform bounds.

We apply Lemma 4.1 with ε = 1/(4k). This implies that,

with probability at least 1− 2 exp
(
−M/(8k2)

)
, we have that

Q̃i/k, �R(S) ≤ Q(i+1/4)/k, �R(D)

for all i ∈ {1, . . . , ` − 1}, and furthermore that

Q̃(k−i−1)/k, �R(S) ≥ Q(k−i−5/4)/k, �R(D)

for every i ∈ {0, 1, . . . , k − ` − 2}. Plugging these bounds

into (10) and (11) we obtain that, with probability at least

1 − 2 exp
(
−M/(8k2)

)
, the total cost is bounded above by

�∑

i=1

cost
�R(Bi) +

k∑

i=�+1

cost
�R(Bi)

≤
�−1∑

i=1

Q(i+1/4)/k, �R(D) +
{
cost

�R(B�) + cost
�R(B�+1)

}

+

k−�−2∑

i=0

(
4n + 1 − Q(k−i−5/4)/k, �R(D)

)
. (12)

In the rest of the proof we bound from above these two sums,

as well as the term in the middle.

First, we claim that for every fixed δ > 0 there exists α =
α(δ) > 0 such that

Q1/2−δ,�R(D) ≤ 2n − α
√

n. (13)
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To see this, recall that the cost of printing a strand S using

R̃ is a sum of independent random variables: the cost of

the first character is uniform in {1, 2, 3, 4} and the cost of

the remaining characters are uniform in {1, 2, 3} (since the

strand S does not have homopolymers). Therefore cost
�R(S)

is approximately Gaussian with mean 2n+1/2 and variance on

the order of n. This means that if we consider a quantile that

is bounded away from the median, then the cost is smaller

than the mean by at least a constant factor of the standard

deviation. Since the standard deviation is on the order of
√

n,

this implies (13).

Turning back to (12), consider the first dk/3e terms of the

first sum in (12) (note that dk/3e ≥ 1 since k ≥ 3). Note

that (dk/3e+ 1/4)/k ≤ 5/12 = 1/2 − 1/12 for all k ≥ 3.

Let α∗ := α (1/12) > 0. Then (13) implies that for every

i ∈ {1, . . . , dk/3e} we have that

Q(i+1/4)/k, �R(D) ≤ Q(�k/3�+1/4)/k, �R(D)

≤ Q5/12, �R(D) ≤ 2n − α∗
√

n.

Note also that for every i ∈ {1, . . . , ` − 1} we have that

(i + 1/4)/k ≤ (` − 3/4)/k ≤ (k/2 − 1/4)/k = 1/2 −
1/(4k) < 1/2. Together with (13), this implies that for every

i ∈ {1, . . . , ` − 1} we have that

Q(i+1/4)/k, �R(D) ≤ 2n.

Putting the bounds in the previous two displays together,

we obtain that

�−1∑

i=1

Q(i+1/4)/k, �R(D)

=

�k/3�∑

i=1

Q(i+1/4)/k, �R(D) +
�−1∑

�k/3�+1

Q(i+1/4)/k, �R(D)

≤
�k/3�∑

i=1

(
2n − α∗

√
n
)

+

�−1∑

�k/3�+1

2n

≤ 2(` − 1)n − (α∗/3)k
√

n. (14)

Similarly, note that for every i ∈ {0, 1, . . . , k−`−2} we have

that (k − i − 5/4)/k ≥ 1/2 + 1/(4k) > 1/2. Therefore, due

to the symmetry of the distribution of cost
�R(S), we have that

Q(k−i−5/4)/k, �R(D) ≥ 2n+1 for every i ∈ {0, 1, . . . , k−`−2}.

Using this bound in the second sum of (12), together with (14),

we obtain that the quantity in (12) is bounded from above by

2(k−2)n−(α∗/3)k
√

n+
{
cost

�R(B�) + cost
�R(B�+1)

}
. (15)

Finally, we bound the sum in the curly brackets in (15). Let

S′ be a strand in B� such that cost
�R(B�) = cost

�R(S′), and let

S′′ be a strand in B�+1 such that cost
�R(B�+1) = cost

�R(S′′).
By the construction of the batching process we have that

cost
�R(S′) ≤ cost

�R(S′′). On the other hand, by Lemma 5.1

we have that cost
�R(S′′) + cost

�R(S′′) = 4n + 1. Putting all

this together we have that

cost
�R(B�) + cost

�R(B�+1) = cost
�R(S′) + cost

�R(S′′)

≤ cost
�R(S′′) + cost

�R(S′′) = 4n + 1.

Plugging this back into (15), we obtain that the total

cost is bounded from above by 2kn + 1 − (α∗/3)k
√

n,

as desired, with this bound holding with probability at least

1 − 2 exp
(
−M/(8k2)

)
. �

B. Batching for Unrestricted Strands

The main idea of the proof is to analyze the cost quantiles

after splitting into batches. In this case, the optimal splitting

is a bit easier to define, as we will always use the reference

strand R̃ = (ACGT )∗. Once the reference strand is fixed,

it is easy to see that for arbitrary strands, the optimal batching

process involves first taking M/k lowest cost strands and then

the next M/k lowest cost and so on.

Proof of Theorem 1.2(2): In this argument, we consider a

set S of M strands sampled i.i.d. from the uniform distribution

U over {A, C, G, T}n. For simplicity of notation, we let

Q̃q = Q̃q,�R(S) and Qq = Qq,�R(U) denote the empirical and

distributional q-quantiles of the cost, respectively. We utilize

the empirical quantiles i/k for i ∈ [k], where we recall

that Q̃i/k denotes the minimum value ti such that an i/k
fraction of strands in S have cost at most ti. In particular, the

bound cost
�R(Bi) ≤ Q̃i/k follows from the batch construction

process.

Lemma 4.1 provides a uniform bound on each empirical

quantile, and we apply it with ε = 1/k; specifically, this

implies that, with probability at least 1 − 2 exp(− 2M
k2 ), we

have for all i ∈ [k−1] that Q̃i/k ≤ Q(i+1)/k. In the following

we assume that we are on this event; in particular, on this event

we have that cost
�R(Bi) ≤ Q(i+1)/k holds for all i ∈ [k − 1].

We next claim that for any even k′ ≤ k − 3 we have that

k′∑

i=1

Q(i+1)/k ≤ 2.5nk′. (16)

Before showing (16), we conclude the proof assuming that it

holds. When k is even, we set k′ = k − 4, and otherwise,

k′ = k − 3. Then, for i in the range k′ < i ≤ k, we simply

use the bound from Theorem 3.1 that shows that cost
�R(Bi) ≤

2.5n+3
√

n lnM . Combining this with (16) implies the desired

bound with C2 = 12.

We now turn to proving (16). We have already seen in

Lemma 5.1 that the cost distribution is symmetric around 2.5n
for strands uniform over {A, C, G, T}n. This implies that

Q(i+1)/k + Q(k−i−2)/k ≤ 2 · 2.5n (17)

for each i ≤ k′/2. Here we have paired up (i + 1)/k with

(k − i − 2)/k, and hence, we have chosen a cost quantile

on either side of the mean, but with a slight asymmetry,

shifting the larger one over by one. The key observation is

that Q(k−i−2)/k deviates from the mean less than Q(i+1)/k.

More precisely, we have that Q(i+1)/k ≤ 2.5n ≤ Q(k−i−2)/k,

and furthermore, Q(k−i−2)/k − 2.5n ≤ 2.5n − Q(i+1)/k. As

this holds for each i ≤ k′/2, the inequality in (16) follows. �

VI. LOWER BOUNDS

In this section we prove Theorem 1.3, which provides lower

bounds on the cost of batched DNA synthesis for random
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strands, for both unconstrained strands and strands without

homopolymers.

We first introduce some notation and terminology. For a

strand S, we say that a base Si is a repetition of the previous

base if this base is the same as the previous base, that

is, if Si = Si−1. Let d(S) be the number of bases that

are repetitions of the previous base in S (that is, d(S) :=
|{i : Si = Si+1}|). For every p ∈ [0, 1] and positive integer

n, define a distribution Dp,n on DNA strands of length n by

letting the probability of a strand S of length n according to

Dp,n be equal to

Dp,n(S) :=
1

4
·
(1 − p

3

)n−d(S)−1

pd(S).

We can think of this distribution as follows. The first base of

the strand is chosen uniformly at random from the alphabet

{A, C, G, T}. Then, every consecutive base is a repetition

of the previous base with probability p and another base

with probability (1 − p). If a base is not a repetition of the

previous base, then it is chosen uniformly at random among

the remaining three bases.

In this paper, the two most important distributions on DNA

strands are D0,n and D1/4,n. The former is the uniform

distribution on strands of length n without homopolymers;

the latter is the uniform distribution on strands of length n
(unconstrained, i.e., allowing homopolymers). In this section,

we will also crucially use another distribution: D1/4+δ,n with

δ ≈
√

log M
n . To simplify notation, we will omit the second

parameter of the distribution D and write Dp ≡ Dp,n, since

the length of all strands we consider is n.

We will prove the following theorem, from which Theo-

rem 1.3 readily follows.

Theorem 6.1: Let S ≡ SDp,M be a set of M i.i.d. strands

from the distribution Dp, where p is 0 or 1/4. Suppose that M
is divisible by k, and k ≤

√
M/(24n). Then, with probability

at least 1−2 exp(−M/(4k2)) ≥ 1−2 exp(−6n), the optimal

cost of printing the strands in S using k batches of equal size

is at least

k · (2n−
√

5n log(2k)) for strands w/o homopolymers;

(18)

k · (2.5n−
√

5n log(2k)) for unconstrained strands.

(19)

Furthermore, there exist positive absolute constants

c1, c2, and c3 such that the following holds in

the setting of unconstrained strands (that is, when

p = 1/4). Suppose that the number of batches satisfies

k ≤ c1 min{
√

log M/ log log M,
√

n/ log n, 4
√

M/
√

n}.

Then, with probability at least 1 − exp(−c3

√
M/k2), the

total cost of printing the strands in SD1/4,M using k batches

of equal size is at least

k ·
(
2.5n + c2

√
n · min{log M, n}

k

)
. (20)

Proof: We use the approach outlined in the proof overview

(see Section II). We first prove the bounds (18) and (19).

To do so, we show that with high probability the cost of

every batch that contains at least n/k strands is greater than

2n−
√

5n log(2k) for random strands without homopolymers

and 2.5n −
√

5n log(2k) for unconstrained random strands.

Consequently, the total cost of printing k batches is at least

k · (2n −
√

5n log(2k)) and k · (2.5n −
√

5n log(2k)) for

random strands without and with homopolymers, respectively.

Let R∗ be the set of all reasonable reference strands

for printing strands of lengths n, that is, R∗ is the set of

all possible strands of length 4n appended with the infinite

repeating sequence (ACGT )∗ (see Section II). The size of this

set is |R∗| = 44n < e6n. Recall the notions of the q-quantile

Qq,R(D) of the distribution D and the empirical q-quantile

Q̃q,R(S) of a sample S that we introduced in Section IV. Since

every batch in the optimal partitioning of the set S contains

a 1/k fraction of all strands, its cost is at least Q̃1/k,R∗(S).

In Lemma 4.1 we showed that Q̃q,R(S) ≥ Qq−ε,R(D) with

probability close to 1 for sufficiently large M . Specifically,

using Lemma 4.1 with parameters q = 1/k, ε = q/2, and

R = R∗, we obtain the following bound:

P

{
Q̃1/k,R∗(SD,M ) ≥ Q1/(2k),R∗(D)

}

≥ 1 − 2|R∗|e−M/(2k2) > 1 − 2e−M/(4k2), (21)

where in the second inequality we used that |R∗| <
exp(6n) ≤ eM/(4k2); this holds due to the condition k ≤√

M/(24n) that is assumed in the statement of Theorem 6.1.

We now obtain lower bounds on Qq,R∗(D0), Qq,R∗(D1/4),
and Qq,R∗(D1/4+δ).

Lemma 6.2: For q ∈ (0, 1) we have that

Qq,R∗(D0) ≥ 2n −
√

5n log 1/q ; (22)

Qq,R∗(D1/4) ≥ 2.5n−
√

5n log 1/q. (23)

Lemma 6.3: For q ∈ (0, 1) and δ ∈ (0, 1/600] we have that

Qq,R∗(D1/4+δ) ≥ 2.5n + 2/3 δn − 5
√

n log 1/q. (24)

We prove Lemmas 6.2 and 6.3 in Section VI-A. Lemma 6.2,

combined with inequality (21), immediately yield the lower

bounds in (18) and (19) on the total cost of printing random

strands without and with homopolymers.

We now show how to strengthen the lower bound for uncon-

strained strands, obtaining the desired inequality (20). We will

prove that, with probability at least 1 − exp(−c′
√

M/k2) for

some absolute constant c′ > 0, there exists a batch with cost

at least

2.5n + 2/3 δn − 5
√

n log(6k), (25)

where δ = min
{√

log(M/16)
16n , 1/600

}
. Thus, using the lower

bound from the first part of the theorem for all the other

k − 1 batches, with probability at least

1 − exp(−c′
√

M/k2) − 2 exp(−M/(4k2))

≥ 1 − exp(−c3

√
M/k2),
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the total cost of printing SD1/4,M using k batches is at least

(
2.5n + 2/3 δn − 5

√
n log(6k)

)

+ (k − 1) ·
(

2.5n −
√

5n log(2k)

)

≥ k · 2.5n + 2/3 δn − 5 k
√

n log(6k)

≥ k · 2.5n

+
√

n

[
1

900
min

{√
log(M/16),

√
n
}
− 5 k

√
log(6k)

]
.

Now if k ≤ c1 min{
√

log M/ log log M,
√

n/ logn} for a

small enough c1 > 0, then the quantity in the display above is

bounded from below by k · 2.5n + c2

√
n min {log M, n} for

some c2 > 0. Thus we have obtained (20).

What remains is to prove the claim in (25). The proof of

this relies on the following lemma, the proof of which we

defer to Section VI-B.

Lemma 6.4: For every 0 ≤ δ ≤ min
{√

log(M/16)
16n , 0.1

}

there exists a coupling (S,S′) of random multisets containing

strands of length n that satisfies the following:

1) S has the same distribution as SD1/4,M ;

2) S′ has the same distribution as SD1/4+δ,	
√

M�; and

3) there exists an absolute constant c > 0 such that

P{|S ∩ S′| ≥ |S′|/3} ≥ 1 − exp(−c
√

M).

Consider the pair of random multisets (S,S′) from

Lemma 6.4. Since S has the same distribution as SD1/4,M ,

it suffices to show that, with probability at least 1 −
exp(−c′

√
M/k2), in every partitioning of S into k batches

there exists at least one batch with cost at least 2.5n+2/3 δn−
5
√

n log(6k). Let S′′ := S ∩ S′. Since S′′ ⊆ S, one of the

batches must contain at least a 1/k fraction of all strands in S′′.
Denote this batch by B and let B′′ := B∩S′′. If |S′′| ≥ |S′|/3,

then |B′′| ≥ |S′′|/k ≥ |S′|/(3k). Consequently, the cost of

printing B′′ is at least Q̃1/(3k),R∗(S′). Since B′′ ⊆ B, the cost

of printing B is also at least Q̃1/(3k),R∗(S′). By Lemma 6.4,

we have that |S′′| ≥ |S′|/3 with probability at least 1 −
exp(−c

√
M). Thus, with this probability, the cost of printing

B is at least Q̃1/(3k),R∗(S′).
Now by the inequality (21) (replacing 1/k with 1/(3k) and

M with b
√

Mc) we have that

P

{
Q̃1/(3k),R∗(S′) ≥ Q1/(6k),R∗(D1/4+δ)

}

≥ 1 − 2|R∗|e−
√

M/(20k2) > 1 − 2 e−
√

M/(40k2),

where in the second inequality we used that |R∗| <
exp(6n) ≤ exp(

√
M/(40k2)); this holds due to the assump-

tion that k ≤ 4
√

M/
√

240n. Finally, by Lemma 6.3 we have

that

Q1/(6k),R∗(D1/4+δ) ≥ 2.5n + 2/3 δn − 5
√

n log(6k).

Putting everything together we obtain that, with probability

at least 1 − 2 exp(−
√

M/(40k2)) − exp(−c
√

M), the cost

of printing B is at least 2.5n + 2/3 δn − 5
√

n log(6k). This

concludes the proof of the claim in (25).

We complete the proof of Theorem 6.1 in Sections VI-A

and VI-B, where we prove Lemmas 6.2, 6.3, and 6.4. �

A. Proofs of Lemma 6.2 and Lemma 6.3

Proof of Lemma 6.2: We show that Qq,R∗(D0) ≥ 2n −
∆n,q and Qq,R∗(D1/4) ≥ 2.5n − ∆n,q , where ∆n,q :=√

5n log 1/q. To establish this inequality, it suffices to prove

that for all R ∈ R∗,

PS∼D0

{
costR(S) ≤ 2n − ∆n,q

}
< q;

PS∼D1/4

{
costR(S) ≤ 2.5n − ∆n,q

}
< q.

To do this, we use the stochastic domination argument that we

previously used in Section III-C. Let Y1, . . . , Yn be i.i.d. ran-

dom variables that are uniformly distributed on {1, 2, 3}, and

let Z1, . . . , Zn be i.i.d. random variables that are uniformly

distributed on {1, 2, 3, 4}. Then, by the same arguments as in

Section III-C, we have that

PS∼D0

{
costR(S) ≤ 2n−∆n,q

}
≤ P

{ n∑

i=1

Yi ≤ 2n−∆n,q

}

and

PS∼D1/4

{
costR(S) ≤ 2.5n− ∆n,q

}

≤ P

{ n∑

i=1

Zi ≤ 2.5n− ∆n,q

}
.

Note that E[Y1] = 2 and E[Z1] = 2.5. Thus by Hoeffding’s

inequality (Theorem 1.1) we have that

P

{ n∑

i=1

Yi ≤ 2n− ∆n,q

}
≤ exp

(
− 2∆2

n,q

4n

)
< q;

P

{ n∑

i=1

Zi ≤ 2.5n− ∆n,q

}
≤ exp

(
− 2∆2

n,q

9n

)
< q.

This completes the proof of (22) and (23). �
Proof of Lemma 6.3: To prove the claim it suffices to show

that for all R ∈ R∗ we have that

PS∼D1/4+δ

{
costR(S) ≤ 2.5n+2/3 δn − 5

√
n log 1/q

}
<q.

(26)

Accordingly, we fix R ∈ R∗ for the rest of the proof and

show (26).

As in Section III-C, for i ≥ 1 let τi(S, R) denote the

index of the base of R that is used to print the ith base

of S, and let τ0(S, R) = 0 for notational convenience. For

i ≥ 1, define Xi(S, R) := τi(S, R) − τi−1(S, R), and also

let Yi := min{Xi(S, R), 5}. When S ∼ D1/4, we have seen

(see Section III-C) that the distribution of Yi stochastically

dominates the uniform distribution on {1, 2, 3, 4}, and in

particular we have that ES∼D1/4
[Yi | τi−1(S, R)] ≥ 2.5. When

S ∼ D1/4+δ, this inequality does not necessarily hold for all

i ≥ 1. However, we still have the following.

Claim 6.5: For all i ≥ 1 we have that

ES∼D1/4+δ
[Yi | τi−1(S, R)] ≥ 2.5 − 2δ. (27)
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Proof: Given τi−1(S, R) (and the knowledge of the fixed

reference strand R), we know the support of the random

variable Xi(S, R), which consists of four distinct positive

integers. We also know that the conditional probabilities of

taking on each particular value are given by 1/4 + δ, 1/4− δ/3,
1/4− δ/3, and 1/4− δ/3, with some particular permutation. The

conditional expectation is thus minimized when the support is

{1, 2, 3, 4} and the largest probability 1/4 + δ is assigned to 1.

Hence,

ES∼D1/4+δ
[Yi | τi−1(S, R)] ≥ (1/4 + δ) · 1 + (1/4 − δ/3) · 2

+ (1/4 − δ/3) · 3 + (1/4 − δ/3) · 4 = 2.5 − 2δ.

�

We now show that, by averaging over three consecutive

terms, we can obtain a better lower bound on the conditional

expectation that is strictly greater than 2.5 on average.

Lemma 6.6: For every i ∈ {1, . . . , n − 2} and δ ∈
(0, 1/600], we have that

ES∼D1/4+δ

[
Yi + Yi+1 + Yi+2

3

∣∣∣∣ τi−1(S, R)

]
≥2.5 + 2/3 δ.

(28)

Proof: For i ≥ 1 let τ∗ := τi−1(S, R) and note that for

i ≥ 2, by definition, Rτ∗ is the base of the reference strand

R which is used for printing base i− 1 of strand S. Consider

the next 12 bases of the reference strand, that is, the substrand

Rτ∗+1, · · · , Rτ∗+12 of R. We examine two cases.

First, suppose that this substrand is a triple repetition of

some permutation of the bases A, C, G, T . For example,

Rτ∗+1, · · · , Rτ∗+12 = ACGT ACGT ACGT.

Then, for j ∈ {i +1, i + 2}, the conditional distribution of Yj

given τi−1(S, R) is given by: Yj = 1, Yj = 2, and Yj = 3 all

with probability 1/4− δ/3, and Yj = 4 with probability 1/4+ δ.

Thus,

ES∼D1/4+δ
[Yi+1 + Yi+2 | τi−1(S, R)]

= 2
(
(1/4 − δ/3) · (1 + 2 + 3) + (1/4 + δ) · 4

)

= 2(2.5 + 2δ).

By Claim 6.5 we have that ES∼D1/4+δ

[
Yi | τi−1(S, R)

]
≥

2.5 − 2δ. By adding up these bounds, we obtain the desired

bound (28).

Now consider the second case: that the substrand

Rτ∗+1, · · · , Rτ∗+12 is not a triple repetition of the same

permutation of A, C, G, T . Then, this substrand must contain

four consecutive bases that are not a permutation of A, C,

G, T . Let τ ′ be the index of the base just before the first

such quadruple of bases. By construction we must have τ ′ ∈
{τ∗, τ∗ + 1, . . . , τ∗ + 8}. Since Rτ ′+1, Rτ ′+2, Rτ ′+3, Rτ ′+4

is not a permutation of A, C, G, T , at least one letter from

the alphabet {A, C, G, T} is absent in this quadruple. Hence,

if τj(S, R) = τ ′ for some j, then the expected next jump is

at least

ES∼D1/4+δ
[Yj+1 | τj(S, R) = τ ′]

≥ (1/4 + δ) · 1 + (1/4 − δ/3) · 2
+ (1/4 − δ/3) · 3 + (1/4 − δ/3) · 5

= 2.5 + (0.25 − 7/3 δ). (29)

We now distinguish three cases depending on whether

τ ′ = τ∗ or τ ′ ∈ {τ∗ + 1, . . . , τ∗ + 4} or τ ′ ∈
{τ∗ + 5, . . . , τ∗ + 8}. First, if τ ′ = τ∗, then by (29) we have

that ES∼D1/4+δ
[Yi | τi−1(S, R)] ≥ 2.5+(0.25−7/3 δ). We also

have, by Claim 6.5 and the tower rule, that ES∼D1/4+δ
[Yj |

τi−1(S, R)] ≥ 2.5 − 2δ for j ∈ {i + 1, i + 2}. Putting these

bounds together we have, if τ ′ = τ∗, that

ES∼D1/4+δ
[Yi + Yi+1 + Yi+2 | τi−1(S, R)]

≥ 2.5 + (0.25 − 7/3 δ) + 2(2.5 − 2δ)

= 3 · 2.5 + 0.25 − 19/3 δ ≥ 3(2.5 + 2/3 δ),

where the last inequality holds when δ ≤ 0.03. This

shows (28) in this case.

Next, suppose that τ ′ ∈ {τ∗ + 1, . . . , τ∗ + 4}. By Claim 6.5

we have that

ES∼D1/4+δ
[Yi + Yi+2 | τi−1(S, R)] ≥ 2(2.5 − 2δ). (30)

In order to bound ES∼D1/4+δ
[Yi+1 | τi−1(S, R)], we first

condition on τi(S, R). Note that since τ ′ > τ∗, the bases

Rτ∗+1, . . . , Rτ∗+4 are all different. Therefore we must have

that τi(S, R) ∈ {τ∗ + 1, . . . , τ∗ + 4}. Conditioning on the

value of τi(S, R) we thus have that

E[Yi+1 | τi−1(S, R)]

=

4∑

�=1

E[Yi+1 | τi(S, R) = τ∗ + `]×

× P {τi(S, R) = τ∗ + ` | τi−1(S, R)}
= E[Yi+1 | τi(S, R) = τ ′]P {τi(S, R) = τ ′ | τi−1(S, R)}

+ E[Yi+1 | τi(S, R) 6= τ ′]×
× (1 − P {τi(S, R) = τ ′ | τi−1(S, R)}) ,

where all expectations and probabilities are under S ∼ D1/4+δ.

We then use (29) to bound from below the first expectation in

the sum above, and we use Claim 6.5 to bound from below

the second expectation. Plugging in these bounds we obtain

that

ES∼D1/4+δ
[Yi+1 | τi−1(S, R)]

≥ 2.5 − 2δ

+ (0.25 − δ/3)PS∼D1/4+δ
{τi(S, R) = τ ′ | τi−1(S, R)}

≥ 2.5 − 2δ + (0.25 − δ/3)2 ≥ 2.5 + 6δ, (31)

where the last inequality holds when δ ≤ 1/200. Putting

together (30) and (31) we obtain (28) in this case as well.

Finally, suppose that τ ′ ∈ {τ∗ + 5, . . . , τ∗ + 8}.

By Claim 6.5 we have that

ES∼D1/4+δ
[Yi + Yi+1 | τi−1(S, R)] ≥ 2(2.5 − 2δ). (32)
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In order to bound ES∼D1/4+δ
[Yi+2 | τi−1(S, R)], we first

condition on τi+1(S, R). Note that since τ ′ > τ∗ +
4, the bases Rτ∗+1, . . . , Rτ∗+4 are all different, and the

bases Rτ∗+5, . . . , Rτ∗+8 are a repetition of the bases

Rτ∗+1, . . . , Rτ∗+4. This implies that τi(S, R) ∈ {τ∗ +
1, . . . , τ∗ + 4}, and, moreover, that given τi(S, R), we have

that τi+1(S, R) ∈ {τi(S, R) + 1, . . . , τi(S, R) + 4}. In par-

ticular, note that if τi(S, R) = τ ′ − 4 and Si+1 = Si,

then τi+1(S, R) = τ ′. Thus conditioning on whether or not

τi+1(S, R) = τ ′ occurs, we have that

E[Yi+2 | τi−1(S, R)]

= E[Yi+2 | τi+1(S, R) = τ ′]P {τi+1(S, R) = τ ′ | τi−1(S, R)}
+ E[Yi+2 | τi+1(S, R) 6= τ ′]×
× (1 − P {τi+1(S, R) = τ ′ | τi−1(S, R)}) .

As before, we use (29) to bound from below the first expec-

tation in the sum above, and we use Claim 6.5 to bound from

below the second expectation. Plugging in these bounds we

obtain that

ES∼D1/4+δ
[Yi+2 | τi−1(S, R)] ≥ 2.5 − 2δ

+ (0.25 − δ/3)PS∼D1/4+δ
{τi+1(S, R) = τ ′ | τi−1(S, R)} .

Since τi(S, R) = τ ′ − 4 and Si+1 = Si together imply that

τi+1(S, R) = τ ′, we have that

PS∼D1/4+δ
{τi+1(S, R) = τ ′ | τi−1(S, R)}

≥ PS∼D1/4+δ
{τi(S, R)=τ ′ − 4 and Si+1 =Si | τi−1(S, R)}

≥ (1/4 − δ/3) (1/4 + δ) > 1/16.

Putting together the two previous displays we obtain that

ES∼D1/4+δ
[Yi+2 | τi−1(S, R)] ≥ 2.5 + 1/64 − (2 + 1/48)δ

≥ 2.5 + 6δ, (33)

where the last inequality holds whenever δ ≤ 1/600. Putting

together (32) and (33) we obtain (28) in this case as well. This

concludes all cases and hence concludes the proof. �

We now conclude the proof of (26). For simplicity,

we assume in the following that n is divisible by 3; the case

of n not being divisible by 3 can be handled by padding. Let

Z0 := 0 and for t ∈ {1, . . . , n/3} let

Zt :=

3t∑

i=1

Yi − 3(2.5 + 2/3 δ)t.

By definition we have that

costR(S) =

n∑

i=1

Xi(S, R) ≥
n∑

i=1

Yi = Zn/3 + (2.5 + 2/3 δ)n.

and so

PS∼D1/4+δ

{
costR(S)≤2.5n+2/3 δn − 5

√
n log 1/q

}

≤ PS∼D1/4+δ

{
Zn/3≤−5

√
n log 1/q

}
. (34)

Lemma 6.6 implies that {Zt}n/3
t=0 is a submartingale with

respect to its natural filtration. Since Yi ∈ {1, . . . , 5} for every

i ≥ 1, the submartingale differences satisfy Zt+1 − Zt =

(Y3t+1+Y3t+2+Y3t+3)−3(2.5+2/3δ) ∈ [−4.5−2δ, 7.5−2δ],
that is, they take values in an interval of length 12. Thus by

the Azuma-Hoeffding inequality (see, e.g., [54]) we have that

PS∼D1/4+δ

{
Zn/3 ≤ −5

√
n log 1/q

}

≤ exp

(
−2 · 52n log 1/q

(n/3) · 122

)
= q25/24 < q. (35)

Putting together (34) and (35) we obtain (26). �

B. Proof of Lemma 6.4

Proof of Lemma 6.4: For simplicity of exposition, assume

that
√

M is an integer number (if it is not, we can replace

M with M ′ = b
√

Mc2). Let Σ := {A, C, G, T} and denote

by L the set of all strands S of length n with the number of

repeating bases, d(S), being at most d(1/4 + δ)ne:

L = {S ∈ Σn : d(S) ≤ d(1/4 + δ)ne}.

Let φ := 1/
√

M . We first show the following claim.

Claim 6.7: Suppose that 0 ≤ δ ≤ min

{√
log(M/16)

16n , 0.1

}
.

For all strands S ∈ L we have that

D1/4(S) ≥ 2φ · D1/4+δ(S). (36)

Proof: First observe that for all S ∈ Σn we have that

D1/4+δ(S)

D1/4(S)
=

1
4 ·

(
1
4 − δ

3

)n−d(S)−1( 1
4 + δ

)d(S)

1
4n

=
(
1 − 4/3 δ

)n−d(S)−1(
1 + 4δ

)d(S)
.

For S ∈ L we have that d(S) ≤ (1/4 + δ)n + 1 by definition.

Plugging this bound into the display above we obtain for S ∈
L that

D1/4+δ(S)

D1/4(S)
≤

(
1 − 4/3 δ

)(3/4−δ)n−2(
1 + 4δ

)(1/4+δ)n+1

=
(
(1 − 4/3 δ)3(1 + 4δ)

)n/4

·
(

1 + 4δ

1 − 4/3 δ

)δn

·

·
(

(1 + 4δ)

(1 − 4/3 δ)2

)
.

We now bound from above the three factors on the

right hand side. The first factor is at most 1, since

(1 − 4/3 δ)3(1 + 4δ) ≤ 1 by the AM-GM inequality. The third

factor is bounded from above by 2 for δ ∈ [0, 1/10]. Finally,

to bound the second factor, observe that the quadratic function

(1 + 4x) − (1 − 4x/3)(1 + 8x) =
32 x(x − 1/4)

3

is negative for x ∈ (0, 1/4). Hence, (1 + 4δ)/(1 − 4/3 δ) ≤
(1 + 8δ) for δ ∈ [0, 1/4] and so

(
1 + 4δ

1 − 4/3 δ

)δn

≤ (1 + 8δ)δn = eδn ln(1+8δ) ≤ e8δ2n.

Combining these bounds we obtain that

D1/4(S) ≥ 1/2 e−8δ2n · D1/4+δ(S) ≥ 2φ · D1/4+δ(S),
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where in the last inequality we used that 0 ≤ δ ≤
√

log(M/16)
16n

and that φ = 1/
√

M . �

We also need to estimate the probability of the set L.

Claim 6.8: We have that D1/4+δ(L) ≥ 1/2.

Proof: The number of repetitions d(S) for random strands

S ∼ Dp has a binomial distribution B(n − 1, p). The median

of the binomial distribution B(n − 1, p) is at most d(n −
1)pe. Thus, PS∼Dp{d(S) ≤ d(n − 1)pe} ≥ 1/2 and hence

D1/4+δ(L) ≥ 1/2. �
We now return to the proof of Lemma 6.4. Define two

probability measures A and B on Σn:

A(S) :=

{D1/4+δ(S)

D1/4+δ(L) , for S ∈ L;

0, for S /∈ L;

and

B(S) :=
D1/4(S) − φA(S)

1 − φ
.

Claim 6.9: A and B are probability measures on Σn. That

is, A and B are nonnegative and A(Σn) = B(Σn) = 1.

Proof: If S ∼ D1/4+δ, then the conditional distribution

of S given that S ∈ L is exactly given by A. In other words,

for every S′ ∈ Σn we have that PS∼D1/4+δ
(S = S′ | S ∈

L) = A(S′). Therefore A is a probability measure. It is easy

to verify that B(Σn) = 1:

B(Σn) =
D1/4(Σ

n) − φA(Σn)

1 − φ
=

1 − φ

1 − φ
= 1.

Thus, it remains to show that B is nonnegative. For S /∈ L
we have that A(S) = 0, so B(S) = D1/4(S)/(1 − φ) ≥ 0.

By Claim 6.8 we know that D1/4+δ(L) ≥ 1/2, so for every

S ∈ L we have that A(S) ≤ 2 D1/4+δ(S). Therefore for

every S ∈ L we have that

B(S) =
D1/4(S) − φA(S)

1 − φ
≥ D1/4(S) − 2φD1/4+δ(S)

1 − φ
≥ 0,

where the last inequality is a consequence of Claim 6.7. �

We now show how to define the coupling (S,S′) satisfying

the three conditions of Lemma 6.4. Let S1, S2, . . . , be an

infinite sequence of i.i.d. random strands, where each strand

Si is distributed according to the distribution D1/4+δ. Let

L1, L2, . . . , be the subsequence of strands that belong to the

set L. Note in particular that, by construction, L1, L2, . . . , are

i.i.d. strands distributed according to the distribution A.

First, let S′ :=
{
S1, S2, . . . , S√

M

}
. By construction we

have that S′ has the same distribution as SD1/4+δ,
√

M , which

shows part (a) of the claim.

Next, we define S. We generate the strands of S one

by one. For each i = 1, . . . , M , we flip a coin: with

probability φ, we add the first not yet selected strand from

the sequence {Lj}j≥1 to S; with the remaining probability

(1−φ), we add an independent random strand drawn from the

distribution B to S. By construction the strands in S are i.i.d.

Moreover, by construction, each strand is distributed according

to φA + (1 − φ)B = D1/4, where the equality follows from

the definition of B. So S has the same distribution as SD1/4,M ,

which shows part (b) of the claim.

Finally, we verify part (c) of the claim. The intersection of

the sets S and S′ is a prefix of the sequence L1, L2, . . . .

In expectation, the set S contains φM =
√

M elements

from the sequence L1, L2, . . .. Thus, by the Chernoff bound,

it contains the first
√

M/2 elements of this sequence with

probability at least 1 − exp(−c1

√
M). Similarly, in expec-

tation, the set S′ contains at least
√

M/2 elements from

L1, L2, . . .. Hence, by the Chernoff bound, it contains the

first
√

M/3 elements from the sequence L1, L2, . . . with

probability at least 1−exp(−c2

√
M). Thus, by a union bound,

P

{{
L1, L2, . . . , L√

M/3

}
⊆ S ∩ S′

}

≥ 1 − exp(−c1

√
M) − exp(−c2

√
M).

�

APPENDIX A

STANDARD TAIL BOUNDS

We recall Hoeffding’s inequality (see, e.g., [54]), which we

use throughout our proofs.

Theorem 1.1 (Hoeffding’s Inequality): Let X1, . . . , Xn be

independent random variables such that Xi takes its values in

[ai, bi] almost surely for all i ≤ n. Let Sn := X1 + . . . + Xn.

Then for every t > 0 we have that

P {Sn − E [Sn] ≥ t} ≤ exp

(
− 2t2

∑n
i=1 (bi − ai)

2

)
.

We also recall the Paley-Zygmund inequality (see,

e.g., [54]).

Lemma 1.2 (Paley-Zygmund Inequality): Let Z be a non-

negative random variable and let θ ∈ [0, 1]. Then

P {Z ≥ θE [Z]} ≥ (1 − θ)2
(E [Z])

2

E [Z2]
.

We use the Paley-Zygmund inequality to prove a lower

bound on the right tail of the sum of i.i.d. random variables

that occur in the proofs of our lower bound results.

Lemma 1.3: Let ` ≥ 2 be a fixed positive integer. Let

{Yi}n
i=1 be i.i.d. random variables that are uniform on

{1, 2, . . . , `}. For λ satisfying 0 < λ ≤ `n/50 we have that

P

{
n∑

i=1

(Yi − E [Yi]) ≥ λ

}

≥
(

exp

(
12.5λ2

`2n

)
− 1

)2

exp

(
−400λ2

`2n

)
. (37)

In particular, when `
√

n/3 ≤ λ ≤ `n/50, we have that

P

{
n∑

i=1

(Yi − E [Yi]) ≥ λ

}
≥ exp

(
−400λ2

`2n

)
. (38)

We note that this bound is sharp up to a universal multi-

plicative constant in the exponent, as witnessed by Hoeffding’s

inequality (Theorem 1.1).

Proof: To abbreviate notation, let Zi := Yi − E [Yi] for

i ∈ [n], and let Sn :=
∑n

i=1 Zi. For every t > 0 we have that

P {Sn ≥ λ} = P {exp (tSn) ≥ exp (tλ)}

= P

{
exp (tSn) ≥ exp (tλ)

E [exp (tSn)]
E [exp (tSn)]

}
. (39)
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We now apply the Paley-Zygmund inequality (Lemma 1.2)

with Z := exp (tSn) and

θ :=
exp (tλ)

E [exp (tSn)]
.

In order to do so, we must have θ ∈ [0, 1], so λ must satisfy

λ ≤ 1

t
log E [exp (tSn)] . (40)

For t > 0 and λ satisfying (40) we have by (39) and

Lemma 1.2 that

P {Sn ≥ λ} ≥
(

1 − exp (tλ)

E [exp (tSn)]

)2
(E [exp (tSn)])2

E [exp (2 tSn)]

=
(E [exp (tSn)] − exp (tλ))2

E [exp (2 tSn)]
. (41)

In the following we analyze this expression. By an explicit

calculation we have that

E [exp (tY1)] =
et

(
et� − 1

)

` (et − 1)
.

Since E [Y1] = (` + 1)/2, we thus have that

E [exp (tZ1)] = E [exp (tY1)] e
−t(�+1)/2

=
et/2

(
et�/2 − e−t�/2

)

` (et − 1)
.

By multiplying and dividing by t, we slightly rewrite this

expression as

E [exp (tZ1)] =
tet/2

et − 1
· et�/2 − e−t�/2

t`
(42)

and bound the two factors separately. For the first factor we

have for all t > 0 that

e−t2/20 ≤ tet/2

et − 1
≤ 1. (43)

For the second factor, note that

ex2/25 ≤ ex/2 − e−x/2

x
≤ ex2/20,

where the first inequality holds for all x ∈ (0, 1] and the

second inequality holds for all x > 0. Thus for all t ∈ (0, 1/`]
we have that

et2�2/25 ≤ et�/2 − e−t�/2

t`
≤ et2�2/20. (44)

Putting together the bounds in (43) and (44), and plugging

them into (42) we obtain the upper bound

E [exp (tZ1)] ≤ et2�2/20,

which holds for all t > 0. Similarly, we obtain the lower bound

E [exp (tZ1)] ≥ exp
(
t2`2/25 − t2/20

)

= exp

(
t2

4`2 − 5

100

)
≥ et2�2/40,

which holds for all t ∈ (0, 1/`]; here in the last inequality

we used that 4`2 − 5 ≥ 2.5`2, which holds for all ` ≥ 2.

In summary, we have shown that for all t ∈ (0, 1/`] we have

that

et2�2/40 ≤ E [exp (tZ1)] ≤ et2�2/20. (45)

Since {Zi}n
i=1 are i.i.d. we have that E [exp (tSn)] =

(E [exp (tZ1)])
n

. Therefore by (45) we have for all t ∈ (0, 1/`]
that

et2�2n/40 ≤ E [exp (tSn)] ≤ et2�2n/20. (46)

Plugging these inequalities back into (41) we obtain the lower

bound

P {Sn ≥ λ} ≥
(
exp

(
t2`2n/40

)
− exp (tλ)

)2

exp (t2`2n/5)
. (47)

The inequality in (47) holds whenever t ∈ (0, 1/`] and the

inequality tλ ≤ t2`2n/40 holds. We now choose t to be

t :=
50λ

`2n
,

a choice which requires λ > 0. This choice of t satisfies the

inequality tλ ≤ t2`2n/40. Furthermore, we then have t ≤ 1/`
if and only if λ ≤ `n/50. Plugging in this choice of t into (47)

we obtain that

P {Sn ≥ λ} ≥

(
exp

(
62.5λ2

�2n

)
− exp

(
50λ2

�2n

))2

exp
(

500λ2

�2n

) ,

from which (37) follows directly. Finally, note that when λ ≥
`
√

n/3, then exp
(
12.5λ2/

(
`2n

))
− 1 ≥ e − 1 > 1, and (38)

follows. �

APPENDIX B

PROOF OF LEMMA 4.1

In this section we prove Lemma 4.1 about the empirical

quantiles of the distribution of the random variable costR(S),
where S is a random strand.

Proof of Lemma 4.1: By the Dvoretzky–Kiefer–Wolfowitz

inequality ( [55], [56]), the empirical cumulative distribution

function for costR(S) is very close to the cumulative distri-

bution function for costR(S) ≤ t with high probability over

the random choice of the set SD,M . Specifically, we have

P

{∣∣∣∣
|{S ∈ S : costR(S) ≤ t}|

|S| − P
{
costR(S) ≤ t

}∣∣∣∣ ≤ ε

for all t ∈ R

}
≥ 1 − 2e−2Mε2

.

Let

E :=

{∣∣∣∣
|{S ∈ S : costR(S) ≤ t}|

|S| − P
{
costR(S) ≤ t

}∣∣∣∣ ≤ ε

for all t ∈ R

}
.

We show that if E occurs then for all q ∈ (ε, 1 − ε), we have

Qq−ε,R(D) ≤ Q̃q,R(SD,M ) ≤ Qq+ε,R(D),

and, therefore, (6) holds. Inequality (7) follows from (6) by a

union bound over all R in R.
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We first show that Q̃q,R(SD,M ) ≥ Qq−ε,R(D) for all

q ∈ (ε, 1). Consider an arbitrary q ∈ (ε, 1) and let

t∗ = Qq−ε,R(D) − 1. Since t∗ < Qq−ε,R(D), we have

P
{
costR(S) ≤ t∗

}
< q − ε and

|{S ∈ S : costR(S) ≤ t∗}|
|S| ≤ P

{
costR(S) ≤ t∗

}
+ ε < q.

Hence, Q̃q,R(SD,M ) > t∗, and since Q̃q,R(SD,M ) is an

integer, Q̃q,R(SD,M ) ≥ Qq−ε,R(D).

We now show that Q̃q,R(SD,M ) ≤ Qq+ε,R(D) for all

q ∈ (0, 1 − ε). Consider an arbitrary q ∈ (0, 1 − ε) and let

t∗∗ = Qq+ε,R(D). By the definition of Qq,R(D), we have

P
{
costR(S) ≤ t∗∗

}
≥ q + ε and

|{S ∈ S : costR(S) ≤ t∗∗}|
|S| ≥ P

{
costR(S) ≤ t∗∗

}
− ε ≥ q.

Hence, Q̃q,R(SD,M ) ≤ t∗∗ = Qq+ε,R(D). �
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[25] A. B. Kahng, I. I. Mǎndoiu, P. A. Pevzner, S. Reda, and
A. Z. Zelikovsky, “Scalable heuristics for design of DNA probe arrays,”
J. Comput. Biol., vol. 11, nos. 2–3, pp. 429–447, Mar. 2004.

[26] K. Ning and H. W. Leong, “The distribution and deposition algorithm
for multiple oligo nucleotide arrays,” Genome Informat., vol. 17, no. 2,
pp. 89–99, 2006.

[27] S. Rahmann, “Subsequence combinatorics and applications to microar-
ray production, DNA sequencing and chaining algorithms,” in Proc.

Annu. Symp. Combinat. Pattern Matching. Berlin, Germany: Springer,
2006, pp. 153–164.

[28] A. Kumar, M. Cho, and D. Z. Pan, “DNA microarray placement for
improved performance and reliability,” in Proc. Int. Symp. VLSI Design,
Automat. Test, Apr. 2010, pp. 275–278.

[29] D. Trinca and S. Rajasekaran, “Fast local-search-based parallel algo-
rithms for DNA probe placement on small oligonucleotide arrays,” Adv.
Model. Optim., vol. 12, no. 1, pp. 45–55, 2010.

[30] K. Ning and H. W. Leong, “The multiple sequence sets: Problem and
heuristic algorithms,” J. Combinat. Optim., vol. 22, no. 4, pp. 778–796,
Nov. 2011.

[31] S. Srinivasan, V. Kamakoti, and A. Bhattacharya, “A review of algo-
rithms for border length minimization problem,” IETE Tech. Rev.,
vol. 31, no. 5, pp. 369–382, Sep. 2014.

[32] E. Hubbell and P. A. Pevzner, “Fidelity probes for DNA arrays,” in Proc.

7th Int. Conf. Intell. Syst. Mol. Biol., 1999, pp. 113–117.

[33] C. J. Colbourn, A. C. H. Ling, and M. Tompa, “Construction of
optimal quality control for oligo arrays,” Bioinformatics, vol. 18, no. 4,
pp. 529–535, Apr. 2002.

[34] R. Sengupta and M. Tompa, “Quality control in manufacturing oligo
arrays: A combinatorial design approach,” J. Comput. Biol., vol. 9, no. 1,
pp. 1–22, Jan. 2002.

[35] O. Milenkovic, “Error and quality control coding for DNA microarrays,”
in Proc. Inaugural Workshop Center Inf. Theory Appl., San Diego, CA,
USA, 2006, pp. 1–19.

[36] E.-J. Räihä and E. Ukkonen, “The shortest common supersequence
problem over binary alphabet is NP-complete,” Theor. Comput. Sci.,
vol. 16, no. 2, pp. 187–198, 1981.

[37] T. Jiang and M. Li, “On the approximation of shortest common superse-
quences and longest common subsequences,” SIAM J. Comput., vol. 24,
no. 5, pp. 1122–1139, 1995.

[38] A. Lenz, Y. Liu, C. Rashtchian, P. H. Siegel, A. Wachter-Zeh, and
E. Yaakobi, “Coding for efficient DNA synthesis,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jun. 2020, pp. 2885–2890.

[39] L. Anavy, I. Vaknin, O. Atar, R. Amit, and Z. Yakhini, “Data storage in
DNA with fewer synthesis cycles using composite DNA letters,” Nature

Biotechnol., vol. 37, no. 10, pp. 1229–1236, Oct. 2019.

[40] H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church,
“Terminator-free template-independent enzymatic DNA synthesis for
digital information storage,” Nature Commun., vol. 10, no. 1, pp. 1–12,
Dec. 2019.

Authorized licensed use limited to: Princeton University. Downloaded on December 09,2022 at 14:43:26 UTC from IEEE Xplore.  Restrictions apply. 



7470 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

[41] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized
writing rate in DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), Jun. 2020, pp. 711–716.
[42] A. Flaxman, A. W. Harrow, and G. B. Sorkin, “Strings with maximally

many distinct subsequences and substrings,” Electron. J. Combinatorics,
vol. 11, no. 1, p. R8, Jan. 2004.

[43] D. S. Hirschberg and M. Regnier, “Tight bounds on the number of string
subsequences,” J. Discrete Algorithms, vol. 1, no. 1, pp. 123–132, 2000.

[44] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” Sov. Phys. Doklady, vol. 28, no. 8, pp. 707–710, 1966.

[45] R. Pemantle and M. C. Wilson, “Asymptotics of multivariate sequences
II: Multiple points of the singular variety,” Combinatorics, Probab.

Comput., vol. 13, nos. 4–5, pp. 735–761, Jul. 2004.
[46] R. Pemantle and M. C. Wilson, “Twenty combinatorial examples of

asymptotics derived from multivariate generating functions,” SIAM Rev.,
vol. 50, no. 2, pp. 199–272, Jan. 2008.

[47] B. Bukh and C. Cox, “Periodic words, common subsequences and frogs,”
Ann. Appl. Probab., vol. 32, no. 2, pp. 1295–1332, Apr. 2022.

[48] V. Chvátal and D. Sankoff, “Longest common subsequences of two
random sequences,” J. Appl. Probab., vol. 12, no. 2, pp. 306–315,
Jun. 1975.
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