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WEIGHT ¢-MULTIPLICITIES FOR REPRESENTATIONS OF THE
EXCEPTIONAL LIE ALGEBRA g,
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AMAURY V. MININO, JOSEPH RENNIE, AND GORDON ROJAS KIRBY

ABSTRACT. Given a simple Lie algebra g, Kostant’s weight ¢-multiplicity formula is an alternating
sum over the Weyl group whose terms involve the g-analog of Kostant’s partition function. For &
(a weight of g), the g-analog of Kostant’s partition function is a polynomial-valued function defined
by ©q(&) = Zciqi where ¢; is the number of ways & can be written as a sum of i positive roots
of g. In this way, the evaluation of Kostant’s weight g-multiplicity formula at ¢ = 1 recovers
the multiplicity of a weight in a highest weight representation of g. In this paper, we give closed
formulas for computing weight g-multiplicities in a highest weight representation of the exceptional
Lie algebra go.

1. INTRODUCTION

We recall that the theorem of the highest weight asserts that a finite-dimensional complex irre-
ducible representation of a simple Lie algebra g is equivalent to L()), a highest weight representation
with dominant integral highest weight A. The multiplicity of a weight p in L()), denoted by m(A, p),
can be computed using Kostant’s weight multiplicity formula (as defined by Kostant in [15]):

(1) m\p) = > (=) ple(A+p) = (u+p))
ceW

where W is the Weyl group of g, ¢(c) denotes the length of o € W, and p = %Za€¢+ a with
being the set of positive roots of g, and where p denotes Kostant’s partition function, which counts
the number of ways to express a weight as a nonnegative integral sum of positive roots.

In this paper, we consider the exceptional Lie algebra go and study the g-analog of Kostant’s
weight multiplicity formula, also known as Kostant’s weight ¢-multiplicity formula, which is a
generalization of equation (1) defined by Luztig in [16]:

(2) mg(A ) = > (=1 D pg(c(X +p) = (u+p)).
oceEW

In equation (2), g, denotes the g-analog of Kostant’s partition function, which is a polynomial-
valued function defined by

(3) 0q(€) = co+ c1g+ c2g® + -+ - + cng™,

where ¢; denotes the number of ways to express the weight £ as a sum of exactly ¢ positive roots.
Note that equation (2) generalizes (1) since p4(§)[q=1 = ©(§) for any weight £ and so mg(A, pt)[g=1 =
m(A, p). One important application of equation (2) is the celebrated result of Lusztig [16, Section
10, p. 226], which states that if g is a finite-dimensional simple Lie algebra g and & is the highest
root, then mgy(&,0) = ¢°* 4+ ¢®> + - -- 4+ ¢° where ey, eq,..., e, are the exponents of g. In the case
of the exceptional Lie algebra g, this implies that mg(a,0) = ¢ + ¢°.
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Although formulas such as equation (1) and (2) exist, it is very difficult to give closed formulas
for weight multiplicities for a Lie algebra of arbitrary rank. The difficulties in this work arise from
both the lack of closed formulas for the partition functions involved, as well as the factorial growth
of the Weyl group order as the rank of the the Lie algebra increases. For some results related to
computations of weight multiplicities in certain highest weight representations see [2, 5, 6, 8, 9, 13].
In general, there has been some success in providing closed formulas for weight g-multiplicities for
Lie algebras of low rank. This includes the work of Harris and Lauber [10] on weight ¢-multiplicities
for the representations of sp,(C), which generalized the the work of Refaghat and Shahryari [14],
and the work of Garcia, Harris, Loving, Martinez, Melendez, Rennie, Rojas Kirby, and Tinoco [3]
on weight g-multiplicities for sl4(C). Other work provides visualizations of the subsets of elements
of the Weyl group which contribute non-trivially to the associated weight multiplicity, for examples
see [11, 12]. Motivated by these works, we present a new formula for equation (2) giving weight
g-multiplicities for representations of the exceptional Lie algebra go.

Theorem 1.1. Let w; and wy denote the fundamental weights of go. If A = mwy + nwe, p =
xwy + ywe, and m,n,z,y € N:={0,1,2,3,...}, then

(P—Q—R—i-S—i-T if and only if a,b,c,d,e, f € N,
P—-Q-R+S if and only if a,b,c,d,e € N, f ¢ N|
P—Q—-R+T if and only if a,b,¢c,d, f € Nje ¢ N|
P-Q—-R if and only if a,b,c,d € Nye, f ¢ N,
) mq(A 1) = P—-Q if and only if a,b,c € N d,e, f ¢ N,
P—R if and only if a,b,d € Nc,e, f ¢ N|
P if and only if a,b € N,¢,d,e, f ¢ N,
0 otherwise
where
P = p,((2m +3n — 2z — 3y)a; + (m + 2n — x — 2y)as),
Q= ps((m+3n—2x—3y —1)ag + (m+2n — z — 2y)az),
(5) R = p4((2m+3n—2z —3y)oq + (m+n —z — 2y — 1)ag),
S =pe((m+3n—-2x—-3y—1)a; + (n—x —2y —2)ay), and

T =gpq((m—-2x—-3y—4)on +(m+n—a—2y—1)as).

In general, using equation (2) to compute weight g-multiplicities for representations of gs requires
the computation of Kostant’s partition function on 12 distinct inputs, as the Weyl group of go is
isomorphic to the dihedral group of order 12. However, Theorem 1.1 reduces all weight ¢g-multiplicity
computations to at most five such computations. Our second result, provides a formula for the
g-analog of Kostant’s partition function for go, which can be used to compute each of the terms
appearing in Theorem 1.1.

Proposition 1.1. If m,n € N, then the value of p,(ma; + nay) is given by

min([2|,[2]) (min(| 252 | n—2i) [min(| =323 |,n—2i—j) /min(m—3i—3j—2kn—2i—j—k)

© > D D 2 A

i=0 §=0 k=0 1=0
where z=m+n —4i — 35 — 2k — L.

Outline of the paper. Section 2 provides the Lie theoretic background needed for the remainder
of the manuscript. Section 3 contains the proof of Proposition 1.1. We prove Theorem 1.1 in
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Section 4 and provide some detailed examples of how Theorem 1.1 can be used to compute weight
g-multiplicities for representations of go. In Section 5, we provide a missing case in the proof of
a formula of Harris and Lauber for the g-analog of Kostant’s partition function of the Lie algebra
sp4(C) appearing in [10]. We end the manuscript with a section containing some open problems.

2. BACKGROUND

We use the same notation as appearing in [4], which the reader can look to for a more compre-
hensive treatment of some of the objects introduced here. We denote the simple roots of go as oy
and a9, and the fundamental weights as w; and ws. The positive roots of go are given by

Ot = {al,ag,al + aig, 201 4+ aig, 3 + aig, 3 + 2a2}.

Recall that @y = 2a1 + a9, wy = 3o + 2as, and

1
(7) p:§Za:w1+w2:5a1+3a2.
acdt

We set A = (2m + 3n)ag + (m + 2n)ag and p = (22 + 3y)ag + (¢ + 2y)ag where m,n,z,y € N.
We make this choice to simplify our computations and we are able to do so since the fundamental
weight lattice and the root lattice of gs are equal.

The Weyl group of g,, denoted W, is generated by reflections about hyperplanes orthogonal
to the simple roots. We denote the reflection through the hyperplane orthogonal to «; by s; for
1 = 1,2. In Figure 1, we illustrate the positive roots and in red we present the hyperplanes defining
the reflections s; and so. The action of the generators of W on the simple roots is given by

(8) s1(o) = —ay, s1(ag) = 3oy + ag,

9) s2(a1) = a1 + ag, so(an) = —aw.

Table 1 describes how the remaining elements of W act on the simple roots.

S1

3ag + an

FIGURE 1. Positive root system for g, and the lines orthogonal to the simple roots
which define s; and so.



ceW 1 S1 S9281 518281 (8281)2 81(8281)2
o(aq) o —o —(a1 + a9) —(201 + a2) | =200 + a2) | —(a1 + a2)
o(as) a9 3aq + an 3aq + 29 3aq + 209 3aq + an o9
ceW $9 5189 595159 (5152)2 59(51592)2 (5152)°
olar) || a1 + a2 2001 + a2 2001 + a1 + oo aq —a
O’(ag) —an —(3041 + a2) —(3&1 + 2a2) —(3041 + 2042) —(3&1 + 042) —a

TABLE 1. Elements of W and their action on the simple roots a; and as.

3. THE ¢-ANALOG OF KOSTANT’S PARTITION FUNCTION

In this section, we provide a closed formula for the g-analog of Kostant’s partition function for
the exceptional Lie algebra go, which was presented in equation (3). We restate the result below
for ease of reference.

Proposition 1.1. If m,n € N, then the value of p,(ma; + nay) is given by

min([2],]2]) [min(]| 252 | n-2i) (min(|2=2=52 | n—2i—j) /min(m—3i—3j—2k,n—2i—j—k)

(10) > > > )]

§=0 k=0 1=0

<.
[en]

where z =m+n—4i —3j — 2k — [.

Proof. The number of ways we can write ma; +nag as a nonnegative integral sum of positive roots
is determined by the number of times each positive root in

Ot = {o, a2, 01 + a2, 201 + a2, 301 + a2, a1 + 20}

is used.

If a partition includes i multiples of the highest root 3 + 2arp, then 0 < i < min(| %], [§]), so
as to not exceed each coefficient of the weight may +nas for m and n. We are now left to partition
may + nag — i(3a; + 2a2) = (m — 3i)a; + (n — 2i)ag. If the partition of (m — 3i)a; + (n — 2i)as
includes j multiples of the root 3a; + g, then 0 < j < min([mg?’iJ ,n — 2i). In which case, we
must partition (m — 3i)a; + (n — 2i)ae — j(3as + 1) = (m — 3i — 3j)ag + (n — 2i — jlag. If
the partition of (m — 3i — 3j)ay + (n — 2i — j)ae includes k multiples of the root 2aq + aq, then
0 < k < min( LWJ ,n—2i—7). We must now partition (m—3i—3j)a; +(n—2i—j)as — k(201 +
ag) = (m—3i—3j—2k)ay +(n—2i—j—k)ag. If the partition of (m—3i—3j—2k)a; +(n—2i—j—k)as
includes [ multiples of a 4w, then 0 < I < min(m—3i—3j—2k, n—2i—j—k). We are left to partition
(m—3i—3j—2k)a;+(n—2i—j—k)ag—l(a1+az) = (m—3i—3j—2k—)a1+(n—2i—j—k—1)ay.
Finally, the coefficients of a; or as in our partition are determined by our choice of ¢, j, k,l and are
m—3i —3j — 2k —land n — 2t — j — k — [, respectively.

It follows that the total number of roots used is given by z =i+ j+k+1+ (m —3i —3j — 2k —
D+n—2i—j—k—1l)=m+n—4i—35—2k—1. O

With the formula of Proposition 1.1 at hand, next we compute the values of o(\ + p) — (1 + p)
as they appear in (2) for each o € W. Recall that A\ = (2m + 3n)ag + (m + 2n)ag and p =
(22 4+ 3y)a1 + (z + 2y)ag, where m,n,z,y € N. To illustrate the computations, we consider the
case when o = s1, and using equations (7), (8), and (9), we find that

siA+p) = (n+p)
= s51((2m + 3n)ay + (m + 2n)ag + 5oy + 3ag) — ((2x + 3y)an + (2 + 2y)ae + 5oy + 3as)

1
2m+3n+5)(—aq) + (m+2n+3)(3as + a2) — (22 4+ 3y + 5)a; — (z + 2y + 3)as
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=(m+3n—2x—3y —1)a; + (m+2n—z —2y)as.

Repeating this process with every remaining Weyl group element yields the contents of Table 2.

o t(o) oc(A+p)—(n+p)

1 0 2m+3n—2z—-3y)a; + (m+2n— 2z —2y) a

s1 1 (m+3n—-2zx—-3y—1) a1+ (m+2n—x—2y) o

So 1 2m+3n—2x—-3y)ar+(m+n—x—2y—1)as

$981 2 (m+3n—2r—-3y—1lar+n—z—2y—2)ay

51892 2 (m—2x—-3y—4)ag+(m+n—z—2y—1)ay
518951 3 (—m—22x—-3y—6)ag + (n—2z—2y —2)ay
595159 3 (m—22—-3y—4)ar+(—n—z—-2y—4)ay
(s182)2 4 (—m—=3n—-2r-3y—9 a1+ (—n—z—-2y—4)
(s281)% | 4 (—m—2x—3y—6)ay+(—m—n—x—2y—>5)ay
s1(s2s1)?| 5 | (=2m—3n—22 -3y —10)a; +(-m—n—2 -2y —5) ay
59(s5182)2 | 5 (—m—3n—-2z—-3y—9) a1+ (—-m—2n—x —2y —6) as
(s152)3 6 | (—2m—-3n—-22—-3y—10)a;+(—m —2n —x —2y — 6) as

TABLE 2. Evaluations of o(A + p) — (u+ p) for o € W.

Observe that for m,n,x,y € N, the g-analog of Kostant’s partition function evaluates to zero if
the coefficient of either oy or as is negative. Thus, given the computations appearing in Table 2,
we note that the only elements of the Weyl group that contribute to Kostant’s weight g-multiplicity
formula are 1, s1, 82, $951, and s182. The remaining elements of W never contribute and, hence, we
disregard them moving forward. With these observations, we are now ready to prove Theorem 1.1
by evaluating mg(\, 1) as appearing in (2).

4. THE ¢-ANALOG OF KOSTANT’S WEIGHT MULTIPLICITY FORMULA

4.1. Evaluation of my(\, ). In the previous section, we established that 1, s, s2, s251, and s152
are the only Weyl group elements that contribute nontrivially to mg(A, 1) whenever A = mw; + nwy =
(2m + 3n)ag + (m + 2n)as and p = xwy + ywe = (22 + 3y)ag + (x + 2y)ae with m,n,xz,y € N.
For the sake of simplicity, we make the following change of variables
a=2m+3n —2x — 3y,
b=m+42n—x — 2y,
c=m+3n—2z—3y—1,
(11)
d=m+n—x—2y—1,
e=n—x—2y— 2 and
f=m—2x—3y—4.
Utilizing this change of variables together with the evaluations in Table 2 for o = 1, s1, 9, 8251,
and s1S9, we obtain

= pq(aai + bay),

q(coq + ba),

qg(acq + dao),

= pq(caq + eas), and
= gq(for + dag).

Pq(L(A+p) — (1 +p))
Pq(s1(A+p) — (1 +p)) =
Pq(s2(A +p) — (1 +p)) =
g(5251(A+p) — (1 +p))
( )

Pq(s152(A+p) — (L +p
5
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The expressions in equation (12) are precisely the expressions described in (5) and are the terms
needed to evaluate my (A, p). However, there can be instances where certain values of m,n,z,y €
N result in some of the expressions in (12) being zero, while others remain nonzero. When an
expression is zero we say it contributes trivially to the g-multiplicity; if instead the expression is
nonzero, then we say it contributes nontrivially to the ¢-multiplicity.

From (12), we know that there are at most five terms, namely P, @, R, S, and T that can con-
tribute to mg (A, 1) depending on the values of m,n, xz,y € N. This gives us at most 2% = 32 distinct
possible formulas for mg(A, ). In the work that follows, we will prove that of these 32 distinct
possible cases only 8 can occur.

As is standard, we let V denote the Boolean operator or, and A denote the Boolean operator and.
Note that a,b,c,d, e, f, as given in (11), are always integer quantities. Hence, when a,b,c,d, e, f
are nonnegative, then P,Q, R, S, and T contribute nontrivially to mg(X, ). To simplify notation,
we define the statements

ag: a>0, ar: a<0, by: b>0, b1: b<0, ¢cg: ¢c>0, c1: <0,
do: d>0, di:d<0, e:e>0, e1:e<0, fo: f>0, fi: f<O.
Thus, by definition of Kostant’s partition function we have that
P contributes nontrivially if and only if ag A by holds true,
() contributes nontrivially if and only if ¢y A by holds true,
(13) R contributes nontrivially if and only if ag A dg holds true,
S contributes nontrivially if and only if ¢y A eg holds true,

T contributes nontrivially if and only if fy A dy holds true.

Hence,
P contributes trivially if and only if a1 V b; holds true,
() contributes trivially if and only if ¢; V b; holds true,
(14) R contributes trivially if and only if a; V d; holds true,
S contributes trivially if and only if ¢; V e; holds true,

T contributes trivially if and only if f; V d; holds true.

We briefly illustrate our method of proof via an example. From the descriptions in (13) and
(14), we know that mg(\, ) = P—Q+T when P, Q,T contribute nontrivially and R, S contribute
trivially. This implies that the following necessary condition must be true:

(ao AN bo) AN (CO AN bo) VAN (a1 V dl) VAN (Cl V 61) VAN (f() VAN do)

However, we note that such a logical statement contains (ag A dg) A (a1 V dy), which can never be
true. This establishes that mg(A, u) # P — Q + T whenever m,n,z,y € N. In this case, we would
state that P — Q + T is a forbidden q-multiplicity formula. We now give a general definition.

Definition 1. Fix A\ = mw; + nws and p = xw; + ywe with m,n,xz,y € N. Let P,Q,R,S,T
be as in (12), with sgn(P) = sgn(S) = sgn(T) = 1 and sgn(Q) = sgn(R) = —1. For any subset
X CH{P,Q,R,S,T}, if mg(\,p) # > cxsen(x)z, then > sgn(x)r is said to be a forbidden
q-multiplicity formula.

Using this new definition along with the technique illustrated above we establish the following.

Lemma 4.1. Let A = mw; + nwy and p = 2wy + ywy with m,n,z,y € N. If P,Q, R, S,T are as
in (12), then the formulas ) __ y sgn(z)z, with X C {P,Q, R, S, T}, listed in Table 3 are forbidden
g-multiplicity formulas.



mg(A, i) Necessary Conditions Contradictions

P—-Q+S+T (ao/\bo)A(CoAbo) (al\/dl)/\(co/\eo)/\(fOAdo) (ao/\do)/\(al\/dl)
P—-R+S+T (ao/\bo)/\(Cl\/bl)/\(ao/\do)/\<60/\60)/\(f0/\d0) (CO/\bO)/\(Cl\/bl)
—Q—R+S5+T (al\/bl)/\(CQ/\bo)/\(ao/\do)/\(C()/\eo)/\(fo/\do) (ao/\bo)/\(al\/bl)
P+S+T (ao/\bo)/\(cl\/bl)/\(a1Vd1)/\(Co/\60)/\(fo/\d0) (Co/\bo)/\(61\/b1)
P—-—R+S (ao/\bo)/\(01\/bl)/\(ao/\do)/\<60/\€0)/\(f1\/d1) (Co/\bo)/\(cl\/bl)
P—-Q+T (ao/\bo)/\(Co/\bo)/\(al\/dl)/\(clVel)/\(fo/\do) (CL()/\do)/\(al\/dl)
—-Q—R+S (al\/bl)/\(CQ/\bo)/\(CL()/\do)/\(Co/\eo)/\(fl\/dl) (CL()/\bo)/\(al\/bl)
—-Q—-R+T (al\/bl)/\(C()/\bo)/\(ao/\do)/\(ClVel)/\(fo/\do) (ao/\bo)/\(al\/bl)
P+S (ao/\bo)/\(01\/bl)/\(a1Vd1)/\(Co/\€0)/\(f1\/d1) (bo/\CQ)/\(bl\/Cl)
P+T (aO/\bO)/\(Cl\/bl)/\(al\/dl)/\(clvel)/\(fo/\do) (ag/\do)/\(al\/dl)
—-Q—-R (a1\/bl)/\(coAbo)A(ao/\do)/\(ClVel)/\(fl\/dl) (ao/\bo)/\(al\/bl)

TABLE 3. Forbidden g-multiplicity formulas for Lemma 4.1.

Proof. Our work in the previous example has already established that P — @ + T is a forbidden
g-multiplicity formula. Next, consider the case where my(\, ) = P+ S+ T. As a consequence of
(13) and (14), the following statement must hold true:

(ao AN bo) VAN (C(] AN 60) VAN (f(] VAN do) VAN (Cl V bl) VAN (a1 V dl)

However, this also implies that (ag A dp) A (a1 V dy), which is a contradiction. Therefore, P+ S+ T
is a forbidden g-multiplicity formula.

In Table 3, we give a total of eleven cases (including the two considered above) which give rise to
forbidden g-multiplicity formulas. Note that for each case, we specify both the necessary condition
that must be true in order for that formula to hold, as well as the contradiction that arises from
such a case. O

Our next result establishes 13 additional forbidden g-multiplicity formulas.

Lemma 4.2. Let A = mw; + nwy and p = xw; + ywe with m,n,z,y € N. If P,Q, R, S, T are as
in (12), then the formulas ) __ y sgn(z)z, with X C {P,Q, R, S, T}, listed in Table 4 are forbidden
g-multiplicity formulas.

Case | mg(\, 1) Necessary Conditions

1 P—R+T (ao/\bo)/\(cl\/bl) (ao/\do)/\(cl\/el)/\(fo/\do)
2 P—-Q+S (ao/\bo)/\(Co/\bo)/\(al\/dl)/\(CQ/\EO)/\(1\/d1)
3 —-Q+S+T (al\/bl)/\(C()/\b())/\(al\/dl)/\(CQ/\eo)/\(fO/\do)
4 —R+S+T (al\/bl)/\(Cl\/bl)/\(ao/\do)/\(CQ/\eo)/\(fo/\do)
5 —-Q+S (a1\/bl)/\(co/\bo)/\(a1Vd1)/\(CO/\eo)/\(1\/d1)
6 -Q+T (a1\/bl)/\(co/\bo)/\(al\/dl)/\(cl\/el)/\(fo/\do)
7 —R+ S (a1\/bl)/\(61\/bl)/\(ao/\do)/\(co/\eo)/\(1\/d1)
8 —R+T (al\/bl)/\(cl\/bl)/\(ao/\do)/\(61Ve1)/\(f0/\d0)
9 S+T (a1\/bl)/\(cl\/bl)/\(al\/dl)/\(co/\eo)/\(fo/\do)
10 -Q (a1\/bl)/\(co/\bo)/\(al\/dl)/\(cl\/el)/\( 1\/d1)
11 —-R (a1\/bl)/\(cl\/bl)/\(ao/\do)/\(cl\/el)/\( 1\/d1)
12 S (al\/bl)/\(cl\/bl)/\(al\/dl)/\(co/\eo)/\( 1\/d1)
13 T (al\/bl) (Cl\/bl) (al\/dl)/\(cl\/el)/\(fo/\do)

TABLE 4. Forbidden ¢-multiplicity formulas for Lemma 4.2.

7



Proof. We begin by describing a set of statements that give rise to contradictions. These cases will
allow us to establish that the g-multiplicities listed in Table 4 are forbidden.

Case A:

Case B:

Case C:

Case D:

Assume the statement ey Ad; holds true. If d = m+n—x—2y—1 < 0, then m+n—2y—1 < x.
Also,ife=n—x2—2y—2>0,then n—2y—2>x. Hence,n —2y —2>m+n—2y — 1.
Solving for m explicitly yields m < —1, implying that whenever ey A d; holds true the
corresponding system of inequalities does not have a nonnegative integer solution.

Assume the statement fy A ¢; holds true. If c = m +3n — 22 — 3y — 1 < 0, then m +
3n—3y —1 < 2x. Also, if f=m -2z —3y—4 > 0, then m — 3y — 4 > 2x. Hence,
m—3y —4 >m+ 3n — 3y — 1. Solving for n explicitly yields n < —1, implying that this
corresponding system of inequalities does not have a nonnegative integer solution.

Assume the statement cg A a1 holds true. We observe that if a = 2m + 3n — 2z — 3y < 0,
then 2m +3n — 3y < 2x. Also,ifc=m+3n—2x -3y —12>0, then m+3n—3y —1 > 2z.
We join these two inequalities to obtain m + 3n — 3y — 1 > 2m + 3n — 3y. If we solve for m
explicitly, we obtain that m < —1, implying that such a system has no solutions.

Assume the statement dy A by holds true. We observe that if b = m+ 2n — z — 2y < 0, then
m+2n—2y <z. Also, ifd=m+n—x—2y—12>0, then m+n—2y — 1> x. We join
these two inequalities to obtain m +n — 2y — 1 > m + 2n — 2y. If we solve for n explicitly,
we obtain that n < —1, implying that such a system has no solutions.

Utilizing the cases above, we are now ready to consider each g-multiplicity listed in Table 4 and
show each is forbidden.

Case 1:

Case 2:

Case 3:

The necessary condition for mg(A, u) = P — R+ T is given by
(ao Abo) A (1 V b1) A (ag Ado) A (e1Ver) A (foAdo).

Since the logical statement must hold true and it contains ag A bg A dg A fo, it must be that
(c1 Vb1) A (1 Vep) reduces to ¢ or ¢ A ep. Otherwise, it would contain the contradiction
by A by. We list all the possible ways in which the necessary condition for this case can be
true and describe a contradiction arising from each possibility.

Possible Logical Conditions Contradiction
(ao ANbg Ndy A f(]) N c1 foNa (Case B)
(CL() Nbg Adg A fo) N (Cl N 61) foNc (Case B)

The necessary condition for my(A, u) = P — Q + S is given by
(ao A bo) A (C(] A bo) VAN (a1 V dl) VAN (Co VAN 60) VAN (fl V dl)

Since the logical statement must hold true and it contains ag A by A ¢y A e, it must be that
(a1 vV dy) A (f1 Vdy) reduces to dy or di A fi. Otherwise, it would contain the contradiction
ao A a1. We list all the possible ways in which the necessary condition for this case can be
true and describe a contradiction arising from each possibility.

Possible Logical Conditions | Contradiction
(CL() Nbg A cg A 60) A dy eg A dy (Case A)
(ao ANby Acy A 60) AN (dl VAN fl) eg N\ dy (Case A)

The necessary condition for mg(\, u) = —Q + S + T is given by
(a1 V b1) A(co Abo) A(ar Vdi) A(co Aeo) A (fo A do).

Since the logical statement must hold true and it contains by A cg A dg A eg A fo, it must be
that (a1 Vb1) A (a1 Vdy) reduces to a;. Otherwise, it would contain the contradiction by A by
or dy A dy. Thus, the only possible way in which the necessary condition for this case can
be true is if (bg Aco Ady Aeg A fo) Aay is true. However, this case contains the contradiction
co N ay as seen in Case C.
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Case 4:

Case 5:

Case 6:

Case T:

Case &:

The necessary condition for mg(A, u) = —R+ S+ T is given by
(a1 V1) A(c1 Vbi) Aag Ado) A (co Aeg) A (foAdo).

Since the logical statement must hold true and it contains ag A cg A dg A eg A fo, it must be
that (a1 Vb1) A (cy Vby) reduces to by. Otherwise, it would contain the contradiction ag A a;
or ¢g Aci. Thus, the only possible way in which the necessary condition for this case can be
true is if (ag A co Ado A eg A fo) A by is true. However, this case contains the contradiction
do N by as seen in Case D.

The necessary condition for my(A, u) = —Q + S is given by

(CLl V bl) N (CO A b()) VAN (CLl V dl) A (C() VAN 60) VAN (fl vV dl).

Since the logical statement must hold true and it contains by A cy A eg, it must be that
(a1 Vb1) A (a1 Vdy) A (f1 Vdp) reduces to a; Ady, ay A fi, or a; Ady A f1. Otherwise, it
would contain the contradiction bg A by. Thus, there are three possible ways in which the
necessary condition for this case can be true. Next, we list all the possible ways in which
the necessary condition for this case can be true and describe a contradiction arising from
each possibility.

Possible Logical Conditions | Contradiction
(b(] AR AN 60) VAN (a1 VAN dl) eg N\ dy (Case A)
(bo Aco Aeg) A (a1 A f1) co N ay (Case C)
(b(] AR AN 60) VAN (a1 Ady A fl) co N\ aq (Case C)
The necessary condition for mg(A, ) = —Q + T is given by

(CLl V bl) N (CO A b()) VAN (CLl V dl) A (Cl V 61) VAN (f() VAN do).

Since the logical statement must hold true and it contains by A c¢g A dg A fo, it must be
that (a1 V b1) A (a1 V dy) A (c1 V eq) reduces to a; A e;. Otherwise, it would contain the
contradiction by A b1, cg A cy, or dg Ady. Thus, the only possible way in which the necessary
condition for this case can be true is if (bg A cog A do A fo) A (a1 A ey) is true. However, this
case contains the contradiction ¢y A aq as seen in Case C.

The necessary condition for mg(A, u) = —R + S is given by

(CLl V bl) A (Cl V bl) VAN (CL() A d()) A (C() VAN 60) VAN (fl vV dl).

Since the logical statement must hold true and it contains ag A ¢y A dg A eg, it must be
that (a1 V b1) A (c1 V b1) A (f1V dy) reduces to by A fi. Otherwise, it would contain the
contradiction ag A a1, cg A cy or dy A di. Thus, there is only one possible way in which the
necessary condition for this case can be true, namely, if ag A cog A dg A eg A by A fi is true.
However, this gives rise to the contradiction dg A by as seen in Case D.

The necessary condition for my(A, u) = —R + T is given by

(CLl V bl) N (Cl V bl) VAN (CL() A d()) A (Cl vV 61) AN (f() VAN do).

Since the logical statement must hold true and it contains ag A dg A fp, it must be that
(a1 V' b1) A (e1 Vb1) A (e1 Ver) reduces to by A c1, by Aeg, or by Acp Aep. Otherwise, it
would contain the contradiction ag A a;. Thus, there are three possible ways in which the
necessary condition for this case can be true. We list the three possible ways in which the
necessary condition can be true and describe a contradiction arising from each possibility.

Possible Logical Conditions | Contradiction

(ao Adg A fo) A (bl A Cl) foNc (Case B)

(ao Adg A fo) A (bl A 61) do N by (Case D)

(a(] A dy A f(]) A (bl Nep A 61) foNca (Case B)
9




Case 9:

Case 10:

Case 11:

Case 12:

Case 13:

The necessary condition for mg(A, ) = S+ T is given by
(a1 vV bl) VAN (61 V bl) A (a1 V dl) VAN (Co VAN 60) VAN (fo VAN d(])

Since the logical statement must hold true and it contains cy A dg A eg A fo, it must be
that (a1 V b1) A (1 V b1) A (a1 V dp) reduces to a3 A by. Otherwise, it would contain the
contradiction cg A cy or dyg Adi. Thus, there is only one possible way in which the necessary
condition for this case can be true, namely, if cg A dy A eg A fo A a1 A by is true. However,
this gives rise to the contradiction cy A aq as seen in Case C.

The necessary condition for mg (A, p) = —Q is given by

(CLl V bl) N (CO A b()) VAN (CLl V dl) A (Cl V 61) VAN (fl V dl).

Since the logical statement must hold true and it contains bg A g, it must be that (a; Vb1) A
(a1 Vdi)A(f1Vdi)A(e1Ver) reduces to ay Aep A f1, ag Aep Ady, or a; Aep Ady A fi. Otherwise,
it would contain the contradiction by A by or ¢y A ¢;. Thus, there are three possible ways
in which the necessary condition for this case can be true. We list these possibilities and
describe a contradiction arising from each possibility.

Possible Logical Conditions

Contradiction

(b() A CO) A\ (al A IAN fl)

co N ay (Case C)

(b() A CO) VAN (al A IAN dl)

co N ay (Case C)

(bo Aco) A(ar Aer Adi A f1)

co A ay (Case C)

The necessary condition for mg(\, u) = —R is given by
(a1 V b1) A(e1 Vbi) Aag Ado) Aer Ver) A(frLVdy).

Since the logical statement must hold true and it contains ag A dp, it must be that (a1 Vb1) A
(c1 Vb)) A(f1Vdi)A(erVer) reduces to by A fi Act, by A fiAer, or by A f1 Aci Aer. Otherwise,
it would contain the contradiction ag A a1 or dy A dy. Thus, there are only three possible
ways in which the necessary condition for this case can be true. We list these possibilities
and describe a contradiction arising from each possibility.

Possible Logical Conditions | Contradiction

(a(] VAN d(]) VAN (b1 A fi A Cl)

dp A by (Case D)

(ao Ado) A (b1 A f1 Ner)

do N\ by (Case D)

(ao/\do)/\(bl A fiNec /\61)

dp A by (Case D)

The necessary condition for my(A, ) = S is given by
(a1 V1) Aer Vbi) Afar Vdi) Ao Aeg) A(frVdy).

Since the logical statement must hold true and it contains ¢y A ep, it must be that (a; V
bl) A (61 V bl) A (a1 V dl) VAN (fl V dl) reduces to a1 Aby Ady A f1, a1 ANby Ady, a1 Aby A f1,
b1 Adi A f1, or by A dy. Otherwise, it would contain the contradiction cy A ¢;. Thus, there
are five possible ways in which the necessary condition for this case can be true. We list
these possibilities and describe a contradiction arising from each possibility.

Possible Logical Conditions

Contradiction

(coNeo) A (a1 Aby Ady A f1)

eo N dy (Case A

(CO A 60) A (al Abi A dl)

eo N dyp (Case A

(CO A 60) A (al Abi A fl)

(co Neg) A (by Ady A f1)

eg Ndyp (Case A

(CO A 60) A (bl A dl)

)

( )

co N ay (Case C)
( )

( )

eo Ndp (Case A

The necessary condition for mg (A, u) =T is given by

(a1 V bl) VAN (61 V bl) VAN (a1 V dl) A (Cl V 61) VAN (fo VAN d(])
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Since the logical statement must hold true and it contains dy A fy, it must be that (a; V
b1) A (c1 Vb1) A(ay Vdi) A(c1Ver) reduces to ay Aby Aep Aer, ap Aby Aer, ap Aby Aeq,
a1 N\ cg Aey, or ai A cip. Otherwise, it would contain the contradiction dg A di. Thus, there
are five possible ways in which the necessary condition for this case can be true. We list
these possibilities and describe a contradiction arising from each possibility.

Possible Logical Conditions | Contradiction

(d() VAN f()) (al Abi Aecp A 61) foNc (Case B)
(d() VAN f()) VAN (al Aby A Cl) foNc (Case B)
(do AN fo) AN (a1 Aby A 61) do N by (Case D)
(d() VAN f()) VAN (al ANer N 61) fo N c1 (Case B)
(do A fo) A (a1 VAN Cl) foNca (Case B)

0

With the proof of Lemma 4.2 concluded, we are now prepared to give the proof of our main

result.

Proof of Theorem 1.1. Note that after applying Lemma 4.1 and Lemma 4.2 it suffices to demon-

strate the existence of the remaining eight cases that are listed in the statement of Theorem 1.1.

Table 5 provides examples of these cases.

Evaluations Necessary Conditions (m,n,z,y) | (a,b,c,d, e, f)

P—Q—-—R+S+T |agNbyNcoNdy Neg A fo (5,6,0,0) (28,17,22,10,4,1)

P-Q—-R+S ag Nbg AN cg ANdy A eg N f1 (0,4,0,0) (1281132 —4)

P—Q—-R+T ag Nbg ANecg ANdg Ner N fo (5,0,0,0) (10,5,4,4, — )

P—-—Q— ag ANbg ANcg ANdy Nep A f1 (5,4,0,4) (10540 6 )

P—-Q ag Nbg ANeg Ndi Ner A fr (0,50,51,0) | (48,49,47,—2,—3,—106)

P—-R ag ANbg Aep Adyg ANep A f1 (2,0,1,0) (,1, 10 -3, 4)

P agANbg ANeg Ady ANep A f1 (0,070,0) ( ,0,— -2, 4)

0 (a1 Vb1) A (1 Vb)) A (a1 Vdy) | (0,0,8,0) (—16, 8, 17 -9, -10, —20)
/\(f1 V dl) VAN (Cl V 61)

TABLE 5. Examples establishing the existence of certain g-multiplicity formulas.

With the existence of these evaluations established, we now show that each evaluation implies
the corresponding statement given in Theorem 1.1. We first establish additional statements that
give rise to contradictions. Our methods are similar to those employed in the proof of Lemma 4.2.

Case E:

Case F:

Utilizin,

Assume the statement ag A fo Ady holds true. We observe that if d =m+n—ax—2y—1 <0,
then 2m+2n—4y —2 < 2x. Also, if f = m—2x—3y—4 > 0, then m — 3y — 4 > 2z. Finally,
if a =2m+3n — 2z — 3y > 0, then 2m + 3n — 3y > 2z > 0, implying that 2m + 3n > 3y.
We join the first two inequalities to obtain 3y > 6n 4+ 3m + 6. We then join the inequality
just obtained and the third inequality to see that —6 > 3n + m. This is impossible since
n,m are non-negative, so such a system has no solution.

Assume the statement eg A ¢; holds true. We observe that if c=m+3n—2x —3y —1 <0,
then m+3n—3y—1 < 2z. Also, if e = 2n — 2z — 4y —4 > 0, then 2n — 4y — 4 > 2z. We join
these two inequalities to obtain 2n — 4y —4 > m + 3n — 3y — 1. If we solve for m explicitly,
we obtain that —n — y — 3 > m, implying that such a system has no solutions.

g these cases, we consider each g-multiplicity listed in Theorem 1.1.
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Case I:

Case II:

Case I1I:

Case IV:

Case V:

Case VI:

Case VII:

The necessary condition for mg(A, u) = P —Q — R+ S + T is given by
(a0 Abo) A (co Abo) A (ag Ado) A (co Aeg) A (foAdo).

This reduces to

ag Nbg N cog Ndg Neg A fo,
and so mg(A\, u) = P—Q — R+ S+ T implies ag A by A co Ado Aeg A fo.
The necessary condition for mg(A\, u) = P — Q — R+ S is given by

(ao VAN bo) VAN (C(] VAN bo) VAN (ao VAN do) VAN (Co VAN 60) VAN (fl V dl)

Since the logical statement must hold true and it contains ag A by A ¢g A dg A eg, it must be
that (f; V dy) reduces to fi;. Otherwise, it would contain the contradiction dy A di. Thus,
there is only one possible way for the necessary condition for this case to be true. Therefore,
mg(A, pu) =P —Q — R+ S implies ag A bg Aco Ado Aeg A fi.

The necessary condition for mg(A, ) = P —Q — R+ T is given by

(ao AN bo) VAN (C(] AN bo) VAN (ao VAN do) VAN (Cl V 61) A (fo A d(])

Since the logical statement must hold true and it contains ag A bg A cg Adg A fo, it must be
that (¢ V e1) reduces to e;. Otherwise, it would contain the contradiction c¢g A ¢;. Thus,
there is only one possible way for the necessary condition for this case to be true. Therefore,
mg(A, p) =P —Q — R+ S implies ag A bg Aco Ado Aer A fo.

The necessary condition for mg,(\, u) = P — Q — R is given by

(CL() VAN b()) VAN (CO VAN b()) VAN (CL() A d()) A (Cl V 61) AN (fl V dl).

Since the logical statement must hold true and it contains ag A by A ¢g A dg, it must be that
(c1Ver)A(f1Vdp) reduces to e; A fi. Otherwise, it would contain the contradiction dy A dy
or ¢y A ¢1. Thus, there is only one possible way for the necessary condition for this case to
be true. Therefore, my(A\, u) = P —Q — R+ S implies ag A bg A co Ado Aer A fi.

The necessary condition for mg(\, u) = P — @ is given by

(ao VAN bo) VAN (C(] VAN bo) VAN (a1 V dl) VAN (Cl V 61) VAN (fo VAN d(])

Since the logical statement must hold true and it contains ag A by A cg, it must be that
(a1 Vd1) A (1 Ver) A (fi1 Vdp) reduces to di Aep or dy Aep A fi. Otherwise, it would
contain the contradiction ag A a; or ¢y A ¢;. Thus, there are two possible ways in which
the necessary condition for this case can be true. However, if we consider the statement
ao Nbg Acog Ady Aep A fo, it contains the statement ag A fo A di, a contradiction given by
Case E. Therefore, mgy(A, u) = P — @Q implies ag Abg A cog Ady Aer A fi.

The necessary condition for my(A, u) = P — R is given by

(ao AN bo) VAN (Cl \Y bl) VAN (ao VAN do) VAN (Cl V 61) VAN (fl V dl)

Since the logical statement must hold true and it contains ag A by A dg, it must be that
(c1 Vb)) A1 Ver)A(fi Vdy) reduces to c1 A fy or ¢1 Aep A fi. Otherwise, it would
contain the contradiction bg A b1 or dy A di. Thus, there are two possible ways in which
the necessary condition for this case can be true. However, if we consider the statement
ag Nbg AN ey Ady Aeg A fi, it contains the statement ey A ¢1, a contradiction given by Case
F. Therefore, my(A, p) = P — R implies ag Abg A ci Ado Aer A fi.

The necessary condition for mg (A, u) = P is given by

(CL() A b()) AN (Cl V bl) AN (CLl V dl) A (Cl vV 61) AN (fl vV dl).

Since the logical statement must hold true and it contains ag A by, it must be that (¢; Vby) A
(a1 \/dl) AN (61 \/61) VAN (f1 \/dl) reduces to c; Ady, ey AdyAet, et Adi A fi,0or g Ady Aep A fy.

Otherwise, it would contain the contradiction ag A a1 or by A by. Thus, there are four
12



possible ways in which the necessary condition for this case can be true. We list three of
these possibilities and describe a contradiction arising from each possibility.

Possible Logical Conditions | Contradiction

(CL() ANbg A ey A f()) A (Cl A dl) ag ANdy N\ fo (Case E)

(ao A by A f(]) A (61 Ady A 61) ag Ndi N\ fy (Case E)

(ao A by A 60) A (Cl Ady A fl) eg N\ c1 (Case F)
Therefore, my(A, 1) = P implies ag Abg Aci Ady Aep A fi.

Case VIII: Thus, we are left with the final case in which m4(X, ) = 0. O

We now present some examples of computing weight ¢-multiplicities using our formulas.

Example 1. If ) is the highest root of go, i.e. A = 31 +2a2 = w9, and p = 0, then by Theorem 1.1
we have that m=xz =y =0and n =1 and, hence,a =3, b=c=2,d=0,e=—1, and f = —4.
This implies that

mq(A, 1) = pq(3ar + 202) — (201 + 202) — Pg(30n1).
By Proposition 1.1 we note that

031 +202) = q(14+2¢+2¢° +¢3+qY), (201 +22) = *(2+¢+¢%),z  and  p,(3a1) = ¢°.

Therefore mg(\, 1) = g+ ¢°, which recovers a known result of Lusztig which shows that mg(A,0) =
> i_1 ¢, where \ is the highest root and e, ..., e, are the exponents of the corresponding simple
Lie algebra of rank r [16]. In addition, note that m(\, ) = 2.

Example 2. If A\ = 3wy and p = wy + 2wo, then by Theorem 1.1 we have that m = 0, n = 3,
r=1,y=2and, hence,a=1,b=1,¢=0,d = -3, e = —4, and f = —12. This implies that
mg(A, 1) = pq(oq + a2) — pg(az2). By Proposition 1.1 we note that

pq(a1 +a2) =q(1+q) and pq(a2) = q.
Therefore my(\, 1) = ¢> and m(\, u) = 1. This recovers a special case of [13, Theorem 6].
We recall the following formulas for the value of Kostant’s partition function for the exceptional
Lie algebra g, given by Tarski.

Lemma 4.3 (Tarski p. 9-10 [17]). Let m,n € N.
(1) fm <n, then p(mai + nag) = g(m)
(2) If n <m < 2n, then p(may +nag) = g(m) — h(m —n — 1)
(3) If 3n < m < 2n, then p(may +nas) = h(n) — g(3n —m — 1) + h(2n — m — 2)
(4) If 2n < m < 3n, then p(ma; + nag) =h(m) —g(Bn—m —1)
(5) If 3n < m, then p(ma; + nag) = h(n

where for £ > —2,

L (k+6)(k® + 14k + 54k +72) for k=0 mod 6

ﬁ(kﬂrf)) (k2 + 10k + 13) for k=1 mod 6

(15) (k) = 1z (b + 4) (k3 + 16k% + 74k + 68) for k=2 mod 6

I Hl2(k+3)2(k‘+5)(k‘+9) for k=3 mod 6

L (k+2)(k+8)(k2 + 10k +22) fork=4 mod 6

ﬁ<k+1)(k’+5)(k‘+7)2 for k=5 mod6

and

(16) h(k) = %(k‘ +2)(k +4)(k* + 6k +6) for k even
%(k’ + 1) (k +3)%(k +5) for k odd.
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We remark that one could instead use Lemma 4.3 along with Theorem 1.1 to compute weight
multiplicities rather than setting ¢ = 1 in Proposition 1.1 as we did in the above examples. We
provide the details of these computations using our previous examples.

Example 3. Following Example 1, we let A = 3a1 + 2a9 = wo, u = 0, and by Theorem 1.1 we
know m(A\, p) = p(3a1 + 2a2) — (201 + 2a2) — (3ay). Using Lemma 4.3 parts (b), (a), and (e),
respectively, we note that

p(Ba1 +202) = 9(3) — h(3 — 2~ 1) = 9(3) — h(0) = 75=(6)(8)(12) — =(A)(6) =7,

! —(6)(2® +16(2)* + 74(2) + 68) = 4, and

0q(201 + 2a2) = g(2) = 432

Pq(3a1) = h(0) =
Therefore, m(\, u) =7 —4 — 1 = 2, as previously computed.

Example 4. Following Example 2, we let A = 3wy, 4 = wy + 2wy, and by Theorem 1.1 we know
m(A\, p) = p(ag + az) — p(az2). Using Lemma 4.3 part (a) we note that

1

=5 (6)(72) =

plor+0) = g(1) = == (6)2(12+10(1) +13) =2 and  p,(0s) = g(0) =

432
Therefore, m(\, u) =2 — 1 =1, as previously computed.

5. REVISION OF THE ¢-ANALOG OF KOSTANT’S WEIGHT MULTIPLICITY FOR sp,(C)

Harris and Lauber considered the Lie algebra sp,(C) and gave a closed formula for the g¢-
multiplicity formula. However, their partition function formula omitted an edge case, which resulted
in a missing case in their work. The formula for p,(ma; + nasz) given in [10, Proposition 1.2] is
correct, and we restate it here

min( L%LJ ,n) m+n—2i '
©q(may + nag) = Z Z 7 |,
1=0 j=max(m—i,n)

where m and n are integers, a; and ag are the simple roots, and ®* = {ay, ag, a1 + as, 201 + as}
are the positive roots of the Lie algebra sp,(C). The mlstake occurs in Corollary 3.3 of [10]. We
provide the corrected statement and its proof below.

Corollary 5.1 (Corrected Corollary 3.3 [10]). If g = sp,(C) and m,n € N, then

22
2mn—m n+m+n+L

2

([5]+1) (m—[%]+1) ifn>m
p(maq + nay) = 7 (m—L%J)Jrl if2n—-1>m>n
1) ifon>m>2n—1>n

(n+1)(n+2) if m > 2n.

Proof. Setting g = 1 into equation (4) we find that

min(| % |,n)
p(mag + nag) = ; min(m —i,n) | — %min QEJ ,n) <min QEJ ,n) + 1)
(17) + min Q%J ,n) + 1.
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We now consider each case individually. If n > m, then equation (17) simplifies to

(1) -3 +1)-

()52 o,

If m > 2n, then equation (17) simplifies to —1 > m > n, then equation (17) yields

(18) Z min(m —i,n) | — w + L%J +1.

Let us consider the first term of expression (18). Since m < 2n — 1 implies that 1 < m — 2m + 2n,
we have that 0 < LWJ . Since LWJ = L%J —m+n, we see that m —n < L%J . Then,
because we have m > n, and 0 < m — n holds. We then have that 0 < m —n < L%J . It follows
that if ¢ < m — n, then n < m — i and hence min(m — i¢,n) = n. If i > m — n, then n > m — i and
hence min(m — i,n) = m — 4. Thus,

3] mn—m2—n2+m+n m LCH
(19) E min(m — i,n) = 2 5 mt +m LEJ _ M
i=0

Substituting equation (19) into equation (18) yields the desired result. If 2n > m > 2n —1 > n,
then 2n — m < 1 which implies that LWJ = L%J —m+n <0, so L%J < m — n. Thus, for
all ¢ it holds that m —n > i, implying that m —¢ > n and we obtain that

(20) Z min(m —i,n) =n Q%J + 1) .

Substituting equation (20) into equation (18) yields the desired result. O
As a consequence of this correction to Corollary 3.3 of [10], the following result replaces Corollary

4.1 in [10].

Corollary 5.2 (Corrected Corollary 4.1 [10]). Let A = mw; + nwy and p = zw; + ywy with

m,n,z,y € N:={0,1,2,...} be weights of sp,(C) and definea =m+n—x—y, b=n—

c=n—r—y—1,andd= —y— 1+ Z5% Then

P—-Q—-R ifabcdeN
P-Q if a,b,ce Nand d ¢ N
(21) m(A,pu) =< P—R if a,b,d e Nand c ¢ N
P if a,b € N and ¢,d ¢ N
0 otherwise
where
[5] +1) (=[] +1) ith>a
p_ w ifa>2b
- w e (a —L%J)Jrl £2b1>a>b
(2] +1)(b—1% %] +1) if 26 >a>2b—1>b,

Q

=7
(d+1)(d+2)

R = 5
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6. FUTURE WORK

Finding formulas for Kostant’s partition has recently been connected to counting multiplex jug-
gling sequences [1, 7]. These bijections have been considered for all classical Lie algebras, but
extending them to the exceptional Lie algebras, such as go, remains an open problem. For a
second direction of research, we remark that one could consider giving explicit formulas for the
g-analog of Kostant’s partition function for go. This would require working through the expansion
of Proposition 1.1 using the coefficient constraints given by Tarski in Lemma 4.3. We omitted such
a computation because of its tedious and technical nature.
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