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Abstract: Ripples arise at edges of petals of blooming Lilium casablanca flowers and at
edges of torn plastic sheets. In both systems, ripples are a consequence of excess length along
the edge of a sheet. Through the use of time-lapse videos of blooming lilies and published
images of torn plastic sheets, we find that ripples in both systems are well-described by the
scaling relationship a o /w(L — w), where a is amplitude, w is wavelength, and L is arc
length. A phenomenological relationship previously reported for self-similar ripple patterns,
namely (a) o (w), can be recovered by assuming that buckling stress is constant. Excess
length along petal edges can also influence their overall Gaussian curvature, such that petals
invert from a cup shape to a saddle shape upon blooming. Previous simulations of these shape
changes have assumed that petal thickness decreases at least quadratically. Here, we evaluate
tomograms of several varieties of lily buds and find that this assumption is valid along the
short axis of the buds, but not the long axis. A challenge of employing traditional tomography
methods to measure petal thickness is that the sample is destroyed; a single bud cannot be
followed through the entire blooming process. To address this challenge, we provide proof
of principle that the non-destructive, label-free method of X-ray tomography produces high-

contrast 3-dimensional scans on time scales short enough to follow lily blooming.
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Significance Statement: By adopting appealing shapes, flowers enlist humans to dissemi-
nate their progeny. As lilies bloom and change shape, their genes determine how much faster
edges of petals grow than centers. One physical consequence of edge growth is inversion of
petals from cup shapes to saddles. This transformation is difficult to image by standard tech-
niques. We show that X-ray tomography successfully images lilies in a label-free and relatively
nondestructive manner. A second consequence of edge growth is that ripples appear at petal
edges. We find that ripple amplitudes, wavelengths, and arc lengths are related by an equation
for buckling of sheets under nonuniform stresses. The same equation should apply to all ripples
driven by edge growth, whether in biological or artificial materials.



INTRODUCTION

Morphological changes in flowers elegantly connect the abstract beauty of mathematics and
the tangible beauty of nature. Two recent studies inspired our current investigation of lilies. In
the first, the authors applied a growth hormone to the edge of flat plant leaves to create rip-
ples (/). In the second, the authors combined surgical manipulations of L. casablanca lilies,
numerical simulations, and exact calculations to argue that lily blooming is driven primarily
by edge growth (2). In this mechanism, growth along edges of lily tepals (colloquially termed
petals) is enhanced with respect to tepal faces, such that excess length accumulates along edges.
Blooming of lilies from closed buds to six-pointed stars (Fig. 1) entails curvature reversal of
tepals from cup shapes to saddle shapes and may be accompanied by the emergence of ripples

at the edges of the tepals.

Flowers that exhibit ripples along their edges, whether lily tepals or daffodil trumpets, do not
necessarily genetically encode rippling beyond driving a generalized edge growth that results
in blooming (/, 3). Ripples are observed in a wide class of systems that accommodate excess
length along an edge. Simulations of elastic ribbons with high rates of edge growth result in rip-
pled morphologies (4). Similarly, polymer disks that undergo nonuniform swelling can buckle
at their rippled edges, as can annular thin strips undergoing nonuniform stresses (5—9). In more
quotidian examples, knitters create ripples by inserting stitches at edges, and ripples form at the

new edges of a torn plastic sheet (/, 3, 10-12).

Here, our central goal is to quantitatively explain the shape of ripples in sheets undergoing
edge growth. When rippling is the result of buckling, a simple scaling law arises that relates a
ripple’s amplitude a, wavelength w, and arc length L. The exact form of the scaling relationship
depends on whether stress is constant. We test which form of scaling applies to single ripples at
edges of lily tepals (which we might expect to have nonuniform stresses) and torn plastic sheets
(which we might expect to be uniform at long length scales, but perhaps not at short ones).
Overall, our data support a view that biology and physics work in tandem to create lily tepals
with delicate ripples along their edges: genes regulate the rate of edge growth, and buckling

within each tepal converts this growth into wavy edges (13).

Our second goal is to image lily buds, for two reasons. To enable future calculations of cur-



vature reversal in tepals from realistic starting configurations, we use surgical tomography to
record 3-dimensional shapes of closed buds of several lily varieties. To enable future imaging of
the full 3-dimensional shape changes of a single lily, we establish that label-free X-ray tomog-
raphy collects high-contrast scans on time scales an order of magnitude shorter than blooming.
Each of these methods presents an advantage: surgical tomography is broadly accessible, and
X-ray computed tomography is less destructive.

One could ask whether ripples confer an evolutionary advantage to lilies. Michael Pollan
argues in The Botany of Desire that genetic expression in many plants is influenced by the
aesthetic and culinary tastes of humans. Evolution in plants records both natural history and
human history. Pollan writes how a tulip with ”petals attenuated like sabers, contains detailed
instructions on how to best catch the eye not of a bee but of an Ottoman Turk; it has something
to tell us about that age’s idea of beauty” (/4). Judging from how common it is to find rippled
lilies in Seattle’s gardens, which lie far from the flowers’ ancestral homes in Asia, it appears
that lilies have successfully harnessed edge growth and buckling in an evolutionary strategy that

has motivated humans to feed them, propagate them, and extend their range.

METHODS

Videos and measurement uncertainty

Videos were collected of lilies blooming and rippling. L. casablanca and L. stargazer varieties,
which are Division VII oriental hybrids, were trimmed so only one outer tepal remained, as in
Fig. S1. The remaining tepal was imaged from the side at constant illumination of 60 ymol/m?s
and 20°C in a time-lapse chamber previously described by Stewart Lilley et al. (17). Image cap-
ture started a few hours after blooming commenced (before rippling) and stopped when ripples
became static. Measurement uncertainties for a, w, and L are equivalent and on the order of
40.05 cm. Uncertainties arise mainly because tepal edges deviate from the camera’s focal plane
due to flower motion or shape changes. Smaller uncertainties arise from image analysis, which
combines manual detection of ripple zeniths and nadirs with automated edge detection by Im-

agel (https://imagej.nih.gov/ij).

Tomography of closed lily buds
Closed buds of lilies (oriental hybrids and tiger lilies, L. lancifolium) were loosely wrapped in

Teflon tape and held with the tip downward on a cylindrical pedestal. A circular rim on the



pedestal protruded 1.8 & 0.2 mm (for L. speciosum (var. alba)) or ~ 3 mm (for other lilies)
above the center. Buds were sectioned by clamping a tomography blade in a vice-grip, and
using the pedestal rim as a guide along which the blade slid to cut the bud. After each slice was
cut, the cross section of the remaining bud was imaged using a standard digital camera (Power-
Shot SD1100 IS; Canon, Melville, NY) or, for L. speciosum (var. alba) a cell phone (iPhone 7,
Apple, Cupertino, CA).

Image analysis of tomograms

In each photograph of lily slices, areas of outer tepals and an H-shaped scale bar were traced
by hand in Photoshop (Adobe, San Jose, CA) to produce binarized images. The scale bar was
converted from pixels to mm using functions from the scikit-image library (/8). Specifically,
”skeletonize”, “’label”, and “regionprops_table” were used to identify, isolate, and measure the
length of the scale bar. The three outer tepals were then identified within the binarized image,
and each tepal image was cropped and placed into its own file using the scikit-image function
library. Images of all slices of each tepal were then grouped in ordered sets corresponding to the
original position of the slice within the bud. Each binarized tepal image was then skeletonized,
and tepal thicknesses were measured along a line perpendicular to the skeleton (Fig. S2). The
length of the semiminor axis, b, of each tepal was defined to be the maximum distance between
points on the skeleton, and defined to be at x = 0. The length of the semimajor axis, c, was de-
fined to be the distance between x = 0 and the tip of the tepal. The authors have made all origi-

nal Python code available by public license at https://github.com/nicolepanek/2021_LilyProject.

X-ray microtomography

X-ray computed tomography was conducted at the Environmental Molecular Sciences Labo-
ratory at the Pacific Northwest National Laboratory in Richland, WA. Each lily was mounted
and kept hydrated in a rotating chuck that held a tube filled with water. The X-ray power set-
tings were 85 kV and 250 puA. Lilies were translated vertically to image sequential slices, in
0.886 mm steps for a lily bud and 1.1 mm steps for a lily bloom. Individual radiographs were
collected with 708 ms exposure times, and 4 frames were recorded per projection, for a total of
3142 projections. Lilies were rotated during the scans to capture 3-dimensional data. The image
voxel size for the lily bud was 0.0439 mm and 0.0536 mm for the lily bloom. Each scan was
completed in approximately 4 hours. Although exposure to X-rays eventually damages plant

tissue, the technique is considered nondestructive.



Alternative derivation of Eq. 2

We consider the simple case of a first generation ripple that has no second generation ripples
superimposed on it. We model the ripple’s edge as a planar curve for which each point has coor-
dinates (z, f(z)), where = € [—w/2, w/2] because the ripple’s wavelength is w. We assume the
ripple is symmetric and pinned at the edges, which means that the function f is smooth, is even,
and satisfies boundary conditions of f(w/2) = f(—w/2) = 0 and f(0) = a. The arc length L
of the curve is, by definition, L = fi”ﬁz 1+ f'(x)? dz, which is simplified via a Taylor expan-
sionto L ~ w+ (1/2) ff’ﬁz f'()?* dx for a smooth function f. Because the function f is even,
its expansion does not contain odd powers and is, to second order, f(z) ~ a+ f"(0)z*/2. Using
a difference quotient approximation, the second derivative at the origin is f”(0) =~ —e(a/w?),
with dimensionless factor €. Direct integration of f? yields a oc y/w(L — w), which is Eq. 2.
If arc length were directly proportional to wavelength, as in a small-angle approximation for
ripples of small amplitude, then insertion of L oc w (where L > w) in Eq. 2 would yield a oc w.
In practice, L is difficult to measure in a rippled edge that has additional generations of ripples

superimposed on it.

RESULTS AND DISCUSSION

Rippling

Ripples in lily tepals appear singly or in multiple generations. Fig. 1C shows a large, first-
generation ripple decorated with smaller, second-generation ripples. These patterns are rem-
iniscent of self-similar ripples at edges of torn plastic sheets. Sharon et al. (/1) have related
the amplitudes, a, and wavelengths, w, for five generations of superimposed ripples in plastic

sheets, spanning two orders of magnitude, by
a o w. (1

However, when we attempted to apply Eq. 1 to ripples in lily tepals, we found a poor fit. The fit
improved only after averaging all amplitudes and wavelengths within each generation (Fig. 1C-
D). Even after averaging, the uncertainty was large; the slope of log(w) vs. log(a) is 1.19 with
a 90% confidence interval of £ 0.63.

The reason that averaging over many ripples leads to a better fit of a o« w lies in the



equations that describe buckling in thin sheets. The amplitude of a buckled beam scales as
a o< wy/strain. This equation has previously been applied to sheets under tensile strain (/9)
and attached to compliant supports (26). The definition of strain = (L — w)/w yields

ax \Jw(L —w). (2)

Another way to derive Eq. 2 is to introduce a function f(x) that describes the height at every
point on a ripple (see the Methods). The ripple begins at x = —w/2 (with zero height), rises to
an amplitude a at x = 0, and returns to a height of zero at x = w/2. The only assumptions that

need to be imposed are that the function is smooth and symmetric. By taking a second order
Taylor expansion of the function, we find that a o /w(L — w).

When strain is constant, Eq. 2 simplifies to a o w. However, strain is not constant in lilies.
Strain due to growth at the edges of L. casablanca tepals increases linearly in the direction of
the long axis, more than doubling from ~0.2 at the tepal base to ~0.5 near the tip, with large

standard deviations, on the order of & 0.1 (2). Therefore, for individual ripples in lily tepals,
we expect a « /w(L — w) to provide a better fit than a o w.

To test Eq. 2, we collected videos of lilies blooming and rippling. We used L. casablanca
specimens because buds are large (~ 10 cm), are widely available, and bloom over the course
of approximately one day (/6). We focused on single ripples, which we define as having no
higher-order generation ripples superimposed upon them. Single ripples minimize ambiguity in
how to define a and w. Fig. 2 shows frames of single, 1st-generation ripples at edges of tepals.
A movie corresponding to Fig. 1B appears in the Supporting materials (Movie S1). Ripples
appear at higher densities near the tips of tepals than at their stems (Fig. 2), consistent with

greater edge growth near the tip.

As lilies bloomed, we tracked each ripple’s amplitude, wavelength, and arc length over time
(Movie S1 in the Supporting materials). Ripple amplitudes and arc lengths increase over time
(Fig. 3A and S4). In contrast, wavelengths are approximately constant over time (Fig. 3B),
making boundary conditions of @ = 0 at z = +w/2 straightforward to implement. We find that
ripple amplitude, wavelength, and arc length are related by Eq. 2 for single ripples in tepals of



L. casablanca (Fig. 3C). All other scaling relationships fail in which amplitude a is proportional
to a simple expression with units of length, namely w, L, VLw, L +w,or L —w (Fig. 4). For
clarity, Fig. 3 displays data for only single ripples, excludes ripples with amplitudes < 0.1 cm,
and does not show experimental uncertainties. Full data sets with experimental uncertainties

appear in Fig. S3.

For any sheet with edge growth, whether a lily tepal or a plastic film, determining whether
the relationship a o w fits ripple shapes as well as the relationship a o« \/w(L — w) does is a
means of assessing the length scale of inhomogeneities. The plastic sheet of Sharon et al. (11)
was presumably uniform before it was torn. As it ripped, inhomogeneities may have arisen,
which would be most evident in ripples of the same length scale. To test for these inhomo-
geneities, we analyzed raw images of 5" generation single ripples from Sharon et al. (11), as in
Fig. S5 and S6. These small ripples have wavelengths on the order of 100 m and are not fit by
a < w. (Fig. 5A, slope of -0.12 £0.27). We expected that larger ripples would be insensitive
to inhomogneities, and found a better, but still only approximate agreement with a o w, even
at length scales larger than 1 mm (Fig. 6A, slope = 1.1 £0.037). In other words, strain was
not constant while the sheet was torn, either at the sub-millimeter length scales of 5th genera-
tion ripples (where local inhomogeneities might be expected) or in larger ripples approaching
~ 10 mm (where strains might be expected to average out). Sharon et al. (11) reported a closer
fit, which likely arose because their data were binned and averaged. In contrast, the relation-
ship a o< \/w(L — w) from Eq. 2 holds for all five generations of ripples in torn plastic sheets
(Fig. 6B, slope = 1.0 £0.0083), including the smallest ripples (Fig. 5B, slope = 0.63 £0.095).
The excellent fit to Eq. 2 indicates that the second order Taylor expansion used in the derivation

Eq. 2 is sufficient.

A separate question is how the shape descriptors of ripples evolve over time. In rippled
2-dimensional sheets, preferential wavelengths emerge from a competition between stretching
and bending — the former favors short wavelengths, and the latter favors longer ones (/9). As
a tepal edge grows, small, first-generation ripples appear at sites separated by a distance w that
presumably arises from minimization of the stretching and bending energies. Our data in Fig. S4
show that w remains approximately constant, implying that the tepal’s elastic modulus does not
change significantly over time. As a tepal edge grows, the arc length L of ripples increases. The

tepal reacts to the excess edge length by buckling, so ripple amplitude a also grows with time,



where a scales as \/w(L — w).

Rippling is largely independent of the original (pre-rippled) length of the tepal, which is
consistent with the notion that ripples arise from local strains. In Movies S2-S4 in the Sup-
porting materials, ripples appear roughly synchronously in outer tepals that are 67%, 75%, and
100% of their original length. In some blooms (Movies S2 and S3), ripples arise when all tepals
are in cup shapes, whereas in others (Movie S4), rippling begins only after larger shape changes.
Rare exceptions occur; Fig S8 shows a bloom in which ripples in the shortest tepal have smaller
amplitudes than ripples in longer tepals. Similar differences in amplitudes occasionally occur

when all tepals are the same length.

Blooming

Whereas L. casablanca lilies are characterized by ripples at tepal edges, L. lancifolium, tiger
lilies, are not (Fig. 7). In both varieties, blooming entails a reversal of curvature as the tepals
progress from cup to saddle shapes. In a model by Liang and Mahadevan (2), edge growth
drives this curvature reversal. The model assumes that the tepal is initially an elliptical cup with
a lenticular cross-section of thickness, ¢, that decreases at least quadratically along both the
long and short axes of the tepal such that ¢ = to(1 — 2™ /c™ — y" /b™), where ¢ is the maximum
thickness, c is the semi-major axis of the elliptical cup, b is the semi-minor axis, and n > 2. The
assumption that tepal thickness varies at least quadratically renders tepal edges free of forces

and torques (2).

Here, we tested the model’s assumption by collecting tomograms of buds from several lily
varieties and measuring tepal thickness (Fig. 7 and Movies S5-8 in the Supporting materials).
The lily tepals vary in their overall size, their aspect ratio, and their final curvatures after bloom-
ing. For some varieties, each tepal in a bud is well approximated by an elliptical cup. However,
for others, tepal edges double back toward the center such that thickness is double-valued in y
and nonzero at y = +b. If we truncate tepals before they double back, we find that tepal thick-
ness generally decays at least as faster as t = to(1 — y?/b?) in the semi-minor direction (Fig. 7).
However, thickness is roughly constant or only slowly decreases in the semi-major direction.
Both of these results are related to the thick, woody spine at y = 0. The center of the spine

has a roughly uniform thickness along the semi-major direction. Away from the spine, tepal



thickness decreases roughly linearly with y for all lily varieties. Although the spine’s uniform
thickness means that the model’s assumptions do not entirely represent the biological system,
the result does not have any bearing on whether or not edge growth is the primary driver of
curvature reversal in tepals. To enhance the realism of future simulations, we have compiled a
set of tomogram slices for a L. lancifolium bud in Fig. S7, and we have assembled all slices of

the projections in Fig. 7 in movies in the Supporting materials.

Tepal shapes in Fig. 7 were found by hand-sectioning lily buds. This process is straightfor-
ward and could be easily adapted for citizen science projects. However, it is time-consuming
and destroys the sample so that a single bud cannot be followed through the blooming process.
Moreover, after a lily has begun to bloom, it is too fragile to hand-section; the flower would
have to be immobilized in resin and sectioned in a microtome. A related approach for quantify-
ing the shape and edge growth of a tepal after a lily has begun to bloom is to cut thin strips from
the edge of a ripple. When disconnected from the larger sheet, strips of this type curl into a
flat annulus. Given physical values that characterize individual strips, numerical minimizations
of the strip’s energy result in rippled solutions (7, 8). However, cutting strips also destroys the

sample.

To overcome these challenges, we tested the feasibility of an alternative, non-destructive
technique. Fig. 8 shows a label-free X-ray computed tomogram of a lily bud and reconstructed
bloom. These images (as well as Fig. S9 and Movie S9 in the Supporting materials) demon-
strate strong contrast in X-ray absorption between the lily tissue and the surrounding air. In
some images, individual cells are resolvable, which could be used to discover if the biological
mechanism of edge growth involves changes in cell size, cell shape and/or cell number. Higher
contrast and shorter acquisition times might be achievable if a contrast agent (e.g., iodine) were
added to the aqueous solution that hydrates the lily stems. Here, acquisition times were on the
order of hours. Computed X-ray tomography has previously been used to image delicate bio-

logical structures of air-water interfaces in lungs (23).

CONCLUSIONS

Our results fit within a framework that edge growth can lead to ripples and the resulting
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”length scales could be set by elasticity and geometry rather than by explicit genetic encod-
ing” (3). No constraints are set on the method by which a lily tepal achieves edge growth; any
biological mechanism is allowed. Here, we find that the amplitude, wavelength, and arc length
of ripples are excellently fit by the equation of a buckling beam, a o< \/w(L — w). An alter-
native equation of @ o w, does a poor job of fitting ripples in lilies (which could be expected)
and across all length scales of torn plastic sheets (which was not expected). Because ripples
occur at the edges of many types of leaves and petals (/), assessment of whether ripples are
well described by a o< w is a widely applicable method of determining if nonuniform stresses

act in these biological materials.

Edge growth is not the only possible mechanism of blooming. Historically, lily blooming
has also been attributed to enhanced expansion of cells on the adaxial (interior) face of tepals
with respect to cells on the abaxial (exterior) face. Bieleski et al. assert that any differential
expansion of this type must play a minor role because it follows (rather than precedes) the on-
set of blooming (/5). Changes in the angle and curvature of the midrib—the tepal’s woody
spine—also contribute to blooming (2, 15). In this manuscript, we have shown that X-ray to-
mography can be used in a nondestructive and label-free manner to image lilies on time scales
of hours, which is commensurate with time scales for budding. In the future, X-ray tomography

could be used to assess relative sizes, shapes, and growth rates of cells throughout the tepal.

This manuscript has focused on edge growth in lilies, which is only one example of how
biology and physics complement each other to influence plant shape. Some flower types are
subject to directional growth, as in Antirrhinum (snapdragon) (20), and cell-shape anisotropy,
as in Aquilegia (columbine) (27). Moreover, rippling can be influenced by external forces. The
magnitude of water flow around long kelp leaves influences whether growing blades adopt flat
or rippled morphologies, and pushing on the blade’s edge can alter the wavelength and ampli-
tude of ripples (25). Similarly, in lotus leaves, the wavelength of edge ripples and the overall
leaf shape are influenced by whether the leaves rest on a water surface or not (24). Our results
and these prior studies illustrate ways that biological morphologies could be recapitulated in

biomimetic systems and tuned by physical factors.

SUPPORTING MATERIAL

9 movies, and 9 figures are available.
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Figure 1: Self-similar ripples in lilies. A: Top view of an open stargazer lily with three inner
and three outer tepals. B: Side view of an outer tepal of Lilium casablanca before (top) and
after (bottom) edge rippling, with amplitude a, wavelength w, and arc length L. C: Examples
of an amplitude a; and wavelength w; for ripples for each generation 7. The leftmost image
is outlined in black. D: Log-log plot of average final ripple amplitude (a;) vs. average final
wavelength (w;) for each generation 7. Fig. 2 labels all of the ripples analyzed in panel D. Error
bars are standard deviations, and numbers of measurements are Ny = 1, N; =5, N, = 6. Lily
sizes limit observable length scales to one order of magnitude. To see this figure in color, go
online.
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Figure 2: Photograph with symbols marking all simple, first-generation lily tepal ripples
that were evaluated. Ripples were evaluated if they were smooth (i.e. without smaller, second-
generation ripples) and if their white edges were imaged against a dark background rather than
against another part of the white tepal, which made them straightforward to track automatically.
Symbols for each ripple correspond to multiple data points through time in Fig. 3-4 and Figs. S3-
S4. In all cases, tepal stems are toward the figure edges. Scale bars are 1 cm. To see this figure
in color, go online.
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Figure 3: Relationships between amplitude a, wavelength w, and arc length L for nine
first-generation ripples in lily tepals. Fig. 2 contains images of all ripples analyzed for this
figure. Each ripple is identified by a different symbol and generates many data points as the
ripple changes shape over time. A: Amplitude increases with time (as does arc length, see
large-format graphs in Fig. S4). B: In contrast, wavelength w remains approximately con-
stant over time. C: Within uncertainty, all data collapse onto a straight line when plotted as
a  \/w(L — w). For clarity, this figure displays data for only single ripples with no superim-
posed higher generation ripples, excludes ripples with amplitudes < 0.1 cm, and does not show
experimental uncertainties. Full data sets with experimental uncertainties appear in Fig. S3. To

see this figure in color, go online.
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Figure 4: Examples of scaling relationships. Data from time-lapse movies of the tepals in
Fig. 2 are plotted in six simple relationships between a and d, where d is a distance constructed
from various manipulations of w and L. For example, the top left panel shows a vs. w, the
same relationship in Eq. 1. The next three plots yield similarly poor correlation between a and
d, where d = L (top right), d = v/Lw (middle left), and d = L + w (middle right). A better
collapse of the data onto a line is found for a vs. L —w (bottom left). The best collapse is found
for a vs. \/w(L — w), the equation for buckling in Eq. 2 (bottom right). To see this figure in
color, go online.
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Figure 5: Tests of relationships between amplitude a, wavelength w, and arc length L for
single ripples in plastic sheets. The sketch at the center represents single, Sth-generation
ripples (N = 8) in a plastic sheet viewed from the edge (adapted from (9) as in Fig. S5-S6).
A: The shapes of these ripples are fit poorly by a line of a < w (slope = -0.12, confidence
interval = £0.27). B: The same ripple shapes are fit well by a o /w(L — w), (slope = 0.63,

confidence interval = +0.095. To see this figure in color, go online.
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Figure 6: Tests of relationships between amplitude a, wavelength w, and arc length L
for five generations of ripples in torn plastic sheets from original data in (9). Each point
represents an individual ripple (rather than an average), and colors correspond to successive
generations of ripples in Fig. S6. A: The data fall roughly along a line when plotted as a o w
(on a log-log plot), with a slope of 1.1 and a confidence interval of +0.037. B: The same data
collapse more fully onto a line when plotted as a o /w(L — w) (on a log-log plot) with a slope

of 1.0 and a confidence interval of +-0.0083. To see this figure in color, go online.
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Figure 7: Shapes of lily buds. Column 1: Photos of blooms of four lily varieties. Column 2: Bi-
narized masks of slices through the three outer tepals at + = 0 for each variety. The red line
shows the semi-minor axis (from y = —b to +b) of tepal II. A set of 24 slices for L. Lancifolium
is shown in Fig. S7. Column 3: Tepal thicknesses in millimeters (y-axis) are plotted against
their corresponding location on the semi-minor axis (z-axis). The profiles show a central peak
with thickness ¢y due to the woody spine. Thicknesses typically decrease at least as fast as
t = to(1 — y*/b?) (thin black curve). Short black lines show the slope away from the woody
spine. Column 4: Projection of slice masks for one of the three outer tepals of each variety. The
mask at x = 0 is at the left, and the mask at x = c is at the right. Column 5: Tepal thicknesses
at y = 0 are roughly constant or decrease slowly along the semi-major axis (from z = 0 to +c).
The y-axis is in millimeters. To see this figure in color, go online.
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Figure 8: X-ray tomogram and reconstruction. (a) Slice from an X-ray tomogram of a lily
(oriental hybrid). Visible structural elements include, from the outside to the center: the three
outer tepals, the three inner tepals, six anthers, and the style. (b) 3-dimensional reconstruction
of a lily bloom of the same variety. The tilt of the reconstruction is shown by the axes. To see
this figure in color, go online.
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