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Abstract—A composite detection technique against stealthy
data manipulations is developed in this paper for distribution
networks that are low observable. Attack detection strategies
typically rely on state estimation which becomes challenging when
limited measurements are available. In this paper, a modified
matrix completion approach provides estimates of the system
state and its error variances for the locations in the network
where measurements are unavailable. Using the error statistics
and their corresponding state estimates, bad data detection can
be carried out using the chi-squared test. The proposed approach
employs a moving target defence strategy (MTD) where the
network parameters are perturbed through distributed flexible
AC transmission system (D-FACTS) devices such that stealthy
data manipulation attacks can be exposed in the form of bad
data. Thus, the bad data detection approach developed in this
paper can detect stealthy attacks using the MTD strategy. This
technique is implemented on 37-bus and 123-bus three-phase
unbalanced distribution networks to demonstrate the attack
detection accuracy even for a low observable system.

Index Terms—Bad Data detection, Distribution system, Matrix
completion, Moving Target Defence, State Estimation.

I. INTRODUCTION

Over the last decade, there have been growing concerns
related to the cybersecurity of power networks. Even though
conventional bad data detection techniques can detect incon-
sistencies in power system measurements, [1] shows how to
evade such residual-based detection techniques. This circum-
vention process can be achieved as long as the manipulated
measurements satisfy the network governing equations. Since
conventional bad data detection schemes cannot detect such
stealthy attacks, there is a need for more efficient, dedicated
approaches that can better analyse the measurements for the
presence of abnormalities. The research efforts related to
cybersecurity for power distribution networks are summarised
in [2]. The earliest among those studies [3] shows the impacts
of manipulating the information about the overcurrent relay’s
position. Initial research attempts that are available in [4],
[5] demonstrate how false data injection (FDI) attacks can
be executed on three-phase balanced distribution systems. For
observable unbalanced distribution networks, an approach is
proposed in [6] to detect FDI attacks with system transients.

MTD has been a well-known approach used to identify the
presence of stealthy data manipulations in electric networks
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[7]. With the MTD approach, the system parameters are
perturbed intentionally by the operator such that the attacker
is unaware of such changes in the system. Thus the attack
vector injected by the attacker in the measurements will
not comply with the system’s governing equations with the
perturbed network parameters. In a fully observable network,
the verification of the measurements corresponding to the
system parameters can be carried out using conventional bad
data techniques. The MTD strategy proposed in [8] perturbs
the nodal power injections at controllable points and since the
manipulations made by the attacker do not come in line with
these perturbations, they can be detected in the form of bad
data.

Distributed flexible AC transmission systems (D-FACTS)
are special devices used in power system networks because of
their ability to change the line reactance from 80% to 120%
of its nominal value [9]. D-FACTS devices are traditionally
used for loss minimization, voltage control and optimal power
dispatch in the power system networks [10]. The advantages
of using D-FACTS devices include increased operational ef-
ficiency, reduced voltage fluctuations and better economical
operation of the grid. In addition to the aforementioned
applications of D-FACTS devices, it gained interest among
researchers to employ the D-FACTS devices to induce MTD in
a fully observable system and detect stealthy data manipulation
attacks. The detection approaches given in [11], [12] are the
initial attempts in the literature to employ the MTD strategy
through D-FACTS devices to detect stealthy data manipula-
tions in electric transmission systems. Following these works,
various studies (which are listed in [13]) have been carried
out to utilise the advantages of D-FACTS and detect stealthy
attacks. In [14], a simplified AC model of transmission systems
is used to develop a reactance perturbation algorithm so that
it minimises the power loss in the transmission grid as well
as reduces the losses in its lines. To account the effect of
noisy measurements, a robust MTD is developed in [15] for
detecting stealthy attacks in transmission systems. An MTD-
based countermeasure is developed in [16] against attackers
who have limited meter information in the given transmission
system. In a recent study [17], it is shown that D-FACTS
devices can be used to induce MTD in a fully observable
system to detect data manipulation attacks in addition to the
as well as carry out optimal power flow for the grid.

D-FACTS which were popularly used in transmission sys-
tems have been scaled down to distribution systems recently
so that their advantages can be attained in such distribution
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networks [18]. But, in the context of stealthy attack detection,
only a handful of literature is available for D-FACTS-based
MTD deployment in distribution networks. An implementation
of the D-FACTS-based MTD strategy in distribution systems
is presented in [19] where the line parameters are perturbed
not only to expose the concealed data manipulation attacks but
also to achieve optimal operation costs in the network. It is to
be noted that [19] aims to compute the optimal set points for
the D-FACTS devices so that attacks can be detected with an
observable set of measurements. Thus, existing MTD-based
stealthy attack detection approaches assume that the system
is fully observable with the given set of measurements. Such
an assumption may not be valid in distribution networks as
the measurement devices are placed only at specific points of
interest and typically such networks are not fully observable
[20]. To implement MTD strategies, first, it is necessary to
develop a technique to detect bad data in the measurements
of the given unobservable distribution network such that it
can work in conjunction with the MTD strategy to detect
FDI attacks. Bad data detection techniques for observable
networks use residual-based analysis with prior knowledge
of probability distribution in the measurement noise. But
for unobservable distribution networks, conventional bad data
detection approaches cannot be carried out as a significant
number of nodes in the network do not have measurements and
hence the noise statistics of the system state are unavailable
apriori.

To carry out the state estimation in unobservable distri-
bution networks, traditionally pseudo measurements are used
(see [21], [22]) with high error variances as compared to
actual measurements. Such pseudo-measurements are typi-
cally obtained from forecasts or historical data. It is to be
noted that, if pseudo measurements are used at points which
have a prominent influence in the network, the estimation
accuracy is significantly reduced [23]. The state estimation
approach for low observable distribution networks1 given in
[24] utilizes a neural network approximation of the minimum
mean squared error estimator. The deep neural network-based
state estimator in [24] obtains its parameters from the offline
training section which requires a large amount of data for
the training process. If the network parameters are changed
with devices like D-FACTS, it needs to be completely trained
again with the information of the changed network which
takes several hours for training. Thus, the approach given
in [24] may not be applicable for detecting FDI attacks in
streaming measurements. Recently, a matrix completion-based
approach has been proposed to impute the missing data in
unobservable networks by exploiting the low-rank property of
the measurements. This matrix completion approach is used in
[25] to recover the missing data in an unobservable set of PMU
measurements. Techniques given in [20], [26] have adapted the
low-rank matrix completion approach to estimate the system
state of distribution networks that have a low observable set
of measurements.

For observable networks, the closed-form solution of the

1Throughout this paper, the term ‘low observable’ and ‘unobservable’ are
used interchangeably

weighted least squares (WLS) state estimator is used to com-
pute the noise covariance in the estimates and with that bad
data detection can be carried out directly. Such an approach
is not applicable in unobservable systems because the WLS
state estimator will not give a unique solution if the system
is unobservable and perform poorly as shown in many prior
works [27]. On the other hand, state estimators that are
designed for unobservable systems such as matrix completion
or compressed sensing approaches do not have a closed-form
solution in the available literature. Hence the noise covariance
terms are unavailable and thus the conventional bad data
detection scheme cannot be applied.

To the best of our knowledge, this paper is the first to pro-
vide a closed-form solution for matrix completion-based state
estimation for unobservable distribution networks through an
analytical modification. With the closed-form solution, the
proposed approach is not only able to provide the state
estimates at a faster rate, but it also provides the values of
the noise co-variance terms of the estimates. With the noise
statistics of the estimates, a chi-square test can be carried out
to detect the presence of any bad data in the measurements.
To detect stealthy data manipulations, MTD is used due to
its ability to change such stealthy attacks into bad data which
can be detected with the proposed approach. This objective is
attained with a multi-stage approach that is developed in this
paper. The first stage involves the modification of the matrix
completion technique from which the unknown states and
their noise statistics are estimated. Based on these estimated
values, a chi-squared test is used to detect the bad data in
the measurements. To detect FDI attacks using the MTD
strategy, D-FACTS devices are considered across various lines
in the network. With such D-FACTS devices, the effective
reactance of the line can be varied for MTD against stealthy
FDI attacks. As the attacker is unaware of the network changes
due to the line parameter perturbation by the MTD strategy,
attacks are transformed into bad data injections which can be
detected with the proposed modified matrix completion-based
approach. The main contributions of this paper are listed as
follows:

1) A linear relation is developed between the unavailable
values and the measured values in an unobservable
distribution network. This linear formulation is derived
by modifying the matrix completion approach where a
hybrid matrix is employed.

2) An estimation algorithm is developed based on the
previously derived linear formulation that can impute
the unavailable values as well as their error co-variance
terms using the measurements from an unobservable
distribution network and its noise variances as inputs.

3) With the estimated system state and its error co-variance
terms implementing an MTD strategy where stealthy
attacks are transformed into bad data.

The rest of the paper is organised as follows: In Section 2,
a brief introduction to the FDI attack model and MTD-based
detection strategy is given. The conventional matrix comple-
tion technique is described in Section 3. Section 4 details
the proposed approach and its performance is demonstrated
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through simulation results in Section 5. In the final section,
the concluding remarks are provided.

II. FDI ATTACK AND MTD-BASED DETECTION

The proposed approach aims to detect stealthy or non-
stealthy type data manipulation attacks regardless of the inten-
tion of the attacker. Among these types of attacks, stealthy data
manipulations can be considered the most challenging as they
can evade conventional bad data detection schemes and create
operational damage as intended by the attacker. Therefore, this
section discusses how a stealthy false data injection attack can
be executed and how the moving target defence strategy can
transform stealthy false data into bad data.

A. Attack Model

To explain the FDI attack model, let z be the vector of
measurements and x̂ be the estimated state vector of the given
network. Without loss of generality, let H be the function
that linearly transforms the true system state with the additive
noise to the measurement vector z. With these definitions, the
estimated residual can be written as:

r = z −H · x̂ (1)

Since the conventional bad data approach uses residuals for
the detection process, the attacker can manipulate the measure-
ments that do not affect the resulting residual value and the
data manipulation stays undetected. Let x̃ be the manipulated
state vector intended by the attacker. The intention of such
manipulation in the state vector could be either

1) to hide the overloading of one or more lines from the
operators and impede them not to take any necessary
corrective action; or

2) to disguise the nominal state in the system in a form of
an emergency state such that the operators can be misled
to take an inappropriate control action.

From (1), the necessary condition for the manipulated mea-
surement z̃ that does not affect the residual can be given as:

z −H · x̂ = z̃ −H · x̃ (2)

To execute such an attack, it is assumed that the network
model of the distribution system is available to the attacker.
Such an assumption is reasonable as the configurations of the
line conductors and the types of transformers that are used in
the network are known to the distribution utility at the planning
stage itself. Hence with that information, the network model
of the distribution network can be obtained for the control
centre operations. Moreover, this assumption is commonly
found in the related literature [28]. Due to the vast geographic
footprint of the network and the computational constraints,
it is reasonable to assume that an attacker cannot hijack all
the measurements in a given system. However, it is assumed
that the attacker can hijack a subset of measurements in the
network.

B. MTD detection strategy

In the previous subsection, it can be noticed that the attacker
relies on the linear function H which is formed using the
physical network information. The operator can leverage this
fact to ensure that the stealthy attack gets detected. This
underlying principle is used in the moving target defence
(MTD) strategy where the network parameters are perturbed
to a value known only to the operator from its nominal value.
Let Ĥ be the resulting linear function after perturbing the
network parameters. The measurements will conform to the
perturbed network parameters and the value of residual with
the no-attack condition is given as follows:

r̂ = z − Ĥ · x̂ (3)

During an attack scenario, let the attacker manipulates the
measurement vector to z̃ such that the state vector becomes x̃.
It is assumed that the attacker is unaware of perturbation made
in the network parameters and uses the linear function H for
generating the attack vector. Under such data manipulation,
the residual computed at the control centre can be written as:

r̃ = z̃ − Ĥ · x̃ (4)

Since the generated attack vector adheres to the nominal
network parameters and hence to H , the residual value given
in (4) can be rewritten as:

r̃ = z̃ −H · x̃+
(
H − Ĥ

)
· x̂ (5)

= r̂ +
(
H − Ĥ

)
· x̂ (6)

Thus by implementing the MTD strategy which involves
perturbing the network parameters, the computed residual
significantly changes during the stealthy attack scenario as
compared to the no-attack scenario.

Network parameters could be perturbed in many ways.
In this paper, we assume that D-FACTS devices employed
across various lines in the distribution network can change the
line reactance from 80% to 120% of the nominal value. By
perturbing the set points of the D-FACTS devices, the linear
mapping function H that represents the network information
can be changed and through that, the MTD strategy can be
implemented. But since distribution systems typically have
an unobservable set of measurements, bad data detection
approaches such as the chi-squared test cannot be directly
implemented. In the next section, the conventional matrix
completion approach is explained which will be used to
develop the proposed composite state estimation and bad data
detection for an unobservable system. Such an approach can
be used along with the MTD strategy to detect stealthy FDI
attacks.

III. MATRIX COMPLETION BASED STATE ESTIMATION

In this section, the conventional matrix completion approach
[25] is detailed. For ease in understanding, consider a complete
measurement data matrix, M ∈ Rn1×n2 in which only the
elements given by the set of indices Ψ ⊂ [1, n1]× [1, n2] are
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available for the estimation process. With this definition, the
observation matrix can be denoted as MΨ such that

(MΨ)j,k =

{
Mj,k , for (j, k) ∈ Ψ

0 , for (j, k) /∈ Ψ
(7)

where the available measurements are assigned to their re-
spective indices and unavailable terms are set to zero. The
conventional matrix completion approach aims to obtain a
reasonable estimate of these unavailable terms to complete the
matrix. To achieve this objective, the low-rank property of the
measurement data matrix is exploited. This low-rank property
results due to the spatial correlation of the measurements.
With this consideration, the matrix completion approach is
formulated as a rank minimization problem:

arg min
X∈Rn1×n2

rank(X) (8a)

such that XΨ = MΨ (8b)

where X , the variable in the optimisation problem provides an
estimate of the complete data matrix M . It can be noticed that
the rank function in the objective of (8) results in a non-convex
optimization problem. Hence this problem is convexified by
using the nuclear norm of the decision variable X as:

arg min
X∈Rn1×n2

∥X∥∗ (9a)

such that XΨ = MΨ (9b)

The definition of the nuclear norm of the matrix X can be
recalled as the sum of its singular values. That is,

∥X∥∗ =
∑
i

σi (X) (10)

where σi (X) is the ith singular value of matrix X . The
resulting convex problem can be solved using methods like
truncated nuclear norm regularization. This problem can be
expanded to incorporate known relationships between the
elements of the data matrix. Such a consideration is quite
plausible as the physical system where the measurements
are taken can be modelled using its governing equations. In
addition to incorporating the system physics in the problem
formulation, the noise content which is typically present in
the measurements can also be accounted for. Under such
considerations, the formulation given in (9) is extended as:

arg min
X∈Rn1×n2

∥X∥∗ (11a)

such that ∥XΨ −MΨ∥F ≤ α (11b)
∥g (X)∥ ≤ β (11c)

where g (·) is the vector of functions that model the physical
system from which the measurements are taken. The param-
eters α and β are tuned to a non-negative value following
the level of noise present in the measurements. Typically,
the problem given in (11) is solved numerically since the
analytical solution for the nuclear norm of the variable X
is currently not attempted in the literature. Thus it is difficult
to obtain the analytical relationship between the known values
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Fig. 1: Flow chart of the proposed approach

and the unknown terms that are imputed. Therefore, with the
formulation given in (11), it is possible to quantify the amount
of noise in the imputed unknown terms. Quantification of noise
in the estimates is necessary to carry out residual-based bad
data analysis which serves as a basis for MTD based FDI
detection process.

IV. PROPOSED APPROACH

This section develops a linear formulation for (11) from
which the unknown terms are imputed. It also provides a
framework to estimate the noise in the imputed terms. The
flow chart of the proposed approach is illustrated in Fig. 1.
This section is divided into four parts where the first three parts
present the three stages of the proposed approach to detect the
presence of bad data in an unobservable distribution system.
The last part of this section deals with how the MTD strategy
can translate stealthy FDI attacks into bad data which can be
detected using the proposed approach.

A. Handing Power System Measurements

Traditionally, distribution networks take the values of volt-
age magnitudes and real power injections [20] as measure-
ments at the nodes of interest across the network. These
voltage magnitudes and real power injections naturally possess
a non-linear relation with each other. The proposed approach



5

first transforms the values of voltage magnitudes and real
power injections into equivalent voltage and current phasors
so that its linear relation can be exploited. For transforming
the voltage magnitudes into equivalent voltage phasors, it
is assumed that in distribution systems, the voltage angle
differences between the buses are negligible. This assumption
is valid as the feeders in the distribution networks tend to
have a low X/R ratio. With this assumption, the angular
difference corresponding to its phase can be used with the
voltage magnitude value

∣∣∣vϕ
i

∣∣∣ measured at phase ϕ of bus i to
obtain its equivalent voltage phasor as:

vϕ
i =

∣∣∣vϕ
i

∣∣∣∠δϕ, ϕ ∈ {a, b, c} (12)

where

δ =


0 if ϕ = a

−120 if ϕ = b

120 if ϕ = c

(13)

The power factor of the loads in the distribution network
tends to be consistent and hence it is assumed to be a constant
with a value cosθ. With this assumption, an approximate value
of reactive power, qϕ

i , can be recovered using the real power
measurement, qϕ

i , at phase ϕ of bus i as:

qϕ
i = pϕ

i tanθ (14)

With this recovered approximate voltage phasor, vϕ
i along

with the values of real power injection, pϕ
i , and reactive power

injection, qϕ
i , the approximate value of current injection at

phase ϕ of bus i can be obtained as:

iϕi =

(
pϕ
i + jqϕ

i

vϕ
i

)∗

(15)

B. Formation of Bus Hybrid Matrices

For a given distribution system, let S be the set of nodes in
the reference bus corresponding to all its three phases and B
be the set of all the remaining nodes in the network excluding
the nodes corresponding to the reference bus. It is to be noted
that to handle an unbalanced distribution network, each phase
of a given bus is considered a node. Let v ∈ C|B| and i ∈
C|B| be the complex vectors of nodal voltages and current
injections at all nodes given by set B. Similarly, let vS ∈ C|S|

be the voltage at the nodes in the reference bus given by set
S. With these definitions, the relationship between the current
injections and nodal voltages can be written as:

i = YS · vS +Y · v (16)

where Y and YS be the block forms of the nodal admittance
matrix for the nodes given by set B and S respectively. The
expression given in (16) can be written in linear form as:

Z · i = ∆v (17)

where,

∆v = Z ·YB · vS + v (18)

and consider that Z = Y−1 is the nodal impedance matrix
with S as the reference.

Consider a distribution system where the bus voltage phasor
deviations, ∆v, and the current injection phasors, i, are
available at the buses given by set K. Let U be the set of
buses at which measurements are unavailable (complement
of set K). With this definition, the relation between voltage
deviations and the current injections that are given in (17) can
be rewritten as:[

ZKK ZKU
ZUK ZUU

] [
iK
iU

]
=

[
∆vK
∆vU

]
(19)

where

Z =

[
ZKK ZKU
ZUK ZUU

]
(20)

∆vU = ZUKiK + ZUU iU (21)

= ZUKZ
−1
KK (∆vK − ZKU iU ) + ZUU iU (22)

= ZUKZ
−1
KK∆vK −

(
ZUKZ

−1
KKZKU − ZUU

)
iU (23)

∆vU +
(
ZUKZ

−1
KKZKU − ZUU

)
iU = ZUKZ

−1
KK∆vK (24)

The bus admittance matrix (excluding the slack bus) can be
obtained from the bus impedance matrix as Y = Z−1.[

YKK YKU
YUK YUU

] [
∆vK
∆vU

]
=

[
iK
iU

]
(25)

where

Y =

[
YKK YKU
YUK YUU

]
(26)

iU = YUK∆vK +YUU∆vU (27)

= YUKY
−1
KK (iK −YKU∆vU ) +YUU∆vU (28)

= YUKY
−1
KKiK −

(
YUKY

−1
KKYKU −YUU

)
∆vU (29)(

YUKY
−1
KKYKU −YUU

)
∆vU + iU = YUKY

−1
KKiK (30)

Hv∆vU +HiiU =

[
Gv ·∆vK
Gi · iK

]
(31)

where

Hv =

[
I

YUKY
−1
KKYKU −YUU

]
(32)

Hi =

[
ZUKZ

−1
KKZKU − ZUU

I

]
(33)

Gv = ZUKZ
−1
KK (34)

Gi = YUKY
−1
KK (35)

The above expression provides the linear relationship be-
tween voltages and current terms taken at measured and
unmeasured nodes. To provide a better explanation for why
the bus hybrid matrix is employed instead of the traditionally
used bus admittance matrix, let |K| and |U| be the total number
of nodes with and without measurements, respectively. The
number of constraints for the system model in the matrix
completion optimisation problem with bus admittance matrix
is 3|K| + |U| as seen in (11) (|K| constraints for (11b) and
|K|+ |U| constraints for (11c)). Whereas with the bus hybrid
matrix, the number of constraints is reduced to 2|K| which
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eventually reduces the number of Lagrange coefficients and
effectively reduces the computational burden for the estimation
process. It is to be noted that (31) is achieved through algebraic
manipulations of (25) and not through linear approximations.
This concept of the bus hybrid matrix is extended from the
earlier work reported in [29].

C. Imputation of Unavailable Measurements

To further relax the problem, the linear model in (17), which
is in the complex domain, is transformed into the real domain
using the following definitions:

∆vi =
[
ℜ{∆vi} ℑ {∆vi}

]T
(36)

ii =
[
ℜ{ii} ℑ {ii}

]T
(37)

Zij =

[
ℜ{Zij} −ℑ{Zij}
ℑ {Zij} ℜ {Zij}

]
(38)

Hv
ij =

[
ℜ
{
Hv

ij

}
−ℑ

{
Hv

ij

}
ℑ
{
Hv

ij

}
ℜ
{
Hv

ij

} ]
(39)

Hi
ij =

[
ℜ
{
Hi

ij

}
−ℑ

{
Hi

ij

}
ℑ
{
Hi

ij

}
ℜ
{
Hi

ij

} ]
(40)

Gv
ij =

[
ℜ
{
Hv

ij

}
−ℑ

{
Hv

ij

}
ℑ
{
Hv

ij

}
ℜ
{
Hv

ij

} ]
(41)

Gi
ij =

[
ℜ
{
Gv

ij

}
−ℑ

{
Gv

ij

}
ℑ
{
Gv

ij

}
ℜ
{
Gv

ij

} ]
(42)

The conventional matrix completion-based state estimator can
now be restated as:

arg min
∆vU ,iU

∥∥∥∥ [ ∆vK iK
∆vU iU

] ∥∥∥∥
∗

(43a)

such that
[

∆vK
∆vU

]
=

[
ZKK ZKU
ZUK ZUU

] [
iK
iU

]
(43b)

Using a hybrid matrix (a combination of bus impedance
and bus admittance matrix Y), the equality constraint can
be written in linear form and the matrix completion problem
becomes:

arg min
∆vU ,iU

∥∥∥∥ [ ∆vK iK
∆vU iU

] ∥∥∥∥
∗

(44a)

such that
[

Gv ·∆vK
Gi · iK

]
= Hv∆vU + HiiU (44b)

The singular values of the matrix X are the square roots of
the eigenvalues of its projection matrix XTX which can be
written as:

σ (X) =
√
λ (XTX) (45)

Utilizing this definition of singular value given in (45) along
with the definition of nuclear norm given in (10), the matrix
completion problem can be rewritten as:

min
∆vU ,iU

∑
i

√
λi (XTX) (46a)

such that
[

Gv ·∆vK
Gi · iK

]
= Hv∆vU + HiiU (46b)

where

X =

[
∆vK iK
∆vU iU

]
(47)

Note that the matrix completion problem given in (46) is the
transformed version of the original problem given in (43)
and hence both of these problems give the same solution.
Further, since the original problem given in (43) is convex, the
transformed version of the matrix completion problem given
in (46) is also convex. Numerical techniques are typically used
in convex optimization tools to solve such problems. But such
solution approaches do not yield a direct analytical relation
between the measured values of the indices given by set K
and the imputed values using the matrix completion approach
of the set of indices U .

The objective of this paper is to obtain the relationship
between the elements of the set of indices U and K so that
bad data analysis can be carried out. To achieve it, a heuristic-
based modification to the formulation in (46) is proposed as
follows:

min
∆vU ,iU

∑
i

λi

(
XTX

)
(48a)

such that
[

Gv ·∆vK
Gi · iK

]
= Hv∆vU + HiiU (48b)

In this heuristic, the objective function is modified which
aims to minimise the sum of squares of singular values instead
of the sum of singular values. By the definition given in
(45), the objective function turns out to be the sum of the
eigenvalues of XTX which is the same as the trace of XTX.
This can be expanded as:∑

i

λi

(
XTX

)
= ∆vTK∆vK +∆vTU∆vU + iTKiK + iTU iU (49)

Since the terms ∆vTK∆vK and iTKiK are constants, they can be
removed from the objective function and the simplified form
of the proposed formulation is given as:

arg min
∆vU ,iU

(
∆vTU∆vU + iTU iU

)
(50a)

such that
[

Gv ·∆vK
Gi · iK

]
= Hv∆vU + HiiU (50b)

Using w as the Lagrange variable, it can be reformulated as
an unconstrained problem:

min
∆vU ,iU ,w

f (∆vU , iU ,w) (51)

where

f = ∆vTU∆vU + iTU iU

+wT

(
Hv∆vU + HiiU −

[
Gv ·∆vK
Gi · iK

])
(52)
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The derivatives of this new modified objective function are
given as:

∇∆vU f = 2∆vU + HvTw (53)

∇iU f = 2iU + HiTw (54)

∇wf = Hv∆vU + HiiU −
[

Gv ·∆vK
Gi · iK

]
(55)

By applying the first order condition for optimality i.e., ∇f =
0, the linear formulation for estimating the unknown values at
the set of nodes given by U using the known set of nodes K
can be given as: 2I 0 HvT

0 2I HiT

Hv Hi 0

 ∆vU
iU
w

 =

 0
Gv ·∆vK
Gi · iK

 (56)

 ∆vU
iU
w

 = J ·

 0
∆vK
iK

 (57)

where

J =

 2I 0 HvT

0 2I HiT

Hv Hi 0

−1  I 0 0
0 Gv 0
0 0 Gi

 (58)

For simplification, J can be segmented as:

J =

 J∆vU ,0 J∆vU ,∆vK J∆vU ,iK

JiU ,0 JiU ,∆vK JiU ,iK

Jw,0 Jw,∆vK Jw,iK

 (59)

The simplified formulation for the imputation is given as:[
∆vU
iU

]
= J̃

[
∆vK
iK

]
(60)

where

J̃ =

[
J∆vU ,∆vK J∆vU ,iK

JiU ,∆vK JiU ,iK

]
(61)

D. Bad Data Detection

With the diagonal covariance matrix ΣK corresponding to
the noise components in measured values, the complete noise
co-variance matrix for both measured and imputed values are
given as:

Σ =

[
ΣK ΣK · J̃T

J̃ · ΣK J̃ · ΣK · J̃T

]
(62)

To find the near positive definite symmetric matrix, Σ̃, for
the obtained noise co-variance matrix, Σ, the algorithm given
in [30] is employed. With this definition, it can be written as:

∆vK
iK

∆vU
iU

 =


∆v̄K
īK

∆v̄U
īU

+ η, η ∼ N
(
0, Σ̃

)
(63)

To calculate the residuals so that the chi-squared test can be
carried out, the mean values ∆v̄, ī is required at buses given

by sets U and K. To eliminate further estimation processes,
the following condition is exploited:[

∆v̄K
∆v̄U

]
=

[
ZKK ZKU
ZUK ZUU

] [
īK
īU

]
(64)

[
0
0

]
= T


∆v̄K
īK

∆v̄U
īU

 (65)

where

T =

[
−I ZKK 0 ZKU
0 ZUK −I ZUU

]
(66)

With this definition of T, the residuals correspond to:

r = T


∆vK
iK

∆vU
iU

 , r ∼ N (0,Ω) (67)

where

Ω = T · Σ̃ ·TT (68)

Since the residual r has normal distribution, the chi-square
rTΩ−1r follows a chi-squared distribution. The presence of
bad data in the measured values and the imputed values can
be identified if the chi-squared test i.e., rTΩ−1r > χ2

ν,p is not
satisfied. The parameters of this test ν and p denote the degrees
of freedom and detection probability respectively. As there are
2|K| linearly independent states in this problem formulation,
the degree of freedom is chosen as ν = 2|K|. The detection
probability is typically chosen as p = 0.95.

E. Algorithmic Representation

The proposed approach is segmented into three separate
algorithms based on their functionalities and their pseudo
codes are written in Algorithms 1, 2 and 3. For a given network
topology and meter placement information in a distribution
system, J̃ matrix is formed using Algorithm 1. The state
estimation process is carried out with Algorithm 2 with the
measurements taken at K set of buses. Algorithm 3 provides
the process of bad data detection which is used to detect FDI
attacks if the MTD strategy is employed.

Algorithm 1 Formation of J̃ Matrix

Require: K, U
Obtain Z using the bus building algorithm
Compute Y = Z−1

Compute Hv, Hi, Gv and Gi using (32)-(35), respectively
Compute Hv, Hi, Gv and Gi using (39)-(42), respectively
Compute J using (58)
Compute J̃ using (61)
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Algorithm 2 Estimation of ∆vU and iU

Require: |vK|, pK, J̃
Assume cosθ
Compute vK using (12)
Compute iK using (14) and (15)
Compute ∆vK from (18)
Convert ∆vK to real domain, ∆vK using (36)
Convert iK to real domain, iK using (37)
With J̃, estimate ∆vU and iU using (60)

Algorithm 3 Bad Data Detection

Require: J̃, ΣK, ∆vK, iK, ∆vU and iU
With J̃ and ΣK, Compute Σ using (62)
Compute Σ̃ by adopting [30] such that Σ̃ ≈ Σ and Σ̃ ≻ 0
Compute T using (66)
With ΣK, ∆vK, iK, ∆vU and iU , compute r using (67)
Compute Ω using (68)
if rTΩ−1r > χ2

ν,p then
Raise Alarm

end if

V. SIMULATION RESULTS

The performance of the proposed approach is demonstrated
on the IEEE 37-bus and 123-bus unbalanced distribution
systems with unobservable set of measurements which are
subjected to both non-stealthy and stealthy FDI attacks. For
brevity, in both test cases, the available node is defined as the
node where the measured values of voltage magnitude and the
real power injection are available. In both the test cases, the
noise in the measured values is assumed to be Gaussian with
zero mean and standard deviation of 1%. Such a consideration
is quite practical for SCADA measurements [26]. To recover
the reactive power component as explained in section IV-A, it
is assumed that the overall value of the load power factor is
constant and available to the operator. Hence, the load power
factor in both the IEEE 37-bus and the 123-bus systems is
considered to be 0.9 lagging.

A. Performance of Imputation Algorithm

The voltage estimates from the proposed approach are first
validated by considering 15 three-phase available nodes in the
37-bus system and 60 three-phase available nodes in the 123-
bus system. It is trivial to see that such systems are unobserv-
able in the context of the least squares-based state estimation
approach as the number of measurements is less than half of
the number of all the nodes in the network. The estimated
voltage magnitudes at phase ‘a’ for the 37-bus system using
the proposed approach given in Algorithm 2 are plotted in Fig.
2. In this plot, the true values (TV) and the estimated values
using the conventional matrix completion (CMC) approach
(which is given in [20]) are plotted along with the results of
the proposed method for comparison. It can be noticed that the
proposed approach provides similar results as compared to the
conventional matrix completion approach. Similar validation is
carried out on the 123-bus system and the voltage magnitudes

0 10 20 30 40
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Bus

Vo
lta

ge
M

ag
.[
p
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]

TV
CMC [20]

PM

Fig. 2: Phase ‘a’ Voltage Magnitude for the 37-bus system
with 15 available buses.

#1 No Attack with γ=0.0
#2 Non-stealthy Attack on single bus with γ=0.0
#3 Stealthy Attack on single target bus with γ=0.0
#4 Stealthy Attack on single target bus with γ=0.4
#5 Uncoordinated Attack on multiple target buses with γ=0.0
#6 Coordinated Attack on multiple target buses with γ=0.0
#7 Coordinated Attack on multiple target buses with γ=0.4

TABLE I: Testing conditions and its corresponding indications

at phase an estimated using the proposed method (PM) and
conventional matrix completion (CMC) approach along with
its true values (TV) are plotted in Fig. 3. These plots provide
the conclusion that the proposed approach behaves similarly
to the conventional matrix completion approach. In other
words, the estimation accuracy is not much compromised
with the proposed heuristic-based modification in the matrix
completion approach.

In order to quantify the overall estimation accuracy of the
proposed method (PM), a popular metric known as Mean
Absolute Percentage Error (MAPE) [26] is used which can
be defined as:

MAPE =
1

3

∑
ϕ∈{a,b,c}

 1

|U|
∑
j∈U

∣∣∣vϕ
j

∣∣∣− ∣∣∣ṽϕ
j

∣∣∣∣∣∣vϕ
j

∣∣∣
 . (69)

where
∣∣∣ṽϕ

j

∣∣∣ and
∣∣∣vϕ

j

∣∣∣ are the estimated and the true value
of voltage magnitude at phase ϕ of bus j. The value of
MAPE is computed for both the proposed method (PM)
and conventional matrix completion (CMC) approach using
the estimates of voltage magnitudes by changing the number
of measured buses from the lowest possible value to the max-
imum limit where the system reaches closer to observability.
The calculated values of MAPE are plotted in Figures 4
and 5 for 37-bus and 123-bus systems respectively. These
plots indicate that the proposed method has a similar order
of estimation accuracy as compared to the conventional matrix
completion. Moreover, the proposed method relies on solving a
linear system which takes less computation effort as compared
to the conventional matrix completion as it relies on solving
a convex optimisation problem numerically.

B. Performance of Detection Algorithm

This part of the paper focuses on validating the performance
of the proposed approach for detecting anomalies in the
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Fig. 3: Phase ‘a’ Voltage Magnitude for the 123-bus system
with 60 available buses.
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Fig. 4: Voltage magnitude estimation performance of the
proposed method (PM) in 37-bus system compared to con-
ventional matrix completion (CMC) [20].

measurements with the 37-bus and the 123-bus test systems. To
detect the presence of stealthy FDI attacks, the MTD strategy
given in [19] is implemented in both the test cases where D-
FACTS devices are installed on 6 lines in the 37-bus system
and 27 lines in the 123-bus system. In such a setup, only one-
fifth of the overall number of lines have D-FACTS devices
which can be achieved in a practical scenario. The amount
of variation made through the D-FACTS devices from its
initial set-point for detection is defined as MTD magnitude and
denoted by γ. In such a setup, we first show how the computed
chi-squared values using the proposed approach vary under six
different conditions as tabulated in Table I.

For the 37-bus and the 123-bus systems, the chi-squared

20 40 60 80
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·10−3
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M
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]

CMC [20]
PM

Fig. 5: Voltage magnitude estimation performance of the
proposed method (PM) in 123 bus system compared to con-
ventional matrix completion (CMC) [20].
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Fig. 6: Computed Residuals under multiple scenarios in 37-
bus system
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Fig. 7: Computed Residuals under multiple scenarios in 123-
bus system

values are computed for each of the conditions listed in Table
I and its box plots given in Fig. 6 and Fig. 7, respectively. In
both test cases, the threshold is selected from the chi-squared
distribution with a detection probability of 0.95. From both
sets of box plots, it can be seen that chi-squared values in
condition #1 stay below the threshold limit due to the absence
of bad data in a no-attack condition. Data manipulations with
a single bus and that do not conform to the network governing
equations are carried out in condition #2 in both test systems.
As seen from Fig. 6 and Fig. 7, the proposed approach can
detect such non-stealthy anomalies as defined in condition
#2 even when network parameter values are not perturbed
with MTD strategy as γ=0. Conditions #3 and #4 consider
stealthy attacks on a single target bus where the measurements
in both such conditions satisfy the governing equations with
the values of network parameters perceived by the attacker. If
the operator does not implement any MTD strategy i.e., γ=0,
as demonstrated in condition #3, then the proposed approach
is not able to detect stealthy data manipulations in condition
#3 as it does not generate any bad data in both 37-bus and
123-bus test systems.

In condition #4, MTD magnitude, γ is set to 0.4 and it is
considered that the attacker is unaware of the perturbations
made in the network parameters by the operator to induce
bad data in the measurements in the event of false data
injection attacks. It is easy to see in Fig. 6 and Fig. 7 that
after executing the MTD strategy as given in condition #4,
the proposed approach can detect stealthy attacks as the chi-
squared residuals violate the threshold limit under this con-
dition. Condition #5 considers stealthy attacks on two target
buses where both attacks are executed in an uncoordinated
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Fig. 8: Detection Rate for the 37-bus system.

manner. Even though both attacks individually can conform to
the network governing equations but without any coordination
between these attacks, the resulting manipulations will not
satisfy the network model. Thus, as seen in Fig. 6 and Fig.
7 for 37-bus and 123-bus systems respectively, uncoordinated
attacks naturally induce bad data and they violate the threshold
with the proposed approach. In contrast to the previous test
condition, conditions #6 and #7 consider a coordinated stealthy
attack on two target buses. As indicated in Table I, condition
#6 does not induce MTD perturbation i.e., γ=0 and therefore
no bad data can be detected by the proposed approach as
shown in Fig. 6 and Fig. 7 for 37-bus and 123-bus systems
respectively. Since in condition #7, the system is perturbed
with an MTD magnitude, γ of 0.4 for both the test systems,
the proposed approach detects the coordinated stealthy attack
as shown in Fig. 6 and Fig. 7.

To demonstrate the effectiveness of the proposed approach
against stealthy attacks, an extensive analysis is carried out for
37-bus and 123-bus systems by varying different parameters
namely the number of measured buses, number of D-FACTS
devices and MTD magnitude. In each of the test systems,

20 40 60 80
0

50

100

# Measured Buses

D
et

ec
tio

n
R

at
e
[%

] γ=0.1 γ=0.2 γ=0.3 γ=0.4

(a) #D-FACTS=13
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(b) #D-FACTS=27
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Fig. 9: Detection Rate for the 123-bus system.

for each scenario, 1000 Monte-Carlo simulations are executed
where measurement configurations and the possible set of
target buses are randomly picked in every simulation so that
a wide range of possible scenarios in a given test system are
covered. In both the test systems, the detection rate of the
proposed approach is analysed by varying three parameters
namely the number of measured buses, the number of D-
FACTS connected lines and MTD magnitude. The detection
rate was computed by incrementing the number of measured
buses from the least amount to a maximum value such that the
system reaches closer to the observability limit. For the 37-
bus system, the number of measured buses is varied from 4 to
20 with increments of 4 at every step. Similarly, in the 123-
bus system, the number of measured buses is increased from
10 to 80 with increments of 10 at every step. In each of these
analyses, we have considered three setups in both test systems,
starting with the least number of D-FACTS connected lines to
the maximum value that provides the detection rate closer to
100%. The first, second and third setups for the 37-bus system
have 4, 6 and 9 D-FACTS connected lines respectively and for
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Fig. 10: ROC of the Proposed Detection Approach.

the 123-bus system have 13, 27 and 35 D-FACTS connected
lines respectively. The detection rate in each of the three setups
for 37-bus and 123-bus systems are plotted Fig. 8 and Fig. 9
for four levels of MTD magnitude i.e., γ=0.1, 0.2, 0.3 and
0.4.

It is intuitive to see in Fig.8 and Fig.9 that the increase in
the number of measured buses eventually increases the level
of visibility of the network and in turn increases the detection
rate. In addition to that, an increase in the number of D-FACTS
connected lines or the MTD magnitude, γ, will eventually
increase the probability to expose stealthy data manipulations
in the form of bad data and increase the detection rate of
the proposed approach. Thus, in a distribution system with
a modest number of measurements, the detection rate of the
proposed approach will be high as long as either a considerable
number of D-FACTS devices are used or MTD magnitude
is high enough for the detection process. From this analysis,
it is surmised that in 37-bus and 123-bus systems, stealthy
data manipulations at any of its buses can be detected with
a probability of 95% as long as the number of measured
buses is at least half the amount of the total number of
buses in the system and D-FACTS devices are installed in
at least 20% of the lines in the network. Even though in
this demonstration, MTD has been implemented through D-
FACTS, it can be noted that the proposed approach is also
compatible with other MTD schemes like perturbing the set
points of distributed energy resources [8]. It is because the
proposed approach uses the residuals and hence it can work
with any MTD scheme that translates false data into bad
data. The receiver operating characteristics (ROC) curve of
the proposed approach is plotted in Fig. 10, which indicates
the relationship between the detection rate and the false alarm
rate. This ROC curve shows that it has characteristics closer to
an ideal detector since the false alarm rate is almost negligible
in the proposed approach.

VI. CONCLUSION

In this paper, a technique that can detect FDI attacks in
an unobservable distribution network is presented. A mod-
ified matrix completion approach is developed such that it
can provide the estimates of the system state and its error
variances at the unobserved locations in the network. Using
these estimates, the chi-squared test is employed to detect
the presence of bad data. For detecting stealthy FDI attacks,

D-FACTS are deployed to execute a moving target defence
strategy and through that stealthy false data injection attacks
can be revealed in the form of bad data which can be detected
with the proposed approach. This methodology is tested on
37-bus and 123-bus distribution systems. The results show that
the proposed approach provides around 90% detection rate for
FDI attacks for distribution systems even if only 50% of its
buses have measurements.
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