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Abstract 

A novel microgrid control strategy is presented in this paper. A resilient 

community microgrid model, which is equipped with solar PV generation 

and electric vehicles (EVs) and an improved inverter control system, is con-

sidered. To fully exploit the capability of the community microgrid to operate 

in either grid-connected mode or islanded mode, as well as to achieve im-

proved stability of the microgrid system, universal droop control, virtual in-

ertia control, and a reinforcement learning-based control mechanism are 

combined in a cohesive manner, in which adaptive control parameters are 

determined online to tune the influence of the controllers. The microgrid 

model and control mechanisms are implemented in MATLAB/Simulink and 

set up in real-time simulation to test the feasibility and effectiveness of the 

proposed model. Experiment results reveal the effectiveness of regulating the 

controller’s frequency and voltage for various operating conditions and sce-

narios of a microgrid. 
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1. Introduction 

Microgrid systems refer to an interconnected set of distributed energy sources 

(traditional and/or renewable) and controllable loads with clear boundaries to 

the main grid. Microgrid systems are typically equipped with islanding capability 

that enables microgrids to operate as a standalone entity with respect to the 

main grid [1] [2]. For decades, microgrid systems have been deployed and used 

in rural areas by numerous projects and agencies to supply power under the con-

dition that support from the traditional power system is lacking or cost-ineffective 
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[3]. Microgrid systems have also been used in urban developments (e.g., com-

munity energy projects and initiatives) aiming to decentralize and localize ener-

gy generation to increase production from distributed renewable sources. In the 

following three decades, electrical energy demand is expected to increase by 

nearly 50% [4]. With the ramping penetration of renewable power generation, 

microgrid systems have gained increased attention in energy infrastructure de-

velopment and enhancement [5]. Microgrid systems are also promising to op-

timize the energy portfolio and operating costs to achieve certain reliability of 

power supply [6]. 

On the flip side of the coin, significant challenges and obstacles arise toward 

efficiently utilizing renewable energy in microgrid systems. This is mainly due to 

the intermittency and stochastic nature of renewable energy sources, the lack of 

inertia of DC power sources (solar PV, battery, etc.), and the lack of efficient and 

robust hierarchical controllers (the capital cost of the distributed energy sources 

and microgrid systems is another contributing factor). Due to limited grid-forming 

capability, hierarchical control capabilities, and lack of inertia, existing microgr-

id systems can underperform in islanding operations [7] [8]. Maintaining the re-

liability of microgrid systems is of paramount importance yet challenging when 

it comes to intermittent and stochastic renewable energy sources such as solar 

PV.  

With the advancement of smart controllers for power grid applications, mi-

crogrid systems can be enhanced in terms of improved controllability and stabil-

ity [1]. Microgrid systems have been utilized as a cost-effective solution to cir-

cumvent the technical difficulties of integrating distributed renewable energy 

sources into residential and community energy systems [9] [10]. On the condi-

tion that the main grid fails due to rare yet disastrous events within the local 

grid, microgrid systems can keep the local power operation alive throughout the 

outage [11]. Therefore, modification, improvement, and adaptation of the con-

trol mechanism of microgrid systems to these rare operating environments un-

der special circumstances are pivotal issues for community energy resilience. 

Under these circumstances, microgrid systems can tap the potential of EVs as a 

battery energy storage system (BESS) [12] to improve the reliability and power 

quality of microgrid systems with only renewable energy sources. 

Nowadays, transportation electrification, to a greater extent, has changed the 

point of view toward EVs, which used to be considered part of the netload. As 

light-duty EVs are becoming widely available, the high-capacity batteries in the 

EV fleet could form an invaluable energy asset in community microgrid systems 

[13]. V2G technology could be applied to the EVs and plug-in hybrid electric 

vehicles (PHEVs) that are fitted with charge de move (CHAdeMO) or combined 

charging system chargers [11] [14]. Therefore, during a power interruption, the 

EV’s battery can be used as a source for local loads in the microgrid. EVs with 

V2G capabilities and flexibilities can charge and discharge electrical energy from 

and to microgrid systems are feasible and cost-effective options to balance the 
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electrical power demand and supply, which can significantly contribute to the 

energy reliability and resilience of communities [15] [16]. 

In this paper, a novel control mechanism based on the previous work [17] is 

developed. The developed microgrid V2G control strategy utilizes droop control 

and virtual inertia control to regulate the frequency and voltage. Different from 

the household microgrid that contains only one PV system and on EV in the 

previous work [17], multiple solar PV systems and EVs are considered in the 

community microgrid model, and the controller is designed to achieve accurate 

real and reactive power-sharing among the multiple solar PV systems and EVs. 

Further, the controller in the previous work [17] assigns fixed weights to droop 

and virtual inertia controls, which may not effectively manage the variations in 

frequency and voltage caused by volatile solar PV power production. Therefore, 

in this paper, by proactively considering the stochastic nature of solar radiation, 

a reinforcement learning-based control mechanism is incorporated into the mi-

crogrid controller to adapt the weights to droop dynamically, and virtual inertia 

controls overall stability and power qualify could be improved. The rest of the 

paper is organized as follows. Section 2 presents the model for the community 

microgrid with multiple parallel solar PV systems and EVs and the control 

strategy. Experiment results are presented in Section 3. Conclusions are pro-

vided in Section 4.  

2. Proposed Microgrid V2G Control Strategy 

2.1. Community Microgrid System Model  

The model for the community microgrid system considered in this study is illu-

strated in Figure 1. The microgrid system contains two parallel sets of distri-

buted energy resources. The energy resource is comprised of a solar PV system 

and a BESS (as the battery of EVs). The solar PV system is connected to the DC 

link through a boost converter, for which a maximum power point tracking 

(MPPT) controller is utilized to adjust the duty cycle in an online manner. The 

DC link voltage is set b the BESS and is regulated by the DC link capacitor. The  

 

 

Figure 1. A community microgrid with parallel distributed energy resources. 
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DC link is then fed to the voltage source converter (VSC) to produce an AC 

output. Through series filters and lines, The VSCs are both connected to the 

point of common coupling (PCC) of the microgrid systems, where a set of loads 

are connected. The loads include a constant baseload, a ramping load with slow 

variations, and a variable load with fast variations.  

In the above community microgrid system model, note that the controller for 

the grid-forming inverters of the community microgrid system is designed so 

that all distributed energy resources could accurately share the load according to 

their capacity. Thus, the microgrid systems could quickly scale up to incorporate 

more distributed energy sources. Also, the BESS is deployed between the solar 

PV system and the VSC so that the solar PV system can continuously operate in 

MPPT mode to produce maximum power output without the need to match the 

variable power output of VSC as required by the load, which is advantageous 

compared to the case of separate solar PV and BESS.  

2.2. Controller of Distributed Energy Sources 

To achieve accurate real and reactive sharing between the parallel distributed 

energy sources under steady-state operating conditions, the universal droop 

control [18] is adopted. Further, due to the lack of inertia of the DC energy 

sources, the community microgrid system can deliver poor transient response 

during rapidly changing operating conditions, e.g., during the fluctuation of so-

lar PV power generation (as a very likely result of fog shading) or switching of 

loads. Therefore, the virtual inertia control from the previous work [17] is also 

adopted with a key modification. Specifically, combining the droop control and 

virtual inertia control, the real power to frequency (p-f) characteristic of the 

proposed controller is described below:  

 ( ) ( ) ( )* *
2 d gH p p D Kωω ω α ω ω β ω ω= − − − − −            (1) 

In the above equation, H is the inertia constant, dK  is the damping factor, 

Dω  is the p-f droop coefficient, *p  is the set point for real power p , *ω  is 

the set point for angular frequency ω, and gω  is grid frequency. Note that un-

der a quasi-steady state, ω is maintained at gω  and thus 0ω = , then “Equa-

tion (1)” reduces to the conventional p-f droop characteristic equation. Other-

wise, for transient conditions, the controller would direct the VSC and distri-

buted energy sources to act as a spinning generator with inertia quantified by H 

and Dω . Further, the coefficients, α and β, in “Equation (1)” refer to the weights 

assigned by the controller to droop control and virtual inertia control, respec-

tively. Specifically, in the previous work [17], α and β are predetermined con-

stants. When α is greater, the controller is more prone to perform droop control. 

However, when β is greater, the controller will assume more virtual inertia to 

improve transient response. Indeed, there is a trade-off between the two control 

modes. When α is greater, the frequency and voltage can fluctuate more than 

acceptable to the load, causing power quality issues. However, when β is greater, 

the controller would respond slower to compensate for the change in net load. 



M. M. Hasan et al. 

 

 

DOI: 10.4236/jpee.2022.109001 5 Journal of Power and Energy Engineering 

 

Therefore, in an online operating condition, the weights should be adjusted ac-

cording to the net load, especially to the solar PV power production (as well as 

solar radiation).  

A new contribution made by this paper is that a dynamic weight scheme is 

developed to address the issues described above. Based on the control strategy 

illustrated in Figure 1 of the previous work [17], the dynamic weight scheme is 

incorporated, as shown in Figure 2. Specifically, the weights for the droop and 

the damping terms in “Equation (1)” are dynamically determined according to a 

look-up table that takes the grid condition (voltage magnitude and frequency) 

and the solar radiation as the input (note that in a realistic setting, this input 

should be the solar PV power calculated in real-time). The look-up table con-

tains an off-policy which is learned offline with a discrete state and action space. 

More technical details of the off-policy obtained from reinforcement learning 

are provided in Section 2.3.  

Further, built on the previous work [17], this paper incorporates cascaded 

voltage and current regulators following the improved droop and virtual inertia 

control (Figure 3). The voltage regulator accepts the reference voltage produced  

 

 

Figure 2. The proposed control strategy with dynamic weights for droop-virtual inertia 

control. 

 

 

Figure 3. Voltage and current regulators of the community microgrid system controller. 
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by droop control and regulates the d/q components of the voltage at PCC. The 

voltage regulator produces the reference value for the d/q components of the 

VSC’s output current, which the current regulator then uses. Particularly, the 

current regulator adopts a feedforward loop to account for the voltage drop 

across the filter and series impedance between VSC and PCC. Finally, the cur-

rent regulator produces the VSC’s output voltage to compute the control refer-

ence to the VSC. 

2.3. Reinforcement Learning 

In what follows, the proposed reinforcement learning-based algorithm for adap-

tive weights for droop and inertia control is described. Generally, in reinforce-

ment learning, an agent is a function unit or computation unit that can auto-

matically perceive information, generate the corresponding actions through de-

cision-making and reasoning, and respond to the environment (Figure 4). Co-

operative agents can work together in hybrid microgrid systems such as 

wind/solar systems in so-called cooperative reinforcement learning. The basic 

principle of reinforcement learning is that if one action could make the envi-

ronment give the system an incremental reward, the trend of this action pro-

duced by the system will be either strengthened or weakened [19]. 

Inspired by the basic principles of reinforcement learning, the policy for find-

ing the optimal dynamic weight of droop and virtual inertia control could be 

formulated as a sequential behavior decision process like the Markov decision 

process. Under quasi-steady states (10 s - 100 s), the system operating condition 

change mainly due to random load variation and fluctuation of solar PV power 

production, and thus system states assume Markovian properties. Considering 

this, Markov’s decision process-based formulation is plausible. In what follows, 

the main elements of the Markov decision process-based formulation are pre-

sented [20].  

State: the system states include microgrid and solar PV power states. More 

specifically, the voltage magnitude ( magtV ) and frequency ( tf ) at the PCC con-

stitute the microgrid states (as the load’s real and reactive power consumption  

 

 

Figure 4. Reinforcement learning algorithm.  
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depends on these two variables under a dynamic load model). Further, solar 

radiation ( tIr ) which dictates solar power production should also be included in 

the state. Note that the ambient temperature is typically constant at the time-

scales of quasi-steady states. Thus, it should not be included in the state, even 

though ambient temperature is a critical physical parameter for the PV panel’s 

power output. It can also be seen from Figure 2 that solar radiation, not the am-

bient temperature, is considered as the input to the off-policy.  

Action: the action includes the values for the weights of droop and virtual in-

ertia control. For computational efficiency, the action space is discretized, such 

that the weights take values from 0 to 1, with a step of 0.01. As discussed in Sec-

tion 2.1, a trade-off exists between the two controls, and thus the weights are set 

to be complementary, as seen in Figure 2.  

Transition probability: because the state space is continuous, rigorous charac-

terization of the transition probability is intractable, and thus a model-free ap-

proach is adopted in this study. 

Reward: the immediate reward of the system is comprised of three compo-

nents, including frequency regulation, voltage regulation, and the electrical load 

satisfied. With this insight, the system’s immediate reward at time t is given by: 

( ){ }* * *
,t f v LR k f f k V V k S f v S= − − + − + −            (2) 

In “Equation (2)”, *f , *V , and *S  denote the nominal values for the mi-

crogrid system frequency, the voltage at PCC, and the nominal load. fk , vk , 

and Lk  are the weights for the three components. The dynamic load model in 

[19] is used for ( ),S f v . Where ( ),S f v  represents the complex power of the 

exponential load model and is a function of voltage and frequency. The mathe-

matical relation between complex load power, voltage and frequency can be 

written as “Equation (3)”. Where, *S , *V , and *f  are the nominal load 

power, nominal voltage, and nominal frequency, respectively. The exponential 

factor a and b are the load parameters and varies between 0 to 2.  

( ) ( ) ( )* * *
,

a b

S f v S v v f f=                     (3)  

Solution: Q-learning algorithm is used to optimize the actions based on the 

state of the microgrid system. Q-table is the data structure used to calculate the 

maximum expected future rewards for action at each state. Basically, this table 

will guide us to the best action in each state. To find the best possible action val-

ue in every state. 

“Equation (4)” is used [20].  

( ){ }1
max ,tJ Q s a+=                        (4) 

where, 
1ts +  is the future state, a  is the action by the agent. The Q-learning 

algorithm adopts the optimal action value in the state action procedure to up-

date the Q-table in every step of the states. The state action value equation can 

be written as “Equation (5)” [20]. 

( ) ( ) ( ) ( )new old
, ,1 ts a s aQ Q R Jαα γ+−= ⋅ + ⋅            (5) 
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where, α  is the learning rate (0, 1), γ is the discount factor and tR  is the re-

ward. In Q-table, the action values are repeatedly updated by every step of the 

state until all the actions are optimized. If all the actions are optimized, the solu-

tion to the Markov decision process-based problem, as an off-policy, is then 

prepared into a look-up table to produce real-time decisions on the weights for 

droop and virtual inertia control, as shown in (Figure 5).  

3. Experiment Results  

In this section, the experiment results are presented. The system settings are the 

same as the previous work [17], except that the capacity of the second distri-

buted energy source is doubled, and the total load is tripled according. In addi-

tion, real-world weather data, including solar irradiance and temperature at high 

time resolutions, which is collected from the West Texas Mesonet [21], is used as 

the data input to the Simulink model. The experiment results for the individual  

 

 

Figure 5. Reinforcement learning-based flowchart in MG control. 
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controller, the power-sharing, and the reinforcement learning-based control 

strategy are presented in what follows. 

The result for the individual controllers is illustrated in Figure 6. A few criti-

cal quantities in Figure 3 are plotted here, which include (from top-left to bot-

tom right of Figure 6 the d/q components of the VSC’s output current (the ref-

erence produced by the voltage regulator vs. the actual), the modulation index 

for the VSC, the VSC’s output voltage (before the feedforward term) produced 

by the current regulator, the frequency at the PCC, the d/q components of the 

voltage at the PCC, and the reference voltage produced by droop control. Note 

that once the developed control mechanism is activated at 4 s, the VSC’s output 

current is well regulated around its reference value (q components have a slight 

deviation). The modulation index and the VSC’s output voltage are maintained. 

The frequency at the PCC varies according to the net load profile (load minus 

solar power). Further, the d/q components of the voltage at the PCC are also well 

regulated. The reference voltage produced by droop control dropped due to the 

large reactive power consumption of the load. 

The result for load sharing of the two distributed energy sources is illustrated 

in Figure 7. Note that the power output is in p.u., i.e., normalized to the rated 

MVA of the solar PV systems. Once the developed control mechanism is acti-

vated at 4 s, both the real and reactive power production of the two distributed 

energy sources converges to the same p.u. values, indicating that the two distri-

buted energy sources indeed supply real and reactive power to the load propor-

tionally to their rated capacity. The tight convergence of these curves in Figure 7 

corroborates that accurate load sharing is achieved. 

 

 

Figure 6. Variables for droop, virtual inertia, voltage/current regulator of the controller 

for distributed renewable source 1. 
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Figure 7. Load sharing (power in p.u.) between the two distributed energy sources.  

 

 

Figure 8. Frequency variation under volatile solar radiation (proposed vs. fixed weights 

for droop and virtual inertia control). 

 

The result for the frequency response of the community microgrid system 

under volatile solar radiation is illustrated in Figure 8. The proposed control 

strategy is compared with that of [17], which used fixed equal weights for droop 

and virtual inertia control. It can be seen from the 200 s episode of the simula-

tion results that the proposed control strategy incurs fewer frequency deviations 
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when there is a noticeable drop (which is caused by solar radiation ramp down) 

within the 20 s - 40 s, followed by minimal fluctuation in frequency, which is 

significantly less than that of fixed weights. 

4. Conclusion  

This paper develops a novel control strategy for a community microgrid system 

operating in an islanded mode. The community microgrid equips with two pa-

rallel solar PV sources as a power generator and an EV battery as storage. The 

EV battery serves two manifolds; it provides power for microgrid resiliency and 

inertia for virtual inertia emulation. The reinforcement learning-based weights 

adjustment scheme is utilized to adjust the impact of the virtual-inertia emula-

tion and droop control online based on the active power to frequency characte-

ristic. The microgrid model and control mechanisms are implemented in 

MATLAB/Simulink and set up in OPAL-RT real-time simulation to test the fea-

sibility and effectiveness of the developed control strategy. The simulation re-

sults demonstrate robust voltage and frequency regulation, accurate pow-

er-sharing, and improved transient response of the community microgrid sys-

tems. After the MATALB simulation, the proposed microgrid architecture and 

the related control have undergone extensive testing in OPAL-RT to verify their 

validity, and the real-time simulation results indicate that they have many po-

tential uses in the development of the smart grid.  
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