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Abstract

A novel microgrid control strategy is presented in this paper. A resilient
community microgrid model, which is equipped with solar PV generation
and electric vehicles (EVs) and an improved inverter control system, is con-
sidered. To fully exploit the capability of the community microgrid to operate
in either grid-connected mode or islanded mode, as well as to achieve im-
proved stability of the microgrid system, universal droop control, virtual in-
ertia control, and a reinforcement learning-based control mechanism are
combined in a cohesive manner, in which adaptive control parameters are
determined online to tune the influence of the controllers. The microgrid
model and control mechanisms are implemented in MATLAB/Simulink and
set up in real-time simulation to test the feasibility and effectiveness of the
proposed model. Experiment results reveal the effectiveness of regulating the
controller’s frequency and voltage for various operating conditions and sce-
narios of a microgrid.

Keywords

Microgrid, Reinforcement Learning, Q-Learning Algorithm, Vehicle-to-Grid
(V2G)

1. Introduction

Microgrid systems refer to an interconnected set of distributed energy sources
(traditional and/or renewable) and controllable loads with clear boundaries to
the main grid. Microgrid systems are typically equipped with islanding capability
that enables microgrids to operate as a standalone entity with respect to the
main grid [1] [2]. For decades, microgrid systems have been deployed and used
in rural areas by numerous projects and agencies to supply power under the con-

dition that support from the traditional power system is lacking or cost-ineffective
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[3]. Microgrid systems have also been used in urban developments (e.g., com-
munity energy projects and initiatives) aiming to decentralize and localize ener-
gy generation to increase production from distributed renewable sources. In the
following three decades, electrical energy demand is expected to increase by
nearly 50% [4]. With the ramping penetration of renewable power generation,
microgrid systems have gained increased attention in energy infrastructure de-
velopment and enhancement [5]. Microgrid systems are also promising to op-
timize the energy portfolio and operating costs to achieve certain reliability of
power supply [6].

On the flip side of the coin, significant challenges and obstacles arise toward
efficiently utilizing renewable energy in microgrid systems. This is mainly due to
the intermittency and stochastic nature of renewable energy sources, the lack of
inertia of DC power sources (solar PV, battery, etc.), and the lack of efficient and
robust hierarchical controllers (the capital cost of the distributed energy sources
and microgrid systems is another contributing factor). Due to limited grid-forming
capability, hierarchical control capabilities, and lack of inertia, existing microgr-
id systems can underperform in islanding operations [7] [8]. Maintaining the re-
liability of microgrid systems is of paramount importance yet challenging when
it comes to intermittent and stochastic renewable energy sources such as solar
PV.

With the advancement of smart controllers for power grid applications, mi-
crogrid systems can be enhanced in terms of improved controllability and stabil-
ity [1]. Microgrid systems have been utilized as a cost-effective solution to cir-
cumvent the technical difficulties of integrating distributed renewable energy
sources into residential and community energy systems [9] [10]. On the condi-
tion that the main grid fails due to rare yet disastrous events within the local
grid, microgrid systems can keep the local power operation alive throughout the
outage [11]. Therefore, modification, improvement, and adaptation of the con-
trol mechanism of microgrid systems to these rare operating environments un-
der special circumstances are pivotal issues for community energy resilience.
Under these circumstances, microgrid systems can tap the potential of EVs as a
battery energy storage system (BESS) [12] to improve the reliability and power
quality of microgrid systems with only renewable energy sources.

Nowadays, transportation electrification, to a greater extent, has changed the
point of view toward EVs, which used to be considered part of the netload. As
light-duty EVs are becoming widely available, the high-capacity batteries in the
EV fleet could form an invaluable energy asset in community microgrid systems
[13]. V2G technology could be applied to the EVs and plug-in hybrid electric
vehicles (PHEVs) that are fitted with charge de move (CHAdeMO) or combined
charging system chargers [11] [14]. Therefore, during a power interruption, the
EV’s battery can be used as a source for local loads in the microgrid. EVs with
V2G capabilities and flexibilities can charge and discharge electrical energy from

and to microgrid systems are feasible and cost-effective options to balance the
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electrical power demand and supply, which can significantly contribute to the
energy reliability and resilience of communities [15] [16].

In this paper, a novel control mechanism based on the previous work [17] is
developed. The developed microgrid V2G control strategy utilizes droop control
and virtual inertia control to regulate the frequency and voltage. Different from
the household microgrid that contains only one PV system and on EV in the
previous work [17], multiple solar PV systems and EVs are considered in the
community microgrid model, and the controller is designed to achieve accurate
real and reactive power-sharing among the multiple solar PV systems and EVs.
Further, the controller in the previous work [17] assigns fixed weights to droop
and virtual inertia controls, which may not effectively manage the variations in
frequency and voltage caused by volatile solar PV power production. Therefore,
in this paper, by proactively considering the stochastic nature of solar radiation,
a reinforcement learning-based control mechanism is incorporated into the mi-
crogrid controller to adapt the weights to droop dynamically, and virtual inertia
controls overall stability and power qualify could be improved. The rest of the
paper is organized as follows. Section 2 presents the model for the community
microgrid with multiple parallel solar PV systems and EVs and the control
strategy. Experiment results are presented in Section 3. Conclusions are pro-
vided in Section 4.

2. Proposed Microgrid V2G Control Strategy
2.1. Community Microgrid System Model

The model for the community microgrid system considered in this study is illu-
strated in Figure 1. The microgrid system contains two parallel sets of distri-
buted energy resources. The energy resource is comprised of a solar PV system
and a BESS (as the battery of EVs). The solar PV system is connected to the DC
link through a boost converter, for which a maximum power point tracking
(MPPT) controller is utilized to adjust the duty cycle in an online manner. The
DC link voltage is set b the BESS and is regulated by the DC link capacitor. The
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Figure 1. A community microgrid with parallel distributed energy resources.
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DC link is then fed to the voltage source converter (VSC) to produce an AC
output. Through series filters and lines, The VSCs are both connected to the
point of common coupling (PCC) of the microgrid systems, where a set of loads
are connected. The loads include a constant baseload, a ramping load with slow
variations, and a variable load with fast variations.

In the above community microgrid system model, note that the controller for
the grid-forming inverters of the community microgrid system is designed so
that all distributed energy resources could accurately share the load according to
their capacity. Thus, the microgrid systems could quickly scale up to incorporate
more distributed energy sources. Also, the BESS is deployed between the solar
PV system and the VSC so that the solar PV system can continuously operate in
MPPT mode to produce maximum power output without the need to match the
variable power output of VSC as required by the load, which is advantageous
compared to the case of separate solar PV and BESS.

2.2. Controller of Distributed Energy Sources

To achieve accurate real and reactive sharing between the parallel distributed
energy sources under steady-state operating conditions, the universal droop
control [18] is adopted. Further, due to the lack of inertia of the DC energy
sources, the community microgrid system can deliver poor transient response
during rapidly changing operating conditions, e.g., during the fluctuation of so-
lar PV power generation (as a very likely result of fog shading) or switching of
loads. Therefore, the virtual inertia control from the previous work [17] is also
adopted with a key modification. Specifically, combining the droop control and
virtual inertia control, the real power to frequency (p-£) characteristic of the
proposed controller is described below:

2Ha'):(p*—p)/a)—aDw(a)—a)*)—ﬁKd(a)—a)g) (1)

In the above equation, /A is the inertia constant, K, is the damping factor,
D, is the p-fdroop coefficient, p° is the set point for real power p, @ is
the set point for angular frequency w, and @, is grid frequency. Note that un-
der a quasi-steady state, @ is maintained at ®, and thus =0, then “Equa-
tion (1)” reduces to the conventional p-fdroop characteristic equation. Other-
wise, for transient conditions, the controller would direct the VSC and distri-
buted energy sources to act as a spinning generator with inertia quantified by A
and D, . Further, the coefficients, @ and g, in “Equation (1)” refer to the weights
assigned by the controller to droop control and virtual inertia control, respec-
tively. Specifically, in the previous work [17], a and S are predetermined con-
stants. When a is greater, the controller is more prone to perform droop control.
However, when f is greater, the controller will assume more virtual inertia to
improve transient response. Indeed, there is a trade-off between the two control
modes. When a is greater, the frequency and voltage can fluctuate more than
acceptable to the load, causing power quality issues. However, when fSis greater,

the controller would respond slower to compensate for the change in net load.
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Therefore, in an online operating condition, the weights should be adjusted ac-
cording to the net load, especially to the solar PV power production (as well as
solar radiation).

A new contribution made by this paper is that a dynamic weight scheme is
developed to address the issues described above. Based on the control strategy
illustrated in Figure 1 of the previous work [17], the dynamic weight scheme is
incorporated, as shown in Figure 2. Specifically, the weights for the droop and
the damping terms in “Equation (1)” are dynamically determined according to a
look-up table that takes the grid condition (voltage magnitude and frequency)
and the solar radiation as the input (note that in a realistic setting, this input
should be the solar PV power calculated in real-time). The look-up table con-
tains an off-policy which is learned offline with a discrete state and action space.
More technical details of the off-policy obtained from reinforcement learning
are provided in Section 2.3.

Further, built on the previous work [17], this paper incorporates cascaded
voltage and current regulators following the improved droop and virtual inertia

control (Figure 3). The voltage regulator accepts the reference voltage produced
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Figure 2. The proposed control strategy with dynamic weights for droop-virtual inertia
control.
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Figure 3. Voltage and current regulators of the community microgrid system controller.
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by droop control and regulates the d/g components of the voltage at PCC. The
voltage regulator produces the reference value for the d/q components of the
VSC’s output current, which the current regulator then uses. Particularly, the
current regulator adopts a feedforward loop to account for the voltage drop
across the filter and series impedance between VSC and PCC. Finally, the cur-
rent regulator produces the VSC’s output voltage to compute the control refer-
ence to the VSC.

2.3. Reinforcement Learning

In what follows, the proposed reinforcement learning-based algorithm for adap-
tive weights for droop and inertia control is described. Generally, in reinforce-
ment learning, an agent is a function unit or computation unit that can auto-
matically perceive information, generate the corresponding actions through de-
cision-making and reasoning, and respond to the environment (Figure 4). Co-
operative agents can work together in hybrid microgrid systems such as
wind/solar systems in so-called cooperative reinforcement learning. The basic
principle of reinforcement learning is that if one action could make the envi-
ronment give the system an incremental reward, the trend of this action pro-
duced by the system will be either strengthened or weakened [19].

Inspired by the basic principles of reinforcement learning, the policy for find-
ing the optimal dynamic weight of droop and virtual inertia control could be
formulated as a sequential behavior decision process like the Markov decision
process. Under quasi-steady states (10 s - 100 s), the system operating condition
change mainly due to random load variation and fluctuation of solar PV power
production, and thus system states assume Markovian properties. Considering
this, Markov’s decision process-based formulation is plausible. In what follows,
the main elements of the Markov decision process-based formulation are pre-
sented [20].

State: the system states include microgrid and solar PV power states. More
. ) and frequency ( f;) at the PCC con-

stitute the microgrid states (as the load’s real and reactive power consumption

Agent -—\
—

specifically, the voltage magnitude (V)

State Reward Action
s, r, a,
rt+1 (
Environment
St+1 K

Figure 4. Reinforcement learning algorithm.
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depends on these two variables under a dynamic load model). Further, solar
radiation ( /r;) which dictates solar power production should also be included in
the state. Note that the ambient temperature is typically constant at the time-
scales of quasi-steady states. Thus, it should not be included in the state, even
though ambient temperature is a critical physical parameter for the PV panel’s
power output. It can also be seen from Figure 2 that solar radiation, not the am-
bient temperature, is considered as the input to the off-policy.

Action: the action includes the values for the weights of droop and virtual in-
ertia control. For computational efficiency, the action space is discretized, such
that the weights take values from 0 to 1, with a step of 0.01. As discussed in Sec-
tion 2.1, a trade-off exists between the two controls, and thus the weights are set
to be complementary, as seen in Figure 2.

Transition probability: because the state space is continuous, rigorous charac-
terization of the transition probability is intractable, and thus a model-free ap-
proach is adopted in this study.

Reward: the immediate reward of the system is comprised of three compo-
nents, including frequency regulation, voltage regulation, and the electrical load

satisfied. With this insight, the system’s immediate reward at time ¢is given by:

Bl sl lslsia-s e

In “Equation (2)”, ", V", and S  denote the nominal values for the mi-
crogrid system frequency, the voltage at PCC, and the nominal load. &, £,
and k, are the weights for the three components. The dynamic load model in
[19] is used for S(f,v). Where S(f,v) represents the complex power of the
exponential load model and is a function of voltage and frequency. The mathe-
matical relation between complex load power, voltage and frequency can be
written as “Equation (3)”. Where, S°, V", and /" are the nominal load
power, nominal voltage, and nominal frequency, respectively. The exponential

factor a and b are the load parameters and varies between 0 to 2.
* £\a \b
S(fv)=8" (") (1/1) (3)

Solution: Q-learning algorithm is used to optimize the actions based on the
state of the microgrid system. Q-table is the data structure used to calculate the
maximum expected future rewards for action at each state. Basically, this table
will guide us to the best action in each state. To find the best possible action val-
ue in every state.

“Equation (4)” is used [20].

J:max{Q(sH],a)} (4)

where, s,,, is the future state, a is the action by the agent. The Q-learning

t+1
algorithm adopts the optimal action value in the state action procedure to up-
date the Q-table in every step of the states. The state action value equation can

be written as “Equation (5)” [20].

0™ (s,a)=(1-a)-0% (s,a)+a(R +y-J) (5)
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where, o is the learning rate (0, 1), yis the discount factor and R, is the re-
ward. In Q-table, the action values are repeatedly updated by every step of the
state until all the actions are optimized. If all the actions are optimized, the solu-
tion to the Markov decision process-based problem, as an off-policy, is then
prepared into a look-up table to produce real-time decisions on the weights for

droop and virtual inertia control, as shown in (Figure 5).

3. Experiment Results

In this section, the experiment results are presented. The system settings are the
same as the previous work [17], except that the capacity of the second distri-
buted energy source is doubled, and the total load is tripled according. In addi-
tion, real-world weather data, including solar irradiance and temperature at high
time resolutions, which is collected from the West Texas Mesonet [21], is used as

the data input to the Simulink model. The experiment results for the individual
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Figure 5. Reinforcement learning-based flowchart in MG control.
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controller, the power-sharing, and the reinforcement learning-based control
strategy are presented in what follows.

The result for the individual controllers is illustrated in Figure 6. A few criti-
cal quantities in Figure 3 are plotted here, which include (from top-left to bot-
tom right of Figure 6 the d/g components of the VSC’s output current (the ref-
erence produced by the voltage regulator vs. the actual), the modulation index
for the VSC, the VSC’s output voltage (before the feedforward term) produced
by the current regulator, the frequency at the PCC, the d/g components of the
voltage at the PCC, and the reference voltage produced by droop control. Note
that once the developed control mechanism is activated at 4 s, the VSC’s output
current is well regulated around its reference value (¢ components have a slight
deviation). The modulation index and the VSC’s output voltage are maintained.
The frequency at the PCC varies according to the net load profile (load minus
solar power). Further, the d/ g components of the voltage at the PCC are also well
regulated. The reference voltage produced by droop control dropped due to the
large reactive power consumption of the load.

The result for load sharing of the two distributed energy sources is illustrated
in Figure 7. Note that the power output is in p.u., e, normalized to the rated
MVA of the solar PV systems. Once the developed control mechanism is acti-
vated at 4 s, both the real and reactive power production of the two distributed
energy sources converges to the same p.u. values, indicating that the two distri-
buted energy sources indeed supply real and reactive power to the load propor-
tionally to their rated capacity. The tight convergence of these curves in Figure 7
corroborates that accurate load sharing is achieved.

<ld_ref>, <Ild> <Freg>
r 60.4 T
1 <Id_ref>| 160.2
0.5} v <> Heep
t 59.6
0 50.4
. . : 59.2
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Figure 6. Variables for droop, virtual inertia, voltage/current regulator of the controller
for distributed renewable source 1.
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Figure 7. Load sharing (power in p.u.) between the two distributed energy sources.
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Figure 8. Frequency variation under volatile solar radiation (proposed vs. fixed weights
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The result for the frequency response of the community microgrid system
under volatile solar radiation is illustrated in Figure 8. The proposed control
strategy is compared with that of [17], which used fixed equal weights for droop
and virtual inertia control. It can be seen from the 200 s episode of the simula-

tion results that the proposed control strategy incurs fewer frequency deviations
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when there is a noticeable drop (which is caused by solar radiation ramp down)
within the 20 s - 40 s, followed by minimal fluctuation in frequency, which is
significantly less than that of fixed weights.

4. Conclusion

This paper develops a novel control strategy for a community microgrid system
operating in an islanded mode. The community microgrid equips with two pa-
rallel solar PV sources as a power generator and an EV battery as storage. The
EV battery serves two manifolds; it provides power for microgrid resiliency and
inertia for virtual inertia emulation. The reinforcement learning-based weights
adjustment scheme is utilized to adjust the impact of the virtual-inertia emula-
tion and droop control online based on the active power to frequency characte-
ristic. The microgrid model and control mechanisms are implemented in
MATLAB/Simulink and set up in OPAL-RT real-time simulation to test the fea-
sibility and effectiveness of the developed control strategy. The simulation re-
sults demonstrate robust voltage and frequency regulation, accurate pow-
er-sharing, and improved transient response of the community microgrid sys-
tems. After the MATALB simulation, the proposed microgrid architecture and
the related control have undergone extensive testing in OPAL-RT to verify their
validity, and the real-time simulation results indicate that they have many po-

tential uses in the development of the smart grid.
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