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High fidelity modeling of plasma based acceleration (PBA) requires the use of three 
dimensional, fully nonlinear, and kinetic descriptions based on the particle-in-cell (PIC) 
method. In PBA an intense particle beam or laser (driver) propagates through a tenuous 
plasma whereby it excites a plasma wave wake. Three-dimensional PIC algorithms based 
on the quasi-static approximation (QSA) have been successfully applied to efficiently model 
the interaction between relativistic charged particle beams and plasma. In a QSA PIC 
algorithm, the plasma response to a charged particle beam or laser driver is calculated 
based on forces from the driver and self-consistent forces from the QSA form of Maxwell’s 
equations. These fields are then used to advance the charged particle beam or laser 
forward by a large time step. Since the time step is not limited by the regular Courant-
Friedrichs-Lewy (CFL) condition that constrains a standard 3D fully electromagnetic PIC 
code, a 3D QSA PIC code can achieve orders of magnitude speedup in performance. 
Recently, a new hybrid QSA PIC algorithm that combines another speedup technique 
known as an azimuthal Fourier decomposition has been proposed and implemented. This 
hybrid algorithm decomposes the electromagnetic fields, charge and current density into 
azimuthal harmonics and only the Fourier coefficients need to be updated, which can 
reduce the algorithmic complexity of a 3D code to that of a 2D code. Modeling the 
laser-plasma interaction in a full 3D electromagnetic PIC algorithm is very computationally 
expensive due the enormous disparity of physical scales to be resolved. In the QSA the laser 
is modeled using the ponderomotive guiding center (PGC) approach. We describe how to 
implement a PGC algorithm compatible for the QSA PIC algorithms based on the azimuthal 
mode expansion. This algorithm permits time steps orders of magnitude larger than the 
cell size and it can be asynchronously parallelized. Details on how this is implemented 
into the QSA PIC code that utilizes an azimuthal mode expansion, QPAD, are also described. 
Benchmarks and comparisons between a fully 3D explicit PIC code (OSIRIS), as well as a 
few examples related to laser wakefield acceleration, are presented.
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1. Introduction

Laser wakefield acceleration (LWFAs) [1,2] has attracted much interest and shown remarkable progress in the past four 
decades [3]. Due to the capability of producing large accelerating gradients and microscopic accelerating structures, LW-
FAs have immense promise for building compact and affordable accelerators for applications in high-energy physics and 
advanced radiation sources. In LWFA, when a relativistic laser pulse propagates through an under-dense plasma, the back-
ground electrons will be expelled sideways and forward by the ponderomotive force of laser pulse after which they are 
attracted back towards the axis by the Coulomb force from the immobile ions. They then execute a multi-dimensional 
plasma oscillation creating a wakefield. Charged particle beams riding at the correct phase of a wakefield (moving at close 
to the speed of light) will be continuously accelerated.

Modeling the complex physics in a LWFA requires self-consistently solving Maxwell’s equations and the relativistic equa-
tions of motion for plasma and trailing beam particles. Kinetic simulations based on the particle-in-cell (PIC) algorithm [4–6]
have and continue to play a critical role in understanding and utilizing the LWFA processes. However, carrying out full 3D 
explicit start-to-end PIC simulations for LWFAs is very challenging mainly due the need to resolve the shortest spatial and 
temporal scales (typically the laser wavelength and period) and the huge disparity between these smallest physical scales 
and the acceleration length Lacc (∼mm to ∼m). We note that for some beam loading scenarios [7,8] the trailing beam can 
be very narrow and this transverse scale is the smallest spatial scale needed to be resolved. For simplicity when discussing 
computational needs we assume that the smallest transverse scale is much larger than the laser wavelength. Furthermore, 
there can be subtle numerical issues which can affect the fidelity of these simulations, e.g., numerical Cherenkov instability 
[9–12], numerical dispersion, and spurious forces [13,14]. To mitigate or eliminate these deleterious effects often requires 
finer spatial-temporal resolution or more sophisticated numerical schemes, which inevitably increases the computational 
cost. For example, even with the today’s most powerful supercomputers [15], simulating a LWFA driven by a peta-watt laser 
pulse with ten-centimeter- to meter-class acceleration distance needs ∼ 108 CPU hours (assuming the use of the moving 
window [16]) and therefore it still lacks feasibility with 3D explicit PIC codes. To achieve highly efficient modeling of LWFA 
processes, various speedup techniques based on reduced models have been developed, such as a Lorentz boosted frame 
technique [17,18], quasi-static approximation [19], ponderomotive guiding center model [19–21] and azimuthal Fourier de-
composition [22–24]. In some cases these methods have been combined.

The ponderomotive guiding center (PGC) approximation is based on the idea of averaging the motion of a particle in the 
laser and wakefields over the laser frequency. This permits solving for the envelope of the laser and then using the laser 
envelope to calculate an average or ponderomotive force on the plasma electrons. This approximation works when there is 
no back-scattered light and there are no relativistic particles that reside within the laser pulse. With this time-averaging, the 
smallest physical scales needed to be resolved now become the spot size and wavelength of the wake which are typically 
the laser pulse spot size and duration. Therefore, the PGC approximation can provide speedups on the order of the factor 
∼ (ω0/ωp)

2 against the standard PIC simulations, where ω0 and ωp are the laser and plasma frequency respectively. We 
typically have ω0/ωp � 1 for LWFA problems of interests and thus the speedup provided by the PGC approximation is 
considerable. The PGC makes the computational needs of LWFA simulations similar to those of a PWFA per c/ωp of driver 
propagation distance. The Lorentz boosted frame method can achieve speedups on the order of a factor of ∼ γ 2

f = (1 −β2
f )

−2

by modeling the physics in a boosted frame moving at a speed of β f c. In the boosted frame, the laser frequency is Doppler-

shifted from ω0 to ω′
0 = ω0/γ f (1 + β f ) and the plasma frequency ωp ≡

√
4πe2np
γ f me

is a Lorentz invariant. Thus, the cell size 

and time step used to resolve the laser wavelength are increased (the number of cells remains the same as the number 
of laser cycles is a Lorentz invariant). In this frame the plasma length (acceleration length) is also Lorentz contracted by a 
factor γ −1

f . The maximum speedup is achieved when ω′
0 ∼ ω′

p , which leads to a speedup that scales as γ 2
f ∼ (ω0/2ωp)

2. 
The Lorentz boosted frame technique also requires that there is no back-scattered radiation and all forward moving modes 
have similar phase velocities. For both the PGC and Lorentz boosted frame methods it is assumed that the number of 
particles per cell is kept fixed when estimating the speedups. Therefore, the two approaches can provide similar speedups. 
Although the PGC can reduce the disparity between the minimum and maximum scales to be resolved, the use of a standard 
explicit PIC simulation is still subject to the limitation of time step size, which is a necessary condition to guarantee the 
numerical stability [known as the Courant–Friedrichs–Lewy (CFL) condition]. We note that even without the CFL constraint 
the time steps need to be small enough that particles do not move a distance approaching the smallest physical scale. The 
quasi-static approximation (QSA), initially presented as an analytical approach to study short-pulse laser interacting with 
plasma [19], was developed to treat the disparity in the physical scale between the evolution of lasers/charged particle 
beams and the plasma response. The QSA is essentially a multi-scale method that can separate the fast-varying plasma 
response, characterized by ω−1

p , from the slow-varying evolution of lasers/charged particle beams, characterized by Rayleigh 

length, zR ≡ πw2
0

λ0
or betatron length, β∗ ≡ σ 2

0
ε , where w0 and σ0 are the spot sizes of the laser of beam respectively, λ0 is 

the wavelength of the laser, and ε is the geometrical emittance of the beam. The QSA thus leads to speedup of β∗ωp/c for 
PWFA simulations and an additional zRωp/c speedup over the PGC method in standard PIC codes for LWFA simulations. We 
note that the PGC was first developed within the QSA [19] and was then implemented into the fully electromagnetic PIC 
description [20].
2



F. Li, W. An, F.S. Tsung et al. Journal of Computational Physics 470 (2022) 111599
Numerically, a QSA PIC code [19,25–31] calculates the plasma response using QSA based field equations by assuming 
the laser or particle beam is static and then the resultant plasma-induced fields are used to advance the laser or particle 
beam by a large time step. The QSA field equations exclude radiative fields thus permitting time steps is excess of the CFL 
condition while still resolving the evolution of the driver. For laser drivers, the QSA based PIC codes require a time averaging 
approach to model the laser and its associated ponderomotive force. This was implemented into a 2D r-z QSA based PIC 
code as described by [19] and a 3D QSA based code as described by [26,30].

Another technique to boost the computational performance is known as the azimuthal Fourier decomposition [22–24]
(also referred to as a quasi-3D or cylindrical mode expansion in the literature). In this technique, all the electromagnetic 
fields, and the charge and current density are expanded into a truncated Fourier series in φ (the azimuthal coordinate). The 
maximum number of Fourier harmonics that are kept is determined by the degree of asymmetry of the physical problem. 
This method turns the original 3D field updates into a series of 2D updates by only solving the complex Fourier coefficients 
defined on the 2D r-z grid, and thus its computational complexity is greatly reduced. Thus it is a hybrid approach that uses 
a PIC description on an r − z grid and a gridless description in φ. This approach has been successfully implemented into an 
explicit PIC framework [22–24].

Very recently, it was described how to merge the quasi-3D approach and the QSA. The result is the PIC code QPAD 
[29] which is based on the numerical workflow of QuickPIC [26,27]. It can enhance the computation efficiency by orders of 
magnitude compared to the full 3D standard and 3D QSA PIC codes. Implementing the PGC algorithm into a quasi-3D QSA 
based PIC code such as QPAD will enable simulating meter long LWFA simulations (that require peta-watt scale lasers) on 
small scale parallel computers (including desktop) while maintaining high fidelity so long as self-injection is not occurring 
and the laser does not overlap with the relativistic electron beam. The QSA and its neglect of radiative fields also has the 
advantage that it is more straightforward to handle small cell sizes in the transverse direction as can be needed for some 
nonlinear beam loading scenarios.

In this paper, based on the existing PGC theoretical model [19], we extend the PGC algorithm from regular QSA [19,26]
and standard electromagnetic PIC codes [20,21] to a Fourier decomposed QSA code. In Ref. [21] the PGC was implemented 
into an r-ξ (ξ = ct − z) PIC code and the envelope solver included all derivatives. The implementation into QPAD will 
be described in detail. This algorithm consists of two components — a Fourier decomposed finite difference solver and a 
QSA based particle pusher that includes the ponderomotive force. The proposed PGC laser solver is not constrained by the 
conventional CFL condition and is unconditionally stable for modeling lasers in vacuum. In the presence of plasma a large 
time step is still allowed. Moreover, the proposed algorithm is compatible with the pipelining technique in QPAD (based on 
ideas from QuickPIC [32]) and thus can be executed asynchronously in parallel.

The paper is organized as follows: In Section 2, we first briefly review the PGC theory, including the envelope equation 
for laser and the ponderomotive force for plasma particles. In Section 3, we describe the finite difference laser solver and 
provide a proof of unconditional numerical stability. This is followed by the detailed description of the azimuthal Fourier 
decomposition form for the laser solver. Next, the plasma susceptibility deposition scheme and the plasma particle pusher 
are presented in Section 4 and 5. In Section 6, comparisons between QPAD [29] and OSIRIS [33,34] for a freely-drifting laser 
pulses in vacuum, standard LWFA driven by a regular Gaussian beam, and LWFA driven by a higher order Laguerre-Gaussian 
beam are presented.

2. Mathematical description of PGC model

This section will briefly review the main components of the PGC theoretical model [19,20]. The basic idea of PGC model 
is separating the physics into the rapidly varying components caused by the laser oscillation (ã) and the slowly varying 
components of the wake arising from averaging over the laser period (A). Assuming the Coulomb gauge ∇ · (A + ã) = 0, the 
wave equation under the QSA for the vector potential is given by [19](

∇2 − ∂2

∂t2

)
(A+ ã) = −J− j̃+ ∂

∂t
∇� (1)

where the uppercase symbols A, � and J are the time-averaged vector potential, scalar potential and plasma current, while 
the lowercase symbols ã and j̃ are the vector potential and the current density associated with the fundamental frequency of 
the laser field. Note that the high frequency contribution to the scalar potential is dropped [19]. Here and in the remainder 
of the paper, normalized units are used. Length, time, mass and charge are normalized to cω−1

p , ω−1
p , electron rest mass 

me , and electron charge e respectively. The rapidly varying current density can be expressed in terms of the laser vector 
potential and relativistic factor [Eq. (A34) in Ref. [19]] as

j̃ = −ã
∑
i

qiρi

γ̄im0i
(2)

where the ρi , qi , m0i and γ̄i are the charge density, charge, rest mass and averaged Lorentz factor of the i-th particle species. 
The derivation of Eq. (2) uses the relationship between the rapidly varying current and plasma transverse momentum p̃⊥i , 
i.e., j̃ = ∑

i ρi p̃⊥i/(γ̄im0i), and the canonical momentum conservation p̃⊥i = −qi ã. A more rigorous derivation can be found 
3
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in the appendix of Ref. [19]. Separating the rapidly varying component of Eq. (1) out and combining with Eq. (2), the 
evolution of laser fields satisfies the following PDE(

∇2 − ∂

∂t2
−

∑
i

qiρi

γ̄im0i

)
ã = 0. (3)

By assuming ã can be expressed as the product of a rapidly varying phase term and a slowly varying complex envelope, i.e.,

ã = a(x⊥, ξ, s)

2
exp(ik0ξ)ê⊥ + c.c. (4)

the evolution of the laser envelope a satisfies

2
∂

∂s

(
ik0 + ∂

∂ξ

)
a = (∇2⊥ + χ)a (5)

where the Galilean transformation ξ ≡ t − z (z is the laser propagation direction), s = t has been carried out, k0 is the 
wavevector corresponding to ω0 and χ , which describes the plasma response, is defined as

χ = −
∑
i

qiρi

γ̄im0i
. (6)

Mora and Antonsen [19] showed that the time-averaged Lorentz factor is given by

γ̄ =
[
1+ ū2 +

(
q

m0

)2 |a|2
2

]1/2

, (7)

where the ū is the time-averaged proper velocity.
The equation of motion for particles couples the evolution of the laser envelope and the plasma response together. The 

time-averaged equation of motion for plasma particles can be expressed as

dū

dt
= q

m0

(
E+ ū

γ̄
× B− 1

4

q

γ̄m0
∇|a|2

)
(8)

where E and B are the time-averaged electric and magnetic fields associated with the plasma response. The term having 
∇|a|2 is the ponderomotive force from the laser. As long as the particle experiences enough laser oscillation cycles and 
the laser envelope changes little within a single cycle, the equation above is sufficiently accurate. Under the QSA, we have 
dt → (1 − v̄ z)dξ and the time averaged equation of motion for a plasma particle becomes

dū

dξ
= q/m0

γ̄ − ūz

(
γ̄ E+ ū× B− 1

4

q

m0
∇|a|2

)
. (9)

The laser envelope equation [Eq. (5)], the equation of motion for plasma particles [Eq. (9)] and the Maxwell’s equations 
under QSA (see ref. [27]) constitute a complete set of equations, and thus can be adopted as the working equations for a 
QSA simulation.

3. Laser field solver

3.1. Finite difference solver

Assuming that in a QSA simulation, the physical quantities associated with the plasma are defined on the integer time 
step s = n�s while the laser field is defined on the half-integer time step s = (n + 1

2 )�s . The plasma and laser are then 
advanced forward in s by the leapfrog method. Approximating ∂sa with a central difference operator, i.e., ∂sa → (an+ 1

2 −
an− 1

2 )/�s , Eq. (5) can be written as[
ik0 − 1

4
�s(∇2⊥ + χn)

]
an+ 1

2 + ∂an+ 1
2

∂ξ
=

[
ik0 + 1

4
�s(∇2⊥ + χn)

]
an− 1

2 + ∂an− 1
2

∂ξ
. (10)

In a QSA PIC code, the asynchronous parallel algorithm (pipelining) [32] is usually employed to improve the parallelism 
of the simulations. In this approach the quantities at smaller ξ (the front of the driver) are known at larger values of s. Since 
using the regular central difference for ∂ξa requires synchronous data communication among the MPI nodes distributed in 
the ξ -direction, then it is not possible to use a centered definition for ∂ξa. Instead, we choose a second-order backward 
difference operator to approximate ∂ξa, i.e.,
4
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∂a j

∂ξ
→ Dξa j = 1

2�ξ

(3a j − 4a j−1 + a j−2), (11)

where the index j represents the field defined at ξ = j�ξ . In this way, each MPI node in the ξ -direction only needs to 
receive data from the upstream node which keeps the value of a j−1 and a j−2 at s + �s and s at the MPI boundary (at 
index j).

Another complication arises from the χnan+ 1
2 term on the LHS of Eq. (10) for the quasi-3D algorithm. The value of χn

depends on position, thus the differential equation for a is linear but with “spatially” dependent (non constant) coefficients. 
In the quasi-3D algorithm, the fields are expanded into azimuthal harmonics, i.e., Fourier modes. The presence of the spa-
tially varying χnan+ 1

2 term thus leads to cross-product terms between different azimuthal modes of χn and an+ 1
2 . This 

makes the equations for the different azimuthal modes of an+ 1
2 coupled together, adding extra difficulties to the imple-

mentation compared with a fully finite difference method. However, as we describe shortly if the couplings are carefully 
accounted for then the s advance for each mode requires the inversion of a single constant coefficient matrix.

Therefore, to address both issues we have constructed the following iterative formula for Eq. (10)(
ik0 − 1

4
�s∇2⊥ + 3

2�ξ

)
a
n+ 1

2 ,l
j

= 1

4
�sχ

n
j a

n+ 1
2 ,l−1

j + 1

2�ξ

(4a
n+ 1

2
j−1 − a

n+ 1
2

j−2 ) +
[
ik0 + 1

4
�s(∇2⊥ + χn

j )

]
a
n− 1

2
j + Dξa

n− 1
2

j

(12)

Here l is the iteration step and an+ 1
2 ,l → an+ 1

2 when l → ∞ if the iteration is converged. For this iterative finite difference 
equation, the LHS (which includes the unknown values of the laser field for the next iteration) only contains finite difference 
operators that have constant coefficients. We point out that Eq. (12) is applicable to the full 3D Cartesian, full 3D cylindrical, 
and the quasi-3D descriptions. The primary differences between them lie in the specific form of the transverse Laplacian 
∇2⊥ and the calculation of the χnan+ 1

2 term. For the full 3D Cartesian coordinate system, ∇2⊥ can be approximated using 
the classical 5-point formula and thus the linear system solvers like fast FFT and multigrid method are the usual choice. For 
the quasi-3D algorithm, as we will describe in section 3.3 the ∇2⊥ is split into multiple 1D operators in r, and we need to 
calculate the cross-product terms of χnan+ 1

2 as stated before.

3.2. Convergence and stability

It is important to understand the stability and the rate of convergence of the proposed iteration loop. In the case where 
the plasma is absent, i.e., χ = 0, there is no need to iterate over Eq. (12) and the finite difference wave equation reduces to 
the regular Crank-Nicolson (CN) method which is unconditionally stable [35].

When plasma is present (χ �= 0), the convergence condition of the iteration over l can be determined when χn is not 
spatially dependent. It can be proven (see Appendix A) that the convergence condition in this situation is

k20�
2
ξ + 9

4
>

1

16
|χn|2�2

s�
2
ξ . (13)

For typical simulation scenarios, we have χ ∼ O (1), �ξ ∼ O (0.1) and the validity of the PGC model requires k0 � 1. 
This allows for a large �s [e.g. ∼ O (1) to ∼ O (10)] according to the convergence condition [Eq. (13)]. In reality χ is not 
spatially uniform making finding an analytical convergence condition difficult. We can however still qualitatively determine 
�s through Eq. (13) by replacing χn with the maximum χ on the grid.

For an infinite number of iterations (l → ∞) and for a spatially independent χ , it can be shown that the proposed 
scheme is stable without any restrictions for �s . However, for the more relevant scenario where l is finite and χ is not 
spatially uniform, mathematically analyzing the numerical stability becomes very difficult. Nevertheless, numerous tests 
indicate that the proposed scheme is numerically stable even for a large �s [∼ O (10)] for a wide variety of LWFA-relevant 
problems.

3.3. Azimuthal Fourier decomposition

In order to make the proposed finite difference scheme applicable to QPAD, we need to further expand Eq. (12) it 
into azimuthal modes and derive the finite difference equations for each azimuthal harmonic. The complex-valued iterative 
equation [Eq. (12)] is thus split into two coupled real-valued equations corresponding to the real and imaginary parts 
respectively. The real and imaginary parts of a, i.e., aR and aI , are expanded using the following azimuthal Fourier series,

a〈·〉 = a0〈·〉 + 2
+∞∑

Re{am〈·〉} cos(mφ) − 2
+∞∑

Im{am〈·〉} sin(mφ) (14)

m=1 m=1

5
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where 〈·〉 denotes “R” or “I” and m is the harmonics number. The complex Fourier coefficients amR and amI obey the following 
equations(

−1

4
�s�m + 3

2�ξ

)
am,l
R, j − k0a

m,l
I, j = 1

4
�s(χ jaR, j)

m,l−1 + 1

2�ξ

(4amR, j−1 − amR, j−2) + SmR, j, (15)

(
−1

4
�s�m + 3

2�ξ

)
am,l
I, j + k0a

m,l
R, j =

1

4
�s(χ jaI, j)

m,l−1 + 1

2�ξ

(4amI, j−1 − amI, j−2) + SmI, j, (16)

where the Laplacian for m-th harmonic �m ≡ 1
r

∂
∂r

(
r ∂

∂r

) − m2

r2
. Without introducing ambiguity, we have left out the time 

indices to simplify the denotations. Here, the symbols aR, aI and χ explicitly appearing in Eq. (15) and (16) are defined at 
s = (n + 1

2 )�s while those included in SmR and SmI , given by

SmR, j =
1

4
�s(�ma

m
R, j + (χ jaR, j)

m) − k0a
m
I, j +Dξa

m
R, j (17)

SmI, j =
1

4
�s(�ma

m
I, j + (χ jaI, j)

m) + k0a
m
R, j +Dξa

m
I, j, (18)

are defined at s = (n − 1
2 )�s . The nonlinear terms in Eqs. (15) to (18) are calculated via the following truncated series

(χa〈·〉)m =
M∑

k=m−M

χkam−k
〈·〉 (19)

where M is the maximum harmonic number involved in the simulation.
Using a 3-point discretization, the �m operator with second-order precision can be written as

�ma
m〈·〉 → β−

i am〈·〉,i−1 − αia
m
〈·〉,i + β+

i am〈·〉,i+1 (20)

where

β±
i = 1

�2
r

(
1± 1

2i

)
, αi = 1

�2
r

(
2+ m2

i2

)
. (21)

The subscript i of am〈·〉 means it is defined at the radial position r = i�r . The coupled equations (15) and (16) can be recast 
into a penta-diagonal linear system P X = RHS, where the unknown vector X is constructed by alternatively placing aR and 
aI

X = (· · · ,amR,i, amI,i, amR,i+1, amI,i+1, · · · ). (22)

The penta-diagonal coefficient matrix P is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .

B−
i 0 Ai −k0 B+

i
B−
i k0 Ai 0 B+

i
B−
i+1 0 Ai+1 −k0 B+

i+1
B−
i+1 k0 Ai+1 0 B+

i+1
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

where B±
i = 1

4�sβ
±
i and Ai = − 1

4�sαi + 3
2�ξ

. This linear system can be efficiently solved using the cyclic reduction method 
[36].

3.4. Boundary conditions

The boundary conditions at r = 0 are different for the m = 0 and m > 0 modes. For m = 0 mode, ∂ra0〈·〉|r=0 = 0 and 

the Laplacian �0 = 1
r

∂
∂r

(
r ∂

∂r

) → 2 ∂2

∂r2
when r → 0. The former indicates that a〈·〉,i=−1 = a〈·〉,i=1. In this situation, the stencil 

coefficients for i = 0 become β−
0 = 0, β+

0 = α0 = 2/�2
r . For m > 0 modes, the symmetry requires am〈·〉 = 0 at r = 0, and thus 

am can be solved without changing the stencil coefficients.
〈·〉,i>0

6
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A Dirichlet boundary condition is used for the laser envelope of all the harmonics at r = rmax. As long as the laser enve-
lope does not extend to the boundaries, a Dirichlet boundary condition can work properly without introducing unphysical 
results.

4. Plasma susceptibility deposition

In order to solve the laser envelope equations for each harmonic [Eqs. (15) to (18)], the plasma susceptibility χm needs 
to be deposited onto the grid based on the particle information, i.e., charge, position, momentum and mass. The deposition 
scheme for χm basically follows that used for the source terms (charge density, current density, etc.) as described in Section 
3.4 of the original QPAD paper [29]. A more convenient form for χ [Eq. (6)] when dealing with particle data is

χ = − q

m0

ρ − J z
γ̄ − ūz

, (24)

which is obtained by multiplying both the numerator and denominator of Eq. (6) by (1 − v̄ z).
We start from the general formula for depositing χ as a sum over particles,

χ = 1

vol.

q

m0

∑
i

qi
γ̄i − ūz,i

1

r
Sr(r − ri)Sφ(φ − φi), (25)

where qi , ri , φi , γ̄i and ūz,i are the charge, radial position, azimuthal angle, time-averaged Lorentz factor and longitudinal 
proper velocity of the i-th particle. The particle shape function 1

r Sr(r − ri)Sφ(φ − φi) is used to interpolate the particle 
information at position (ri, φi) onto the grid position (r, φ). Both Sr and Sφ should satisfy the normalization conditions ∫
drSr = 1 and 

∫
dφSφ = 1. Since QPAD uses the gridless description in φ, we need to expand the azimuthal shape function 

Sφ into azimuthal harmonics,

Sφ(φ − φi) =
∑
m

Smφ (φi)e
imφ (26)

where the Fourier coefficient is expressed as

Smφ (φi) = 1

2π

2π∫
0

dφ′Sφ(φ′ − φi)e
−imφ′

. (27)

In QPAD we adopt the Dirac delta function as the particle shape function in φ, i.e., Sφ(φ −φi) = δ(φ −φi) and thus Smφ (φi) =
e−imφi/(2π). Therefore, the deposition formula for the m-th harmonic of χ can be written as

χm = 1

vol.

q

m0

∑
i

qi
γ̄i − ūz,i

1

2πr
Sr(r − ri)e

−imφi . (28)

In practice, it is not necessary to calculate each harmonic but only the m = 0 mode from each particle. The contribution to 
any m > 0 mode from an individual particle can be calculated from the m = 0 contribution by simply multiplying a constant 
phase factor, i.e., through the relation χm = χ0e−imφi or recursively through χm = χm−1e−iφi .

5. Particle pusher

In QPAD, all the physical quantities associated with the plasma are defined on the integer time step s = n�s . Within a 
time step, the shape of the laser or particle beam is assumed unchanged, and the ponderomotive force or the Coulomb like 
force of a drive or trailing beam is used to update the plasma response. The quantities associated with plasma, including the 
information of plasma particles, the charge and current density and the plasma-induced electromagnetic fields, are updated 
from the front to the end of the moving window for each transverse slice. The particle information and the fields are solved 
using Eq. (9) and the Maxwell’s equations with QSA described in ref. [27]. Before numerically integrating Eq. (9), one needs 
to interpolate E, B and ∇|a|2 from the grid points onto the position of each particle. Instead of calculating ∇|a|2 on the grid 
points first and then interpolating onto the particles’ positions, we choose to interpolate a and ∇a separately. The |a|2 term 
in γ̄ for an individual particle is calculated from the interpolated a, and the ∇|a|2 at the location for individual particles is 
calculated via ∇|a|2 = 2Re{a∗∇a}. This approach will reduce the number of floating point operations especially when there 
are many Fourier harmonics. The formula for interpolating a from the grid points onto the i-th particle position (ri, φi) can 
be derived as follows
7
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a(ri, φi) =
∫

dr
∫

dφ a(r, φ)Sr(r − ri)Sφ(φ − φi)

= 1

2π

∫
dr

∫
dφ

∑
m

am(r)eimφ
∑
m′

eim
′φi e−im′φ Sr(r − ri)

=
∑
m

∫
dr am(r)eimφi Sr(r − ri).

(29)

The interpolation of E and B can be done in a similar way. Since ∇⊥am = ∂am

∂r er + im
r ameφ , the formula for interpolating ∇a

is given by

∇a(ri, φi) =
∑
m

∫
dr

(
∂am

∂r
er + im

r
ameφ + ∂am

∂ξ
ez

)
eimφi Sr(r − ri). (30)

In QPAD, the plasma particle positions are defined on the integer grid points in ξ , i.e., ξ = j�ξ , so that the fields and 
ponderomotive force felt by particles are also located at ξ = j�ξ . The particle momenta are defined on the half-integer grid 
points, i.e., ξ = ( j + 1

2 )�ξ . After calculating the fields and ponderomotive force at the particle positions, we can numerically 
integrate Eq. (9) using the Boris method [37]. It should be noted that when advancing ū j− 1

2 to ū j+ 1
2 , one needs to know 

the values of γ̄ and γ̄ − ūz at ξ = j�ξ to make the Boris method applicable. These two values can be obtained during the 
so-called predictor-corrector iteration embedded in the loop for updating the plasma.

6. Benchmark and example simulations

In this section, we present comparisons of LWFA related simulations based on QPAD with the PGC and the ones based 
on full 3D OSIRIS. These benchmark comparisons include the propagation of a Gaussian laser pulse in vacuum and a stan-
dard LWFA operating in the nonlinear blowout regime with a matched spot size [38]. For these two examples we assume 
azimuthal symmetry for QPAD and thus only the m = 0 mode is used. The OSIRIS simulation is full 3D and any physical 
instabilities or physics that involves higher order modes would be included. We also include a simulation where the LWFA 
is driven by a Laguerre-Gaussian beam. In the QPAD simulation up to the m = 2 mode is included. Such a laser driver has 
been proposed to accelerate positron beams using LWFA [39].

6.1. Laser pulse propagation in vacuum

We start by simulating the propagation of a laser pulse with a transverse Gaussian profile (a lowest order Laguerre-
Gaussian mode). The laser field evolution has an analytical expression which is the solution to the paraxial Helmholtz 
equation. The complex amplitude of a certain ξ slice is given by

a(r, z) = a0
w0

w(z)
exp

( −r2

w(z)2

)
exp

[
−i

(
k0r2

2R(z)
− �(z)

)]
(31)

where z (equivalently s) is the distance from the focal waist, w0 is the waist radius, w(z) = w0

√
1+ z2/z2R is the beam ra-

dius at z, R(z) = z(1 + z2R/z2) is the radius of curvature, and � = arctan(z/zR) is the Gouy phase. In the benchmark tests, a 
laser pulse with k0w0 = 20 and a0 = 1 starts from the beam focal waist (z = 0), and travels a distance of 600k−1

0 , i.e., three 
Rayleigh lengths, 3 zR . The complex amplitude initially has a longitudinal profile of the form cos2[π(ξ − ξ0)/(2τFWHM)]
with central position ξ0 = 0 and duration ω0τFWHM = 60. In the OSIRIS simulation, a moving window with spatial res-
olution of �x = �y = 2k−1

0 and �z = 0.2k−1
0 is used. The time step is �t = 0.125ω−1

0 . To accurately simulate the 
group velocity, we used the numerical-dispersion-free field solver [14] for all the OSIRIS simulations described this pa-
per. In the QPAD simulation, �r = 1.56k−1

0 and �ξ = 0.78k−1
0 . We varied the time steps from �s = 20ω−1

0 = 0.1zR/c to 
�s = 200ω−1

0 = zR/c.
Fig. 1 summarizes the simulation results. In Fig. 1(a) to (d), the snapshots of the laser field at four propagation distances 

(s) are presented. The top and bottom halves correspond to the OSIRIS and QPAD simulation results, respectively. Unless 
otherwise specified, the laser pulse in the simulations here and in the remaining sections moves from the right to left. 
We carried out a series of simulations to examine the impact of �s . The lineouts at s = 3zR/c for various �s are shown 
in Fig. 1(e). The results for �s = 0.1, 0.2, 0.5zR/c fully converge to that of OSIRIS while for �s = zR/c there is a large 
deviation. This comparison indicates that the time step needs to properly resolve the evolution of the laser which in vacuum 
is the Rayleigh length.

6.2. LWFA driven by a Gaussian laser pulse

In this subsection, we provide results of simulations for a standard LWFA (unloaded) operating in the self guided blowout 
regime [38]. In the blowout regime the wake is created by expelling the plasma electrons forward and radially outward 
8
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Fig. 1. Comparison simulations of a freely drifting laser pulse between OSIRIS and QPAD PGC. Snapshots of the laser fields at (a) s = 0, (b) s = zR , (c) s = 2zR
and (d) s = 3zR are presented. The time step of QPAD simulations from (a) to (d) is �s = 0.2zR/c. (e) The impact induced by the time step sizes in QPAD.

Fig. 2. Snapshots of the laser fields and background electron density of QPAD and OSIRIS simulations at (a) s = 100ω−1
p � 0.6zR/c, (b) s = 300ω−1

p � 1.8zR/c, 
and (c) s = 500ω−1

p � 2.9zR/c.

where they form a narrow sheath that surrounds a plasma column [40,41]. In the nonlinear, self-guide LWFA regime a 
matched spot size

kpw0 � 2
√
a0 (32)

for the laser is assumed and the laser intensity is relativistic a0 > 1. Under this condition, the ponderomotive force felt by 
the plasma background electrons that have been blown out is roughly balanced by the Coulomb force from the ions, and 
hence the wakefield structure as well as the laser propagation can remain stable without large oscillation in the wake and 
laser amplitudes. In the simulation, we initialized a laser pulse with kp w0 = 3.2, k0/kp = 34 (the Rayleigh length is thus 
kpzR � 170), ωpτFWHM = 2.26 and a0 = 2.5 in vacuum and it is then focused to the beginning of a plasma density upramp 
of length 20k−1

p . We used 8 particles per cell in r and 16 particles distributed in φ. The plasma density was constant at the 
end of the ramp. In the OSIRIS simulation, the spatial resolution of simulation box is �x = �y = 0.1k−1

p and �z = 0.2k−1
0 . 

The time step is �t = 0.136ω−1
0 . In the QPAD simulations �r = 0.1k−1

p and �ξ = 0.015k−1
p . Again, only m = 0 mode is 

considered due to the assumed azimuthal symmetry.
Fig. 2(a) to (c) shows snapshots of the laser field and the background electron density at different propagation distances 

from both the QPAD and OSIRIS simulations. The time step of the QPAD simulation is �s = 10ω−1
p � 0.058zR/c and 3 

iterations for the PGC laser solver are used. The full set of numerical parameters of QPAD and OSIRIS simulations can be 
found in Table 1. It can be clearly seen that the laser diffraction, the erosion of the laser front and the wake shape in both 
QPAD and OSIRIS agree well with each other.
9
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Fig. 3. Benchmark test results between OSIRIS and QPAD PGC simulations. The impacts induced by (a) the number of iterations for PGC laser solver and (b) 
the time step sizes in QPAD are also presented. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We compare the impact of the choices for number of iterations and time step on the wakefield in Fig. 3 where central 
lineouts for the axial electric field Ez are shown. For �s = 10ω−1

p � 0.058zR/c, we can see in Fig. 3(a), where Ez at s =
50ω−1

p is shown that the results for using 1, 2 and 3 PGC solver iterations are nearly identical and they also agree well 
with results from OSIRIS simulations. A closer examination of the Ez field in the dashed box (the inset) indicates that 
using only one iteration overestimates the Ez amplitude slightly (blue line). In Fig. 3(b), results from various time steps but 
with three iterations for the PGC laser solver are presented. The results for all time steps, �s = 0.029, 0.059, 0.147 and 
0.294zR/c are roughly converged and agree well with the OSIRIS result. From the inset in Fig. 3(b), it can be seen that the 
results for the two cases with larger �s underestimate the wakefield amplitude slightly when compared to the two cases 
with smaller �s . We also find that increasing the iteration number of the PGC laser solver will not significantly impact the 
computational performance of simulation. Therefore, in order to guarantee the simulation accuracy, one should avoid using 
a single iteration for PGC solver and choose a time step that can sufficiently resolve the Rayleigh length.

Particularly noteworthy is the excellent speedup achieved in these QPAD PGC simulations. Both the QPAD and OSIRIS 
simulations were carried out on the Cori cluster “Haswell” nodes at NERSC (Intel Xeon E5-2698 v3 @ 2.30 GHz). The 
numerical configurations and the computation time of both simulations are summarized in Table 1. Due to the QSA the 
number of time steps in the QPAD simulation is dramatically decreased compared to the OSIRIS simulation. The azimuthal 
Fourier decomposition reduces the computational complexity from 3D to 2D, leading to orders of magnitude reduction in 
the number of cells and particles needed. Therefore, the final core hours consumed by the QPAD simulation are ∼ 104

less than that of the OSIRIS simulation. In this comparison we used 16 cores for the QPAD simulation and 2048 for the 
OSIRIS simulation so in this specific example the wall clock time speedup was ∼ 200. The performance of QPAD-PGC is also 
evaluated and the detailed scaling test results can be found in the Appendix C. For a typical LWFA case, QPAD-PGC can be 
well scaled to over 103 cores.

6.3. LWFA driven by a Laguerre-Gaussian beam

In this subsection, we demonstrate the capability of the azimuthal mode expansion for modeling physics that requires a 
finite but small number azimuthal modes via an example where a LWFA is driven by a higher order Laguerre-Gaussian laser 
pulse. The complex amplitude of the general Laguerre-Gaussian modes is given by [42]

a(r, z) = a0Cp,l
w0

w(z)

(
r

w(z)

)|l|
exp

( −r2

w(z)2

)
L|l|
p

(
2r2

w2(z)

)
exp

[
−i

(
k0r2

2R(z)
+ lφ − �(z)

)]
(33)

where p and l are the radial and azimuthal indices, L|l|
p is the generalized Laguerre polynomial, Cp,l is the normalized 

amplitude of the mode, and the definitions for w(z) and R(z) are identical to those of the fundamental Gaussian mode. The 
Gouy phase shift of a Laguerre-Gaussian beam is exaggerated by the factor 2p + |l|, i.e., �(z) = (2p + |l| + 1) arctan(z/zR). 
For the modes p = 0 and |l| > 0, the laser intensity vanishes at r = 0, and increases and then decreases radially, presenting 
a donut-like intensity distribution. The associated ponderomotive force will push the background electrons inside the donut 
(the region where the ∂|a|2

∂r is positive) inward, which then forms a high-density electron column on the axis. This particular 
field structure can provide a focusing force for positive charged particles and hence has been considered for positron beam 
acceleration [39].
10
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Table 1
Configurations and computation time of OSIRIS and QPAD simulations for the LWFA.

OSIRIS

cell sizes (�x,�y ,�z) 0.1 k−1
p , 0.1 k−1

p , 5.88× 10−3 k−1
p (0.2 k−1

0 )

number of cells 300 × 300× 2550

particles per cell (Nx,Ny ,Nz) 2, 2, 1

number of particles 9.18 × 108

time step (�t ) 0.004 k−1
p (0.136 k−1

0 )

number of time steps 1.25 × 104

number of processors 2048

core hours ∼ 2× 104 hrs.

QPAD

cell sizes (�r ,�ξ ) 0.1 k−1
p , 0.015 k−1

p

number of cells 256 × 1000

particles per cell (Nr ,Nφ) 8, 16

number of particles (slice) 4096

number of particles (total) 4.096× 106

time step (�t ) 10 k−1
p

number of time steps 50

number of azimuthal mode 1

number of processors 16

core hours 0.8

Fig. 4. QPAD-PGC simulation of a LWFA driven by a Laguerre-Gaussian laser pulse with l = 1 and p = 0. Snapshots of (a) the laser fields and plasma electron 
density, (b) axial field Ez and (c) lineouts of Ez at kpr = 4 are taken at ωp s = 40.

Fig. 4 shows the plasma wake excited by a laser pulse with (p, l) = (0, 1), a0 = 2.1, kpw0 = 6, ω0/ωp = 20 and 
ωpτFWHM = 2.3. The simulation box has a dimension of 25.6k−1

p × 13k−1
p in the radial and axial directions and the spa-

tial resolution is �r = 0.1k−1
p and �ξ = 0.04k−1

p . The time step is �s = 5ω−1
p . To well resolve the asymmetry due to the 

e−ilφ term, the azimuthal mode expansion is truncated at m = 2. Figs. 4(a) to (c) present the background electron den-
sity, axial field Ez at ωps = 40 and the lineouts of Ez at kpr = 4, respectively. In Fig. 4(a) and (b), the top and bottom 
subfigures correspond to the results from 3D OSIRIS and QPAD-PGC simulations, respectively. As expected, the laser with 
a donut-shaped intensity profile simultaneously repels the ambient electrons inward and outward, forming an electron-
rarefied toroidal wake behind. From the Fig. 4(c), it is clear that the lineout of Ez at kpr = 4 [denoted by the dashed lines 
in Fig. 4(b)] from the QPAD simulation is in excellent agreement with that from a full 3D OSIRIS simulation.

7. Conclusion

In summary, we have described a new quasi-static based particle-in-cell algorithm that utilizes the ponderomotive guid-
ing center approach together with an azimuthal mode expansion. The proposed algorithm is not restricted by the regular 
CFL condition for the time step as is the case for a standard fully electromagnetic PIC code. The algorithm can also be asyn-
11
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chronously parallelized (pipelined). The algorithm has been implemented into the quasi-static PIC code QPAD. In QPAD, the 
laser envelope equation, the Maxwell’s equations and all the physical quantities are decomposed into azimuthal harmonics, 
i.e., Fourier modes. With this hybrid approach where a PIC description is used in r − z and a gridless description is used 
in φ, QPAD with PGC model can more efficiently simulate short pulse laser-plasma interactions than full 3D PIC, quasi-3D 
explicit PIC, or full 3D quasi-static codes. The implementation of the plasma particle pusher and the plasma susceptibility 
deposition are also described. This new algorithm was benchmarked and compared against the results from the full 3D 
PIC code OSIRIS for a few sample cases. Excellent agreement was achieved for the simulations of a laser propagating freely 
in vacuum and a standard LWFA problem. Enormous reduction of in core-hours (∼4 orders of magnitude) compared to a 
full 3D PIC code were obtained while maintaining high fidelity. We also simulated a LWFA driven by a Laguerre-Gaussian 
laser pulse as an example to show the capability of multi-mode simulations. With the PGC algorithm, QPAD can also very 
effectively model PWFA and LWFA with trailing particle beams and photon acceleration. Future directions for algorithm 
enhancement will include mesh refinement and improving the envelope solver to handle pump depletion distances.
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Appendix A. Derivation of iterative convergence conditions for a uniform χn

Given a simulation time step s = n�s , the quantities a
n+ 1

2
j−1 , an+ 1

2
j−2 and an− 1

2
j in Eq. (12) can be viewed as constants since 

here we only explore how the solution converges as increasing l. Subtracting Eq. (12) for l and l − 1 gives,(
ik0 − 1

4
�s∇2⊥ + 3

2�ξ

)
rl = 1

4
�sχ

nrl−1 (A.1)

where rl ≡ a
n+ 1

2 ,l
j − a

n+ 1
2 ,l−1

j and χn is assumed to have no spatial dependence. We define i[k⊥] as the counterpart to ∇⊥
in the k-space such that in the Cartesian coordinates, [k⊥] is given by

[k⊥] = sin(kx�x/2)

�x/2
ex + sin(ky�y/2)

�y/2
ey, (A.2)

where �x, �y are the cell sizes of the mesh-grid in the x-y plane. Using the ansatz rl = r̃leik⊥·x⊥ , the ratio of the residuals 
of two adjacent iterations is given by∣∣∣∣∣ r̃l

r̃l−1

∣∣∣∣∣
2

=
1
16�2

s |χn|2(
1
4�s[k⊥]2 + 3

2�ξ

)2 + k20

≤
1
16�2

s |χn|2
9

4�2
ξ

+ k20
, (A.3)

A necessary condition for convergence is |r̃l/r̃l−1| < 1 which leads to

k20�
2
ξ + 9

>
1 |χn|2�2

s�
2
ξ . (A.4)
4 16

12
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Appendix B. Proof of numerical stability for a uniform χn and l → ∞

We carry out a von Neumann analysis to show that the proposed laser solver is unconditionally stable when χ has no 
spatial dependence for each time step and the number of iterations approaches infinity. In this situation, the an+ 1

2 ,l and 
an+ 1

2 ,l−1 converge to an+ 1
2 and Eq. (12) actually becomes Eq. (10). The round-off error εn = anN − an (anN is the numerical 

solution obtained in finite precision arithmetic and an is precise solution of the difference equation) still satisfies Eq. (10) in 
the sense of machine precision. Using the ansatz εn = gneikξ ξ eik⊥·x⊥ where g is the error growth factor, we can obtain(

ik0 + 1

4
�s([k⊥]2 − χn)

)
εn+ 1

2 + i[kξ ]εn+ 1
2 =

(
ik0 − 1

4
�s([k⊥]2 − χn)

)
εn− 1

2 + i[kξ ]εn− 1
2 (B.1)

where i[kξ ] is the counterpart of ∂
∂ξ

in the k-space. For the backward difference operator in ξ used in this paper, [kξ ] is 
given by

[kξ ] =
(
3

2
e−i 12 kξ �ξ − 1

2
e−i 32 kξ �ξ

)
sin(kξ�ξ/2)

�ξ/2
. (B.2)

The growth rate of the numerical error is

g = εn+ 1
2

εn− 1
2

= i(Re{[kξ ]} + k0) − Im{[kξ ]} − 1
4�s([k⊥]2 − χn)

i(Re{[kξ ]} + k0) − Im{[kξ ]} + 1
4�s([k⊥]2 − χn)

. (B.3)

According to Eq. (B.2) the imaginary part of [kξ ]

Im{[kξ ]} =
[
1

2
sin

(
3

2
kξ�ξ

)
− 3

2
sin

(
1

2
kξ�ξ

)]
sin(kξ�ξ/2)

�ξ/2
< 0 (B.4)

for any real kξ . Since χn < 0 according to Eq. (6), [k⊥]2 − χn > 0. Therefore,

|g|2 =
(
Re{[kξ ]} + k0

)2 + ( 1
4�s([k⊥]2 − χn) + Im{[kξ ]}

)2
(
Re{[kξ ]} + k0

)2 + ( 1
4�s([k⊥]2 − χn) − Im{[kξ ]}

)2 ≤ 1 (B.5)

and the equality holds only when kξ = 0. |g| ≤ 1 means the round-off error will not grow as n increases and the algorithm 
is thus numerically stable. This conclusion does not depend on the specific forms of [k⊥] which implies that the numerical 
stability is independent of the coordinate system and specific form of the difference operator in the transverse plane.

Appendix C. Parallel scaling

Like the original QPAD, QPAD-PGC is also parallelized using MPI and runs on distributed memory systems. In this ap-
pendix, we present the scalings of QPAD-PGC on the Cori cluster at NERSC. For a QSA code, the longitudinal and transverse 
parallel scalability differ from each other due their use of fundamentally different parallelization schemes. In the longi-
tudinal direction the code is parallelized using a pipelining algorithm which has shown excellent scalability in previous 
work [32]. In the transverse direction the code is parallelized using domain decomposition and the parallelization does not 
scale linearly since the field and laser solvers use the cyclic reduction method. To quantify the parallel scalability in the 
different directions, we carried out transverse, longitudinal and bi-directional scaling tests. In the transverse and longitudi-
nal tests, the simulation window is partitioned only in the transverse and longitudinal directions respectively, while in the 
bi-directional test the window is partitioned in both directions and the number of cores in both directions are set to be 
equal.

An LWFA simulation with the same physical parameters as Section 6.2 is used for the scaling tests. In the strong scaling 
test the total problem size is fixed and the relation between the runtime and the number of cores is examined. The simula-
tion window has 214 ×213 cells in the transverse and longitudinal directions, and there are 8 macro-particles within a radial 
cell size �r and 8 macro-particles distributed in 2π angle. In the weak scaling test, the same physical problem is simulated 
but the resolution is varied from 29 × 28 cells to 214 × 213 cells where the numbers of MPI partitions are varied from 1 to 
1,024 respectively. Thus, each MPI partition is fixed with 217 cells (the partition shape may vary for different total number 
of cores) in each case and the same number of particles per cell as for the strong scaling test is used. The results of the 
scaling benchmarks are presented in Fig. C.5. Due to the excellent scalability of pipelining algorithm, the pure longitudinal 
partitioning (blue lines) in both strong and weak scaling tests are very close to the ideal performance (dashed line). For the 
strong scaling the pure transverse partitioning (red lines) start to deviate significantly from the ideal performance when the 
number of cores is roughly larger than 100 (or the number of cells per core becomes less than ∼ 106). The performance 
of the bi-directional partitioning (yellow lines) lies between the pure transverse and longitudinal partitioning when the 
number of cores � 20. The one-step single-core run of the strong scaling test (214 × 213 cells) costs 3300 core seconds. All 
the above tests excluded the file I/O.
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Fig. C.5. (a) Strong scaling and (b) weak scaling of QPAD-PGC.
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