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Abstract

Collagen fibers play an important role in

both the structure and function of various

tissues in the human body. Visualization

and quantitative measurements of colla-

gen fibers are possible through imaging

modalities such as second harmonic gen-

eration (SHG), but accurate segmentation

of collagen fibers is difficult for datasets

involving variable imaging depths due to

the effects of scattering and absorption. Therefore, an objective approach to

segmentation is needed for datasets with images of variable SHG intensity. In

this study, a U-Net convolutional neural network (CNN) was trained to accu-

rately segment collagen-positive pixels throughout SHG z-stacks. CNN perfor-

mance was benchmarked against other common thresholding techniques, and

was found to outperform intensity-based segmentation algorithms within an

independent dataset, particularly at deeper imaging depths. These results indi-

cate that a trained CNN can accurately segment collagen-positive pixels within

a wide range of imaging depths, which is useful for quantitative SHG imaging

in thick tissues.

KEYWORD S

collagen, convolutional neural network, image segmentation, second harmonic generation

1 | INTRODUCTION

Second harmonic generation (SHG) microscopy is a non-
linear optical technique that has been used to analyze
collagen organization for a broad range of biomedical

research applications including skin biomechanics and
aging [1, 2], ovarian cancer [3] and cardiovascular disease
[4]. One key advantage of SHG microscopy is the ability
to nondestructively quantify the three-dimensional
(3D) organization of collagen fibers due to its intrinsic
depth-sectioning capabilities. Many algorithms have pre-
viously been developed and used to quantify collagen
fiber orientation or organization within 2D and 3D SHG
image data, such as Fourier, Hough and curvelet trans-
forms, as well as gradient-based techniques [5].

Abbreviations: CNN, convolutional neural network; GPU, graphics
processing unit; ROC, receiver-operating characteristic; SHG, second
harmonic generation; TNR, true negative rate; TPEF, two photon
excited fluorescence; TPR, true positive rate.
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Additionally, techniques like polarization-sensitive SHG
and circular dichroism SHG, can probe other aspects of
collagen organization at each pixel [6, 7]. Although SHG
microscopy allows for 3D depth-resolved imaging of tis-
sues and quantitative analysis of collagen structure at
multiple scales, segmentation of collagen-positive regions
within a single image or 3D z-stack is required for quanti-
fication of various metrics related to SHG microscopy
such as average SHG intensity of fibers, collagen fiber ori-
entation and fiber length [8, 9]. This is not a trivial pro-
cess, because the collected signal becomes increasingly
attenuated below the tissue surface due to photon scatter-
ing and absorption [10, 11]. Furthermore, the SHG
images may also contain a signal from other tissue con-
stituents in addition to collagen. These challenges make
segmentation of collagen fibers difficult using SHG
intensity-based thresholding [10].

Deep learning neural networks can provide a more
accurate solution to automated collagen segmentation
[12]. Neural networks are a type of artificial intelligence
that can be trained to complete a certain task through an
error optimization process. Convolutional neural net-
works (CNNs) are a type of artificial intelligence that has
become increasingly popular for biomedical image analy-
sis and segmentation [13]. CNNs work by recognizing
object-related patterns within images, which are learned
during network training to improve pattern recognition
and segmentation accuracy. Recently, the presence of
pixel-wise semantic segmentation CNN architectures,
such as U-Net, has dramatically increased in the field of
image analysis, allowing for more advanced 2D and 3D
image segmentation [13, 14]. Additionally, open-source
neural network-based toolboxes such as WekaSegmentor
[15] and iLastik allow the ability to train neural networks
on user-defined ground truth images, but may not be
appropriate for densely-labeled training images, such as
collagen-positive pixels within SHG image volumes [16].
The goal of this study was to train a U-Net CNN architec-
ture to accurately classify collagen-positive pixels within
an SHG image volume, and evaluate whether a trained
CNN can accurately segment collagen fibers deep within
tissue. This type of analysis provides an easily accessible
and relatively fast process for automatically identifying
collagen fibers within a highly scattering 3D tissue.

2 | MATERIALS AND METHODS

2.1 | Image dataset generation

Tissue samples consisting of excised ventral skin of young
(n = 15; 4 months) and aged (n = 16; 23 months)
C57BL/6J mice were prepared by carefully cleaning the

epidermis of debris and resecting the hypodermis [2].
Multiphoton image volumes (512 � 512 pixels, 1.144 μm/
pixel X-Y resolution; 13-bit intensity) containing SHG sig-
nal (855 nm excitation, ≤440 nm emission) were col-
lected using a multiphoton microscope (Bruker;
Middleton, Wisconsin) equipped with a Ti:Sapphire laser
(Spectra-Physics; Mountain View, California) and a 20�,
1.0 NA water-dipping objective (Olympus; Tokyo, Japan).
Image volumes were collected in either 1 μm or 2.5 μm
z-steps and spanned total depths of 130 to 170 μm.

Accurate ground truth collagen-positive masks were
created by first manually adjusting intensity thresholds
for each 2D image slice within a 3D z-stack until the thre-
sholded collagen-positive mask accurately reflected the
collagen-positive pixels within the intensity image.
Emphasis was placed on highlighting any pixels contain-
ing collagen SHG signal rather than delineating the con-
tours of individual fibers. Next, regions containing signal
not associated with collagen fibers (eg, noise and signal
from hair) were manually removed from the collagen-
positive masks by comparing the mask to the original
intensity image, resulting in the final ground truth
images. To reduce memory usage but still accurately
extract features relating to collagen fibers, small patches
(64 � 64 pixels) of the SHG intensity images and corre-
sponding ground truth masks were used in network
training and data were sampled in increments of 5 μm
within each image z-stack [14]. The entire dataset
(�613 000 image patches) was found to have significantly
more background pixels compared to collagen-positive
pixels, and only patches that contained at least 10%
collagen-positive pixels within the ground truth images
were considered for training, validation and testing. The
resulting image patch dataset (138 836 image patches)
contained �55% and �45% collagen-positive pixels and
background pixels, respectively. Images were randomly

FIGURE 1 Optimal threshold values (colored circles) for each

segmentation technique were computed from their corresponding

ROC curves
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assigned to either a training (70%), validation (20%) or
testing (10%) dataset, and all image patches within a sin-
gle image z-stack were assigned to the same dataset.

2.2 | Network architecture and training

A traditional U-Net CNN architecture containing four
encoding and decoding blocks was initialized using
PyTorch [17]. Briefly, each encoding and decoding block
consists of two 2D convolution layers followed by a recti-
fied linear unit (ReLU) layer. For all convolution layers,
each filter had a size of 3 � 3 pixels, and the number of
filters for each sequential encoding block was doubled
from 64 filters to 512 filters. A similar process was fol-
lowed for each decoding block such that the final decod-
ing block contained 64 filters. Between each encoding
block, a 2 � 2 2D max pooling layer was used to down-
sample feature maps by half. Similarly, each decoding
block was followed by an 2D up-sampling layer consist-
ing of a interpolation layer with a scale factor of 2. For
this network, the input images consisted of the raw 13-bit
intensity images, which were normalized by (213)-1 to
ensure network input values between 0 and 1. Network
training was performed on an RTX 2070 graphics proces-
sing unit (GPU), and an adaptive moment (ADAM) opti-
mizer (η = 0.001, β = [0.9, 0.999]) was used to adjust
weights and biases within the network [18]. After each
epoch of training, the network accuracy was assessed
with the validation set and a reduce-on-plateau scheduler
reduced the learning rate at the end of every epoch based
on the validation set accuracy to ensure overfitting did
not occur. The network was trained for 10 epochs, which
was based on when the network accuracy did not change
between epochs. Additionally, for each epoch, all input
images had a 50% chance of getting horizontally and/or
vertically flipped. The output of the CNN is a pixel-wise
collagen-positive probability map ranging between 0 and
1, and the loss was calculated using a pixel-wise binary
cross-entropy loss algorithm [19].

FIGURE 2 Representative collagen-positive maps for shallow

(<100 μm) and deep (>100 μm) z-depths (left and right columns,

respectively). From top to bottom: SHG images, corresponding

ground truth segmentation, collagen-positive CNN segmentation,

segmentation with a volume-specific intensity threshold, image-

specific intensity threshold and constant intensity threshold. Red

arrows within representative shallow intensity image indicate

signal from hair

LETTER 3 of 6

 18640648, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jbio.202200191 by U

niversity O
f A

rkansas Library, W
iley O

nline Library on [31/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2.3 | Network performance

To quantify network performance, the network output
for the testing dataset was benchmarked against three
different automated thresholding techniques to generate
collagen-positive masks: a “constant intensity” threshold,
where all intensity values greater than a single intensity
value were considered collagen-positive, as well as
“image-specific” and “volume-specific” thresholds where
intensities were considered collagen-positive if they were
greater than the mean SHG intensity either a 2D image
or 3D image volume multiplied by a scaling factor. To
identify values that resulted in the best-case performance
for each thresholding technique, a receiver operating
characteristic (ROC) curve for the entire image dataset
was produced by adjusting either the constant intensity
value, the scaling factor for the mean SHG intensities, or
the collagen-positive threshold value for the CNN proba-
bility map (Figure 1). Optimal values were determined by
finding the largest Youden's index for each technique
[20]. Using optimal threshold values for all techniques,
the number of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) pixels within the
dataset were counted, where correctly segmented
collagen-positive pixels were considered true positive.
Additionally, the true positive rate (TPR),

TPR¼ TP
TPþFN

ð1Þ

true negative rate (TNR),

TNR¼ TN
TNþFP

, ð2Þ

and accuracy,

accuracy¼ TPþTN
TPþTNþFPþFN

ð3Þ

were calculated for the testing dataset. To account for the
slight imbalance between classes [14], a dice coefficient,
or F1 score, was calculated as,

F1 score¼ 2TP
2TPþFPþFN

ð4Þ

To assess the accuracy of each technique with respect
to imaging depth, accuracy was calculated for each
512 � 512 pixel intensity image (Figure 2), and mean
accuracies were calculated at each separate imaging
depth in 5 μm z-steps. The performance of the network
was compared individually for all depths, as well as

depths <100 μm and ≥100 μm. For depth-related com-
parisons, a two-way repeated measures ANOVA was per-
formed with depth and segmentation technique as fixed
effects and each tissue sample was treated as a random
effect. Additionally, a similar statistical model with age
and depth as fixed effects was used to determine the
influence of age on segmentation. A post-hoc Dunnett
test was used to make direct comparisons between the
CNN accuracy and all segmentation techniques. Statisti-
cal analysis along with all data visualization was per-
formed using R (R Core Team; Vienna, Austria).

3 | RESULTS AND DISCUSSION

Network training took 92 minutes to complete, and the
trained network can segment a 512 � 512 pixel image in
<1 second when utilizing a GPU. To benchmark network
performance, optimal threshold values were first deter-
mined for each automated segmentation technique based
on comparison to the ground truth segmentation. Bench-
marking was performed using the testing dataset, and
was quantified using TPR, TNR, accuracy and F1 score
(Table 1). Overall, the constant intensity threshold tech-
nique was found to perform the worst for all metrics
(63.1%, 38.1%, 50.9% and 0.568, respectively), which is
potentially due to biological variability among samples
(eg, sex and age) or day-to-day variations in laser power
during image collection. These variations can be allevi-
ated by using a volume-specific mean intensity to seg-
ment images which results in improved performance
metrics (87.9%, 83.8%, 85.9% and 0.865, respectively).
However, the trained CNN outperformed all thresholding
techniques with respect to TNR (90.5%), accuracy (88.5%)
and F1 score (0.885). For binary classification applica-
tions, the final probability map is segmented using some
threshold value, typically 0.5, to determine the class of
each pixel [17]. Of note, we found that the optimal value
for determining collagen-positive pixels using the trained
CNN was 0.56, indicating that there must be careful con-
sideration in the threshold value used for final binary
segmentation (Figure 1).

Collagen fiber SHG image intensities become attenu-
ated as a function of imaging depth after �100 μm, pri-
marily due to photon scattering. To evaluate the
performance of the trained CNN with respect to imaging
depth from the tissue surface, a mean accuracy was
calculated from all full-field images (512 � 512 pixels)
corresponding to a specific depth (Figure 3). Spanning
all imaging depths, the trained CNN achieved an
average accuracy of 93.7 ± 5.87%, which is significantly
better than the image-specific threshold technique
(82.0 ± 10.6%; P < .001), and similar to the constant
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intensity (92.2 ± 9.61%) and volume-specific (91.4 ±
9.93%) techniques (P = 1.000). It should also be noted
that the image-specific threshold performs substantially
worse that other segmentation techniques particularly at
depths less than 40 μm. This discrepancy is likely due to
the use of an average intensity threshold on a per slice
basis within an image volume, which lacks any context
on if fibers should exist at a particular depth. At imaging
depths <100 μm, the mean accuracy of the CNN (93.9 ±
6.35%) was significantly higher than the image-specific
threshold accuracy (83.3 ± 10.7%; P < .001), and nearly
identical to the constant intensity accuracy (93.1 ±
9.11%) and volume-specific threshold accuracy (93.9 ±
7.78%; P = 1.000). Interestingly, the accuracy of the CNN
at depths ≥100 μm (93.1 ± 4.17%) was significantly
higher than the image-specific (78.5 ± 9.44%; P < .001)
and volume-specific technique (84.3 ± 11.7%; P = .003),
and slightly improved compared to the constant intensity
thresholding technique (89.6 ± 10.4%; P = .484).

There are well known changes in collagen fiber
microstructure with increased age [21], but there were no
significant differences in the accuracy of the trained CNN
between young and aged skin (P = .35), indicating that
the trained network does not demonstrate any age-
related bias in detecting collagen-positive pixels. How-
ever, it is important to consider the resolution of the

input images used to train the network. CNNs are trained
to detect low-level and high-level features within the
input images, in this case within a collagen fiber net-
work. The fiber features learned by the network are likely
specific to the magnification of the input images, so
image resizing images of different magnifications may be
necessary to ensure accurate results. Alternatively, trans-
fer learning with the trained CNN can be employed to
retrain the network for images at significantly different
magnifications or to adapt this CNN for use in signifi-
cantly different fiber networks (eg, elastin or Type II
Collagen). Nonetheless, these results suggest that the trained
CNN is capable of segmenting collagen-positive pixels at
a wide range of imaging depths with improved accuracy
and precision over typical segmentation techniques.

4 | CONCLUSION

Automated image segmentation and the use of artificial
intelligence, particularly CNNs, are becoming increas-
ingly popular tool in the field of biomedical image anal-
ysis. Manual segmentation or thresholding of
biomedical images is time consuming and subjective,
requiring days to weeks to accurately segment large
image sets. In this study, we showed that a CNN can be
trained with SHG images without the aid of additional
information (eg, two photon excited fluorescence) to
accurately distinguish collagen fibers from other image
features (eg, hair) within the 3D image z-stacks
(Figure 2). This method for segmenting collagen-
positive pixels within an image volume can be useful
for accurately quantifying and comparing collagen fiber
organization. Although this CNN was only trained on
images of mouse skin, the ability to segment collagen
fibers with relatively high accuracy via raw intensity
images from a single detection channel indicates that
this trained CNN can be easily utilized for other areas
of research that utilize SHG microscopy.
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TABLE 1 The trained CNN

outperformed all other segmentation

techniques in the testing dataset

Segmentation method TPR TNR Accuracy F1 score

Constant threshold 63.08% 38.08% 50.89% 0.5683

Image-specific threshold 84.06% 75.51% 79.89% 0.8107

Volume-specific threshold 87.92% 83.76% 85.89% 0.8646

CNN segmentation 86.54% 90.51% 88.48% 0.8850

FIGURE 3 CNN segmentation algorithm performs better than

typical thresholding techniques with increasing imaging depth due

to image intensity attenuation from tissue scattering. For all depths,

the trained CNN was found to have a mean accuracy of ≥90%.
Corridors represent standard error
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