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Abstract
We introduce a notion of ‘cross-section continuity’ as a criterion for the viab-
ility of definitions of angular momentum, J, at null infinity: If a sequence of
cross-sections, Cn, of null infinity converges uniformly to a cross-section C, then
the angular momentum, Jn, on Cn should converge to the angular momentum, J,
on C. The Dray–Streubel (DS) definition of angular momentum automatically
satisfies this criterion by virtue of the existence of a well defined flux associated
with this definition. However, we show that the one-parameter modification
of the DS definition proposed by Compere and Nichols—which encompasses
numerous other alternative definitions—does not satisfy cross-section con-
tinuity. On the other hand, we prove that the Chen–Wang–Yau definition does
satisfy the cross-section continuity criterion.
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1. Introduction

General relativity is a complete classical theory of gravity. It does not require definitions of
auxiliary quantities such asmass and angular momentum in order tomake physical predictions.
Nevertheless, such auxiliary quantities can be extremely useful for proving general results on
the behavior of systems as well as for obtaining physical insight into the nature of various phe-
nomena. In particular, the notion of Bondi mass—together with its positivity and the positivity
of its flux—provides an extremely powerful tool for characterizing and constraining possible
behaviors in asymptotically flat spacetimes.

One would expect a notion of angular momentum also to be very useful for characteriz-
ing the behavior of systems in asymptotically flat spacetimes. However, a notable difficulty in
obtaining a useful notion of angular momentum arises from the fact that in general relativ-
ity the asymptotic symmetry group is the Bondi–Metzner–Sachs (BMS) group. The BMS
group significantly enlarges the Poincare group by including ‘angle dependent translations’
known as supertranslations, which are characterized by an arbitrary function on a sphere. As
will be elucidated further in the next paragraph, in a general asymptotically flat spacetime,
there is no unique way of selecting a preferred Poincare subgroup of the BMS group. Con-
sequently, there is no obvious way of distinguishing between a ‘pure rotation’ and a ‘rotation
plus supertranslation.’ Correspondingly, there is no obvious way of distinguishing between
‘angular momentum’ and ‘angular momentum plus a supertranslation charge.’

The nature of the difficulty in selecting a preferred Poincare subgroup of asymptotic sym-
metries in a generic asymptotically flat spacetime is elucidated by the following considera-
tions. During a sufficiently long era where the Bondi news vanishes, there exists a unique
four-parameter family of cross-sections of null infinity—which we refer to as ‘electric parity
good cuts’—on which the electric parity part of the shear tensor8 vanishes [1]. In such eras,
there is a unique Poincare subgroup of the BMS group that maps these electric parity good cuts
into themselves [1]. Thus, in eras where the Bondi news vanishes, one can naturally eliminate
the ‘supertranslation ambiguity’ of the BMS group by restricting to this Poincare subgroup.
In particular, if the news vanishes sufficiently rapidly at early retarded times (u→−∞), one
can naturally pick out a preferred Poincare subgroup at asymptotically early times. Similarly,
if the news vanishes sufficiently rapidly at late retarded times (u→+∞), one can naturally
pick out a preferred Poincare subgroup at asymptotically late times. The problem is that, gen-
erically, these early and late time subgroups will be different Poincare subgroups of the BMS
group. Indeed, the memory effect is characterized by having the ‘electric parity good cuts’ at
asymptotically early and late times differ by a nontrivial supertranslation. The fact that a non-
vanishing memory effect generically is present in asymptotically flat spacetimes provides a
clear demonstration that, generically, it cannot be useful to attempt to restrict consideration to
a single Poincare subgroup of asymptotic symmetries.

Given the above situation, there are two possible strategies that can be employed to attempt
to define a notion of angular momentum. The first is to abandon the attempt to identify a unique
notion of a ‘rotation’ and a corresponding ‘angular momentum’ but rather work with the entire
group of BMS symmetries. One then defines notions of ‘charge’ conjugate to all BMS sym-
metries. Of course, any individual might choose to declare a particular BMS symmetry to be a
‘rotation’ and they might then refer to the corresponding BMS charge as ‘angular momentum.’

8 The usual notion of ‘good cuts’ requires that both the electric and magnetic parity parts of the shear vanish. We
require only the vanishing of the electric parity part of the shear.

2



Class. Quantum Grav. 40 (2023) 025007 P-N Chen et al

However, different individuals may make different choices. In other words, this approach has
the drawback that there would be an inherent supertranslation ambiguity in what BMS charge
should be called ‘angular momentum.’ Furthermore, as described above, at asymptotically
early and late retarded times, one does have a well defined notion of a ‘pure rotation’ (as
opposed to a ‘rotation plus supertranslation’). However, in the presence of memory, no fixed
BMS charge can simultaneously correspond to this natural notion of angular momentum in
both of these asymptotic regions.

A second strategy is to use data on a given cross-section to effectively determine what
should be considered to be a ‘pure rotation’ and ‘angular momentum’ at the particular retarded
time represented by that cross-section. In this way, the supertranslation ambiguity would be
eliminated and—since the definition does not require use of a fixed BMS symmetry—it can be
chosen to correspond to the well defined notions of ‘pure rotation’ and ‘angular momentum’
in eras when the Bondi news vanishes. Thus, this strategy has the potential to yield a notion of
angular momentum in general relativity with properties much more analogous to the notion of
angular momentum in non-gravitational physics. A potential drawback of this strategy is that
there may be circumstances where there is a distinguished BMS symmetry—such as when the
spacetime admits an axial Killing field—and there is no guarantee that this approach will yield
a quantity that can be interpreted as the charge associated with this symmetry.

A successful implementation of the first strategy was given by Dray and Streubel (DS) [2].
As shown in [3], the formulas for the DS charges conjugate to the BMS symmetries can be
given a strong motivation from Hamiltonian considerations. Nevertheless, possibilities remain
open for modifying the DS formulas for the BMS charges. Recently, Compere and Nichols
(CN) [4] have proposed a one-parameter modification of the DS definition. This modification
encompasses other definitions that had been given previously [5–9]. Thus, there remain ques-
tions as to whether the DS definition is the only viable definition within the context of the first
strategy.

A successful implementation of the second strategy was given by Chen–Wang–Yau (CWY)
[10]. As shown in [11, 12], the limit of the CWY quasilocal angular momentum at null infin-
ity (evaluated in [13]) is free of supertranslation ambiguity. In addition, the CWY angular
momentum transforms according to classical laws with respect to ‘ordinary translations’ [11,
equation (22)].

The main purpose of this paper is to subject the above definitions to the criterion of ‘cross-
section continuity’: if an arbitrarily small amplitude ‘wiggling’ of a cross-section in retarded
time can produce finite changes in the angular momentum, then that definition is not viable,
since it would be telling one at least as much about the choice of cross-section as any phys-
ical properties of the spacetime. In section 2, we review the definitions of the DS, CN, and
CWY angular momentum and we then introduce the notion of cross-section continuity. The
DS definition can be seen to satisfy this condition by virtue of the existence of a well-defined
flux. However, in section 3, we show that the CN definition does not satisfy this condition
except for the choice of parameter where it coincides with the DS definition. Thus, the CN
generalization is not viable. Finally, in section 4, we prove that the CWY definition does sat-
isfy the cross-section continuity requirement.

2. The DS, CN, and CWY definitions of angular momentum

We will work in Bondi coordinates (u,r,xA), where x A denotes angular coordinates on the
2-sphere. We will follow the conventions of Flanagan and Nichols [14] and refer the reader
to that reference for the definitions of the shear tensor, CAB(u,xA), mass aspect, m(u,xA), and
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angular momentum aspect, NA(u,xA). The Bondi news tensor is defined by NAB = ∂uCAB. We
denote the round metric on the sphere as qAB. We denote the corresponding derivative operator
on the sphere as DA, and we write D2 = DADA.

Our analysis could be performed for arbitrary BMS symmetries. However, to keep both the
discussion and the formulas as simple as possible, we will restrict consideration here to the
BMS symmetry

X= YA
∂

∂xA
(1)

where YA is a fixed rotational Killing field on the spheres of constant u. This symmetry cor-
responds to a ‘pure rotation’ in our Bondi coordinates (u,r,xA). We will refer to the charge
corresponding to this symmetry as ‘angular momentum.’ However, we will be interested in
evaluating the angular momentum on an arbitrary cross-section given by

u= f(xA) (2)

where f : S2 → R is smooth. Note that X does not act tangentially to such a cross-section.
Indeed, in the new Bondi coordinates

u ′ = u− f(xA)

x ′A = xA (3)

for which the cross-section is given by u ′ = 0, we have

X= YA
∂

∂x ′A
− YADA f

∂

∂u ′
. (4)

Thus, in the new Bondi coordinates, X corresponds to the rotation YA plus a supertranslation
by the amount−YADA f . This illustrates the supertranslation ambiguity in defining ‘rotations’
that was described in section 1.

As discussed in section 1, the DS definition does not attempt to resolve the supertransla-
tion ambiguity and simply defines an angular momentum quantity JDS conjugate to the BMS
symmetry X. On the cross-section u= 0, the formula for the DS angular momentum is9

JDS|u=0 =
1
8π

ˆ

YA
(
NA−

1
4
CABDDC

DB

)
(5)

where all quantities in the integrand are evaluated at u= 0 and the integral is taken over the
spherewith the natural volume element associatedwith qAB. (In the following, unless otherwise
noted, all integrals are taken over a sphere with this volume element.) We can evaluate JDS on
the cross-section u= f by transforming to the new Bondi coordinates equation (3) and taking
into account the fact that X has an additional supertranslation part in these coordinates (see
equation (4)). On the cross-section u= f, the formula for DS angular momentum is

JDS|u= f =
1
8π

ˆ

YA
(
N ′

A−
1
4
YAC ′

ABDDC
′DB

)
−

1
4π

ˆ

m ′YADA f (6)

where the last term is the supertranslation contribution. The quantities C ′
AB, m

′

, and N ′
A are

the shear tensor, mass aspect, and angular momentum aspect in the new Bondi coordinates
equation (3) evaluated at u ′ = 0 (i.e. u= f ). Explicitly, we have (see section C.5 of [16])

9 A formula for the DS charges in Bondi coordinates is given in equation (3.5) of [14]. A restriction to vanishing news
was made in the section of [14] containing that equation but, as shown in [15], the charge formula is valid without
this restriction.
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C ′

AB = CAB
∣∣
u= f

− 2DADB f + qABD
2 f (7)

m ′ = m|u= f +
1
4
NAB

∣∣
u= f

DADB f +
1
2
[DBN

AB]
∣∣
u= f

DA f +
1
4
[∂uN

AB]
∣∣
u= f

DA f DB f . (8)

There is a similar (although considerably more complicated) formula for N ′
A but we will not

need this formula in our analysis below. Note that it follows immediately from equation (7)
that the news tensor transforms simply as

N ′

AB = NAB|u= f . (9)

The CN definition of angular momentum follows the same strategy as DS of not attempting
to resolve the supertranslation ambiguity but it makes a modification of the DS formula by
the addition of a term with an arbitrary free parameter α. For the BMS symmetry X given by
equation (1), the CN angular momentum at u= 0 is given by [4]

JCN|u=0 = JDS|u=0 −
α− 1
32π

ˆ

YACABDCC
BC . (10)

This coincides with the DS angular momentum when α= 1. As CN have noted [4], the choice
α= 3 corresponds to the definitions used by Landau and Lifshitz [5], Bonga and Poisson [6],
and Damour [7], whereas the choice α= 0 corresponds to the definitions used by Pasterski
et al [8] and Compere et al [9]. On the cross-section u= f, the CN angular momentum is given
by

JCN|u= f = JDS|u= f −
α− 1
32π

ˆ

YAC ′

ABDCC
′BC . (11)

As described in the Introduction, the CWY definition of angular momentum resolves the
supertranslation ambiguity by, in effect, determining what corresponds to a ‘pure rotation’ on
any cross-section from the data on that cross-section. To define CWY angular momentum on
any cross-section, one does not need to select a BMS symmetry X but merely a Killing field
YA on the sphere. On the cross-section u= 0, the CWY angular momentum associated with
YA is related to the DS angular momentum by [11, 12]

JCWY|u=0 = JDS|u=0 +
1
8π

ˆ

mYADAc (12)

where JDS is the DS angular momentum associated with X, equation (1), and c is the unique
solution to

1
2
D2(D2 + 2)c= DADBCAB (13)

such that c has no ℓ= 0,1 parts. Thus, the CWY angular momentum corresponds to the DS
charge conjugate to the BMS symmetry

X̃= YA
∂

∂xA
+

1
2
YADAc

∂

∂u
(14)

and, from this perspective, it can be viewed as selecting X̃ as being the BMS symmetry rep-
resenting a ‘pure rotation’ at the time u= 0. Comparing with equation (4), we see that X̃ is
tangent to the cross-section u= c/2. Now, in a sufficiently long non-radiative era—where the
Bondi News vanishes and thus CAB is independent of u—it follows from equation (7) that the
electric parity part of the shear tensor vanishes on the cross-section u= c/2. Thus, in a non-
radiative era, X̃ is tangent to an ‘electric parity good cut’ of null infinity and thus represents a
natural choice of ‘pure rotation.’ In particular, the CWY definition corresponds to the natural
choices of ‘pure rotation’ at both asymptotically early and late retarded times—even though
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these early and late time choices correspond to different BMS symmetries. The CWY angular
momentum on an arbitrary cross section interpolates between these choices in a manner that
depends on the local conditions at that cross-section. However, if the spacetime has an exact
axial Killing field, we have shown that X̃ need not correspond to this Killing field when the
Bondi news is nonvanishing, i.e. the CWY angular momentum need not coincide with the DS
(= Komar) angular momentum in the case where X corresponds to an exact Killing field in
the spacetime. In this case,

JDS|u= f = JDS|u=0 for any cross-section u= f . (15)

On the other hand,

JCWY|u= f = JCWY|u=0 only if f satisfies YADA f = 0. (16)

On the cross-section u= f, a formula for the CWY angular momentum can be obtained by
transforming to the new Bondi coordinates equation (3). We obtain

JCWY|u= f = JDS|u= f +
1
8π

ˆ

m ′YADAc
′ +

1
4π

ˆ

m ′YADA f (17)

where c ′ is defined by equation (13) with CAB replaced by C ′
AB.

We now introduce our cross-section continuity condition. Let J : C → R be any map from
the space, C , of smooth cross-sections of null infinity into R. Then J will be said to satisfy the
cross-section continuity condition at u= 0 if for any sequence { fn} of smooth functions on the
sphere such that fn → 0 uniformly as n→∞ we have J|u= fn → J|u=0. If this condition is not
satisfied, then the value of J would depend on the fine details of the choice of cross-section and
could not plausibly provide useful physical information about the properties of the spacetime.
Our goal for the remainder of this paper is to determine whether JDS, JCN, and JCWY satisfy
the cross-section continuity condition.

Since the formulas (6), (11) and (17) for JDS, JCN, and JCWY on the cross-section u= f
depend nonlinearly on derivatives of f, it is not immediately obvious by inspection of these
formulas whether cross-section continuity holds for any of these quantities. However, it is
known that the DS formula has an associated flux [3, 15]. For the BMS symmetry X given by
equation (1), the flux in our original Bondi coordinates is given by [14]

F =−
1

32π
NAB£YCAB. (18)

For any two cross-sections C1,C2 ∈ C , the difference between the DS angular momenta on
these cross-sections is given by

JDS|C2 − JDS|C1 =

ˆ

R

F (19)

where R denotes the (compact) region of null infinity bounded by C1 and C2. It follows
immediately from this flux formula—taking C2 to be the cross-section u= f and C1 to be the
cross-section u= 0—that cross-section continuity is satisfied by the DS definition of angu-
lar momentum. In the next section, we shall show that cross-section continuity does not hold
for JCN except in the case α= 1, where the CN definition coincides with the DS definition.
In section 4, we will show that cross-section continuity does hold for the CWY definition of
angular momentum.
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3. Failure of cross-section continuity of the CN modification of the DS angular
momentum

Since JDS satisfies the cross-section continuity condition, it is clear that JCN satisfies this con-
dition if and only if the quantity

K≡ JCN − JDS (20)

satisfies this condition. We have

K|u= f −K|u=0 =−
α− 1
32π

ˆ

YA
[
C ′

ABDCC
′BC−CABDCC

BC
]
. (21)

Let (θ,ϕ) denote the usual spherical coordinates on the sphere. We consider the Killing field
YA = (∂/∂ϕ)A and investigate whether the right side converges to zero for the choice of
sequence

fn(θ,ϕ) =
1
n
F(θ)sin(nϕ) (22)

whereF is a smooth function of θ that vanishes in a neighborhood of θ= 0 and θ = π. Note that
any expression containing at least p factors of f n and a total of at most q angular derivatives,
DA, is O(1/np−q) as n→∞, so any term with more factors of f n than angular derivatives can
be neglected in this limit. Taylor expanding CAB

∣∣
u= fn

in equation (7), we obtain

C ′

AB = CAB
∣∣
u=0

+ fnNAB
∣∣
u=0

+
1
2
f 2n∂uNAB

∣∣
u=0

+O
(
f 3n
)
− 2DADB fn+ qABD

2 fn (23)

where the O( f 3n) term arises from the Taylor expansion and does not contain angular derivat-
ives of f n. ThisO( f 3n) term appears on the right side of equation (21) only in terms that contain
more factors of f n than angular derivatives, so for the sequence (22), the O( f 3n) term cannot
contribute to the right side of equation (21) as n→∞. The term 1

2 f
2
n∂uNAB|u=0 potentially

could contribute as n→∞ via terms that are cubic in f n with a total of three ϕ-derivatives
acting on f n. An example of such a term is

1
2
YA f 2n∂uNAB(−2DCD

BDC fn)≈− f 2n∂uNϕϕ(q
ϕϕ)2DϕDϕDϕ fn

≈− f 2n∂uNϕϕ

1

sin4 θ

∂3 fn
∂ϕ3

≈ F 3(θ)∂uNϕϕ

1

sin4 θ
sin2(nϕ)cos(nϕ) (24)

where≈ denotes equality modulo terms that vanish for the sequence (22) as n→∞. Although
the right side of equation (24) remains bounded as n→∞, its integral over a sphere vanishes
as n→∞. Similarly, all other terms involving 1

2 f
2
n∂uNAB|u=0 do not contribute as n→∞. The

remaining terms on the right side of equation (21) are either linear in f n or quadratic in f n. For
the terms that are linear in f n, all derivatives acting on f n can be removed by integration-by-
parts, in which case it is clear that these terms cannot contribute as n→∞. The right side of
equation (21) is thus reduced to the quadratic terms

7



Class. Quantum Grav. 40 (2023) 025007 P-N Chen et al

−
α− 1
32π

ˆ

YA
[
fnNABDC

(
fnN

BC
)
+

1
2
CABDC

(
f 2n∂uN

BC
)
− 2 fnNABDCD

BDC fn

+ fnNABD
BD2 fn+

1
2
f 2n∂uNABDCC

BC− 2DADB fnDC
(
f nN

BC
)

+D2 fnD
B ( f nNAB)+ 4DADB fnDCD

BDC fn− 2DADB fnD
BD2 fn

−2D2 fnDBDAD
B fn+D2 fnDAD

2 fn

]
. (25)

The terms appearing in (25) can be broken into three types: (a) terms quadratic in the news;
(b) terms linear in the news; (c) terms that are independent of the news. The terms quadratic
in the news contain at most one derivative of f n and cannot contribute to the right side of
equation (21) as n→∞. The terms that are independent of the news can be shown to give
vanishing contribution by a calculation similar to the calculation that shows that the CN angular
momentum vanishes for an arbitrary cross-section in Minkowski spacetime (see section III of
[17]). Thus, we need only consider the contribution to the right side of equation (21) arising
from terms that are linear in the news and quadratic in f n. After some cancelations arising from
integration by parts, we obtain

K|u= fn −K|u=0 ≈
α− 1
16π

ˆ

YA
[
fnNABDCD

BDC fn+DADB fnDC( f nN
BC)

]
. (26)

In the first term of (26), we may write DCDB ≈ DBDC since the difference yields a curvature
term that will not contribute as n→∞. Integrating this term by parts with respect to DB after
this interchange, we obtain

K|u= fn −K|u=0 ≈
α− 1
16π

ˆ

YA
[
−qABD

2 fn+DADB fn
]
DC( f nN

BC). (27)

Evaluating the right side for our choices of YA and of f n and discarding terms that do not
contribute as n→∞, we obtain

K|u= fn −K|u=0 ≈
α− 1
16π

ˆ

Nθϕ cos2(nϕ)
[
F∂θF−F 2 cotθ

]
. (28)

Thus, we find

lim
n→∞

K|u= fn −K|u=0 =−
α− 1
64π

ˆ

F 2(θ)

(
∂Nθϕ

∂θ
+ 3cotθNθϕ

)
. (29)

Since F(θ) is an arbitrary smooth function that vanishes near the poles, it is clear that the
integral on right side of equation (29) is nonvanishing in general, so the CN definition of
angular momentum does not satisfy the cross-section continuity condition except in the case
α= 1, when it coincides with the DS definition.

4. Satisfaction of cross-section continuity of the CWY angular momentum

4.1. Relating the fluxes of JCWY and JDS

We prove the cross-section continuity of the CWY angular momentum in the following sense:
the CWY angular momentum of a smooth cross section u= f approaches the CWY angular
momentum of the cross section u= 0, provided f approaches 0 in C0. Here f is any smooth
function on S2. Such a continuity statement precipitates the extension of the definition of CWY
angular momentum to all C0 cross sections. The proof will rely on the cross-section continuity
of the DS angular momentum.

8
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The strategy of the continuity proof consists of the following two steps.
In step (1), assuming f(xA)> 0, we relate the fluxes of CWY angular momentum and DS

angular momentum in the region between u= 0 and u= f. In particular, we identify δ( f ) in

JCWY|u= f − JCWY|u=0 = JDS|u= f − JDS|u=0 + δ( f) (30)

as an integral on S2.
In step (2), we apply elliptic estimates to δ( f ). In particular, we show that

δ( f)⩽ C|| f ||C0

for a constant C. By the continuity of the DS angular momentum and the above two steps, the
proof of the cross-section continuity of the CWY angular momentum will be completed.

First, combining equations (12) and (17) yields

JCWY|u= f − JCWY|u=0 = JDS|u= f − JDS|u=0

+
1
4π

ˆ

m ′YADA f +
1
8π

ˆ

m ′YADAc
′ −

1
8π

ˆ

mYADAc. (31)

Therefore, we identify δ( f ) as

δ( f) =
1
8π

ˆ

m ′YADA(c
′ + 2 f)−

1
8π

ˆ

mYADAc. (32)

We proceed to relate c ′ and c. Introducing the unique function s on S2 of ℓ⩾ 2 that satisfies

1
2
D2(D2 + 2)s= DADB(CAB|u= f −CAB|u=0), (33)

equation (7) implies c ′ = s+ c− 2 f . Therefore, δ( f ) can be written as

δ( f) =
1
8π

ˆ

m ′YADA(s+ c)−
1
8π

ˆ

mYADAc. (34)

Finally, we relate m
′

to s. Recalling the modified mass aspect

m̂(u,xA) = (m−
1
4
DADBCAB)(u,x

A) (35)

as in [12], equation (8) is then equivalent to

m ′ = m̂|u= f +
1
8
D2(D2 + 2)(s+ c). (36)

4.2. Estimating δ( f )

In this subsection, we show that δ( f ) is bounded by ∥ f∥C0 . We first rewrite equation (34) as

8πδ( f) =
ˆ

m′YADAs+
ˆ

(m′ −m)YADAc

= δ1 + δ2.

The following identity for a smooth function g on S2 is proved in [12, lemma 2.1]:
ˆ

(D2(D2 + 2)g)YADAg= 0. (37)

9
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By equations (36) and (37), and integration by parts,

δ1 =

ˆ

(m̂|u= f +
1
8
D2(D2 + 2)c)YADAs

and

δ2 =

ˆ

(m̂|u= f −m+
1
8
D2(D2 + 2)c)YADAc+

1
4

ˆ

(CAB|u= f −CAB|u=0)D
ADB(YEDEc)

=

ˆ

[
ˆ f

0
∂um̂du

]
YADAc+

1
4

ˆ

[
ˆ f

0
∂uCAB du

]
DADB(YEDEc),

where we used m− 1
8D

2(D2 + 2)c= m̂|u=0. Recalling ∂um̂=− 1
8NABN

AB from [12, (3.3)], it
is clear that |δ2| is bounded by a multiple of ∥ f∥C0 .

On the other hand, we claim that

|δ1|⩽ C1∥ f∥C0

by the following Lemma.

Lemma 4.1. If s satisfies 1
2D

2(D2 + 2)s= DADBMAB, then

∥Ds∥L2 ⩽

√
16π
3

max
S2

|MAB|.

Proof. Multiplying the equation by s and integrating over S2, we get
ˆ

(D2s)2 − 2|Ds|2 =
ˆ

2MABD
ADBs⩽

ˆ

2|MAB|
2 +

ˆ

1
2
|DADBs|

2.

Recalling the identity on S2,
ˆ

(D2s)2 =
ˆ

|DADBs|
2 + |Ds|2, (38)

we get
ˆ

(D2s)2 − 3|Ds|2 ⩽ 16π (max
S2

|MAB|
2).

Let s=
∑∞

ℓ=2 sℓ be the spherical harmonic decomposition of s. We have
´

(D2s)2 =∑∞

ℓ=2 ℓ
2(ℓ+ 1)2s2ℓ,

´

|Ds|2 =
´

−sD2s=
∑∞

ℓ=2 ℓ(ℓ+ 1)s2ℓ and hence
´

(D2s)2 ⩾ 6
´

|Ds|2. As

a result, we have
´

|Ds|2 ⩽ 16π
3 maxS2 |M|2.
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