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Abstract

Plants rely on innate immune systems to defend against a wide variety of biotic
attackers. Key components of innate immunity include cell-surface pattern recognition
receptors (PRRs), which recognize pest/pathogen-associated molecular patterns
(PAMPs). Unlike other classes of receptors which often have visible cell death immune
outputs upon activation, PRRs generally lack rapid methods for assessing function.
Here, we describe a genetically encoded bioluminescent reporter of immune activation
by heterologously-expressed PRRs in the model organism Nicotiana benthamiana. We
characterized N. benthamiana transcriptome changes in response to Agrobacterium
tumefaciens (Agrobacterium) and subsequent PAMP treatment to identify PTI-
associated marker genes, which were then used to generate promoter-luciferase fusion
fungal bioluminescence pathway (FBP) constructs. A reporter construct termed
pFBP_2xNbLYS1::LUZ allows for robust detection of PTI activation by heterologously
expressed PRRs. Consistent with known PTI signaling pathways, activation by receptor-
like protein (RLP) PRRs is dependent on the known adaptor of RLP PRRs, SOBIR1.
This system minimizes the amount of labor, reagents, and time needed to assay
function of PRRs and displays robust sensitivity at biologically relevant PAMP
concentrations, making it ideal for high throughput screens. The tools described in this
paper will be powerful for investigations studying PRR function and characterizing the

structure-function of plant cell surface receptors.
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Introduction

Plants perceive pests and pathogens through cell surface-localized immune receptors,
termed pattern recognition receptors (PRRs). Canonically, these transmembrane
proteins activate pattern triggered immunity (PTI) in response to conserved pathogen
associated molecular patterns (PAMPs) (Boutrot & Zipfel, 2017). PTI consists of a suite
of defense signaling and outputs including reactive oxygen species (ROS) production,
ethylene production, peroxidase upregulation, callose deposition, stomatal
modifications, calcium oscillations, and phytohormone production (Aldon et al., 2018;
Berens et al., 2017; Broekgaarden et al., 2015; Melotto et al., 2017; Mott et al., 2018; Qi
et al., 2017; Toyota et al., 2018; Y. Wang et al., 2021). These outputs aid in
transcriptional reprogramming to improve plant resistance against attackers (Denoux et
al., 2008; Navarro et al., 2004). Understanding immune activation by PRRs is critical for

developing novel strategies to improve plant resistance against pests and pathogens.

The model organism Nicotiana benthamiana represents a significant resource in the
field of plant immunity, in part because of robust immune phenotypes conferred by
transiently expressed intracellular plant immune receptors (Goodin et al., 2008; Buscaill
et al., 2021). Agrobacterium-mediated transient transformation of N. benthamiana
allows for rapid expression of proteins, which is particularly applicable for mutant
screening and structure-function analysis. For example, screening cell death as a visual
reporter triggered by nucleotide-binding leucine-rich repeat (NLR) activation has allowed
investigations of structural features of NLR proteins (Segretin et al., 2014; Steinbrenner

et al., 2015; Adachi et al., 2019).


https://www.zotero.org/google-docs/?8vju1b
https://www.zotero.org/google-docs/?mM5UPc
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https://www.zotero.org/google-docs/?NZFyFm
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Transient transformation of N. benthamiana similarly serves as a powerful tool for
studying PRRs, but there is currently a lack of robust visual reporters of PRR function in
N. benthamiana analogous to cell death. Several cell surface immune receptors activate
cell death phenotypes in other species, including leucine-rich repeat receptor-like
proteins (LRR-RLPs) such as Arabidopsis thaliana RLP42 and Solanum lycopersicum
Ve1, but these LRR-RLPs do not necessarily activate cell death upon heterologous
expression in N. benthamiana or can require strong repeated elicitation (de Jonge et al.,
2012; Z. Zhang et al., 2013; L. Zhang et al., 2014). Because heterologously expressed
PRRs do not activate visual markers of PTl in N. benthamiana, immune responses
mediated by transiently expressed PRRs are instead detected using early markers of
PTI defense activation, including PAMP-induced ROS, ethylene, or peroxidase
production (Mott et al., 2018; Steinbrenner et al., 2020). However, these assays are
laborious or are hampered by the presence of Agrobacterium as a background source

of PTI activation.

Reporters utilizing luminescence, fluorescence, or pigmentation have been adapted to
study a variety of plant signaling processes (DeBlasio et al., 2010; Furuhata et al., 2020;
He et al., 2020). However, no transiently expressed reporters of immune activation in
intact N. benthamiana leaves have been described. A high sensitivity luciferase-based
system for measuring pattern triggered immunity in protoplasts of N. benthamiana was
previously reported (Nguyen et al., 2010), but was not tested for heterologously
expressed PRRs and required external addition of luciferin. A different system using a
bioluminescent strain of Agrobacterium expressing the bacterial lux operon allows for

monitoring of Agrobacterium during transient transformation and quantification of


https://www.zotero.org/google-docs/?h29TTi
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effector triggered immunity (ETI), but has not yet been applied to PTI (Jutras et al.,
2021). N. benthamiana lines stably expressing the fluorescent Ca?* indicator GCaMP3
allow for detection of signaling in response to various biotic and abiotic stresses,
including signaling activated by transiently expressed receptor-like kinases (DeFalco et
al., 2017). However, stable expression of GCaMP3 limits the ability to quickly test
different N. benthamiana genotypes and mutants lacking components of the signaling
pathway. Finally, fluorescent proteins and pigments are simple to measure, but lack the
same low background and high sensitivity of luciferase-based assays (Haugwitz et al.,
2008; Thorne et al., 2010), which limits the ability to detect the range of responses that

may occur in response to an immune elicitor.

To develop a generic PTI reporter, we performed transcriptomic analysis of N.
benthamiana upon activation of a heterologously expressed PRR and adapted
endogenous markers into a luciferase-based system that retains sensitivity but
eliminates the need to introduce exogenous substrate. By encoding a metabolic
pathway that allows for endogenous production of fungal luciferin alongside the fungal
luciferase (LUZ) enzyme, the fungal bioluminescence pathway (FBP) system
circumvents requirements for external addition of substrate while still remaining
sensitive to subtle changes in gene expression (Khakhar et al., 2020; Mitiouchkina et
al., 2020). Importantly, the features of the FBP system were well-suited for a reporter
system that meets several criteria to be useful for studying plant cell surface immune
receptors in a heterologous system: 1) highly sensitive to biologically relevant
concentrations of immune elicitors, 2) capable of rapid, low cost, and visual assessment

of immune activation, and 3) robust to low numbers of biological replicates and


https://www.zotero.org/google-docs/?JO6CKz
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background immune elicitation by Agrobacterium. Therefore, we utilized the FBP
system to develop a reporter of immune activation by heterologously expressed cell

surface receptors.

Materials and Methods

Plant Materials and Growth Conditions

N. benthamiana plants were transplanted one week after sowing and grown at 20°C
under 12-hour light and dark cycles. The seedlings were grown under humidity domes
for four weeks, after which the domes were removed, and the plants were grown an
additional week before infiltrations. Fully expanded, mature leaves of six-week-old

plants were used for all transient expression experiments.

Transcriptomic and gRT-PCR Analysis

For RNA sequencing RNA sequencing analysis, an N. benthamiana stable transgenic
line expressing Phaseolus vulgaris INR (INR-Pv 1-5) (Steinbrenner et al., 2020) was
syringe infiltrated with Agrobacterium GV3101 (pMP90) at OD = 0.45 expressing empty
vector (EV) pEarleyGate103 (Earley et al., 2006). At 24 hours post infiltration,
Agrobacterium-treated leaves were further infiltrated with H20 or 1 uM Inceptin-11
(In11) peptide and harvested after an additional six hours. Total RNA was extracted
using Nucleospin Plant RNA kit (#740949.250 Macherey-Nagel). RNA was used to

generate Lexogen Quantseq 3° RNA sequencing libraries at Cornell University Institute
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of Biotechnology Genomics Facility. 3’ reads were mapped to N. benthamiana genome
v1.0.1 (Sol Genomics Network) using HISAT2 (Kim et al., 2019) with options min-
intronlen 60--max-intronlen 6000, counts by gene were analyzed using HTSeq-Count
(Anders et al., 2015) with options -m intersection-nonempty --nonunique all, and

differential expression was analyzed by DESeq2 (Love et al., 2014).

For qRT-PCR analysis, N. benthamiana plants were syringe infiltrated with
Agrobacterium (ODesoo= 0.45) carrying either p35s::PvINR or pGreenll empty vector. At
24 hours after infiltration, tissue was treated with either water or In11 and harvested
after 6 hours. Total RNA was extracted using Trizol reagent (#15596018 Thermo Fisher
Scientific, USA ). cDNA libraries were generated using SuperScript IV Kit (#18090050
Thermo Fisher Scientific, USA). gRT-PCR reactions were conducted using Applied
Biosystems PowerUp SYBR Green Master Mix (#A25742 Thermo Fisher Scientific,
USA) and gene specific primer pairs (Supplementary Table S2). Changes in gene
expression between water and In11 treatments were calculated using the AACq
method, using ACq values normalized against N. benthamiana EF1a (D. Liu et al.,
2012). Student’s t-tests were performed between comparisons of 35s::PvINR and EV

treated tissue using the ggplot2 package in R (v4.1.2).

Generation of Reporter Constructs

Promoter regions of candidate marker genes were amplified from genomic DNA of N.
benthamiana using primers designed against Niben v1.0.1 (Bombarely et al., 2012) with
appended overhangs encoding either Bsal or Bpil restriction enzyme recognition sites

(Supplementary Table S2). These primers amplified from the start codon to
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https://www.zotero.org/google-docs/?08mZc3
https://www.zotero.org/google-docs/?hxDPhk
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approximately 1.5 kb upstream. Promoter regions were then cloned into the Promoter +
5’ untranslated region (UTR) acceptor backbone obtained from the Golden Gate MoClo
Plant Toolkit (Engler et al., 2014). Double promoter constructs were constructed by
reamplifying the promoter region of interest with unique overhangs and cloning into the
Level -1 universal acceptor backbones using the Bsal-HFv2 restriction enzyme
(#R3733L New England Biolabs, USA). These parts were then assembled into the
same Promoter + 5" UTR acceptor backbone using the Bpil restriction enzyme

(#ER1012 Thermo Fisher Scientific, USA).

Reporter constructs were generated by first modifying the P307-FBP_6 constitutive
autoluminescence construct previously described (Khakhar et al., 2020). P307-FBP_6
was a gift from Daniel Voytas (Addgene plasmid # 139697;
http://n2t.net/addgene:139697; RRID:Addgene_139697). To simplify the process of
cloning new reporter constructs with promoter regions of interest, the CaMV35s
promoter originally used to drive LUZ was replaced with an insert encoding a blue-white
selectable marker flanked by Bsal recognition sites supplying Promoter + 5° UTR MoClo
overhangs (Supplementary Fig. S2A). This allows for simple, one-step assembly
reactions. The promoter regions of interest were then cloned into this acceptor plasmid
using the Bsal-HFv2 restriction enzyme. A template primer pair for amplification and
cloning putative promoter regions directly into the pFBP_promoter_acceptor construct

has been included (Supplementary Table S2).

Reporter constructs were transformed by electroporation into Agrobacterium

tumefaciens GV3101 (pMP90). All sequences were verified by Sanger sequencing.
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Agrobacterium-Mediated Transient Transformation and PAMP treatment
Agrobacterium strains carrying the constructs of interest were cultured in LB media
containing kanamycin (50ug/mL), gentamicin (50ug/mL), rifampin (50pg/mL), and
tetracycline (10ug/mL) for 24h. 3 mLs of culture were then pelleted and resuspended in
infiltration media containing 10mM 2-(N619 morpholino) ethanesulfonic acid (MES) (pH
5.6), 10 mM MgCl2, and 150 uM acetosyringone. For coinfiltrations, separate strains
harboring reporter and receptor constructs were combined at a final individual ODsoo =
0.3 for a final cumulative ODsoo =0.6. After 3 hours of incubation at room temperature

(RT), the cell mixture was infiltrated into fully expanded leaves of 6-week-old N.

benthamiana plants using a needle-less syringe.

To assess induction of luminescence, transformed regions were infiltrated with peptide
48 hours after Agrobacterium infiltration. Six hours after treatment, leaves were
removed at the petiole and luminescence was immediately imaged using the Azure
Imaging System with 8 seconds of exposure. Peptides were obtained from Genscript

and diluted to specified concentrations in sterile autoclaved water.

Reactive Oxygen Species Assay

24 hours after infiltration, 4 mm leaf disks were collected from infiltrated tissue and
incubated in 150 uL sterile water overnight at room temperature in BRANDplates white
96-well plate. Measurement of ROS production was conducted as previously described
(Snoeck et al. 2022). After collection of relative luminescence unit (RLU)

measurements, plots were generated in R using ggplot2. Maximum RLU values were
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calculated and ANOVAs and post-hoc Tukey’s t-tests were conducted using the

agricolae (v1.3-5) package in R (v4.1.2) and summarized as compact letter displays.
Differing letters represent statistically significant differences (p<0.05) among pairwise

comparisons. Figure editing and layouts were completed in Inkscape.

Quantification and Statistical Analysis

Mean gray values of manually defined regions of interest were measured in ImageJ
1.53k. Average signal intensity (ASI) was determined by subtracting the average mean
gray value of the untransformed background from the mean gray values of the regions
of interest. Negative ASI indicates lower mean gray value than background. One-way
ANOVAs and post-hoc Tukey’s t-tests were conducted using the agricolae (v1.3-5)
package in R (v4.1.2) and summarized as compact letter displays. Differing letters
represent statistically significant differences (p<0.05) among pairwise comparisons.

Figure editing and layouts were completed in Inkscape.

Phylogenetic Analysis

Using the annotated coding sequence of Niben101Scf06684903003.1, a BLASTN
search was conducted against the Vigna unguiculata (v1.2), Phaseolus vulgaris (v2.1),
and Arabidopsis thaliana (TAIR10) genomes (predicted cDNA sequences). Arabidopsis
thaliana was included to identify potential characterized homologs, and the two legume
species were included as representative legume species that natively encode INR. After
aligning the top 70 hits, a maximum likelihood phylogenetic tree was generated using

FastTree. A subset of this tree was then selected and realigned as translated amino
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acid sequences using MAFFT (Katoh et al., 2019; Kuraku et al., 2013). A maximum
likelihood tree was subsequently generated on the CIPRES web portal using RAXML-
HPC2 on XSEDE (v8.2.12) (Miller et al., 2010; Stamatakis, 2014) with the automatic
protein model assignment algorithm using maximum likelihood criterion and 100
bootstrap replicates. The resulting phylogeny was rooted and visualized using MEGA11

and edited in Inkscape.

Results

Differentially Expressed Genes in Response to Agrobacterium and PTI activation

Heterologous expression of PRRs in N. benthamiana allows for activation of PTl in
response to cognate PAMPs, but transient expression requires introduction of
Agrobacterium, a potentially independent source of PAMPs and activator of PTI
responses. To characterize the transcriptional landscape of PTI induced by both
Agrobacterium and individual PAMP treatment, we conducted transcriptomic analysis in
plants stably expressing the P. vulgaris Inceptin Receptor (PvVINR), an LRR-RLP which
recognizes the peptide elicitor inceptin11 (In11) (Steinbrenner et al., 2020). Plants were
infiltrated with Agrobacterium to mimic conditions during Agrobacterium-mediated
transient transformation. After 24 hours, the Agrobacterium-infiltrated leaves were
subsequently treated with water or In11 to induce immune signaling (Supplementary
Fig. S1, “AH” or “Al”). Additionally, leaves previously mock infiltrated were infiltrated with

water to account for effects of wounding during infiltration (Supplementary Fig. S1, “H”).
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Tissue was collected after 6 hours, and RNA sequencing was subsequently conducted

to identify differentially expressed genes (DEGs) under each pair of conditions.

Compared to leaf tissue not previously infiltrated, infiltration with Agrobacterium affected
expression of hundreds of genes (Fig. 1A, comparisons "AH vs H" and "Al vs H",
Supplementary Table S1). A total of 1425 upregulated and 938 downregulated genes
were significantly altered by Agrobacterium infiltration. The majority of DEGs were

observed in both In11 and water treated tissue.

To identify useful markers of PTI activation in the context of Agrobacterium, we next
compared gene expression in Agrobacterium-infiltrated leaf tissue in the presence or
absence of In11 peptide (Al vs AH). Only one gene was significantly differentially
expressed (Supplementary Table S1, column “adj. p”). Since In11 treatment previously
activated measurable early immune phenotypes (Steinbrenner et al., 2020), namely
induced ROS and ethylene production, in identical experimental conditions, we
reasoned that transcriptional changes at this timepoint may occur below the threshold
for statistical significance. We therefore performed a separate analysis filtering for
genes with p<0.05 differential expression by standard Wald test but without correction
for multiple comparisons (Supplementary Fig. S1B, Supplementary Table S1, column
“p-value”). With this relaxed threshold, 91 genes were characterized as upregulated by
the addition of In11 (Supplementary Fig. S1). Interestingly, In11-upregulated genes
overlapped with both Agrobacterium-upregulated (Supplementary Fig. S1B) and
downregulated genes (Supplementary Fig. S1C), suggesting complex regulation of

specific N. benthamiana PTI outputs.
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We further filtered candidate PTI marker genes based on broad responsiveness to both

Agrobacterium and In11. Nine genes showed higher Agrobacterium or In11 induced
expression in all three comparisons (Fig. 1C, Supplementary Fig. S1B), suggesting a
large dynamic range of gene expression able to be activated by both Agrobacterium
PAMPs and by the addition of the separate individual PAMP, In11. To determine more
confidently which of these genes are induced by In11 treatment, we conducted qRT-
PCR analysis probing differences in expression of each of the candidate marker genes
six hours after water and In11 treatment. We found that four genes showed significant
induction after treatment with In11 in tissue transiently expressing PvINR, but not in
tissue infiltrated with an empty vector strain: Niben101Scf08566g08014,
Niben101Scf04592900020, Niben101Scf06684g03003, Niben101Scf046529g00027 (Fig.
2). We conclude that these four genes serve as markers of INR-mediated responses to
In11 in Nicotiana benthamiana after transient PRR expression. In summary, while the
transcriptional effects of an additional PAMP, In11, 24 hours after Agrobacterium
infiltration are subtle, candidate genes were observed with Agrobacterium and PAMP-

inducible behavior consistent with broadly responsive marker genes.

An FBP Luminescence Reporter to Quantify Innate Immune Activation by PTI

To test whether the promoter regions of these genes could function in In11-inducible
reporters, we generated promoter fusion constructs with promoter regions of the
endogenous N. benthamiana marker genes driving expression of the fungal luciferase
(LUZ). Original FBP constructs contain five genes of the pathway for both LUZ and

substrate biosynthesis enzymes (Khakhar et al., 2020). We first generated an adaptable
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acceptor construct allowing MoClo-compatible cloning of promoters to drive LUZ
expression (Supplementary Fig. 2A). This vector, pFBP_promoter_acceptor, is available
on Addgene (confirmation pending). Using this construct, we replaced the original
constitutive CaMV35S promoter originally driving LUZ with promoter regions of genes of
Fig. 2. Of the two constructs we successfully generated, only a fusion driven by the
promoter region of Niben101Scf06684g03003 showed induction of luminescence upon
In11 treatment in a PvINR-dependent manner (Fig. 3A, Supplementary Fig. S3).
Niben101Scf066849g03003 is a homolog of the A. thaliana Class Ill lysozyme LYS1
(Supplementary Fig. S4) (X. Liu et al., 2014). We therefore termed this construct
pPFBP_NbLYS1::LUZ (hereafter pLYS1::LUZ). Importantly, infiltration damage during
treatment with H20 does not result in high background luminescence and is instead
comparable with tissue not infiltrated with the reporter (Supplementary Fig. S5A),

making luminescence upon induction with In11 easily detectable.

Luminescence induced by the pLYS1::.LUZ construct was markedly lower than a
construct using the CaMV35S promoter to drive LUZ expression (Supplementary Fig.
S4B). However, duplication of promoters has been shown to effectively increase
strength of expression (Kay et al., 1987). To enhance the strength of reporter
expression and observable luminescence, we also constructed pFBP_2xNbLYS1::LUZ
(hereafter p2xLYS1::LUZ), a double promoter region construct where two copies of the
NbLYS1 promoter were arranged adjacently and used to drive expression of luciferase
treatment (Supplementary Fig. S5B). When coexpressed alongside PvINR, the
pLYS1::LUZ single copy construct did not show a statistically significant difference in

luminescence between water and In11 treatment, while the p2xLYS1::LUZ double copy
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construct did show a significant difference between the water and In11 treatments (Fig.

3A). We therefore elected to proceed using the p2xLYS1::LUZ FBP construct as a

reporter for all subsequent experiments.

Different assays for immune receptor function show varying degrees of sensitivity to low
elicitor concentrations (Mott et al., 2018). To determine the sensitivity of the FBP
reporter assay to In11 treatment, we coexpressed the p2xLYS1::LUZ reporter and
p356s::PvINR and conducted a dose-response experiment using increasing
concentrations of In11. We observed statistically significant differences in luminescence
between water and In11 treatments above 500 pM (Fig. 3B). This falls within the range
of reported In11 concentrations that are present in the oral secretions of caterpillars
during herbivory (Schmelz et al., 2006), and represents a potentially higher sensitivity
than that of a ROS assay (Supplementary Fig S6). As a result, the p2xLYS1::LUZ is a

robust reporter of immune activation by biologically relevant elicitor concentrations.

Besides INR, other heterologously expressed PRRs are capable of conferring PTI
immune signaling in N. benthamiana (Albert et al., 2015; Steinbrenner et al., 2020; L.
Zhang et al., 2021). Furthermore, flg22 treatment induces expression of the A. thaliana
LYS1 homolog (X. Liu et al., 2014). To test whether the p2xLYS1::LUZ construct serves
as a reporter of PRR activity more broadly, we also tested reporter inducibility by two
cell surface PRRs from A. thaliana: EFR and RLP23. We observed background
induction of luminescence in leaf tissue expressing EFR when treated with elf18 (Fig.
4C, Supplementary Fig. S7). This is potentially due to background induction of EFR by

Agrobacterium, an EFR-specific effect further supported by lack of background
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luminescence in tissue expressing AtFLS2 (Supplementary Fig. S8). elf18 nonetheless

robustly induces luminescence relative to mock treatment. We also observed induction
of luminescence in leaf tissue expressing RLP23 when treated with nlp20 (Fig. 4D).
Importantly, induction of luminescence is only observed in regions of interest where the
cognate receptor-elicitor pair is present. Together, these data support the utility of the

p2xLYS1::LUZ construct as a robust reporter of specific PRR-elicitor interactions.

SOBIR1 is necessary for INR-mediated Induction of Bioluminescence by Inceptin

Characterized LRR-RLPs are known to require the adaptor receptor-kinase
SUPPRESSOR OF BIR1-1 (SOBIR1) to initiate downstream signaling (Liebrand et al.,
2013; Albert et al., 2015). Although SOBIR1 has been shown to associate with INR in
Nicotiana benthamiana, it is not yet known if SOBIR1 is necessary for immune signaling
by PVINR (Steinbrenner et al., 2020). To determine whether PvVINR requires SOBIR1
and whether the p2xLYS1::LUZ reflects downstream immune signaling pathways, we
conducted reporter assays in N. benthamiana sobir1 knockout plants, which previously
showed compromised function of the tomato LRR-RLP Cf4 (Huang et al., 2021).
Induction of luminescence by In11 treatment is absent in sobir1 mutant plants and
restored when either A. thaliana SOBIR1 or P. vulgaris SOBIR1 are coexpressed with
PVINR. (Fig. 5). Thus, reporter activation is subject to similar requirements for LRR-
RLP function as well-characterized PTI responses. This suggests that the
p2xLYS1::LUZ construct serves as a useful tool not only for studying receptor-elicitor
interactions but also downstream interactions important for immmune activation and

signaling.
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Discussion

We describe here a genetically encoded reporter responsive to heterologously
expressed PRRs in N. benthamiana. The p2xLYS1::LUZ reporter demonstrates robust
PAMP sensitivity and does not require addition of exogenous enzyme substrate.
Therefore, this reporter assay may be a useful tool for assessing immune activation by
a number of diverse PRRs, including both receptor-like kinases and receptor-like

proteins.

To develop this reporter, we first characterized the transcriptional modifications that
occur in response to both Agrobacterium and elicitor perception by a heterologously
expressed LRR-RLP. LRR-RLPs warrant further structural and functional
characterization, as they constitute a key class of PRRs involved in activating plant
innate immune responses (Jamieson et al., 2018; Albert et al., 2020; Steinbrenner,
2020). LRR-RLPs also include the first known receptor-ligand pair involved in defense
against a chewing herbivore (Steinbrenner et al., 2020). However, the specific
molecular interactions required for immune signaling by LRR-RLPs in plants remain
only partially understood, in part because no solved crystal structures of LRR-RLPs
have been reported. Although characterized LRR-RLPs require SUPPRESSOR OF
BIR1-1 (SOBIR1) and SOMATIC EMBRYOGENESIS RECEPTOR KINASEs (SERKS)
to activate immune signaling, the mechanisms underlying ligand binding and coreceptor

association are unclear (van der Burgh et al., 2019). As a result, we tailored our reporter
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system toward heterologously expressed LRR-RLPs to aid in gathering deeper insights

into this important and incompletely understood group of plant cell surface immune
receptors. However, we also observed induction of luminescence in response to the
bacterial elicitor elf18 in tissue expressing A. thaliana EFR, a receptor-like kinase (RLK)
(Zipfel et al., 2006). As a result, this reporter could be useful for studying RLK signaling.
Additionally, recent studies describing the overlap between PTI and ETI signaling
suggest common signaling components (Ngou et al., 2021; Pruitt et al., 2021). As a
result, there is a possibility this reporter could serve to study intracellular immune
receptors and may be particularly useful when these receptors do not produce

hypersensitive responses.

Unsurprisingly, our transcriptomic analysis revealed that Agrobacterium treatment alone
resulted in large changes in gene expression. This demonstrates that Agrobacterium
strongly induces innate immunity in N. benthamiana, likely through recognition of
Agrobacterium PAMPs, resulting in large-scale transcriptional changes. Therefore, it is
important to consider the role of Agrobacterium PAMPs in activating immunity.
Interestingly, many genes that showed upregulation in response to In11 treatment were
genes that were downregulated by Agrobacterium (Fig S1B-C). While likely due to
timescales of Agrobacterium inoculation (24 hours post infiltration) versus In11
treatment (6 hours post infiltration), it is also possible that perception of Agrobacterium
PAMPs by N. benthamiana is antagonized by simultaneous activation of immunity by
the herbivore-associated In11 elicitor, a potential result of signaling conflict between SA
and JA signaling (Li et al., 2019). Agrobacterium may activate biotroph-related

immunity, whereas INR may activate necrotroph-related immunity through pathways
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downstream of SOBIR1. Because of the complex nature of these factors, we selected

genes that showed upregulation in response to Agrobacterium that was further amplified
by In11 treatment to identify a generic marker of immune activation by specific elicitor

receptor interactions.

Although we identified four marker candidates, only one showed induction of
luminescence in response to elicitor treatment (Fig. 3). We were either unable to clone
the respective promoter region (Niben101Scf045929g00020, Niben101Scf04652g00027)
or observed no luminescence in response to In11 treatment compared to water
treatment (Niben101Scf08566908014) (Supplementary Fig. S2). Although protocols
exist to amplify difficult templates such as AT or GC-rich sequences (Dhatterwal et al.,
2017; Sahdev et al., 2007), the complex nature of the N. benthamiana genome poses
technical challenges in amplifying already evasive promoter regions (Bombarely et al.,
2012). Furthermore, it is possible that promoter terminator incompatibility occurred
between candidate promoter regions resulting in silencing of LUZ (P.-H. Wang et al.,
2020). Finally, it is possible that we failed to include the necessary cis-regulatory
elements of the promoter region, as we decided on a somewhat arbitrary cutoff of 1.5 kb
preceding the start codon of the gene. Trans-regulatory elements may also be
necessary to mediate observed changes in gene expression in response to In11
treatment. As a result, improved understanding of plant transcriptional regulatory
elements will facilitate efforts to identify and utilize additional highly responsive
promoters under a variety of biotic stress conditions as tools to study plant immune

responses.
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The pFBP_promoter_acceptor construct is now publicly available to screen other

candidate promoters through simple MoClo ligation of a promoter of interest. However,
several considerations should be taken regarding the use of the FBP reporter. Unlike
firefly luciferase, which is known to have a short half-life in the presence of luciferin (Van
Leeuwen et al., 2000), it is suggested that the stability of fungal luciferase is more
suitable for measuring changes over hours, limiting its utility on finer time scales
(Khakhar et al., 2020). Induction of luminescence should as a result be viewed as a
cumulative representation of reporter activity, rather than instantaneous measure of
gene expression. Furthermore, production of fungal luciferin depends on availability of
caffeic acid, causing luciferin availability to not be completely uniform across all plant
tissues, and sustained periods of fungal luciferase activity to possibly deplete luciferin
stores. Although these limitations remain largely negligible for the purpose of assessing
specific receptor-elicitor interactions, they should be considered in situations where
temporal and spatial aspects are of importance. It should be noted that the FBP
construct designed by Khakhar et al includes caffeylpyruvate hydrolase (CPH), which
converts the product of the luciferase-luciferin assay, caffeylpyruvic acid, back to caffeic
acid. This allows for recycling of luciferin that prolongs bioluminescence production,
circumventing one potential issue for prolonged measures. Because this reporter assay
was used to measure relatively short time-scale processes, it is unlikely to be critical for

function of the assay.

A final consideration regarding caffeic acid dynamics relates to the role of caffeic acid
as an important compound mediating plant stress resistance. Efforts to utilize caffeic

acid to aid in resistance to abiotic stresses demonstrate important effects on enhancing
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resistance (Klein et al. 2013, Wan et al. 2015, Mehmood et al. 2021). During plant
immunity, caffeic acid can similarly play important roles. Induction of caffeic acid in
Nicotiana tabacum during infection by Ralstonia solanacearum aids in plant defense (Li
et al. 2021), and caffeic acid accumulation has been widely shown to enhance
resistance to pathogens by increasing lignification of plant tissue (Riaz et al. 2019). In
our reporter system, induction of luminescence upon activation of immunity was only
observed with reporter fusion constructs harboring the NbLYS7 homolog promoter
region, and not with the constitutive CaMV35s promoter region. This supports the
conclusion that under this system, the reaction catalyzed by fungal luciferase represents
the rate limiting step for production of luminescence, rather than changing caffeic acid
dynamics. Although we did not further disentangle caffeic acid induction during pattern
triggered immunity, it presents an interesting avenue in the field of plant secondary

metabolites.

This reporter system represents a potentially high-throughput and sensitive reporter for
assessing immune activation by heterologously expressed PRRs in N. benthamiana.
Although other systems retain power by being more sensitive to subtle immune
phenotypes and usefulness in characterizing endogenous immune signaling processes
in non-model organisms, the sensitivity, robustness, and ease of the FBP reporter
system make it useful for understanding cell surface receptor function in N.
benthamiana. As a result, this reporter represents a potentially valuable addition to the
plant immune biology toolkit, especially for large scale studies aimed at illuminating the

structure and function of cell surface immune receptors from diverse species.
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Figure Legends

Figure 1. Agrobacterium and In11-induced changes in N. benthamiana gene
expression. A, Venn diagram displaying number of significantly differentially expressed
genes (DEGs) upregulated by Agrobacterium relative to mock-treated tissue. B,
Agrobacterium-downregulated genes. Treatments are labeled as follows: AH,
Agrobacterium + H20, Al, Agrobacterium + In11, H, Mock infiltrated leaf tissue. See Fig.
S1 for treatment details. Top ten genes in both categories with largest log2(fold-change)
(FC) are displayed at right. P-value indicates statistical significance with standard Wald
test. Adj. P indicates significance after correction for multiple comparisons (Benjamani-
Hochberg, BH). C, Candidate genes induced by In11 in the presence of Agrobacterium.
While only one DEG was observed after BH correction, 9 genes were induced by In11
uncorrected for multiple comparisons (Fig. S1).

Figure 2. qRT-qPCR validation of candidate marker genes. Boxplots indicate the
mean logz(fold change) between water and In11 treated tissue (logz(FC) In11 vs H20) of
gene expression from N. benthamiana plants expressing either p35s::PvINR or an
empty vector (EV) over four biological replicates. Student’s t-tests were conducted to
determine significance (n.s.: not significant p>.05, *: p<0.05, **: p<0.01, ***: p<0.001).

Figure 3. A Nicotiana benthamiana LYS1 homolog serves as a marker of inceptin
response. A, Leaves were coinfiltrated with p35s::PvINR and pLYS1::LUZ across the
proximal portion of the leaf, and p35s::PvINR and p2xLYS1::LUZ across the distal
portion of the leaf. 48 hours after infiltration, one half of the leaf was infiltrated with
sterile water, and the other half was infiltrated with 1 yM In11. Images were obtained 6
hours after peptide treatment, and ASI was quantified in Imaged. Left, boxplots show
the average ASI of three independent biological replicates. Letters represent
significantly different means (One-way ANOVA and post-hoc Tukey’s HSD tests, p<.05).
Right, a representative leaf image of one biological replicate is depicted. B, Leaves
were co-infiltrated with p35s::PvINR and p2xLYS1::LUZ in six distinct regions of the
leaf. 48 hours after infiltration each zone was infiltrated with sterile water or a series of
In11 concentrations. Imaging and quantification were conducted as in A.

Figure 4. The p2xLYS1::LUZ construct acts as a generic reporter for plant pattern
recognition receptors. Leaves of N. benthamiana plants were coinfiltrated with the
p2xLYS1::LUZ reporter construct and either A) empty vector, B) 35s::PVINR, C)
356s::AtEFR, or D) 35s::AtRLP23 in four distinct regions. 48 hours after infiltration, each


https://www.zotero.org/google-docs/?FlQJhW

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

Anthony Garcia
MPMI
34
region was infiltrated with either sterile water, 1 uM In11, 1 uM elf18, or 1 uM nlp20
peptide. Images were obtained 6 hours after peptide treatment, and ASI was quantified
in ImageJ. Left, boxplots show the average ASI of six independent biological replicates.
Letters represent significantly different means (One-way ANOVA and post-hoc Tukey’s
HSD tests, p<.05). Right, a representative leaf image of one biological replicate is
depicted.

Figure 5. SOBIR1 is necessary for activation of luminescence by PvINR. Leaves of
Nicotiana benthamiana sobir1 knockout plants were coinfiltrated with the
pFBP_2xLYS1::LUZ reporter construct, p35s::PvINR and either: empty vector (EV); A)
p356s::PvSOBIR1; or B) p35s::AtSOBIR1 , repeated for three biological replicates. 48
hours after infiltration, each region of interest was infiltrated with either sterile water or 1
MM In11. Images were obtained 6 hours after peptide treatment, and ASI was quantified
in ImageJ. Left, boxplots show the average ASI of three independent biological
replicates. Letters represent significantly different means (One-way ANOVA and post-
hoc Tukey’s HSD tests, p<.05). Right, a representative leaf image of one biological
replicate is depicted.
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A Agrobacterium-upregulated
AHvs H Alvs H
g Agro + H20 (AH) vs H20 (H)
Gene Niben101 Functional Annotation log2(FC) p-value adj. p
Niben1015cf08186g00006 [trypsin proteinase inhibitor precursor [Nicotiana tabacum] -343 9.35E-20 4 39E-17
Niben101Scf01685g12005 [Xyloglucan endotransglucosylase/hydrolase protein 9 -2.94 1.44E-14 3.69E-12
Niben1015cf05216g09026 |PDZ, K-box, TPR -1.85 4.07E-14 9.95E-12
Niben1015cf00887¢g02006 [Ornithine decarboxylase -4.92 1.21E-13 2.80E-11
Niben101Scf11490g00008 |Thiamine thiazole synthase -1.40 9.52E-13 1.86E-10
Niben1015cf07638g01010 [Seed storage 25 albumin superfamily protein -3.06 1.99E-12 3.53E-10
Niben1018cf03404g00007 |BnaA06g36820D [Brassica napus] -2.33 2.74E-12 4. 73E-10
Niben1018cf05073g02002 |Transeription factor EB -4.93 3.93E-11 5.43E-09
Niben101Scf10316g01005 [carbohydrate binding protein, putative [Ricinus communis] -2.66 7.62E-11 1.01E-08
Niben1015cf05782g00010 [Oxygen-evolving enhancer protein 2-1, chloroplastic -1.68 9.77E-11 1.25E-08
B Agrobacterium-downregulated
AHvs H AlvsH
Agro + H20 (AH) vs H20 (H)
Gene Niben101 Functional Annotation log2(FC) p-value adj. p
Nibern1018¢f01084g03003 |No annotation (BLASTX: NbSARS.2d) 7.82 5.14E-123 1.21E-118
Niben1018¢f03385g02011 [Plant basic secretory protein (BSP) protein 7.82 2.39E-110 2.80E-106
Niben1015cf35444900004 |Glutathione S-transferase U8 6.84 3.57E-85 2.79E-81
Niben1015¢f02819g00005 |Early nodulin-like protein 1 742 2.47E-68 1.45E-65
Niben1013¢f02041g00002 [Chitinase 8 4,68 7.A48E-67 3.51E-63
Niben1018¢cf10735g00016 [Major pollen allergen Bet v 1-M/N 517 9.52E-58 3.73E-54
Niben1015¢f02410g00002 |Chitinase 9 7.30 1.92E-47 6.43E-44
Niben1013¢f05404909001 |Glutathione S-transferase U8 8.25 7. 11E-44 2.09E-40
Niben101S8¢cf02171g00007 |[chitinase [Zea mays subsp. parviglumis] 7.25 1.20E-42 3.14E-39
Niben1015¢f02203g05002 |3-hydroxy-3-methylglutaryl-coenzyme A reductase 5.10 2.00E-41 4.70E-38
C Agro + In11 (Al) vs Agro + H20 (AH) Agro + H20 (AH) vs Hz0 (H)
Gene Niben101 Functional Annotation log2(FC) p-value adj. p log2(FC) p-value adj. p
Niben101Scf08566g08014 |Peroxidase N1 2.05 2.97E-09 1.08E-04 2.85 1.45E-12 2.70E-10
Niben1015cf04592g00020 |BURP domain-containing protein 3 2.40 1.00E-04 1.00E+00 5.16 8.53E-05 2.43E-03
Niben1018cf02513g05010 |Peroxidase N1 1.36 4.78E-04 1.00E+00 4.74 1.99E-20 9.95E-18
Niben1015cf09387g01003 |Seed storage 2S albumin superfamily protein 1.22 3.18E-03 1.00E+00 5.25 2.86E-15 1.02E-12
Niben1015cf03444g02004 |BAG family molecular chaperone regulator 2 1.32 4.13E-03 1.00E+00 2,16 5.03E-04 9.11E-03
Niben1015cf02411g01001 |Peroxidase 4 1.02 6.73E-03 1.00E+00 5.01 3.08E-08 2 36E-06
Niben101S8cf06684g03003 |Acidic endochitinase 213 2. 21E-02 1.00E+00 3.29 2.73E-02 1.77E-01
Niben1015¢f01534g02007 |Annexin D4 1.02 4.42E-02 1.00E+00 1.69 2.38E-03 3.05E-02
Niben1015cf04652¢00027 |Unknown protein 1.53 4.80E-02 1.00E+00 2.64 3.71E-02 2.18E-01

Figure 1. Agrobacterium and In11-induced changes in N. benthamiana gene
expression. A, Venn diagram displaying number of significantly differentially expressed
genes (DEGs) upregulated by Agrobacterium relative to mock-treated tissue. B,
Agrobacterium-downregulated genes. Treatments are labeled as follows: AH,
Agrobacterium + H20, Al, Agrobacterium + In11, H, Mock infiltrated leaf tissue. See Fig.
S1 for treatment details. Top ten genes in both categories with largest log2(fold-change)
(FC) are displayed at right. P-value indicates statistical significance with standard Wald
test. Adj. P indicates significance after correction for multiple comparisons (Benjamini-
Hochberg, BH). C, Candidate genes induced by In11 in the presence of Agrobacterium.
While only one DEG was observed after BH correction, 9 genes were induced by In11
uncorrected for multiple comparisons (Fig. S1).



log,(FC) In11 vs H,0O
w

o

log,(FC) In11 vs H,0
w

o

log,(FC) In11 vs H,0O
w

(=]
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Boxplots indicate the mean logx(fold change) between water and In11 treated tissue (log2(FC)
In11 vs H20) of gene expression from N. benthamiana plants expressing either p35s::PvINR or
an empty vector (EV) over four biological replicates. Student’s t-tests were conducted to
determine significance (n.s.: not significant p>.05, *: p<0.05, **: p<0.01, ***: p<0.001).
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Figure 3. A Nicotiana benthamiana LYS1 homolog serves as a marker of inceptin
response. A, Leaves were coinfiltrated with p35s::PvINR and pLYS1::LUZ across the proximal
portion of the leaf, and p35s::PvINR and p2xLYS1::LUZ across the distal portion of the leaf. 48
hours after infiltration, one half of the leaf was infiltrated with sterile water, and the other half
was infiltrated with 1 uM In11. Images were obtained 6 hours after peptide treatment, and ASI
was quantified in Imaged. Left, boxplots show the average ASI of three independent biological
replicates. Letters represent significantly different means (One-way ANOVA and post-hoc
Tukey’s HSD tests, p<.05). Right, a representative leaf image of one biological replicate is
depicted. B, Leaves were co-infiltrated with p35s::PvINR and p2xLYS1::LUZ in six distinct
regions of the leaf. 48 hours after infiltration each zone was infiltrated with sterile water or a
series of In11 concentrations. Imaging and quantification were conducted as in A.
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Figure 4. The p2xLYS1::LUZ
construct acts as a generic
reporter for plant pattern
recognition receptors. Leaves of
N. benthamiana plants were
coinfiltrated with the
p2xLYS1::LUZ reporter construct
and either A) empty vector, B)
356s::PVINR, C) 35s::AtEFR, or D)
35s::AtRLP23 in four distinct
regions. 48 hours after infiltration,
each region was infiltrated with
either sterile water, 1 uM In11, 1
MM elf18, or 1 uM nlp20 peptide.
Images were obtained 6 hours
after peptide treatment, and ASI
was quantified in ImageJ. Left,
boxplots show the average ASI of
six independent biological
replicates. Letters represent
significantly different means (One-
way ANOVA and post-hoc Tukey’s
HSD tests, p<.05). Right, a
representative leaf image of one
biological replicate is depicted.
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Figure 5. SOBIR1 is necessary for activation of luminescence by PvINR. Leaves of
Nicotiana benthamiana sobir1 knockout plants were coinfiltrated with the pFBP_2xLYS1::LUZ
reporter construct, p35s::PvINR and either: empty vector (EV); A) p35s::PvSOBIR1; or B)
p35s::AtSOBIR1 , repeated for three biological replicates. 48 hours after infiltration, each region
of interest was infiltrated with either sterile water or 1 uM In11. Images were obtained 6 hours
after peptide treatment, and ASI was quantified in ImageJ. Left, boxplots show the average ASI
of three independent biological replicates. Letters represent significantly different means (One-

way ANOVA and post-hoc Tukey’s HSD tests, p<.05). Right, a representative leaf image of one
biological replicate is depicted.




