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Abstract. We investigate here the effects of geometric
properties (channel depth and cross-sectional convergence
length), storm surge characteristics, friction, and river flow
on the spatial and temporal variability of compound flooding
along an idealized, meso-tidal coastal-plain estuary. An ana-
lytical model is developed that includes exponentially con-
vergent geometry, tidal forcing, constant river flow, and a
representation of storm surge as a combination of two sinu-
soidal waves. Nonlinear bed friction is treated using Cheby-
shev polynomials and trigonometric functions, and a multi-
segment approach is used to increase accuracy. Model results
show that river discharge increases the damping of surge am-
plitudes in an estuary, while increasing channel depth has
the opposite effect. Sensitivity studies indicate that the im-
pact of river flow on peak water level decreases as chan-
nel depth increases, while the influence of tide and surge
increases in the landward portion of an estuary. Moreover,
model results show less surge damping in deeper configura-
tions and even amplification in some cases, while increased
convergence length scale increases damping of surge waves
with periods of 12–72 h. For every modeled scenario, there is
a point where river discharge effects on water level outweigh
tide/surge effects. As a channel is deepened, this cross-over
point moves progressively upstream. Thus, channel deepen-
ing may alter flood risk spatially along an estuary and reduce
the length of a river estuary, within which fluvial flooding is
dominant.

Highlights.

– An idealized analytical model shows that deepening an estu-
arine channel reduces the impacts of river flow on peak water
level but increases the effects of storm tide.

– A friction number shows the competing effects of surge
timescale, depth, and convergence on water level amplitudes.

– Channel deepening changes the balance of fluvial and coastal
flood risks and moves the crossover between storm tide vs.
fluvial-dominated flooding landward.

1 Introduction

Understanding tidal, surge, and river flow dynamics and how
they combine and interact to produce the maximum or total
water level (TWL) is important for emergency planning and
as an aspect of wave dynamics. It is also a problem that is
changing rapidly, as sea level rises and systems are altered
by engineering. This contribution therefore analyzes the rel-
ative influence of river flow and storm surge effects along the
river–estuary continuum from a dynamical perspective that
enables us to assess the effects of nonlinear interactions, ge-
ometry, and changing (time varying) conditions.

Many low-lying coastal and riverine areas have been af-
fected by combined coastal and riverine floods over the last
few decades (e.g., Jongman et al., 2012; Nicholls et al.,
2007). In cases such as Hurricane Harvey (Gulf of Mexico,
August 2017), flooding was driven primarily by precipita-
tion and runoff (van Oldenborgh et al., 2017; Wang et al.,
2018). Other flood events, such as Hurricane Sandy, were
forced by the combined effects of tide and storm surge, i.e.,
by “storm tides” the sum of storm surge and tidal water level
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(Orton et al., 2016). Some storm events, like Hurricanes Irene
and Irma, produce both coastal and inland flooding because
both storm surge and river flow produce elevated coastal wa-
ter levels in a spatially varying pattern (e.g., Orton et al.,
2012; Ralston et al., 2013; Talke et al., 2021). Accordingly,
a flood influenced by both storm tide and precipitation run-
off is a “compound flood” (Zscheischler et al., 2018; Wahl
et al., 2015). The relative timing of the coastal and fluvial
forcing, and the timescale over which water levels are ele-
vated, matters in terms of impact (e.g., Zheng et al., 2014).
Storm surge flooding generally occurs first and for a shorter
period (timescales of hours to a day or two) than river flood-
ing, which may last for weeks or even months, particularly
in regions with a large watershed and flat topography (e.g.,
Johnson et al., 2016; IPCC, 2014). The timing of storm surge
relative to tidal high-water (Familkhalili and Talke, 2016)
or the spring–neap tidal cycle also influences flood heights,
even upstream of tidal influence (Helaire et al., 2020).

The spatial variability of compound flooding is influenced
by the geometry of an estuary and may change over time due
to system alterations, including channel deepening, sea-level
rise, and wetland reclamation (Ralston et al., 2019; Helaire
et al., 2019, 2020). Recent studies have shown that human-
caused changes to the geometry of estuaries affect the dy-
namics of long waves (see reviews by Talke and Jay, 2020;
Jay et al., 2022), with tidal range in some regions more than
doubling (e.g., Winterwerp et al., 2013). Similar effects are
observed with storm surge; for example, doubling the depth
of the shipping channel in the Cape Fear Estuary was mod-
eled to increase the magnitude of a worst-case scenario storm
surge in Wilmington (NC) from 3.8± 0.25 to 5.6± 0.6 m
(Familkhalili and Talke, 2016). By contrast, depth increases
may cause the mean water level in tidal rivers to drop due to
decreased frictional effects (Jay et al., 2011; Helaire et al.,
2019); hence, flood risk in Albany (NY) has significantly
dropped over the past 150 years, despite a doubling of tide
range and an increase in storm surge magnitudes (Ralston et
al., 2019). Closer to the coast, flood hazard within the same
estuary markedly increased over the same time period (e.g.,
Talke et al., 2014). Hence, evolution of flood hazard can be
spatially variable to an extent that is just beginning to be
quantified.

Here, an idealized approach is used, which enables a large
parameter space to be assessed and the following two dynam-
ical questions to be investigated.

a. What factors determine the region in which river flow
effects or tide and surge effects dominate the total water
level?

b. How does the transition from coastal to fluvial dom-
inance shift as geometry changes or as properties of
storm surge (e.g., timescale and magnitude) and river
flow (magnitude) change?

We combine a three-sinusoidal-wave analytical model
based on Jay (1991) with the multi-wave and multi-segment
approach of Giese and Jay (1989) (see Familkhalili et al.,
2020 for details) to quickly query a parameter space or rel-
evant factors and provide insight into how factors such as
storm timescale and the relative magnitudes of different forc-
ing factors influence the dynamics of compound flooding.

2 Methods

Both analytical solutions and numerical models are regu-
larly used to explore the mechanism of surge and tidal waves
propagation along an estuary (see Talke and Jay, 2020).
While numerical models can simulate tidal wave propagation
more accurately than analytical models considering the mea-
surements in a real system, numerical models are typically
calibrated for an existing bathymetric, meteorological, and
boundary forcing configurations (e.g., Brandon et al., 2014;
Bertin et al., 2012; Orton et al., 2012). On the other hand, ide-
alized numerical models with simplified configurations can
be used to develop sensitivity studies to investigate the ef-
fects of changing hydrodynamic variables on surge and tidal
wave interactions in a system (e.g., Shen and Gong, 2009;
Familkhalili and Talke, 2016), but a downside of these nu-
merical approaches is that studying an entire parameter space
is computationally expensive. In contrast, analytical models
rely on fundamental underlying physics and are transparent.
Thus, they are good tools to explain some of the factors (e.g.,
channel depth, convergence length, river discharge, and surge
amplitude and timescale changes) that alter flood levels in an
estuary.

We apply an analytical approach to investigate the TWL
caused by river discharge, tides, and surge in an idealized es-
tuary. Various forms of one-dimensional analytical solutions
of tidal wave propagation have long been used for idealized
and real estuaries (e.g., Dronkers, 1964; Prandle and Rah-
man, 1980; Jay, 1991; Friedrichs and Aubrey, 1994; Savenije,
1998; Lanzoni and Seminara, 1998; Godin, 1999). More
complex idealized tidal models investigate overtide genera-
tion and evolution (e.g., Chernetsky et al., 2010), the effects
of variable cross section and bottom slope (e.g., Savenije
et al., 2008; Kästner et al., 2019), and the effects of mul-
tiple tidal constituents and river discharge (Giese and Jay,
1989; Buschman et al., 2009). Other studies have used a tidal
model combined with regression analysis (e.g., Godin, 1999;
Kukulka and Jay, 2003a) to investigate river discharge ef-
fects. Such idealized models, by the parameter space ana-
lyzed, can be used to obtain fundamental insights into how
long waves in estuaries are affected by depth, convergence,
friction, and boundary forcing.

In our approach, we develop an analytical model that is
driven by three sinusoidal constituents and a constant river
discharge. Our approach idealizes storm surge as the sum of
two sinusoids and neglects factors such as the potential role
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of wetlands and the floodplain in order to gain insight into
some of the important, along-channel factors that govern the
system response to a compound event. Similarly, we neglect
processes such as Coriolis acceleration, wind waves, and
gravity waves, and focus on the specific case of an incident
long wave that propagates from the coast in the landward di-
rection and is eventually completely damped out. Though a
reflected wave is produced by convergent geometry in ana-
lytical models (Jay, 1991), we neglect the partial reflections
caused by depth and width changes and do not consider the
case of a reflective upstream boundary. Such factors are im-
portant for tidal changes in many estuaries, particularly for
locations that are near resonance such as the Ems (see Ensing
et al., 2015) or near where total reflections occur (see Ralston
et al., 2019). Moreover, we simplify our approach by consid-
ering only constant river flow conditions, a valid approxima-
tion for situations in which the timescale of a river flood event
is much longer than a storm surge. These simplifications en-
able a solution that is much faster than numerical models and
enables a tractable sensitivity study of storm surge and river
flow effects on water levels for different depths, convergence,
and boundary conditions.

2.1 Analytical model

We use an idealized one-dimensional analytical model devel-
oped by Familkhalili et al. (2020) to investigate how com-
binations of tides, storm surge, and river flow affect wa-
ter levels in an estuary. In this model, storm surge is ap-
proximated as the sum of a primary and a secondary si-
nusoidal wave. A third sinusoidal frequency is reserved
for the M2 tidal constituent. The resulting model is con-
ceptually similar to the multi-tide constituent model devel-
oped by Giese and Jay (1989) and the three-wave model
of Buschman et al. (2009), with the distinction that two
of the waves are based on the amplitude and timescales
of meteorologically induced storm surge rather than an as-
tronomical tide with a known frequency. In addition, the
Giese and Jay (1989) model used the dynamical analysis
of Dronkers (1964), which does not correctly include con-
vergence effects, whereas our model follows the Jay (1991)
treatment, which includes friction, convergence, and river in-
flow.

One-dimensional long-wave propagation along an ide-
alized, funnel-shaped estuary is described by the cross-
sectionally integrated equations of mass and momentum
conservation (e.g., Jay, 1991; Kukulka and Jay, 2003a;
Familkhalili et al., 2020):

∂Q

∂t
+
∂

∂x

(
Q2

A

)
+ gA

∂ξ

∂x
+ bK = 0, (1)

∂Q

∂x
+ b

∂ξ

∂t
= 0, (2)

where Q is cross-sectionally integrated flow (m3 s−1) and is
the summation of the river and tidal transports (QR+ QT),

t is time (s), x is the longitudinal coordinate measured in
landward direction (m) (see Fig. 1a), b is width (m), g is the
acceleration due to gravity (9.81 m s−2), A is channel cross-
sectional area (m2), ξ is tidal amplitude (m), K is the bed
stress divided by water density (m2 s−2) ( τ

ρ
= Cd |u|u), Cd

is a dimensionless drag coefficient, and u=Q/A is the ve-
locity (m s−1). The absolute value of u is assigned to pre-
serve the directionality of stress. For simplicity, depth is as-
sumed constant and channel width is allowed to vary expo-
nentially with respect to the longitudinal coordinate x (i.e.,

b(x) = Bc+ (B0−Bc)e

(
−

x
Le

)
, see Fig. 1a), where B0 is the

width at the estuary mouth (m) and Bc is the constant up-
stream river width (m) and Le is the convergence length
scale (m) that is the length over which the width decreases
by a factor of e. Following Familkhalili et al. (2020), we
set B0 = 5 km and assume that the estuary section of the
model domain is 1.5 times the convergence length, which
determines a constant river width of ∼ 1100 m. The constant
depth channel is routed upstream for 100 km to enable the
tide wave to dissipate and prevent reflection off an upstream
boundary. The tidal amplitude to depth ratio ( ξ

h
) is assumed

small, and river flow (QR) is held constant (e.g., Kukulka
and Jay, 2003a; Familkhalili et al., 2020). Applying these as-
sumptions and combining Eqs. (1) and (2) yields the follow-
ing differential equation:
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We linearize the frictional term (K = Cd |u|u) using Cheby-
shev polynomials (Dronkers, 1964) to approximate the fric-
tional term, u |u|. Following Godin (1991, 1999), only the
first- and third-order terms of the dimensionless velocity are
retained, yielding

u |u|

U2
(x)

≈ Au′+Bu′
3
, (4)

where A= 16
15π , B = 32

15π , U(x) is a function of x and is the
maximum value of the total current (UR+UT), whereUR and
UT are maximum river and tidal velocity, respectively, and u′

is a non-dimensionalized velocity defined as u

|U(x)|
(Dood-

son, 1956; Godin, 1991). See Familkhalili et al. (2020) for
additional details.

The sectionally and vertically averaged velocity term in
Eq. (3) (u=Q/A) is decomposed into three sinusoidal wave
components and a constant river discharge:

u=−ur+

3∑
i=1

ui cos(ωi t +φi) , (5)
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Figure 1. (a) Idealized bathymetry and plan view of the conceptual model and (b) definition of the water surface slope, modified from
Kukulka and Jay (2003b). The along-channel direction x is upstream, with x = 0 being at the ocean. The convergent section of the model
domain is 1.5 times the convergence length, and the river channel at the left-hand side extends an additional 100 km to enable tidal and surge
constituents to damp out. See Appendix A for a description of parameters.

where ur is the river flow velocity (m s−1), and ui , ωi , φi
are velocity amplitudes, frequencies, and phases, respec-
tively. Although river discharge is not constant on seasonal or
weather system (5–7 d) timescales, we assume for simplicity
that the change over a tidal cycle or storm surge wave (gener-
ally < 2 d timescale) can be neglected. This limits our anal-
ysis to river systems with a long response time, i.e., our ap-
proach is inappropriate for short, steep, flashy systems with
flood timescales < 2 d.

We use a multi-segment approach (Dronkers, 1964) to di-
vide the model domain into N segments, each has a constant
depth and exponentially varying width. This approach pro-
duces a system of 2N linear equations with 2(N−1) internal,
1 seaward, and 1 landward boundary condition. The land-
ward boundary condition of our analytical model is forced
by a no-reflection condition with constant discharge and the
seaward boundary condition (see Fig. 1) is forced by three
sinusoidal water level signals. One of the sine waves repre-

sents the main semidiurnal tidal constituent, and two of the
sine waves represent the elevated water level of the surge sig-
nal in terms of primary and secondary components, denoted
by the Pri and Sec subscripts (Familkhalili et al., 2020):

Surge= APri cos(ωPrit +φPri)︸ ︷︷ ︸
SurgePri

+ASec cos(ωSect +φSec)︸ ︷︷ ︸
SurgeSec

+ C1︸︷︷︸
Constant

, (6)

where A is the amplitude, ω is the frequency, φ is the phase,
and C1 is an arbitrary offset. For simplicity, the surge is
treated as a free wave within the model domain, i.e., we ne-
glect the effect of wind stress and any locally generated com-
ponent of surge.

An example fit using two sinusoidal waves to a surge
caused by Hurricane Irene (August 2011) is shown in Fig. 2.
The surge signal is calculated by subtracting predicted tide
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Figure 2. An example of decomposing surge into two sinusoidal
waves. The red circles represent surge and are calculated by sub-
tracting predicted tide from measured water level during Hurricane
Irene (2011) at Lewes, DE (NOAA Station ID: 8557380). The blue
line is the model fit that is the sum of SuPri and SuSec, and the
dashed black line shows the threshold constant C1 as in Eq. (6).

from observed water level at Lewes, DE (NOAA Station
ID: 8557380). Fitting two sinusoidal waves approximates the
surge signal with correlation of R2

= 0.95 and root-mean-
square error of 0.05 m (Fig. 2). The fit is valid for the time
period that the surge remains above the dashed line.

Typical amplitudes, frequencies, and phases of the two
component surge waves are determined by fitting two sinu-
soids to 354 storm surge events from Lewes, DE. These re-
sults are used to define the parameter space that we investi-
gate (Sect. 4) and are typical of coastal storm surge character-
istics on the Mid-Atlantic Bight. Only significant events with
surges larger than 0.5 m are fit. The largest resulting primary
surge wave amplitude was about 1.1 m, larger than but of the
same order as the main tidal constituent (M2 = 0.6 m). The
statistically significant fits (R2

= 0.91) have average primary
and secondary surge periods of∼ 29 and∼ 16 h, respectively.

2.2 River discharge effects on water surface slope

The presence of river discharge (QR) and tidal transport
(QT) causes stronger ebb currents (|QT|+|QR |) and weaker
flood currents (|QT | − |QR |). The resulting nonlinear in-
teraction and increased friction typically reduces the tidal
range, delays arrival of high and low water (e.g., Godin,
1985; Hoitink and Jay, 2016), and generates tidal distortion
(asymmetry), expressed as the presence of overtides, e.g.,
M4 in semidiurnal-dominant systems (Parker, 1991). The in-
creased friction also influences subtidal water levels, produc-
ing a larger river slope (Kukulka and Jay, 2003b; Buschman
et al., 2009; Kästner et al., 2019). However, typical coastal

plain systems in the western Atlantic have low river flow rel-
ative to tidal transport. For example, the ∼ 200 m3 s−1 av-
erage annual river discharge of the Saint Johns River Estu-
ary, Florida, is about 5 % of total discharge (river+ tides)
(Talke et al., 2021). Similarly, the Delaware River Estuary
has mean and median river flows at Trenton, NJ, of ∼ 340
and 285 m3 s−1, respectively, which are small compared to
tidal flow of ∼ 23× 104 m3 s−1 at the mouth (USGS gauge
01463500; Munchow et al., 1992). The Cape Fear River has
an average river discharge of 268 m3 s−1 (Familkhalili and
Talke, 2016), which is less than 5 % of total averaged ebb–
tidal flow (Becker et al., 2010).

River flow alters the water surface slope, and this behavior
influences the spatial distribution of total water level (e.g.,
Fig. 1b). Here, we use the tidally averaged one-dimensional
equation of motion to investigate water level gradients, fol-
lowing Kukulka and Jay (2003b) and Godin (1999). For sim-
plicity, the component of mean water level caused by the tidal
Stokes drift is neglected. The parameter h is the mean depth
of water (m), ξ is the tidal amplitude (m) (small compared
to depth), and Z is the perturbation in the water surface ele-
vation due to river discharge QR and is assumed to be much
smaller than h. In this study, normalized river flow velocity
(applied at the upstream boundary) is parameterized as the
ratio of the river velocity magnitude to the magnitude of the
major tidal component velocity at the ocean boundary (i.e.,
|ur|∣∣uD2

∣∣ or θ hereafter). To evaluate the effect of elevated river

discharge, we consider a river flow ratio of 0 to 1. The ra-
tio of θ = 1 represents a case in which river and tidal flows
are comparable, and thus it is outside the zone of our as-
sumptions; however, comparisons with numerical model re-
sults suggest that results below this ratio are reasonable (see
Sect. 3.1). Therefore, we assess both low-flow conditions and
conditions in which the river flow is comparable to tidal dis-
charge.

Previous studies (e.g., Ralston et al., 2019; Helaire et al.,
2019; Talke et al., 2021) showed that reduced friction due to
increased channel depth can alter the tidally averaged water
level gradient ( ∂Z

∂x
, Fig. 1b). This water level gradient (river

slope) can be determined from the one-dimensional equation
of motion (Godin, 1999):

1
g

∂u

∂t︸ ︷︷ ︸
Local acceleration

+
u∂u

g∂x︸︷︷︸
Convective acceleration

=−
∂H

∂x︸︷︷︸
Pressure gradient

−
u |u|

C2
h(h+ ξ)︸ ︷︷ ︸
Friction

, (7)

where u is tidally averaged value of the current at x (ms−1),
g is the acceleration due to gravity (ms−2), Ch is Chézy co-
efficient (m1/2 s−1), and h is the mean depth of water (m).
Scaling the terms in Eq. (7) using values typically found in
estuaries (e.g., Godin and Martinez, 1994; Kukulka and Jay,
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2003b; Buschman et al., 2009) shows that zero-order balance
is between the pressure gradient and the friction term, and
thus the entire left-hand side of Eq. (7) can be neglected. We
adopt this simplification for our idealized geometry but note
that convective term may be locally important in real systems
with complex geometry (e.g., Helaire et al., 2019). The cross-
sectional area in our model varies smoothly (exponentially)
over a large length scale; thus, our approach neglects convec-
tive effects in the mean momentum balance. We also neglect
the riverbed slope, which is typically small in estuaries, par-
ticularly in modern dredged systems (see, e.g., Talke et al.,
2021). Within the upstream reaches of tidal rivers, the bed
slope often increases and is important dynamically (Käst-
ner et al., 2019); therefore, we restrict our analysis and in-
terpretation to estuarine reaches. As before, we assume that
the tidal amplitude to depth ratio ( ξ

h
) is small. Given these

assumptions, we simplify Eq. (7) to the following balance
(Godin and Martinez, 1994):

∂H

∂x
=−

u |u|

C2
hh
, (8)

where H is total water elevation and h is the mean water
level (the overbar denotes the tidally averaged value). The
low-frequency momentum in Eq. (8) shows that the surface
slope is defined by the bed stress term. Using Eq. (4), we use
a polynomial form of the bed stress (u |u|) to solve Eq. (8).

3 Model validation

The above tide–surge analytical model has previously been
compared against two one-constituent analytical models (the
Toffolon and Savenije, 2011, and Jay, 1991, tidal solutions)
and idealized Delft-3D numerical model results for situa-
tions without river flow (Familkhalili et al., 2020). Results
showed that our analytical model is capable of capturing tidal
wave amplitudes that are in good agreement with numerical
model results. In this section, we update the validation to in-
clude the effects of river flow and compare our results against
idealized Delft-3D numerical model results using the same
bathymetry and forcing (Type I). Following this, we compare
our analytical model results against an idealized numerical
model developed for the Cape Fear Estuary, North Carolina
(Familkhalili and Talke, 2016). This numerical model simu-
lates storm surge from tropical storms by using a parametric
model of hurricane wind and pressure forcing that is applied
over the continental shelf (Type II). Table 1 shows the model
parameters that were used to compare analytical model re-
sults with numerical models.

3.1 Idealized numerical models with similar forcing

Analytical/numerical comparisons were made for a weakly
convergent and strongly dissipative estuary with constant
depth of 5m and a width profile defined by Type I (Table 1,

see Fig. 1). The estuary section of the model domain (L) is
120 km, 1.5 times the convergence length. Both analytical
and numerical models are forced by the K1, M2, and M3
tidal constituents at the ocean boundary, two of which (K1
and M3) represent a surge wave when combined (Table 1).
We further analyze the numerical model results by using har-
monic analysis (e.g., Leffler and Jay, 2009).

Figure 3 shows the spatial pattern of the dominant tidal
constituent (M2) amplitude normalized by its value at the es-
tuary mouth. The analytical model results closely resemble
the numerical model results with a root-mean-square error of
0.02 m for the three-wave model with and without river flow
(blue and red colors in Fig. 3), showing that this idealized
analytical model can properly estimate spatial variability of
surge along an estuary.

In addition, results for the tidally averaged water levels
(i.e., Z; see Fig. 1) under conditions with both tidal and
river flow forcing are consistent with numerical models, as
shown in Fig. 4 for a weakly convergent estuary. The wa-
ter level profiles vary with θ (normalized flow velocity) for
both the analytical model (dashed lines) and the numerical
model (solid lines). In general, the analytical model slightly
underestimates numerical results. The root-mean-square de-
viation between the numerical and analytical surface pro-
files are 0.03, 0.08, 0.09, and 0.10 m for a θ of 0, 0.25, 0.5,
and 1.0, respectively, or roughly 3 %–8 % of the total super-
elevation above sea-level (Fig. 4a). The pattern seen in Fig. 4
can be explained by Eq. (8), in which as river discharge in-
creases (greater θ ), the depth-averaged velocity increases,
and a larger water surface slope ( ∂H

∂x
) is needed to balance

the Eq. (8).

3.2 Idealized numerical model with parametric
hurricane forcing

We further validate our analytical model results (Type II)
with the idealized numerical modeling of Familkhalili and
Talke (2016). This model includes a storm surge produced
at the continental shelf and six semidiurnal and diurnal tidal
constituents. Upstream of river kilometer 12, the estuary is
convergent with an e-folding length scale of ∼ 20 km. The
analytical model uses similar geometry (Table 1), uses the
dominant tidal constituent (M2) at the estuary mouth, and as-
sumes that the primary surge wave has a period of 12 h. As
in the numerical model, river flow is set to zero (Table 1).
We compare our analytical results at ∼L∗ = 1.5 with the
corresponding location in the numerical model (Wilmington,
North Carolina). For a shallow estuary of 7 m, the analyti-
cal model suggests that the storm surge wave is damped by
∼ 40 % (from 0.5 to 0.3 m) between the coast and L∗ = 1.5
(Fig. 5). This damping is within the range of modeled results
for a tropical storm surge at Wilmington (L∗∼ 1.5, Fig. 5).
In a deeper configuration (mean depth= 15 m), the analyti-
cal model (this paper) finds a 12 % increase in surge ampli-
tude from the coast, well within the normalized amplitude
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Table 1. Analytical model parameters used in this study. See Appendix A for a description of the parameters. Nondimensional river discharge
(θ ) is applied at the upstream boundary, and tide and surge waves are applied at the ocean boundary (i.e., the estuary mouth, which is x = 0
in Fig. 1).

Type B0 L Le Bc Lc h θ Tide Surge

(km) (km) (km) (km) (km) (m)
{

Amp. (m)
Period (h)

} {
Amp. (m)
Period (h)

}
I 5 120 80 1.1 100 5–7–10–15 0–0.25–0.5–1

{
0.5
12

} {
0.5
24

}
+

{
0.25
8

}
II 3 30 20 0.7 100 7–10–13–15 0

{
0.5
12

} {
0.5
12

}
+

{
0.25
6

}

Figure 3. Dominant tidal constituent (M2) amplitude in a 5 m deep estuary for three tide models (K1, M2, and M3) with and without river
flow (θ = 0–1). The x axis is the estuary length normalized by the convergence length scale (L∗ = x/Le), and the y axis is normalized by
M2 amplitude at the ocean boundary (L∗ = 0).

of 0.55–1.35 found in Familkhalili and Talke (2016). Hence,
both the sense of change as depth increases and the order
of magnitude of change are consistent between the numeri-
cal and analytical model, improving our confidence in results
(Fig. 5).

The results of the model comparison (Figs. 3, 4 and 5)
show that both the analytical and idealized numerical mod-
els produce broadly consistent results. Therefore, our neglect
of acceleration in the subtidal model (Fig. 4) and the use of
linearized friction is justified. Both numerical and analyti-
cal models are complementary tools. A 3D model with re-
solved bathymetry is clearly best used to evaluate the spe-
cific effect of bathymetric alterations in a particular estuary
(e.g., Pareja-Roman et al., 2020; Helaire et al., 2019) or to
run simulations using complex, real valued boundary forc-
ing (river and coastal). However, our analytical model runs
substantially more quickly than even the idealized numer-
ical models, facilitating investigation of a larger parameter
space. Moreover, numerical models cannot unambiguously
separate tide, fluvial, and surge effects. Currently, the best-
practice approach is to run the numerical model with and
without relevant forcing; for example, by running a surge
model with and without tides, one can approximate the ef-
fect that tides have on total water level (Shen et al., 2006).
When combined, tide and surge waves travel faster (due to

deeper water depth; see Horsburgh and Wilson, 2007), and
frictional energy loss in each wave component is also larger
(Familkhalili et al., 2020). Due to the multiple feedbacks and
nonlinear interactions, decomposing numerical results into
individual surge and tide wave transformations is inherently
ambiguous. The analytical approach, while not including all
interactions (such as the phase modulation caused by depth
variability), is also able to individually estimate transforma-
tions in the primary surge and tide constituent amplitudes
under different river discharge conditions. This approach, to
our knowledge, has not previously been approached to un-
derstanding the fundamental bathymetric and boundary con-
dition factors that influence compound events.

3.3 Dimensional and nondimensional parameter space
studied

We use our validated analytical model to further investigate
the effects of channel depth, river flow, channel width con-
vergence, and surge timescale on the spatial evolution of wa-
ter levels along estuaries. For all simulations, the primary
tidal constituent period and amplitude are fixed to 12 h (i.e.,
a semidiurnal or D2 wave) and 0.5 m, respectively, a value
that is typical of the semi-diurnal tide wave on the US East
Coast (Table 2). To study the effects of width convergence,
we test both weakly (Le = 80 km) and strongly convergent

https://doi.org/10.5194/os-18-1203-2022 Ocean Sci., 18, 1203–1220, 2022
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Figure 4. (a) The importance of river flow (i.e., θ at L∗ = 1.5) for 5 m depth and (b) the importance of channel depth for θ = 1 in an
idealized three-wave model. The vertical axis is tidally averaged water level and horizontal axis represents dimensionless coordinate system
of L∗ = x/Le. Solid and dashed lines represent numerical and analytical model results, respectively. The solid and dashed black lines
represent the same scenario (h= 5 m, θ = 1) in both (a) and (b).

Figure 5. Comparison of normalized surge amplitude as a function
of depth for an estuary resembling the Cape Fear Estuary at an in-
land location at the approximate location of Wilmington, North Car-
olina. The dashed line is the analytical model result, and the solid
line is the numerical result. The idealized numerical model uses a
surge event with a mean amplitude of 0.6 m at the ocean bound-
ary (data from Familkhalili and Talke, 2016). The fill area is the
range of results due to different relative phase of the storm surge
and tide wave. The “analytical model” results are for a 12 h surge
that had an amplitude of 0.5 m and is evaluated at L∗ = 1.5, i.e., at
approximately same location as the numerical model. The y axis is
normalized surge amplitude and equals 1 at the ocean boundary.

(Le = 20 km) conditions (see, e.g., Jay, 1991; Lanzoni and
Seminara, 1998). Table 2 shows the parameter space used in
the model. The primary and secondary surge amplitudes are
set to be 0.5 and 0.25 m, respectively (Eq. 6), and the estuary
mouth (B0) is assumed to have a width of 5 km. A sensitivity
analysis is carried out by varying the parameters in Table 2
individually, while other parameters are held constant, result-
ing in a total of 128 parameter combinations (i.e., four differ-
ent values for depths, four different values for river flow, four
different period combinations, and two convergence length
scales).

Nondimensional variables provide insights into which pa-
rameters produce the greatest effect on system response.
From the scaling of Eq. (3) (see also Familkhalili et al.,
2020), we derive the three most relevant independent nondi-
mensional variables.

– Parameter (�) represents the ratio of SuPri period to
D2 period and represents the influence of primary surge
wave period on tide–surge interactions.

– The friction number
(
ψ =

Cdξω
2L3

e
gh3

)
shows the effects

of changing surge wave properties, which are influenced
by depth (h), surge frequency (ω = 1

T
), and conver-

gence length scale (Le), all of which affect the damping
or amplification of surge waves.

– Parameter (θ) represents the ratio of upriver velocity (at
L∗ = 1.5) to the major tidal component (D2) velocity at
the estuary mouth.
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Table 2. Parameter space used in analytical model.

Channel depth (m) 5, 7, 10, 15
SuPri amp. (m) 0.5
SuSec amp. (m) 0.25(

SuPri period (h)
SuSec period (h)

) (12
6
)
,
(24
12
)
,
(48
24
)
,
(72
36
)

D2 amp. (m) 0.5, 1
D2 period (h) 12
D1 amp. (m) 0.5, 1
D1 period (h) 24

Upriver flow velocity
(
θ =

|ur|∣∣uD2

∣∣
)

at L∗ = 1.5 0, 0.25, 0.5, 1

Convergence length scale, Le (km) 80 (weakly convergent), 20 (strongly convergent)

Figure 6. A symmetric surge wave that is the result of two sinu-
soidal waves (i.e., surge= SuPri+SuSec).

For plotting purposes, we define two additional
nondimensional numbers: SuPri normalized amplitude(
A∗ =

SuPri amp.
surge amp. at ocean boundary

)
and a dimensionless co-

ordinate system of L∗ = x/Le, where L∗ is normalized
length.

In our models, we assume that the two surge waves are
symmetric with a phase lag (φ in Eq. 5) of zero degrees be-
tween SuPri and SuSec, resulting in a repeating and symmetric
storm surge wave (see Fig. 6). This simulates a storm surge in
which there is initially a drawdown in water level, followed
by the positive storm surge. To test the most frictional case,
we also define the relative phase lag between the D2 wave
and surge to be zero.

4 Results and discussion

We employ the validated model to study how bathymetry,
river discharge, and surge characteristics affect water floods
in an idealized estuary. First, the effects of surge amplitude
and period on water levels are examined. Following this, the
effects of river discharge and width convergence on surge
amplitude are presented, and finally compound flooding of
tide, surge, and river flow is investigated.

4.1 Effects of wave characteristics on water level

The influence of wave characteristics (i.e., period and mag-
nitude) on tidally averaged water level is tested by modeling
a set of waves with periods of 12 and 24 h and amplitudes
of 0.5 and 1 m at the ocean boundary (i.e., D1 and D2 in Ta-
ble 2). Model results confirm, as suggested by the friction
number (ψ), that increasing the wave period (T = 1

ω
) or de-

creasing the wave amplitude (ζ ) have a similar effect as in-
creasing depth (h), and therefore this would result in lower
mean water levels (Fig. 7). Specifically, increasing the wave
period from 12 h (red lines) to 24 h (blue lines) reduces the
mean water level at L∗ = 1.5 from 0.75 to 0.5 m and from
1.56 to 1.10 m for wave amplitudes of 0.5 and 1 m at the
ocean boundary (L∗ = 0), respectively. In other words, for
the same boundary amplitude, a shorter period wave pro-
duces larger mean water levels landward.

4.2 Frictional effects of river discharge on surge
amplitude

The rate at which a surge decays away from the ocean en-
trance varies with river flow and surge period. Figure 8
shows the effects of river discharge and surge period on the
e-folding length scale of SuPri normalized amplitude (A∗);
the e-folding length is distance required for A∗ to reach
1/e ∼ 38 % of boundary values. The longer the wave pe-
riod, the more slowly the surge-normalized amplitude A∗
decreases as the surge moves landward (keeping all other
variables constant). For example, Fig. 8a shows that a 12 h
(�= 1) surge amplitude reaches an e-folding reduction in
amplitude at ∼ 0.4L∗ compared to ∼ 0.9L∗ for the 72 h
(�= 6) surge. The lower rate of spatial decay of surge am-
plitude for lower frequency surge waves is caused by their
lower velocity and consequent smaller frictional effects.

Model results also show that higher river discharge will
increase the damping of surge amplitudes (Fig. 8). When
θ = 0, river flow is zero and only nonlinear tide–surge in-
teractions can occur. Hence, surge amplitudes decay more
slowly for θ = 0 than for θ>0 (compare the θ = 0 and θ = 1

https://doi.org/10.5194/os-18-1203-2022 Ocean Sci., 18, 1203–1220, 2022
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Figure 7. The effects of wave period (i.e., 12 and 24 h) and amplitude (0.5 and 1 m at the ocean boundary L∗ = 0) on tidally averaged water
level for 5 m depth channel in an idealized one-sinusoidal-wave model for θ = 1. The vertical axis is the tidally averaged water level, and the
horizontal axis represents the estuary length normalized by the convergence length scale (i.e., L∗ = x/Le).

Figure 8. The effects of river flow
(
θ =

|ur|∣∣uD2

∣∣
)

and surge periods
(
�=

SuPri Period
D2 Period

)
along an idealized weakly convergent estuary for

channel depth of (a) 5, (b) 7, (c) 10, and (d) 15 m. The color scaling represents the e-folding length scale of the primary surge-normalized
amplitude (A∗).

cases in Fig. 8). The slanted contour lines highlight the ef-
fects of river flow; as θ increases, the e-folding length scale
of normalized amplitude (A∗) reduces for all surge periods
(�= 1–6) (Fig. 8a–d). Adding river flow to a surge with a
primary period of 12 h (�=1) reduces the e-folding scale of
damping from 0.4L∗ (θ = 0) to 0.34L∗ (θ = 1) for the 5 m
depth case (∼ 15 % decrease; Fig. 8a). The percent decrease
in the e-folding scale is larger in a deeper, 15 m channel and
decreases from 1.15 to 0.95L∗ (∼ 18 % decrease; Fig. 8d).

Surge amplitudes also decay more slowly (larger e fold-
ing) in a deeper channel for all surge periods (Fig. 8). Thus,
the largest difference in normalized amplitude between a
12 h (�= 1) and 72 h (�= 6) surge occurs at larger depth

(h= 15 m) with changes of ∼ 1 to 3.5L∗ in the e-folding
length-scale of damping (Fig. 8d). Increasing the river dis-
charge relative to the M2 velocity (larger θ ) reduces the am-
plification of the surge wave, and therefore the e-folding
length scale of A∗ reduces from ∼ 3.5 to ∼ 2.4L∗ for SuPri
of 72 h (Fig. 8d).

Consistent with other studies (e.g., Kukulka and Jay,
2003b; Hoitink and Jay, 2016), both the analytically and nu-
merically modeled water level slope (dZ/dL∗) are largest up-
stream and become significantly smaller near the coast. This
is caused by the decreased river velocity (and friction) asso-
ciated with the downstream increase in cross-sectional area.
Therefore, we expect that varying the forcing or the geome-
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Figure 9. The effects of convergence length scale and river discharge on primary surge (12 h,�= 1) amplitude (A∗ is normalized amplitude)
along a weakly convergent estuary, Le = 80 km (subplots a, c) and strongly convergent estuary, Le =20 km (subplots b, d). The left-hand

vertical axis is channel depth, the right-hand vertical axis is the corresponding nondimensional friction number
(
ψ =

Cdξω
2L3

e
gh3

)
, and the

horizontal axis represents the dimensionless coordinate system of L∗ = x/Le.

try will impact mean water levels upstream, as river velocity
magnitudes shift.

4.3 Effects of width convergence on surge amplitude

Long-wave propagation along an estuary is characterized by
a balance of inertial effects, friction, and convergence. Fig-
ure 9 shows the normalized amplitude (A∗) of the primary
surge wave for weakly convergent (left panel, 9a and c) and
strongly convergent estuaries (right panel, 9b and d), for
a 12 h surge period (�= 1). The contours represent the e-
folding length scale of primary surge-normalized amplitude
and the x axis represents the dimensionless coordinate sys-
tem of L∗ = x/Le. The factor of 4 change in convergence
length scale from 80 (Fig. 9a, c) to 20 km (Fig. 9b, d) alters
the friction scale (ψ) by a factor of 64.

The convergence of an estuary influences surge amplitudes
(Fig. 9), similar to its well-known effects on tidal amplitudes
(e.g., Jay, 1991). All surge amplitudes decrease landward for
all depth cases in a weakly convergent (Le = 80 km) estuary;
effectively, convergence effects are much smaller than the
bed friction and gravity effects, and therefore long wave am-

plitudes decrease (Fig. 9a and c). Under strongly convergent
conditions with no river flow, the primary surge amplitude
decays less quickly in a deeper channel as it moves upstream
than under weakly convergent condition (see Fig. 9a, b) and
can even increase in the inland direction (see Fig. 9b). By
contrast, increased river discharge produces greater damping
in the surge wave (compare Fig. 9a and c, or Fig. 9b and d).
For example, for friction factor of ψ = 0.5 (h= 6.5 m) and
a location of L∗ = 1, the surge wave has damped to 60 % of
its boundary value when the tidal to river flow ratio is θ = 1
(Fig. 9d) but is at 70 % of its boundary value when there is
no river discharge (Fig. 9b). Hence, increasing river flow and
decreasing channel depth both cause larger damping in the
surge wave.

4.4 Combined effects of tide, surge, and river flow on
total water levels

We next investigate how variations in river flow influence
the total water level (TWL), caused by the combination of
tide, storm surge, and river discharge effects. The highest
possible total water level (HTWL) during such a compound
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Figure 10. Combined contribution of tide, surge, and river flow to water level for depths of 5 m (left panel subplots) and 10 m (right panel
subplots). Colors and the labeled contours denote water level. The total water level (a, e) is the combination of tidal amplitude (b, f), surge
amplitude (c, g), and water level from river discharge (d, h). The period of the primary surge (SuPri) is 24 h, the convergence length scale
is 80 km, the x axis represents the dimensionless coordinate system of L∗ = x/Le (origin at estuary mouth, on the right-hand side), and the

y axis shows the nondimensional river flow
(
θ =

|ur|∣∣uD2

∣∣
)

.

event occurs when the surge occurs at high water, coincident
with peak river flow. Because the timing of a meteorological
event is usually random relative to tides, and because peak
surge usually precedes peak river discharge, HTWL rarely
if ever occurs. However, it is a useful metric of the poten-
tial flooding. Such a worst-case scenario could occur, for ex-
ample, when multiple storms occur in close succession. The
HTWL therefore provides a way to compare different param-
eter regimes and evaluate the effect of long-term changes in
the geometry of an individual estuary.

The HTWL (Fig. 10a and e) follows a pattern set by the
contradictory effects of river flow and marine forcing (tides
and surge). Far upstream (L∗ = 1.5), river water levels are
the largest factor, particularly for larger θ , but decay in the
downstream direction (Fig. 10d, h). The surge and tidal com-
ponents of water level (e.g., Fig. 10b, c) decay in the opposite
direction, from the oceanic boundary towards the upstream
boundary. For larger river flows (∼ θ > 0.5), the counteract-

ing factors produce a minimum HTWL in the middle part
of the domain (L∗ = 0.5–1.0). For small river flows, water
levels monotonically decrease in the upstream direction.

Importantly, the HTWL is not merely the superposition
of river flow, tide, and surge effects considered in isolation.
Rather, as shown by the non-vertical contour lines for tides
and surge (e.g., Fig. 10f and g), increases in the relative in-
fluence of river flow (larger θ) tend to reduce the magni-
tude of tides and surge (see also Helaire et al., 2020). By
contrast, increases in long wave magnitudes (tides, surge) at
the ocean boundary increase the tidally averaged water level
profile, as already established (Fig. 7; see also Buschman
et al., 2009; Talke et al., 2021). Simultaneously, long wave
magnitudes decrease more quickly the larger they are at the
ocean boundary (see also Familkhalili et al., 2020). Effec-
tively, each component of water level influences the other as
well as itself: for example, tides within the domain depend on
self-interaction (e.g., the boundary magnitude matters) and
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Figure 11. Comparison of the contribution of tide, surge, and river
flow to compound flooding between 5 and 10 m depth channel and
SuPri = 24 h. 1 represents the amplitude difference of each factor
(HTWL, tide, surge, and river flow) between two controlling depths.
The convergence length scale is 80 km, the x axis represents the di-
mensionless coordinate system of L∗ = x/Le, and the y axis shows

nondimensional river flow
(
θ =

|ur|∣∣uD2

∣∣
)

.

also on tide–surge and tide–river interaction. While the over-
all influence in terms of magnitude is relatively minor for
the parameter space in Fig. 10, these observations show that
nonlinear tide–surge–river interactions during a compound
event cannot be neglected. In particular, interactions would
be larger in macrotidal systems and/or for larger surges.

Changes in the depth of an estuary, whether by dredg-
ing, sea-level rise, or sedimentation and erosion, also exert
a strong, spatially variable influence on the HTWL (Figs. 10
and 11). When depth is small (5 m; Fig. 10a), the HTWL is
greater in the upstream domain (L∗ = 1.5 and θ>0.5) than
in a larger depth case (10 m; Fig. 10e). This occurs because a
larger average river slope is needed to push the same amount
of water seaward when the depth is small, as suggested by
Eq. (8) (see also Talke et al., 2021). However, smaller depths
also lead to greater dissipation and frictional effects in the

Figure 12. Crossover point location for 7–15 m channel depth com-
pared to the 5 m case, (SuPri = 24 h and Le = 80 km). The x axis
represents the dimensionless coordinate system of L∗ = x/Le, and

the y axis shows nondimensional river flow
(
θ =

|ur|∣∣uD2

∣∣
)

.

tide and surge wave due to the same reduction in hydraulic
drag (compare the right-hand and left-hand sides of Fig. 10
and their differences, as well as Fig. 11). Hence, tide and
surge amplitudes increase when depth increases for all river
discharges (θ = 0–1; Fig. 11b, c). The percent increase is
less for higher river discharge; this is evident from the right-
ward slant of contours in Fig. 11b and 11c. Further, both tides
and surge show a region of maximum change, located mid-
estuary (between L∗ = 0.5 to 1; Fig. 11). Near the ocean
boundary, changes are also relatively small in percentage
terms. Far upstream, the percent change in tidal range may
still be significant, but the magnitudes themselves are small
(see also Talke et al., 2021).

The differences in the response of river flow and storm
surge to a depth increase lead to a crossover point, which we
define as the location in which river flow effects on HTWL
are larger than marine effects for a given set of forcing con-
ditions (see the zero-contour line in Fig. 11a). Since the
crossover point moves upstream as depth increases (Fig. 12),
processes such as dredging, erosion, or sea-level rise that in-
crease depth can alter the relative influence of marine and
river effects, for a given storm surge and river flow. Similarly,
a decrease in mean river inflow, as has occurred in many river
estuaries due to flow regulation, may also cause a landward
migration in the crossover point (Fig. 12).

Other factors that influence long wave amplitudes also in-
fluence the crossover point, including the period of the surge
(Fig. 8), convergence length Le (Fig. 9), boundary ampli-
tude, and relative phasing of tides and surge (see Familkhalili
et al., 2020). The influence of many of these factors is ex-
plained by considering the nondimensional friction number(
ψ =

Cdξω
2L3

e
gh3

)
(see Sect. 2.1). This number suggests that

increases in channel depth (h) and wave period (T = 1
ω

)
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and decreases in length scale (Le) have similar effects on
wave amplitudes. For example, increasing the depth from
5 m (ψ = 69) to 15 m (ψ = 2.6) causes A∗ (i.e., normalized
amplitude by ocean boundary amplitude) to increase from
∼ 0.06 to 0.26 (Fig. 9a). Similarly, changing the surge period
from 12 to 60 h (ψ = 69 to 2.8) changes A∗ from ∼ 0.06 to
0.22 for a 5 m channel depth.

Other studies, such as Bilskie and Hagen (2018), have de-
fined flood zone transitions between marine and fluvial dom-
inance; close to the coast, tide and surge-based flooding dom-
inates, while river floods dominate far upstream. In between,
there is a transition zone with compound flooding in which
both coastal and fluvial processes are important. Here, our
model also suggests that the transition zone location is sensi-
tive to changes in estuary geometry, such as depth, in addition
to being dependent on the relative strength of river flow, tide,
and surge amplitudes.

5 Conclusions

In this study, we have applied a new river–tide–surge ana-
lytical model to investigate the interactions of tide, surge,
and river flow along idealized estuaries. The novelty of
our approach is that we develop a quasi-linear analytical
model, previously applied to tides, that considers the non-
linear interaction between tides, storm surge, and river dis-
charge. To the best of our knowledge, these processes (river
flow+ surge+ tides) have not been explored within an ana-
lytical framework. The model also elucidates the trade-offs
caused by channel deepening, which can reduce mean water
levels but increase storm surge and tides.

We show that the rate of damping in a storm tide
(surge+ tide) is sensitive to fluctuations of river discharge
(Fig. 8), alterations in the surge period (Fig. 8), and channel
geometry changes (width convergence and depth) (Fig. 9).
Model results show that the crossover point, which is the
location at which the river flow effects are larger than ma-
rine effects, moves upstream as channel depth increases or
as river flow decreases (Fig. 12). Thus, the spatial variabil-
ity in compound flood risk contributors (i.e., tide, surge, and
river flow) change when an estuary is modified or river dis-
charge changes. Generally, increasing the surge period has a
similar effect as increasing the depth; however, we note that
our model is slightly more sensitive to depth, which is due
to the cubic relationship in the friction term rather than the
squared effect of period. The nondimensional friction num-
ber (ψ) suggests that the effects of surge amplitude at bound-
ary (ξ ) and drag coefficient (Cd) have a lesser, but still impor-
tant, influence on the spatial damping of surge as the depth.
We conclude that in a shallow estuary the effects of friction
are dominant over the convergence and cause the wave am-
plitudes (tides and surge) to decrease, while deepening the
estuary may cause amplification of long waves upriver of an

estuary. As shown in Fig. 9, the amplification in storm surge
is particularly acute when the estuary is highly convergent.

Globally, natural and local anthropogenic changes in estu-
aries (e.g., sea-level rise, channel deepening for navigation
and landfilling) produce alterations in tidal and surge am-
plitudes (see review by Talke and Jay, 2020, and references
therein). This study shows that river flow and its interaction
with tides and surge must also be considered when evalu-
ating changes to water levels. For example, increasing the
river discharge relative to tide velocity reduces the amplifi-
cation of the surge wave. Moreover, channel deepening pro-
duces a reduction in the water level caused by river discharge,
leading to a domain in which channel deepening produces
lower water levels upstream but larger water levels in the
estuary (Figs. 10–12; see also Helaire et al., 2019; Ralston
et al., 2019). Our findings are consistent with other studies
that find that reduced frictional effects (e.g., caused by chan-
nel deepening) can cause increases to tides and surge (see,
e.g., Ralston et al., 2019; Talke et al., 2021). Overall, anthro-
pogenic changes to estuary geometry and frictional charac-
teristics can cause large changes in the amplitude and spatial
distribution of compound flooding.
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Appendix A

This glossary provides definitions of the terms used in this
paper.

Name Definition Unit
A Channel cross-sectional area m2

A∗ Ratio of primary surge amplitude within the estuary to the surge wave amplitude at ocean boundary –
b Channel width m
B0 Estuary mouth width m
Bc River width m
Cd Drag coefficient –
D1 Diurnal tidal constituent –
D2 Semidiurnal tidal constituent –
g Gravitational acceleration m s−2

h Channel depth m
K Bed stress divided by water density m2 s−2

L Length of estuary m
Le Convergence length scale of estuary width m
Lc Constant width river channel length m
L∗ Normalized length –
Q Cross-sectionally integrated flow m3 s−1

QR River flow discharge m3 s−1

QT Tidal transport m3 s−1

SuPri Primary surge wave –
SuSec Secondary surge wave –
t Time s
T Surge period s
uR River flow velocity ms−1

uT Tidal velocity ms−1

UR Maximum river flow velocity ms−1

UT Maximum tidal velocity ms−1

x Along channel distance (estuary mouth is at x = 0 and x increases landward) m
ξ Tidal amplitude m
θ River velocity magnitude to the magnitude of the major tidal component velocity at the ocean boundary –
ρ Water density kg m−3

φ Wave phase rad
ω Wave frequency s−1

� Ratio of primary surge period to main tidal component period –
ψ Friction number –

https://doi.org/10.5194/os-18-1203-2022 Ocean Sci., 18, 1203–1220, 2022
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Data availability. The data used in this study can be obtained from
NOAA’s Center for Operational Oceanographic Products and Ser-
vices website (https://tidesandcurrents.noaa.gov, last access: 1 Jan-
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