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Abstract: This research presents a comprehensive review of the research on smart urban energy
retrofit decision-making. Based on the analysis of 91 journal articles over the past decade, the study
identifies and discusses five key categories of approaches to retrofit decision-making, including
simulation, optimization, assessment, system integration, and empirical study. While substantial
advancements have been made in this field, opportunities for further growth remain. Findings suggest
directions for future research and underscore the importance of interdisciplinary collaboration, data-
driven evaluation methodologies, stakeholder engagement, system integration, and robust and
adaptable retrofit solutions in the field of urban energy retrofitting. This review provides valuable
insights for researchers, policymakers, and practitioners interested in advancing the state of the art in
this critical area of research to facilitate more effective, sustainable, and efficient solutions for urban
energy retrofits.

Keywords: urban energy retrofit; decision-making; energy simulation; optimization model

1. Introduction

The demand for energy increases when cities expand, and the increasing energy con-
sumption in buildings and cities increases greenhouse gas (GHG) emissions and contributes
to climate change. Growing concerns have been attached to reducing GHG emissions over
the last few decades to avoid climate deterioration. Cities are the largest energy consumers,
accounting for 78% of energy consumption and generating 60% of GHG emissions [1]. The
transition for cities towards a high-energy-efficiency and low-carbon scenario, such as the
green building movement [2], can significantly promote district and national sustainable
development. Urban energy retrofit is an important step toward a sustainable transition.
Over the last few years, urban energy retrofits have been researched on individual buildings
or at a district scale. Interaction effects of building technologies and occupant behaviors on
building energy consumption pose challenges for conducting building energy retrofits [3,4].
Appropriate retrofit solutions for large-scale buildings must also consider energy network
allocation [5] and building interactions [6]. Policymakers face challenges when deciding
how to proceed with urban energy retrofitting. Therefore, this research aims to systemati-
cally review the literature on urban energy retrofit decision-making in the last decade. The
review categorizes and discusses the following five decision approaches: 1. evaluating dif-
ferent energy retrofit scenarios based on energy simulation; 2. determining optimal retrofit
solutions through optimization models; 3. assessing urban building energy performance
through data analytics; 4. supporting retrofit decision-making through integrated systems;
5. obtaining retrofit experience from empirical projects.

2. Methods

To comprehensively review the literature of urban energy retrofit decision-making
research, clusters of synonyms for keywords were identified and used for screening satisfied
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research. “Renovate” and “refurbish” were used as alternatives to “retrofit”. “Community”,
“neighborhood”, “district”, “urban”, “regional”, and “city” were to constrain the retrofit
to a large district scale. “Smart”, “Al”, “intelligent”, and “artificial intelligence” were
used as one keyword cluster to target the smart solutions. Peer-reviewed journals ranging
from 2012 to 2022 were searched by keywords, titles, and abstracts on the Web of Science
and Scopus databases. Then, articles that focus on smart decision-making from an energy
policymakers’ perspective were selected. In total, 91 peer-reviewed papers about smart
urban energy retrofit decision-making solutions were identified to be thoroughly reviewed.
These papers were published in 43 journals, and the journals that covered three or more
reviewed articles are listed in Table 1. Table 1 shows that Energy and Buildings contains
the most research papers, with a total of 15.

Table 1. List of journals with the largest number of articles by the researched topic.

Journal Number of Papers

Energy and Buildings 15
Energy
Applied Energy
Sustainable Cities and Society
Energies
Journal of Building Engineering
Sustainability
Energy Conversion and Management
Journal of Cleaner Production
Renewable and Sustainable Energy Reviews
Smart Cities
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3. Data

Figure 1 shows the number of publications each year. The number of papers published
each year gradually increased with slight fluctuations. The surge in the number of papers
published in 2017 could be attributed to the adoption of the Paris Climate Agreement in 2015
and the United Nations’ Sustainable Development Goals (SDGs) in 2016. In addition, a few
research papers—published in late 2022 and available in 2023—were not included in this
research, which resulted in a decrease in the number of journal articles observed in 2022.
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Figure 1. Number of publications by year.

Figure 2 displays the countries of affiliation for the reviewed papers. These studies
were conducted in 29 different countries or regions. Italy held the largest portion, account-
ing for 26% of urban energy retrofit decision-making research. This is not surprising given
Italy’s rich cultural heritage, where preserving historic properties and making them more
energy efficient are important. China followed with 9% of the research, while the UK and
Switzerland equally held 7%. The remaining 6% of the research was conducted separately
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in the US and Canada. These six countries conducted more than half of the research about
smart urban energy retrofit decision-making.
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Figure 2. Distribution of research articles by the country of affiliation (Round-off error may occur).

Figure 3 shows the eight major expertise fields of the authors of the reviewed publica-
tions, indicating that research on urban building energy retrofit is highly interdisciplinary.
The expertise fields in which more than one investigator participated were only counted
once in each research paper. Researchers from architecture, construction, and civil engi-
neering accounted for 31% of the total. When combining the researchers from energy and
environmental engineering (19%), they summed up to 50% together and indicated a strong
role of these disciplines in advancing urban energy retrofit research. The remaining fields
and their share of the research in descending order were industry and industrial engi-
neering (14%), urban planning (11%), electrical engineering and computer science (11%),
mechanical engineering (8%), business (5%), and sociology (1%). The relatively low share
percentages suggested greater opportunities for potential interdisciplinary collaborations
in urban energy retrofit research by involving researchers from these areas.
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Figure 3. Distribution of research articles by the research field.
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4. Results

Table 2 shows the summary of all research approaches in the reviewed papers. The
table includes techniques used in each approach, remarks for each technique, and examples
with references.
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Table 2. Summary of all research approaches of reviewed papers.

Approach Technique Example Reference Remark
EnergyPlus [7-9]
EnergyPlus + DesignBuilder [10-21]
EnergyPlus + Rhino + Grasshopper [22,23]
EnergyPlus + MATLAB [10,11,17-19,24-26] The simulation software based
EnergyPlus + Python [26-29] on scientific principles is
. . TRNSYS [30-33] trustworthy. However, it
Energy simulator-based Energy simulation software EnergyPLAN [34,35] requires detailed input data
approach [ES-VE [36,371 that may not easily be
IDA ICE [38] available.
ESP-r [39]
PHPP [40]
HOMER [41]
Self-developed simulation Thermal balance-based building energy simulation [42-44] The self-developed simulation
method Geographic information system (GIS)-based solar energy [45-47] method is flexible to different
simulation - customized requirements.
Mixed-Integer Linear Programming (MILP) model [48,49]
Analytical Hierarchy Process (AHP) model [50-52]
Analytical Network Process (ANP) model [53]
Data Envelopment Analysis (DEA) model [54]
Measuring Attractiveness by a Categorical Based Evaluation [55]
Technique (MACBETH) and the “Playing Cards” method N
Weighted Sum Model (WSM) [56] ISE models focus on the
. Recurrent Neural Network (RNN) model [57] . .
Industrial and Systems . . sociotechnical balance of
Optimization Engineering (ISE) model Quality Function Deployment (QFD) framework [58] different urban energy
modeling-based approach Enhanced Water Strider Optimization (EWSO) model [59] systems
Ant Colony Optimization (ACO) model [60] ’
Technologies and Urban Resource Networks (TURN) model [61]
Open-source sector coupling model (GRIMSEL-FLEX) [62]
Data-driven life-cycle optimization model [63]
Techno-economic-risk decision-making methodology [64]
(TERDMM) model
Information model [65]
Maturity matrix assessment model [66]
Hybrid decision-making workflow [67,68]
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Table 2. Cont.

Approach Technique Example Reference Remark
Hierarchical decision-making model for urban energy [69]
management
Mechanical Engineering Genetic Algorithm (GA) for the op_t1m1zat10n of pumping [70] }l\\/IE lmgde}s f;‘)cus on the .
ME) model system operation technological advancement o
( Decision-making model for street lighting control [71-73] specific energy systems.
Decision-making model for indoor lighting control [74]
Intelligent supervisory predictive control model for heating, 751
ventilation, and air conditioning (HVAC) system
Expert system for an adaptable energy retrofit facade system [76]
Social, Behavioral, and Decision-making model considering socio-economic issues [77-79] SBE models focus on the social
Economic sciences (SBE) benefits of the urban retrofit
model Decision-making model considering demographic dynamics [80,81] plan.
Retrofit solution assessment [82-84] Assessment-based
decision-making can be
Assessment-based Data analytics Energy saving prediction [85-87] applied to various scales if the
approach data for different scales is
Life cycle assessment [88,89] E}Véllable’ fror.n individual
buildings to entire urban areas.
System integration-based Integrated systems can
4 & GIS GIS-based urban building retrofit platform [90-92] provide user-friendly
approach . - .
interfaces for decision-making.
Empirical study can reveal
unexpected challenges that
Empirical study-based . . . o may not be apparent in
approach Case study Lessons from completed and ongoing energy retrofit project [93-97] simulations and offer insights

into the engagement and
collaboration of stakeholders.
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4.1. Energy Simulator-Based Approach

Energy simulators are used to evaluate building energy retrofit measures and help
policymakers select reasonable retrofit solutions regarding energy savings, CO, emissions,
and the cost of retrofit solutions. The baseline building energy performance can be obtained
by accessing the urban energy database or building the baseline urban building model.
Then, tested retrofit measures, such as improving building envelope insulation, replacing
windows, changing heating, ventilation, and air conditioning (HVAC) systems, and inte-
grating renewable energy systems, are implemented on the baseline model. By simulating
the energy consumption of the urban building model with various retrofit solutions, the
effectiveness of different retrofits and their combinations can be assessed. The following
various software tools can be used to perform these simulations.

EnergyPlus is a widely used energy simulation engine that has supported various
urban energy retrofit studies [7-29]. DesignBuilder is a user-friendly graphical interface
for EnergyPlus that simplifies the modeling process. Numerous researchers utilized De-
signBuilder to create visual building models and input data for building components and
systems, and then executed energy simulations using the EnergyPlus engine [10-21]. Some
researchers modeled buildings in Rhino and Grasshopper and then ran energy simulations
in EnergyPlus [22,23]. Rhino and Grasshopper together form a powerful combination
of 3D modeling and parametric design tools. They can help create and optimize urban
building design solutions. Some researchers integrated MATLAB with EnergyPlus, which
can help streamline the simulation process, postprocess results, and optimize energy retrofit
performance [10,11,17-19,24-26]. EnergyPlus package also provides a Python API that
allows researchers to set up optimization algorithms to explore various combinations of
retrofit solutions [26-29].

In addition to EnergyPlus, which is widely used, there are alternative energy simula-
tion tools that specialize in various aspects. Transient System Simulation Tool (TRNSYS) is
widely used for simulating the behavior of energy systems, such as HVAC systems [30],
solar thermal or photovoltaic (PV) systems [31,32], and other renewable energy technolo-
gies [33]. EnergyPLAN is an advanced energy system analysis software that can model grid
flexibility and perform economic analysis. It was utilized for achieving large-scale energy
system retrofits within a viable investment [34,35]. Integrated Environmental Solutions
Virtual Environment (IES-VE) is a comprehensive building performance analysis software
suite that incorporates a range of simulation and analysis tools. It was employed to inves-
tigate optimal decision-making for building energy retrofits [36,37]. IDA Indoor Climate
and Energy (IDA ICE) is a building simulation software that was utilized to evaluate the
potential of four large-scale building energy retrofit scenarios on the Finnish building
stock [38]. ESP-r is an open-source building energy simulation software that was employed
to develop strategies approaching large-scale nearly-zero energy targets [39]. Passive House
Planning Package (PHPP) is a comprehensive energy modeling tool specifically for the
design and certification of Passive House buildings. It was used to estimate the energy
savings of measures [40]. Hybrid Optimization of Multiple Energy Resources (HOMER)
allows for designing and analyzing hybrid power systems, and it was employed to explore
the strategy for a net-zero energy building transition [41]. Moreover, the following self-
developed energy simulation tools were applied in urban energy retrofit decision-making
research: thermal balance-based building energy simulators were used to simulate urban
building energy consumption [42—44]; geographic information system (GIS)-based solar
energy calculation algorithms were developed to simulate the energy production of PV
panels [45-47].

Overall, decision-making for urban retrofit solutions using energy simulators has a
few benefits. This method is trustworthy because it is a physics-based simulation grounded
in scientific principles and considers various factors, such as weather, human behavior,
building materials, and energy system efficiency. In addition, weather data and occupant
behavior parameters can be changed in the energy model to analyze their impacts on the
same energy retrofit solutions. Considering the impact of weather on retrofit solutions
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helps make informed decisions for larger-scale energy retrofit projects that occupy multiple
climate zones. Occupant behavior parameters can be easily changed to study human-
relative retrofit solutions. For example, the window opening schedule can be changed to
study its impact on the energy consumption of ventilation, heating, and cooling system.
Then the window opening schedule corresponding to the minimum energy consumption
can be suggested as a human-relative retrofit measure.

Despite its benefits, urban building energy modeling has limitations. It requires
detailed input data that may not easily be available, such as the thickness and thermal
resistance of different layers of the envelope insulation. Furthermore, inputting such
details is time-consuming and requires expertise. More details lead to higher accuracy in
simulation but can be computationally intensive, especially when dealing with large-scale
urban environments. Most researchers only simulated representative individual buildings’
energy performance and projected the simulation results to an urban scale.

4.2. Optimization Modeling-Based Approach

Recent studies have explored various urban energy retrofit optimization models in
different fields, including industrial and systems engineering (ISE), mechanical engineering
(ME), and social, behavioral, and economic sciences (SBE).

In the ISE field, typical decision-making methods include the multi-criteria decision-
making (MCDM) and multi-objective optimization (MOO) models, which were employed
to address challenges associated with urban energy retrofit strategies. The mixed-integer
linear programming (MILP) model was used to maximize the energy efficiency of district en-
ergy systems [48,49]. The analytical hierarchy process (AHP) model was widely applied to
urban energy retrofits to tackle multiple conflicting criteria and decision alternatives [50-52].
The analytical network process (ANP) model, an extension of AHP to accommodate com-
plex interdependencies among criteria and alternatives, was employed to prioritize urban
retrofit solutions [53]. The data envelopment analysis (DEA) model-—commonly used to
empirically measure the productive efficiency of decision-making units—was utilized to
evaluate the efficiency of building retrofit projects [54]. The measuring attractiveness by
a categorical based evaluation technique (MACBETH) and the “Playing Cards” methods
were used to define and analyze different urban scenarios [55]. The weighted sum model
(WSM), a simple and widely used MCDM method, was used to decide the optimal energy
retrofit plan for a whole stock of buildings [56]. The recurrent neural network (RNN) model
has been trained to derive the cost-optimal retrofit solution [57]. The quality function
deployment (QFD) framework was used to determine the best retrofit technologies with
regard to stakeholders’ opinions [58]. Furthermore, a few optimization algorithms, such
as the enhanced water strider optimization (EWSO) algorithm and the ant colony opti-
mization (ACO) algorithm, were used on urban building energy operation and lifecycle
optimization [59,60].

Some new decision-making models have been developed to target urban energy
retrofit and planning. Keirstead and Calderon presented a technologies and urban resource
networks (TURN) model to create an urban strategic energy plan with regard to spatial and
temporal variations in energy demand [61]. Rinaldi et al. proposed an open-source sector
coupling model (GRIMSEL-FLEX) to minimize the total urban energy cost for electricity and
heating supply [62]. Luo and Oyedele proposed a novel data-driven life-cycle optimization
model for urban building retrofitting [63]. Zheng et al. proposed a techno-economic-risk
decision-making methodology (TERDMM) model that integrated life cycle cost analysis
and Monte Carlo (MC) simulation [64]. Syal et al. developed an information model that can
serve as the basis for an intelligent decision support system [65]. Gonzélez et al. presented
a maturity matrix assessment model of energy efficiency measures to determine future
appropriate implementation [66]. Wang et al. developed a novel hybrid modeling approach
to quantify the sustainability of retrofit solutions considering embodied energy and GHG
emissions [67]. Stanica et al. proposed an integrative method to evaluate a large variety of
energy conservation and renewable energy generation measures at different scales [68].
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In the ME field, decision-making control models are essential for optimizing system
performance. Various studies were performed to explore the energy-saving potential of
intelligent control for a wide range of energy systems. For urban scale retrofit, a hierarchical
decision-making strategy model was designed to manage the urban energy system that can
help deal with the energy retrofit of urban subsystems as a whole in an integrated way [69].
A genetic algorithm (GA) was used to optimize the operation of pumping stations to achieve
the minimum energy cost for water supply [70]. Several research explored the energy-
saving feasibility of street lighting retrofits within the available budget and proposed
methods aiming at maximizing energy reduction while achieving optimal allocation and
light quality [71-73]. A decision-making control system was studied to realize the energy-
saving goal of indoor lighting systems [74]. For building retrofits, an intelligent supervisory
predictive control model of HVAC systems was proposed to minimize energy consumption
without compromising occupants’ thermal comfort [75]. An expert system applied in an
adaptable energy retrofit fagade system of residential buildings was proposed to suggest
suitable retrofit alternatives [76].

There is not much research about urban energy retrofits in the SBE field. Some models for
assessing alternative retrofit solutions from socio-economic aspects were developed [77-79].
Some models for urban building energy retrofit plans were proposed considering workman-
ship capacity and population dynamics [80,81].

Opverall, optimization modeling-based decision-making for urban energy retrofits were
most widely used in the ISE field. ISE models focus on the performance of different urban
energy systems and address techno-economic issues (sociotechnical balance). They aim
to find the best solutions for reducing carbon emissions while considering the economic
feasibility. ME Models aim to optimize the energy performance of a specific energy system.
The focus of these models is on technical aspects (technological advancement). SBE models
consider various social factors (social benefits), such as population growth, demographic
changes, and labor constraints. These models aim to understand how social factors impact
energy consumption patterns. They can help policymakers develop targeted strategies for
energy reduction in a specific socio-demographic context.

Each of these fields has its own focus and approach to urban energy retrofit decision-
making and optimization. It is essential to consider an integrated approach that combines
the strengths of all three domains to develop comprehensive municipal energy retrofit
strategies. This approach would address technical, economic, social, and environmental
aspects of urban energy systems, leading to more holistic and sustainable solutions.

4.3. Assessment-Based Approach

Various approaches based on data analytics evaluate possible retrofit measure al-
ternatives or predict potential energy savings. An integrated method for predicting the
possibility of reducing urban energy consumption by using phase change material (PCM)
in municipal heating networks was proposed [82]. A bottom-up evaluation approach was
applied to study the techno-economic feasibility of the air-to-water heat pump retrofit
in the housing stock [83]. A study was performed to estimate the best-case scenario for
the benefits achievable depending on the urban green roof proportion [84]. Some models
that could quantify the contribution of building characteristics and systems to energy con-
sumption were investigated to infer the excepted energy savings [85-87]. Some researchers
proposed comprehensive life cycle assessment approaches with the consideration of data
uncertainties [88,89].

Overall, assessment-based decision-making relies on actual data from existing build-
ings, which can provide more realistic insights into building performance and energy
consumption patterns. It can be applied to various scales, from individual buildings to
entire urban areas, if the data for different scales are available. However, the performance
of assessments based on data analytics can be constrained by data quality. Availability and
expertise in data science may not be readily available for all researchers.
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4.4. System Integration-Based Approach

Some systems were developed to support the urban energy retrofit decision-making
process. Moghadam and Lombardi developed a multi-criteria spatial decision support
systems (MC-SDSS) tool to identify and evaluate alternative urban energy scenarios from a
long-term perspective [90]. Buffat et al. proposed a web-based decision support system
(DSS) using a GIS-based building stock model [91]. Leandro et al. showed a platform
that can help building owners and planners make informed decisions to improve building
energy [92].

Overall, the introduced systems provide user-friendly interfaces for decision-making
that enable householders and policymakers to easily access the different building retrofit
solutions. However, few systems are available for users. More investment in urban energy
system integration is necessary.

4.5. Empirical Study-Based Approach

Lessons from ongoing retrofit projects or completed projects can support policymakers’
decision-making. The decision-making process of private homeowners was investigated
to improve the impact of policies leading to higher adoption of energy retrofit measures
by homeowners [93]. A few frameworks assessing ongoing or completed urban energy
renovation were proposed, through which lessons from projects could be concluded [94-96].
Jankovic introduced an innovative way to evaluate completed building retrofits through
the simulation of dynamic heating tests with a calibrated model [97].

Overall, empirical studies can benefit the decision-making process with the considera-
tion of practical problems. It can reveal unexpected challenges that may not be apparent
in simulations and offer insights into the engagement and collaboration of stakeholders.
However, lessons from urban retrofit projects may be limited due to the small number of
completed projects, and the lessons may not be generalized to other situations.

5. Discussion and Future Directions

In this study, we present five distinct approaches, each with its own advantages,
limitations, and optimal scenarios for implementation. The optimal choice among these
approaches depends heavily on the specific conditions of each urban energy retrofit project.
The nature of the project, the available data, and the socio-economic context can significantly
influence which approach might be most suitable. Furthermore, in many cases, the best
outcomes may be achieved through a combination of multiple approaches, leveraging the
strengths of each.

We suggest the following six aspects that should be prioritized in the future research
on smart urban energy retrofit decision-making.

1.  Combine multidisciplinary expertise, such as in ISE, ME, and SBE domains, into the
development of comprehensive, integrated decision-making models.

The siloed nature of research and limited interdisciplinary collaboration can hinder
the development of comprehensive solutions. In the future, we should encourage inter-
disciplinary research, knowledge sharing, and collaboration between experts in different
domains to create well-rounded decision-making models for urban energy retrofit projects.

2. Enhance data-driven evaluation methodologies by improving data quality and accessibility.

It is suggested to establish data collection standards, promote data sharing, and
develop advanced data analytics techniques to improve the accuracy of urban energy
retrofit evaluations. This will allow for more exact analyses of urban energy demand and
the potential efficient retrofit solutions.

3. Carry out research on the generalization and applicability of the lessons learned from
completed urban retrofit projects.

Generalization and applicability of the lessons from projects are challenging because
of the limited number of completed retrofit projects and the lack of systematic approaches
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to knowledge transfer. In the future, we should prioritize the documentation of successful
retrofit projects, develop frameworks for knowledge transfer, and invest in research that
explores the applicability of best practices in different urban contexts.

4.  Investigate methods for collaborating and engaging stakeholders, including residents,
building owners, intermediaries, and policymakers.

The understanding of stakeholders’ needs is still limited. In the future, we should
develop stakeholder-centric frameworks, establish effective communication channels, and
design incentive structures that encourage cooperation and active participation in urban
energy retrofit projects. This will help ensure that urban energy retrofit projects achieve
their desired outcomes.

5. Consider how population migration and climate change may affect urban energy
retrofitting strategies.

The lack of long-term strategic planning and understanding of the interplay between
population dynamics and urban energy demand may have led to the gap in this research
direction. In the future, we should invest in research that explores the complex relationships
between climate change, population migration, and urban energy demand, and then
develop robust and adaptable urban energy retrofit strategies that can withstand changing
climatic and demographic conditions.

6.  Develop user-friendly urban energy retrofit systems that can empower householders
and policymakers by providing them with easily accessible building retrofit solu-
tion plans.

There are only a few such systems available for use so far. This may be caused by the
expensive investment in research and development. It is essential to invest more in urban
energy system integration in the future, emphasizing the improvement of user-friendly
interfaces for urban retrofit solutions. This will facilitate informed decision-making.

6. Limitations

Our review has two limitations. First, the keyword-based search strategy, which
focused on “renovate”, “retrofit”, and “refurbish”, might exclude some relevant articles
that did not utilize these specific terms. Second, our study concentrated on the decision-
making process in urban energy retrofit rather than the specific retrofit solutions employed
as a result of these decisions. The research regarding specific solutions for smart urban

energy retrofits was outside the scope of this review.

7. Conclusions

This research presents a comprehensive review of the research on smart urban energy
retrofit decision-making. A total of 91 journal papers over the last decade were reviewed.
Results identified and discussed the following five categories of approaches to retrofit
decision-making: simulation, optimization, assessment, system integration, and empirical
study. The research on urban energy retrofit decision-making has made significant progress
over the past ten years. However, there still exist opportunities for further development.
Findings also inform a roadmap for future research to enable the development of more
effective, sustainable, and efficient urban energy retrofit solutions, such as integrating
decision-making methods, enhancing data availability, transferring knowledge from suc-
cessful retrofit projects to other contexts, involving stakeholders in the decision-making
process, studying the effects of population migration and climate change on urban energy
retrofit strategies, and developing user-friendly decision-making systems.



Buildings 2023, 13, 1425 11 0f 14

Author Contributions: All authors have contributed with the same weight and effort. In detail, L.S.
contributed the literature search and drafted the original manuscript. D.Z. provided the guidance for
the literature search, suggested the article structure, reviewed the manuscript, and made revisions.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Science Foundation (NSF) through Grant
#2046374. Any opinions, findings, conclusions, or recommendations expressed in this material are
those of the researchers and do not necessarily reflect the views of NSF.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Habitat, U. Cities and Pollution. Available online: https://www.un.org/en/climatechange/climate-solutions/cities-pollution
(accessed on 15 March 2023).

Zhao, D.; Miotto, A.B.; Syal, M.; Chen, ]. Framework for Benchmarking green building movement: A case of Brazil.
Sustain. Cities Soc. 2019, 48, 101545. [CrossRef]

Zhao, D.; McCoy, A.P; Du, J.; Agee, P; Lu, Y. Interaction effects of building technology and resident behavior on energy
consumption in residential buildings. Energy Build. 2017, 134, 223-233. [CrossRef]

Mo, Y.; Zhao, D. Effective factors for residential building energy modeling using feature engineering. J. Build. Eng. 2021, 44,
102891. [CrossRef]

Jing, R.; Wang, M.; Liang, H.; Wang, X.; Li, N.; Shah, N.; Zhao, Y. Multi-objective optimization of a neighborhood-level urban
energy network: Considering Game-theory inspired multi-benefit allocation constraints. Appl. Energy 2018, 231, 534-548.
[CrossRef]

Luo, X.; Hong, T,; Tang, Y.-H. Modeling thermal interactions between buildings in an urban context. Energies 2020, 13, 2382.
[CrossRef]

Beccali, M.; Ciulla, G.; Di Pietra, B.; Galatioto, A.; Leone, G.; Piacentino, A. Assessing the feasibility of cogeneration retrofit and
district heating/cooling networks in small Italian islands. Energy 2017, 141, 2572-2586. [CrossRef]

Drouilles, J.; Aguacil, S.; Hoxha, E.; Jusselme, T.; Lufkin, S.; Rey, E. Environmental impact assessment of Swiss residential
archetypes: A comparison of construction and mobility scenarios. Energy Effic. 2019, 12, 1661-1689. [CrossRef]

Becchio, C.; Ferrando, D.G.; Fregonara, E.; Milani, N.; Quercia, C.; Serra, V. The cost-optimal methodology for the energy retrofit
of an ex-industrial building located in Northern Italy. Energy Build. 2016, 127, 590-602. [CrossRef]

Ascione, F; Bianco, N.; Mauro, G.M.; Napolitano, D.F. Knowledge and energy retrofitting of neighborhoods and districts.
A comprehensive approach coupling geographical information systems, building simulations and optimization engines.
Energy Convers. Manag. 2021, 230, 113786. [CrossRef]

Ascione, F,; Bianco, N.; Mauro, G.M.; Napolitano, D.F. Effects of global warming on energy retrofit planning of neighborhoods
under stochastic human behavior. Energy Build. 2021, 250, 111306. [CrossRef]

Monna, S.; Juaidi, A.; Abdallah, R.; Albatayneh, A.; Dutournie, P; Jeguirim, M. Towards sustainable energy retrofitting, a
simulation for potential energy use reduction in residential buildings in Palestine. Energies 2021, 14, 3876. [CrossRef]

Yang, H.; Liu, L.; Li, X;; Liu, C.; Jones, P. Tailored domestic retrofit decision making towards integrated performance targets in
Tianjin, China. Energy Build. 2017, 140, 480-500. [CrossRef]

Chacén, L.; Chen Austin, M.; Castafio, C. A Multiobjective Optimization Approach for Retrofitting Decision-Making towards
Achieving Net-Zero Energy Districts: A Numerical Case Study in a Tropical Climate. Smart Cities 2022, 5, 405-432. [CrossRef]
Pasichnyi, O.; Levihn, E; Shahrokni, H.; Wallin, J.; Kordas, O. Data-driven strategic planning of building energy retrofitting: The
case of Stockholm. J. Clean. Prod. 2019, 233, 546-560. [CrossRef]

Sharma, S.K.; Mohapatra, S.; Sharma, R.C.; Alturjman, S.; Altrjman, C.; Mostarda, L.; Stephan, T. Retrofitting Existing Buildings to
Improve Energy Performance. Sustainability 2022, 14, 666. [CrossRef]

Ascione, F,; Bianco, N.; Mauro, G.M.; Napolitano, D.F,; Vanoli, G.P. A multi-criteria approach to achieve constrained cost-optimal
energy retrofits of buildings by mitigating climate change and urban overheating. Climate 2018, 6, 37. [CrossRef]

Ascione, F.; Bianco, N.; De Masi, R.F.; Mauro, G.M.; Vanoli, G.P. Resilience of robust cost-optimal energy retrofit of buildings to
global warming: A multi-stage, multi-objective approach. Energy Build. 2017, 153, 150-167. [CrossRef]

Ascione, F,; Bianco, N.; De Stasio, C.; Mauro, G.M.; Vanoli, G.P. CASA, cost-optimal analysis by multi-objective optimisation and
artificial neural networks: A new framework for the robust assessment of cost-optimal energy retrofit, feasible for any building.
Energy Build. 2017, 146, 200-219. [CrossRef]

Ashrafian, T.; Yilmaz, A.Z.; Corgnati, S.P.; Moazzen, N. Methodology to define cost-optimal level of architectural measures for
energy efficient retrofits of existing detached residential buildings in Turkey. Energy Build. 2016, 120, 58-77. [CrossRef]
Gabrielli, L.; Ruggeri, A.G. Developing a model for energy retrofit in large building portfolios: Energy assessment, optimization
and uncertainty. Energy Build. 2019, 202, 109356. [CrossRef]



Buildings 2023, 13, 1425 12 of 14

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Chang, S.; Yoshida, T.; Castro-Lacouture, D.; Yamagata, Y. Block-Level Building Transformation Strategies for Energy Efficiency,
Thermal Comfort, and Visibility Using Bayesian Multilevel Modeling. |. Archit. Eng. 2021, 27, 05021008. [CrossRef]
Camporeale, P.E.; Mercader-Moyano, P. A GIS-based methodology to increase energy flexibility in building cluster through deep
renovation: A neighborhood in Seville. Energy Build. 2021, 231, 110573. [CrossRef]

Thrampoulidis, E.; Mavromatidis, G.; Lucchi, A.; Orehounig, K. A machine learning-based surrogate model to approximate
optimal building retrofit solutions. Appl. Energy 2021, 281, 116024. [CrossRef]

Chang, S.; Castro-Lacouture, D.; Yamagata, Y. Decision support for retrofitting building envelopes using multi-objective
optimization under uncertainties. J. Build. Eng. 2020, 32, 101413. [CrossRef]

Zygmunt, M.; Gawin, D. Application of the Renewable Energy Sources at District Scale—A Case Study of the Suburban Area.
Energies 2022, 15, 473. [CrossRef]

Salata, F.; Ciancio, V.; Dell’Olmo, J.; Golasi, I.; Palusci, O.; Coppi, M. Effects of local conditions on the multi-variable and
multi-objective energy optimization of residential buildings using genetic algorithms. Appl. Energy 2020, 260, 114289. [CrossRef]
Yigit, S. A machine-learning-based method for thermal design optimization of residential buildings in highly urbanized areas of
Turkey. J. Build. Eng. 2021, 38, 102225. [CrossRef]

Zhao, S. Using artificial neural network and WebGL to algorithmically optimize window wall ratios of high-rise office buildings.
J. Comput. Des. Eng. 2021, 8, 638-653. [CrossRef]

Bambara, J.; Athienitis, A.K.; Eicker, U. Residential Densification for Positive Energy Districts. Front. Sustain. Cities 2021, 3, 630973.
[CrossRef]

Fong, K.; Lee, C.K. Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong. Appl. Energy
2012, 93, 686—694. [CrossRef]

Rehman, H.U.; Hirvonen, J.; Jokisalo, J.; Kosonen, R.; Sirén, K. EU emission targets of 2050: Costs and CO2 emissions comparison of
three different solar and heat pump-based community-level district heating systems in nordic conditions. Energies 2020, 13, 4167.
[CrossRef]

Battaglia, V.; Massarotti, N.; Vanoli, L. Urban regeneration plans: Bridging the gap between planning and design energy districts.
Energy 2022, 254, 124239. [CrossRef]

Sougkakis, V.; Lymperopoulos, K.; Nikolopoulos, N.; Margaritis, N.; Giourka, P.; Angelakoglou, K. An investigation on the
feasibility of near-zero and positive energy communities in the Greek context. Smart Cities 2020, 3, 362-384. [CrossRef]
Stermieri, L.; Delmastro, C.; Becchio, C.; Corgnati, S.P. Linking Dynamic Building Simulation with Long-Term Energy System
Planning to Improve Buildings Urban Energy Planning Strategies. Smart Cities 2020, 3, 1242-1265. [CrossRef]

Lu, Y, Li, P; Lee, Y.P; Song, X. An integrated decision-making framework for existing building retrofits based on energy
simulation and cost-benefit analysis. J. Build. Eng. 2021, 43, 103200. [CrossRef]

Mutani, G.; Usta, Y. Design and Modeling Renewable Energy Communities: A Case Study in Cagliari (Italy). Int. J. Sustain.
Dev. Plann. 2022, 17, 1041-1051. [CrossRef]

Hirvonen, J.; Heljo, ].; Jokisalo, J.; Kurvinen, A.; Saari, A.; Niemeld, T.; Sankelo, P.; Kosonen, R. Emissions and power demand in
optimal energy retrofit scenarios of the Finnish building stock by 2050. Sustain. Cities Soc. 2021, 70, 102896. [CrossRef]

Asaee, S.R.; Ugursal, V.I.; Beausoleil-Morrison, I. Development and analysis of strategies to facilitate the conversion of Canadian
houses into net zero energy buildings. Energy Policy 2019, 126, 118-130. [CrossRef]

Oberegger, U.F.; Pernetti, R.; Lollini, R. Bottom-up building stock retrofit based on levelized cost of saved energy. Energy Build.
2020, 210, 109757. [CrossRef]

Omar, A.L; Khattab, N.M.; Aleem, S.H.A. Optimal strategy for transition into net-zero energy in educational buildings: A case
study in El-Shorouk City, Egypt. Sustain. Energy Technol. Assess. 2022, 49, 101701. [CrossRef]

Shen, P.; Braham, W.; Yi, Y.; Eaton, E. Rapid multi-objective optimization with multi-year future weather condition and decision-
making support for building retrofit. Energy 2019, 172, 892-912. [CrossRef]

Leal, VM.S,; Granadeiro, V.; Azevedo, I.; Boemi, S.-N. Energy and economic analysis of building retrofit and energy offset
scenarios for Net Zero Energy Buildings. Adv. Build. Energy Res. 2015, 9, 120-139. [CrossRef]

Murray, S.N.; Walsh, B.P; Kelliher, D.; O’Sullivan, D. Multi-variable optimization of thermal energy efficiency retrofitting of
buildings using static modelling and genetic algorithms—A case study. Build Environ. 2014, 75, 98-107. [CrossRef]

Saretta, E.; Caputo, P.; Frontini, F. An integrated 3D GIS-based method for estimating the urban potential of BIPV retrofit of
facades. Sustain. Cities Soc. 2020, 62, 102410. [CrossRef]

Groppi, D.; de Santoli, L.; Cumo, E; Garcia, D.A. A GIS-based model to assess buildings energy consumption and usable solar
energy potential in urban areas. Sustain. Cities Soc. 2018, 40, 546-558. [CrossRef]

Gupta, R.; Gregg, M. Targeting and modelling urban energy retrofits using a city-scale energy mapping approach. J. Clean. Prod.
2018, 174, 401-412. [CrossRef]

Jokinen, I; Lund, A.; Hirvonen, J.; Jokisalo, ].; Kosonen, R.; Lehtonen, M. Coupling of the electricity and district heat generation
sectors with building stock energy retrofits as a measure to reduce carbon emissions. Energy Convers. Manag. 2022, 269, 115961.
[CrossRef]

Pavicevi¢, M.; Novosel, T.; Puksec, T.; Dui¢, N. Hourly optimization and sizing of district heating systems considering building
refurbishment-Case study for the city of Zagreb. Energy 2017, 137, 1264-1276. [CrossRef]



Buildings 2023, 13, 1425 13 of 14

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Zheng, D.; Yu, L.; Wang, L.; Tao, J. Integrating willingness analysis into investment prediction model for large scale building
energy saving retrofit: Using fuzzy multiple attribute decision making method with Monte Carlo simulation. Sustain. Cities Soc.
2019, 44, 291-309. [CrossRef]

Woo, J.-H.; Menassa, C. Virtual retrofit model for aging commercial buildings in a smart grid environment. Energy Build. 2014, 80,
424-435. [CrossRef]

Hsueh, S.-L.; Feng, Y.; Sun, Y,; Jia, R;; Yan, M.-R. Using AI-MCDM Model to Boost Sustainable Energy System Development: A
Case Study on Solar Energy and Rainwater Collection in Guangdong Province. Sustainability 2021, 13, 12505. [CrossRef]

Fard, F.A ; Nasiri, F. A bi-objective optimization approach for selection of passive energy alternatives in retrofit projects under
cost uncertainty. Energy Built Environ. 2020, 1, 77-86. [CrossRef]

Wang, Z.; Liu, Q.; Zhang, B. What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation
with three-stage data envelopment analysis (DEA). Renew. Sustain. Energy Rev. 2022, 161, 112392. [CrossRef]

Lombardi, P; Abastante, F.; Torabi Moghadam, S.; Toniolo, J. Multicriteria Spatial Decision Support Systems for Future Urban
Energy Retrofitting Scenarios. Sustainability 2017, 9, 1252. [CrossRef]

Carli, R.; Dotoli, M.; Pellegrino, R.; Ranieri, L. A decision making technique to optimize a buildings’ stock energy efficiency.
IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 794-807. [CrossRef]

Deb, C.; Dai, Z.; Schlueter, A. A machine learning-based framework for cost-optimal building retrofit. Appl. Energy 2021, 294, 116990.
[CrossRef]

Benzar, B.-E.; Park, M.; Lee, H.-S.; Yoon, I.; Cho, J. Determining retrofit technologies for building energy performance. J. Asian
Archit. Build. Eng. 2020, 19, 367-383. [CrossRef]

Liu, B.; Pouramini, S. Multi-objective optimization for thermal comfort enhancement and greenhouse gas emission reduction
in residential buildings applying retrofitting measures by an Enhanced Water Strider Optimization Algorithm: A case study.
Energy Rep. 2021, 7, 1915-1929. [CrossRef]

Luo, X.; Oyedele, L.O. Integrated life-cycle optimisation and supply-side management for building retrofitting. Renew. Sustain.
Energy Rev. 2022, 154, 111827. [CrossRef]

Keirstead, J.; Calderon, C. Capturing spatial effects, technology interactions, and uncertainty in urban energy and carbon models:
Retrofitting newcastle as a case-study. Energy Policy 2012, 46, 253-267. [CrossRef]

Rinaldi, A.; Yilmaz, S.; Patel, M.K,; Parra, D. What adds more flexibility? An energy system analysis of storage, demand-side
response, heating electrification, and distribution reinforcement. Renew. Sustain. Energy Rev. 2022, 167, 112696. [CrossRef]

Luo, X,; Oyedele, L.O. A data-driven life-cycle optimisation approach for building retrofitting: A comprehensive assessment on
economy, energy and environment. J. Build. Eng. 2021, 43, 102934. [CrossRef]

Zheng, D.; Yu, L.; Wang, L. A techno-economic-risk decision-making methodology for large-scale building energy efficiency
retrofit using Monte Carlo simulation. Energy 2019, 189, 116169. [CrossRef]

Syal, M.; Duah, D.; Samuel, S.; Mazor, M.; Mo, Y.; Cyr, T. Information framework for intelligent decision support system for home
energy retrofits. |. Constr. Eng. Manag. 2014, 140, 04013030. [CrossRef]

Gonzélez, A.G.; Zotano, M.A.G.; Swan, W.; Bouillard, P,; Elkadi, H. Maturity Matrix Assessment: Evaluation of Energy Efficiency
Strategies in Brussels Historic Residential Stock. Energy Procedia 2017, 111, 407-416. [CrossRef]

Wang, Q.; Laurenti, R.; Holmberg, S. A novel hybrid methodology to evaluate sustainable retrofitting in existing Swedish
residential buildings. Sustain. Cities Soc. 2015, 16, 24-38. [CrossRef]

Stanica, D.-I.; Karasu, A.; Brandt, D.; Kriegel, M.; Brandyt, S.; Steffan, C. A methodology to support the decision-making process
for energy retrofitting at district scale. Energy Build. 2021, 238, 110842. [CrossRef]

Carli, R.; Dotoli, M.; Pellegrino, R. A hierarchical decision-making strategy for the energy management of smart cities. IEEE Trans.
Autom. Sci. Eng. 2016, 14, 505-523. [CrossRef]

Dadar, S.; Purin, B.; Alamatian, E.; Plantak, L. Impact of the Pumping Regime on Electricity Cost Savings in Urban Water Supply
System. Water 2021, 13, 1141. [CrossRef]

Kotulski, L.; Basiura, A.; Wojnicki, I; Siuchta, S. Lighting System Modernization as a Source of Green Energy. Energies 2021, 14,
2771. [CrossRef]

Carli, R.; Dotoli, M. A Dynamic Programming Approach for the Decentralized Control of Energy Retrofit in Large-Scale Street
Lighting Systems. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1140-1157. [CrossRef]

Carli, R,; Dotoli, M.; Cianci, E. An optimization tool for energy efficiency of street lighting systems in smart cities.
IFAC-PapersOnLine 2017, 50, 14460-14464. [CrossRef]

Bojun, W.; Xiaojun, L.; Yanping, Y. Energy efficiency retrofitting of lighting in unversity libraries based on illumination suitability
analysis. Light Eng. 2018, 26, 132-139.

Gongalves, D.; Sheikhnejad, Y.; Oliveira, M.; Martins, N. One step forward toward smart city Utopia: Smart building energy
management based on adaptive surrogate modelling. Energy Build. 2020, 223, 110146. [CrossRef]

Ochoa, C.E.; Capeluto, I.G. Decision methodology for the development of an expert system applied in an adaptable energy
retrofit facade system for residential buildings. Renew. Energy 2015, 78, 498-508. [CrossRef]

Becchio, C.; Bottero, M.C.; Corgnati, S.P.; Dell’Anna, F. Decision making for sustainable urban energy planning: An integrated
evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin. Land Use Policy 2018, 78, 803-817.
[CrossRef]



Buildings 2023, 13, 1425 14 of 14

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Dirutigliano, D.; Delmastro, C.; Moghadam, S.T. Energy efficient urban districts: A multi-criteria application for selecting retrofit
actions. Int. . Heat Technol. 2017, 35, S49-S57. [CrossRef]

Hirvonen, J.; Saari, A.; Jokisalo, J.; Kosonen, R. Socio-economic impacts of large-scale deep energy retrofits in Finnish apartment
buildings. J. Clean. Prod. 2022, 368, 133187. [CrossRef]

Mata, E.; Wanemark, I.; Osterbring, M.; Shadram, F. Ambition meets reality-Modeling renovations of the stock of apartments in
Gothenburg by 2050. Energy Build. 2020, 223, 110098. [CrossRef]

Wang, B.; Xia, X.; Cheng, Z.; Liu, L. Optimal maintenance planning in building retrofitting with interacting energy effects.
Optim. Control Appl. Methods 2020, 41, 2023-2036. [CrossRef]

Skiba, M.; Mrowczyniska, M.; Sztubecka, M.; Bazan-Krzywoszanska, A.; Kazak, J.K.; Lesniak, A.; Janowiec, F. Probability
estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks. Energy
2021, 228, 120549. [CrossRef]

Asaee, S.R.; Ugursal, V.I.; Beausoleil-Morrison, I. Techno-economic feasibility evaluation of air to water heat pump retrofit in the
Canadian housing stock. Appl. Therm. Eng. 2017, 111, 936-949. [CrossRef]

Meek, A.; Jayasuriya, N.; Horan, E.; Adams, R. Environmental Benefits of Retrofitting Green Roofs to a City Block. J. Hydrol. Eng.
2014, 20, 05014020. [CrossRef]

Walter, T.; Sohn, M.D. A regression-based approach to estimating retrofit savings using the Building Performance Database.
Appl. Energy 2016, 179, 996-1005. [CrossRef]

Jahani, E.; Cetin, K. Energy savings and retrofit assessment for city-scale residential building stock during extreme heatwave
events using genetic algorithm-numerical moment matching. Clean Technol. Environ. Policy 2022, 24, 2081-2098. [CrossRef]
Capeluto, I.G.; Ben-Avraham, O. Assessing the green potential of existing buildings towards smart cities and districts.
Indoor Built Environ. 2016, 25, 1124-1135. [CrossRef]

Ruparathna, R.; Hewage, K.; Sadiq, R. Economic evaluation of building energy retrofits: A fuzzy based approach. Energy Build.
2017, 139, 395-406. [CrossRef]

Luo, X,; Oyedele, L.O.; Owolabi, H.A_; Bilal, M.; Ajayi, A.O.; Akinade, O.O. Life cycle assessment approach for renewable
multi-energy system: A comprehensive analysis. Energy Convers. Manag. 2020, 224, 113354. [CrossRef]

Moghadam, S.T.; Lombardi, P. An interactive multi-criteria spatial decision support system for energy retrofitting of building
stocks using CommuntiyVIZ to support urban energy planning. Build Environ. 2019, 163, 106233. [CrossRef]

Buffat, R.; Schmid, L.; Heeren, N.; Froemelt, A.; Raubal, M.; Hellweg, S. GIS-based decision support system for building retrofit.
Energy Procedia 2017, 122, 403-408. [CrossRef]

Madrazo, L; Sicilia, A.; Massetti, M.; Plazas, EL.; Ortet, E. Enhancing energy performance certificates with energy related data to
support decision making for building retrofitting. Therm. Sci. 2018, 22, 957-969. [CrossRef]

Broers, WM.H.; Vasseur, V.; Kemp, R.; Abujidi, N.; Vroon, Z.A.E.P. Decided or divided? An empirical analysis of the decision-
making process of Dutch homeowners for energy renovation measures. Energy Res. Soc. Sci. 2019, 58, 101284. [CrossRef]

Tajani, F.; Morano, P,; Di Liddo, F; Doko, E. A Model for the Assessment of the Economic Benefits Associated with Energy Retrofit
Interventions: An Application to Existing Buildings in the Italian Territory. Appl. Sci. 2022, 12, 3385. [CrossRef]

Pardo-Bosch, F,; Cervera, C.; Ysa, T. Key aspects of building retrofitting: Strategizing sustainable cities. ]. Environ. Manag. 2019,
248,109247. [CrossRef] [PubMed]

Bisello, A. Assessing Multiple Benefits of Housing Regeneration and Smart City Development: The European Project SINFONIA.
Sustainability 2020, 12, 8038. [CrossRef]

Jankovic, L. Lessons learnt from design, off-site construction and performance analysis of deep energy retrofit of residential
buildings. Energy Build. 2019, 186, 319-338. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



