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ARTICLE INFO ABSTRACT
Keywords: Traditional fault detection and diagnosis (FDD) methods learn from training data obtained under limited
Evolving learning operating conditions, after which they stop learning. In this study, we developed an evolving learning-based FDD

Fault detection and diagnosis
Feature selection
Passive chilled beam

method for HVAC systems, which learns as the performance of a building system and its components changes.
Specifically, an evolving learning algorithm—growing Gaussian mixture regression—is used to construct both a
data-driven model representing normal performance and a transfer function for fault diagnosis. The evolving
learning-based FDD method was demonstrated for detecting and diagnosing common faults of passive chilled
beam systems. We employ generalized performance indices, such as the deviations between predictions (ex-
pectations) and measurements, the differences between two parameters, and other features extracted from pa-
rameters. A novel feature selection method was developed for selecting fault signatures. An uncertainty threshold
determining whether a performance index was within the range of normal operation influences false alarm rates.
By increasing the uncertainty thresholds from zero to two standard deviations, false alarm rates for normal
operations were reduced from 14.8% to 1.3% and the percentage of normal operation data categorized as an
unknown operation was reduced from 25% to 0%. Eight known faults were detected and diagnosed with an
accuracy of 100%. A new fault was first categorized as an unknown fault before evolving. After evolving the
transfer function by updating the key parameters of the Gaussian components, the unknown fault was also
accurately diagnosed. The evolving learning-based FDD method and novel feature selection method can be
employed for detecting and diagnosing common faults of other systems or subsystems in the built environment.

can enable early detection and identification of operational faults based
on the analysis of measured behaviors. FDD is critical in achieving the
goal of reducing energy waste in buildings caused by operational faults
and ensuring the persistence of building commissioning. The FDD sub-

Buildings account for 40% of total energy consumption [1], 74% of  jact of conventional HVAC systems has been studied since the 1990s
electricity use [2], and 37% of greenhouse gas emissions in the U.S [3]. [5-8].

Therefore, environmental impacts and resource consumption associated
with building operations are significant throughout the entire life cycle
of buildings. Heating, ventilation and air conditioning (HVAC) systems
account for about 67% of the total energy use in buildings. Despite na-
tional efforts toward improving system performance and sustainability,
most HVAC systems in existing buildings do not operate close to their
design efficiency due to equipment degradation, out-of-calibration
sensors, or improper control operations. These issues can lead to high
maintenance costs, occupant discomfort, and an energy use penalty of
between 15% and 30% for commercial buildings [4].

Fault detection and diagnosis (FDD) for HVAC systems in buildings

1. Introduction

Traditional FDD approaches that are applied to existing buildings
learn from training data obtained under limited operating conditions to
detect and diagnose faults, after which they stop learning. The major
challenge is that the training data available to create diagnostic algo-
rithms do not include all possible operating conditions that the tested
systems and components experience throughout their life cycles. It is
expected that building system performance such as energy use changes
over time due to natural wear, changing control sequences, equipment
replacement or addition, or other external factors. This can lead to
missed detections and false alarms when traditional FDD approaches are
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Nomenclature d multi-variable data [—]
f fault diagnosis results [—]
Symbols f individual faults [—]
E expectation operator [—] F fault matrix [—]
k number of components [—] H a transfer function for fault diagnosis [—]
N probability distribution function of a multi-variable i a fault feature vector [—]
Gaussian distribution [—] P parameter matrix [—]
S¢ change rates of supply water flow [gpm/hr] S fault signature matrix [—]
t sample index [] u mean vector [—]
q expected posterior [] ) covariance matrix [—]Prefix
w updated weight coefficient [—] cusum  cumulative sums over a 24-h moving window
T weight coefficient [—]
B learning rate [—] Subscripts
p learning factor [—] j the j”‘ component in a Gaussian mixture model
AC deviations between predicted and actual cooling rates X independent variables
[kW] Y dependent variable
Af deviations between predicted and actual flow rates [gpm] ZAT zone air temperature
Ap: deviations between loop pressure and its setpoint [psi] r-s. between supply and return water temperature
AT temperature deviations between temperature and its SZAT between supply water temperature and zone air
setpoint, or temperature differences [°F] temperature setpoints

applied [9,10]. Performance indices such as energy use require that the
baseline models for predicting energy use evolve along with the dynamic
changes in building systems and components. Furthermore, fault
severity levels and fault symptoms may change over time. Given that the
training set for FDD does not cover all operating conditions and fault
scenarios, FDD algorithms for building HVAC systems need to evolve
over time.

As opposed to FDD applied to conventional HVAC systems (e.g.,
variable air volume systems), FDD for high-performance HVAC systems
has rarely been studied. To meet the goals of the net-zero energy
building initiatives for commercial buildings, FDD technologies that can
continuously ensure thermal comfort and energy efficiency are needed
especially for the operation of high-performance HVAC systems that
have the potential to achieve high indoor environmental quality and
deep energy reduction through integrated system design and advanced
operation for commercial buildings. These high-performance HVAC
systems (such as chilled beam [11], radiant heating/cooling [12], and
mixed-mode ventilation [13,14]) are complex in operation.

To address the research gaps discussed above, the objective of the
study is to develop an evolving learning-based FDD method for HVAC
systems, which learns as the performance of a building system and its
components changes. Specifically, an evolving learning algorithm—
growing Gaussian mixture regression—is used to construct both a data-
driven model representing normal performance and a transfer function
for fault diagnosis. A novel feature selection method was also developed
for selecting fault signatures to enhance the robustness and trans-
ferability of the FDD algorithm. The evolving learning-based FDD
method as well as the feature selection method were demonstrated for
detecting and diagnosing common faults of passive chilled beam systems
in this study.

The methodology of the evolving learning-based FDD and the dy-
namic updating mechanism for growing Gaussian mixture regression
were presented in Section 2. A demonstration of the evolving learning-
based FDD method is presented in Sections 4-7 for a passive chilled
beam system. Section 3 describes fault implementation in the passive
chilled beam system; Section 4 presents the development of an evolving
learning-based GGMR model representing cooling rates of the PCB sys-
tem under normal operation; Sections 5 and 6 present evaluation and
selection of key performance indices for fault detection and diagnosis;
Section 7 develops a GGMR model for fault diagnosis of the passive
chilled beam system and presents diagnosis results for both known and
unknown faults.

2. Methodology
2.1. Evolving learning-based fault detection and diagnosis

A schematic diagram of an evolving learning-based FDD method is
illustrated in Fig. 1. The evolving learning-based approach is used to
construct both a data-driven model representing normal performance
and a transfer function H for fault diagnosis. The evolving learning-
based FDD method includes two stages: “detection” and “diagnosis.”

Detection: Performance indices for a system of interest were
composed for the purpose of fault detection. These performance indices
include the deviations between predictions (expectations) and mea-
surements, the differences between two key parameters, and other fea-
tures extracted from parameters (e.g., cumulative differences or changes
of parameters over time). Furthermore, the performance indices are
categorized into static (non-evolving) performance indices and evolving
performance indices.

Key performance parameters of HVAC systems such as cooling/
heating energy rates and air/water flow rates evolve with the changes in
HVAC operating environments, building systems, and components over
their life cycles. These key performance parameters can be predicted
using evolving learning-based models [15]. The evolving performance
indices are created using the predictions from these evolving
learning-based models and their corresponding measurements. One
example of the evolving performance indices is the differences between
cooling/heating energy rates predicted from evolving learning
method-based models and their measurements. Traditional
data-driven-based modeling is limited by the training data which do not
include all possible operating conditions for the system of interests. The
evolving learning-based models overcome this limitation of the tradi-
tional data-driven-based modeling approach by updating key parame-
ters over time.

The non-evolving performance indices do not include predictions
from evolving learning-based models. Instead, they are built upon actual
measurements and/or control operating parameters. An example of the
non-evolving performance index could be the differences between sup-
ply water temperature and its setpoint. The expected ranges of non-
evolving performance indices are static and should not change over
time such as the acceptable deviations between controlled variables and
setpoints. For detecting degradation faults such as coil fouling under
which performance gradually changed over time, static performance
indices should be used.
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Fig. 1. Schematic diagram of evolving learning-based fault detection and diagnosis method.

For performance indices with the evolving feature, the baseline
models for performance parameters such as predicted energy use would
evolve along with the changes in building systems and components to
represent normal operation over time. For non-evolving performance
indices, the calculated index values are compared to the expected ranges
under normal operation. If statistically significant deviations between
the prediction (expected ranges) and the measurement of performance
indices are observed, a fault, multiple faults, or an unseen normal
operation is detected, and the diagnosis stage is initiated. Otherwise, the
system is operating normally and the evolving learning-based model is
updated with the measurement. Because the performance indices
include both static (non-evolving) performance indices and evolving
performance indices, the FDD method is applicable for different types of
faults with either sudden or gradual performance changes.

Diagnosis: Finding a diagnosis transfer function H is essential to
enable fault diagnosis. An evolving learning-based transfer function H is
used to relate the fault feature vector i comprising various performance
indices to the fault vector f based on experimental data. Given H, faults

can be identified based on the fault feature vector i by usingf =H(i),

where f is the fault diagnosis results using integers representing indi-
vidual faults. If no faults can be diagnosed for the measurements in the
diagnosis state, the measurement is identified as a new state, which is
either an unseen fault or an unseen normal operation. After a new state
(either an unseen fault or unseen normal operation) is identified by the
algorithm, a message about the new state will be sent to a building
operator, and then the building operator will assess the new state and
determine 1) whether the system is in a new normal operating mode or
an unseen faulty operation, and 2) the root cause of the fault if it is an
unseen faulty operation through measurement and verification. Once
the new state is unveiled, the measurement of the new state is used to
update the evolving learning-based model (normal operation) or the
transfer function (faulty operation) based on the building operator’s
assessment.

2.2. Growing Gaussian mixture regression (GGMR)

The growing Gaussian mixture regression (GGMR) was used in this
study to construct a model representing normal operation and the
transfer function H as the evolving learning-based data-driven method.
GGMR integrates a growing Gaussian mixture model (GGMM) [16] with

a Gaussian mixture regression (GMR) [17]. GGMM updates the param-
eters of the Gaussian components through a recursive procedure, merges
Gaussian components, and creates a new Gaussian component based on
new measurements. GMR is then used to predict the value of the
dependent variable given the observations of independent variables and
GGMM parameters.

A flow chart of the GGMR algorithm is shown in Fig. 2. A Gaussian
mixture model (GMM) assumes that the observed data are made up of a
mixture of multiple Gaussian distributions, and is thus a parametric
probability density function represented as a weighted sum of Gaussian
component densities, as shown in Eq. (1).

observations

v
Identify matching
component

I

New

Yes Update'the
Gaussian
component
No
Create a new
Gaussian
component
Updated
GMM

Check for splitting
and merging criteria

|

Gaussian Mixture
Regression

Fig. 2. Flow chart of GGMR algorithm.
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where 7;, 7 and §; denote the weight coefficient, mean vector, and
covariance matrix of the jth component, respectively. N(i,f|g;, ;) rep-

resents the probability distribution function of a multi-variable Gaussian
distribution. A growing Gaussian mixture model (GGMM) offers the
evolution of both the GMM model structure and the parameters in real-
time. The learning mechanism includes updating the parameters of the
GMR, adding a new component to the existing model, as well as splitting
and merging the Gaussian mixture model components.

First, GGMM identifies which Gaussian components will be updated
based on the calculated probability density of each. The parameters of
the component with the highest probability density (non-zero),
including the weight coefficient 7z;, mean vector p; , and covariance
matrix §; are updated using a recursive filtering approach, as shown in
Egs. (2)-(4) [16].

7;(t) = (1 = P)m;(t — 1) + pg; )
(0= (1=p)u(t—1) + pd(1) ®
(0= (1-p)8(t 1) +p,(d() — (1)) (d(0) — ()" )

where d(t) = [i(t).f(t)], g; is the expected posterior of the j th component,
p is the learning rate, and p; is the learning factor corresponding to
updating p; and §;.

Second, if the calculated probability density of all Gaussian compo-
nents based on the new data is zero, this indicates that there is no
existing Gaussian mixture component matching the new data. The
GGMM then generates a new component and initializes its parameters
[16].

Third, after the GGMM model is updated, merging and splitting
criteria are checked to ensure the health of the updated model structure.
When the volume of a Gaussian component — the determinant of its
covariance matrix — exceeds a maximum threshold, the Gaussian
component is split into two. The distance between two Gaussian com-
ponents is measured by the Kullback-Leibler divergence (KLD) [18]. If
the KLD of any two Gaussian components is smaller than a minimum
threshold, the two components are merged.

Lastly, a Gaussian mixture regression (GMR) [17] is used to predict
the dependent variable f(i) such as diagnosed faults represented by in-
tegers (0, 1, 2 ...) given the observed independent variables such as
performance indices described in Section 5 and the GGMM parameters

of the test data.f(i) represents the prediction of the fault labels f (7). w; (i)
is the updated weight coefficients given the observed independent var-
iables for the j th component, as shown in Egs. (5) and (6).

) =E(xx=i)= D i) (yy + Sxdixx ' (i —pyx)) ®

=1

iN (i 1y, 6;
() =2Vt B0)

X (6)
_Zl N (6 i Sixx)
=

3. Fault implementation

Living Lab 1 (W: 9.5 m x L:10.7 m) at Herrick Laboratories, Purdue
University is an open office with a south-facing double-skin facade. The
space can be served by a passive chilled beam system (PCB), a hydronic
radiant slab system, and/or displacement ventilation from a variable air
volume system (VAV). In this study, we implemented five types of
common faults at different severity levels (nine individual faults in total)
into the passive chilled beam (PCB) system of Living Lab 1 between
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September 15, 2021 and November 5, 2021. Trend data of the PCB
system performance and environmental conditions under normal oper-
ation were recorded from April 1, 2021 to July 26, 2021. During the
experiments, the radiant slab system was turned off, space heating was
served by the VAV system, and space cooling was served by both PCB
and VAV systems. Condensation is a common operating issue of chilled
beam systems. However, it is avoidable by controlling the supply water
temperature above space air dew point temperature via control se-
quences. To prevent any risk of condensation in Living Lab 1, the supply
water temperature setpoint was set dynamically based on thermal loads
but at least 1.7 °C (3 °F) above the dew point of the space air.

In this study, we focused on mechanical faults associated with ac-
tuators and sensors. The five fault types include stuck chilled beam
control valves, stuck chilled water control valves of the heat exchanger,
supply water temperature sensor offset, zone air temperature sensor
offset, and stuck VFD controller at a constant pump speed. These com-
mon faults implemented into the PCB system including severity level,
associated components, and labels used in this paper were summarized
in Table 1.

Under normal operation, chilled beam valves and the chilled water
valve were controlled using PI feedback loops that compare measured
control variables and setpoints. For the stuck valve faults, constant
signals (e.g., 0%, 50%, or 100%) were used to override the PI loop
outputs. In addition to the actual (override) control valve positions, the
output signals from PI loops for the control valves were also trended and
were used for predicting PCB performance under normal operation.

For temperature sensor offset faults, a constant offset was added to
the control sequence via the building control system to adjust readings
from the temperature sensors such as supply water temperature or zone
air temperature before the temperature variables were provided as in-
puts for various PI feedback controls.

The supply water pump speed was controlled using a PI loop based
on a differential pressure setpoint (10 psi). For the fault of the stuck
pump VFD controller at a constant speed, a constant percentage of full
pump speed was used to override the PI loop outputs.

4. Baseline model

The baseline model for predicting cooling energy rates of the PCB
system under normal operation was constructed for the development of
evolving performance indices using the evolving learning-based algo-
rithm—GGMR for fault detection. The selection of input parameters and
key performance parameters in GGMR was discussed in a recent study
[15]. PCB flow rates were first predicted by the GMR model and were
then fed into the GGMR model representing normal operation as one of
the input parameters.

We selected the set of inputs to include the zone air temperature
(ZAT), average PCB control valve position, chilled water valve position,
double facade temperature, and predicted flow rate. The Spearman’s

Table 1
Common faults of a passive chilled beam system.
#  Fault Severity Level Component Fault Label
1 Stuck valve: 0% Chilled beam control valve CBV_0%
2 Stuck valve: 50% CBV_50%
3 Stuck valve: 100% CBV_100%
4 Stuck valve: 0% HX chilled water control valve CHV_0%
5 Temperature sensor offset: Supply water temperature SWT+9F
+9 °F sensor
6 Temperature sensor offset: SWT-9F
9 °F
7 Temperature sensor offset: Zone air temperature sensor ZAT+5F
+5°F
8 Temperature sensor offset: ZAT-5F
5°F
9 Stuck at a constant speed: VED for supply water pump VFD_50%

50%
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rank correlation coefficients were calculated between two independent
variables. The maximum correlation coefficient is 0.197 between zone
air temperature and flow rates and the other coefficients are in the range
of 0 and 0.006. Three-month (April 1, 2021-June 30, 2021) trend data
for the normal operation were used to train the baseline GGMR model.
The optimum number of components was 30. The learning rate was kept
at a constant of 0.01.

Trend data between July 1, 2021 and July 26, 2021 were used to test
the GGMR model. Statistical analysis results for the prediction of cooling
rates using the test data are a coefficient of variance of the root mean
square error (CV-RMSE) of 20.7%, a mean bias error (MBE) of 0.5%, and
an R-square of 0.909. A snapshot of the predicted and measured hourly
PCB cooling rates for Living Lab 1 is shown in Fig. 3. The predicted
hourly cooling rates agree well with the measured PCB cooling rates
although there were some significant fluctuations throughout the day
for hourly cooling rates.

5. Fault symptom analysis

In this section, various performance indices for capturing fault be-
haviors were created and analyzed for validating the implementation of
each fault and for the preparation of feature selection in Section 6
Feature Selection. Symptoms or behaviors for each fault are presented in
this section.

Trend data (5-min intervals) for zone environmental conditions and
PCB performance data of Living Lab 1 were collected through the
building control system. The 15 trended parameters through the build-
ing control system illustrated in Fig. 4 include 1) supply water pump
speeds (VFD), 2) PCB supply water temperatures (SWT), 3) PCB return
water temperatures (RWT), 4-6) control valve signals for north (CVN),
central (CVC), and south (CVS) chilled beam banks, 7) differential
pressure of the PCB loop (AP), 8) PCB system flow rates (Flow), 9)
chilled water control valve signals at the heat exchanger side (CVHXC),
10) heating hot water control valve signals at the heat exchanger side
(CVHXH), 11) zone air temperature (ZAT), 12) zone air relative hu-
midity, 13) facade space temperature, 14) outdoor air temperature, and
15) outdoor air relative humidity. In addition to the 15 trended pa-
rameters, two parameters including the predicted PCB cooling rates and
the predicted flow rates from GGMR models were also taken into
consideration.

Various performance indices were constructed based on the de-
viations between baseline model predictions (expectations) and mea-
surements, the relative differences between parameters, and/or
extracted features of parameters such as cumulative differences or the
change of parameters over time. They were evaluated and analyzed for
various faults. The fault feature vector i is composed of the selected
performance indices from Section 6 Feature Selection. They do not pri-
marily rely on absolute values from a specific system. Therefore, these
derived performance indices can improve the transferability of the FDD

=
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algorithms from one system to other.

The specific performance indices include 1) deviations between
predicted and actual cooling rates AC, 2) deviations between predicted
and actual flow rates Af, 3) deviations between loop pressure and its
setpoint Ap, 4) deviations between zone air temperature and its setpoint
ATzaT, 5) temperature differences between supply and return water
temperature AT.s, 6) temperature differences between supply water
temperature and zone air temperature setpoints ATsza1, and 7) change
rates of supply water flow S¢ (Eq. (7)). The parameter Sy is defined as the
difference between the maximum flow rate ;. and minimum flow rate
Fmin OCCUTTINg OVer a 24-h moving window divided by the period (24 h).
The cumulative sums (cusum) of AC, Af, Ap, ATzaT, ATy, and ATszaT Over
a 24-h moving window were also considered as key performance indices.
The cooling rates and flow rates of the PCB system were predicted on an
hourly time interval. Thus, AC, Af, cusum AC, and cusum_Af were
calculated for each hour. These parameters were synchronized with
other performance indices on a 5-min time interval assuming semi-
steady state conditions of cooling rates and flow rates within each
hour for feature selection, fault detection, and diagnosis. Among all the
performance indices, AC, Af, cusum AC, and cusum Af have evolving
features requiring baseline models for predicted energy use and flow
rates evolve along with the changes in building systems and components
over time.

S o
time period

The performance indices, including AC, Af, Ap, ATzar, ATrs and
ATsza1, characterize performance at a given time and are subject to
short-term dynamic fluctuations, while the moving cumulative sums
filter the shorter-term dynamics, and better represent performance trend
over time. Under faulty operation, deviation of system performance
from the normal operation may not be significant or even consistent for
individual data points due to uncertainties in measurements and
external factors while the cumulative sums show cumulative effects over
time and amplify the effects of faulty operations.

There were 25 days of measurement data for normal operation and
about two days of measurement data for each fault at a 5-min interval.
The data were divided into training and testing data sets. The training
data included 3456 data points (12 days) of normal operation and 288
data points (1 day) for each of the implemented faults. The testing data
included 3744 data points (13 days) of normal operation and 288 data
points (1 day) for each fault type. For each data point, cumulative
indices were calculated based on the sum of the deviation over a moving
24-h period (288 data points for 5-min data). The cumulative indices for
each data point of the second day under a specific fault can be easily
calculated. To calculate the cumulative indices for each data point of the
first day of the same fault, the second day was treated as the day before
the first day for cumulative indices calculation. In other words, the data
of the deviation of each data point on the second day were used as the

LLLLLLLLLLLLPLPLPLLLLLS LSS
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S
A

N
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S
§ AR

Predicted_CoolingRate_GGMR

Fig. 3. The hourly PCB cooling rate prediction for testing data from Living Lab 1 measurement.
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AP CVHXH CVHXC
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data before the first day for cumulative indices calculation of the first
day.

As an example, the cumulative sum performance index for flow rates
(cusum_Af) for all the operation scenarios is shown in Fig. 5 for all the
training data including normal (3456 data points) and faulty operations
(about 288 data points per fault).

The 24-h cumulative sums for each operation scenario stayed within
a relatively narrow range except for the faults of CBV_50% and CHV_0%.
This performance index has consistent and clear characteristics for every
operation scenario. cusum Af is close to zero under normal operation.
CBV_0%, CBV_50%, CHV_0%, and VFD_50% have large positive values
of cusum Af. CBV_100% and ZAT-5°F have large negative values of
cusum_Af.

Fig. 6 shows the change rates of supply water flow rates for normal
and faulty operation scenarios for all the training data including normal
(3456 data points) and faulty operations (about 288 data points per
fault). The larger the s; values, the more supply water flow rates fluc-
tuate over time. It was found that s; was nearly zero for a stuck chilled
beam valve fault (CBV_0%, CBV_50%, and CBV_100%).

600
500 -
400
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Fig. 4. The system diagram for Living Lab 1 passive
chilled beam system with trended control and per-

Cvs formance parameters. (VFD: supply water pump

? speeds; SWT: PCB supply water temperatures; RWT:

PCB return water temperatures; CVN: control valve

signals for north chilled beam bank; CVC: control

valve signals for central chilled beam bank; CVS:

cve control valve signals for south chilled beam bank; AP:

J differential pressure of the PCB loop; Flow: PCB sys-

I tem flow rates; CVHXC: chilled water control valve

signals at the heat exchanger side; CVHXH: heating

ove hot water control valve signals at the heat exchanger
P side; ZAT: zone air temperature).

CHWS

Table 2 presents a qualitative summary of the behavior of the per-
formance indices for normal operation and each implemented fault. In
Table 2, all the performance indices except the change rates of supply
water flow rate sf were presented as positive (+), negative (—), or zero
(0) relative to the range of normal operation with the consideration of
uncertainties. The uncertainty thresholds were discussed in Section 6.3
Feature Selection Procedure. The change rates of supply water flow s are
presented in Table 2 as absolute values. If any performance index for a
specific fault showed inconsistent characteristics—sometimes positive
(+), sometimes negative (—), or zero (0) in comparison with normal
operation, the cell in Table 2 for the corresponding fault and perfor-
mance index was left blank. A blank field indicates that the performance
index should not be used as an indicator for diagnosing this specific fault
because of the inconsistency of the behavior. It is also important to note
that some performance indices, including Ap, ATzat, ATy, and ATszaT,
are all zeros and thus cannot be used to differentiate between normal
operation and faulty operation.

Fig. 5. cusum Af for normal operation and faulty
operations (CBV_0%: chilled beam control valve stuck
at 0%; CBV_50%: chilled beam control valve stuck at
50%; CBV_100%: chilled beam control valve stuck at
100%; CHV_0%: chilled water control valve stuck at

. 300 é - 0%; SWT+9F: supply water temperature sensor offset
g 200 +9 °F; SWT-9F: supply water temperature sensor
o offset -9 °F; ZAT+5F: zone air temperature sensor
Z 100 g offset +5 °F; ZAT-5F: zone air temperature sensor
EI 0 - — — offset -5 °F; VFD_50%: pump stuck at a constant speed
. 50%.).
> -100 =2=
O

-200

-300

-400 =

-500

CBV_0% CBV_100% SWT+9F ZAT+5F VFD_50%
Normal CBV_50% CHV_0% SWT-9F ZAT-5F
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1.6 Fig. 6. Change rates of supply flow rates over 24 h
for normal operation and faulty operations (CBV_0%:
2 1.4 chilled beam control valve stuck at 0%; CBV_50%:
é chilled beam control valve stuck at 50%; CBV_100%:
o 1.2 chilled beam control valve stuck at 100%; CHV_0%:
B $ chilled water control valve stuck at 0%; SWT+9F:
i 1 supply water temperature sensor offset +9 °F; SWT-
_% E 9F: supply water temperature sensor offset -9 °F;
3 E 0.8 ZAT+5F: zone air temperature sensor offset +5 °F;
“— o - ZAT-5F: zone air temperature sensor offset -5 °F;
2 = 06 VFD_50%: pump stuck at a constant speed 50%.).
2 3
% 04
s
5 02 O
. _ _ —
CBV_0% CBV_100% SWT+9F ZAT+5F VFD_50%
Normal CBV_50% CHV_0% SWT-9F ZAT-5F
6. Feature selection
1 00 00
In this section, key performance indices created from Section 5 were 0 1-1.000
, Key p 1 2000 0 01 000
selected and used to compose fault feature vector i. A fault signature P=lo o000 0 1 F=lo o1 0 o
matrix S describing relationships between a set of parameters and the 010100 ’
capability for diagnosing specific faults was developed using an opti- 002010 00010
mization approach. Finding the best set of parameters for detecting and 00 0 01
diagnosing common faults in HVAC systems can be defined as an opti-
mization problem [19-21] that maximizes the level of diagnosability 0 1-1 0 0 O 1 0000
with analytical redundancy taken into consideration. The feature se- 1 2000 0 0100 0
lection method presented in this paper was inspired by Fijany and
Vatan’s study [19], but was customized for this application. S=[PF]=10 0 0 0 0 1 00100
0101 00 00010
6.1. Fault signature matrix 002010 0000 1

Fault signature matrix S is composed of two matrices: fault matrix F
and parameter matrix P. Fault matrix F, parameter matrix P, and fault
signature matrix S have the same number of rows, representing the
collections of performance features for faulty operations. Fault signature
matrix S establishes a relationship between faulty operation scenarios in
F and parameters in P. Fault matrix F describes specific faulty operation
scenario(s) with unsigned binary integers by assigning ‘1’ to a specific
column or columns representing specific faulty operation scenarios and
‘0’ to the rest of columns in each row. The number of columns in fault
matrix F represents the number of fault types to be diagnosed.

Parameter matrix P describes combinations of sensors/performance
indices which can be used to diagnose faults in HVAC systems. These
parameters include deviations between predictions (expectations) and
measurements of a set of parameters (e.g., cooling rates, flow rates,
temperatures) and/or extracted features of parameters (e.g., cumulative
sums of the deviations, the change of parameters over time). P is an
integer matrix with elements of ‘0’ or a signed integer ‘-1/+1, —2/42,
... If characteristics of a performance index are important for a specific
fault or faults, the element in the parameter matrix P is a non-zero
integer ‘-1/4+1, —2/+2, ..." If characteristics of a performance index
are inconsistent over time, the element of the performance index is ‘0.’

For example, suppose we identified six parameters available for
detecting common faults of one component in an HVAC system and
there are five common faults. An example of the parameter matrix P, the
fault matrix F, and the fault signature matrix S are shown as follows.

The first row of the fault signature matrix S indicates that a combination
of the 2nd and 3rd parameters in the parameter matrix can be used to
diagnose the first fault, a combination of the 1st and 2nd parameters in
the parameter matrix are used to diagnose the second fault, the 6th
parameter in the parameter matrix is used to diagnose the third fault,
and a combination of the 2nd and 4th parameters in the parameter
matrix is used to diagnose the fourth fault.

6.2. Optimal set of parameters to detect and diagnose faults

Finding optimal sets of parameters for detecting and diagnosing
specific faults in HVAC systems can be defined as an optimization
problem that attempts to maximize the level of diagnosability. The
optimization approach attempts to minimize the number of parameters
in the parameter matrix—with analytical redundancy taken into con-
sideration—while maintaining the same level of diagnosability as with
all possible parameters. We can formulate the problem of finding the
optimal sets of parameters into an integer programming problem [19] as
defined in equation (8).

The constraints of this integer programming optimization [19]
include two conditions to be satisfied to keep the maximum level of
diagnosability the same as with all possible parameters for the param-
eter matrix P: 1) there is no all-zero row and 2) all rows are distinct.
Integer programming is used to find a vector x that minimizes a linear
function subject to linear constraints.

min g’x Subjectto Uex < b 8)

In the defined integer programming problem, the element of a vector
g is 1 if there are non-zero elements in the column of the parameter
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Table 2

Characteristic table for performance indices of normal operation and faulty operation for PCB systems. (AC: deviations between predicted and actual cooling rates; Af: deviations between predicted and actual flow rates; S:

change rates of supply water flow; Ap: deviations between loop pressure and its setpoint; ATz47: deviations between zone air temperature and its setpoint; AT,.s: temperature differences between supply and return water

temperature; AT z47: temperature differences between supply water temperature and zone air temperature setpoints; cusum: cumulative sums of AC, Af, Ap, ATzar, AT,.s, and AT zar over a 24-h moving window.)
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matrix P and otherwise 0; x is a binary vector to be found and de-
. . —M: .
termines the optimal sets of parameters; U = { Ml } ; M is the same as
—ivi2

the parameter matrix P; M, is the matrix composed of the difference
between a pair of rows in M;. Each row in M, contains the absolute
differences between each pair of rows R; = |R; —R;| in matrix M if the
two rows R;, R; in matrix M; are distinct, or is equal to any of the two
rows R;,R; if R; and R; in matrix M; are the same. To meet the two
prerequisite conditions for the parameter matrix P: constraints M, e x >
1 (no all-zero rows) and M, ex > 1 (all rows are distinct) are required
where 1 is an all-one vector and b is a linear inequality constraint vector.
In this optimization task, b = -1 is an all negative-one vector. Therefore,

the constraint for this linear programming problem is { ! } ox < —1.

-M,

The linear programming solution can be further customized to select
more favorable parameters/sensors with the consideration of other
factors such as cost and high fidelity besides diagnosability. The ele-
ments of the vector g corresponding to less favorable parameters or
sensors can be multiplied to a large weighting factor (greater than one).
Then the specific elements in the vector g become the weighting factor
multiplied by the number of non-zero elements in the corresponding
columns of the parameter matrix P. Therefore, the parameters/sensors
with large weighting factors have less chance to be selected.

6.3. Feature selection procedure

The feature selection method described in Sections 6.1 and 6.2 was
used to select features for detecting and diagnosing common faults of
PCB systems. All the performance indices were considered in the feature
selection with training data. The training data contained 3456 data
points (12 days) of normal operation and 288 data points (1 day) for
each implemented fault except the fault for the stuck chilled water
control valve at a fully closed position (CHV_0%). The CHV_0% fault was
used to test the evolving feature of the FDD algorithm as a new “un-
known” fault and therefore data for this fault was not used for training.
There are four key steps in feature selection.

Step 1. The values of performance indices for different operation
scenarios (either normal or faulty operations) are analyzed and used to
create a signed integer matrix of fault “symptoms".

The values of performance indices under different operation sce-
narios (either normal or faulty operation) are compared to the range of
those based on the training data set for normal operation with the
consideration of uncertainties. The normal operating range of a per-
formance index was defined in Eq. (9) with the consideration of
uncertainties.

z € normal operation when min — a X std(z) <z < max+a x std(z)  (9)

where z represents a performance index; min and max represent the
minimum and maximum of the performance index under normal oper-
ation based on training data; std(z) is the standard deviation of the
performance index under normal operation; a is a coefficient for
adjusting the threshold. axstd(z) represents the uncertainties of the
threshold.

Different non-zero integers are used to differentiate characteristics
for a performance index. For example, ‘-1’ is used for cases where the
value of the performance index is smaller than the value of the minimum
of the performance index for normal operation subtracting the uncer-
tainty threshold; ‘+1° is used for cases where the value of the perfor-
mance index is larger than the value of the maximum of the performance
index for normal operation with the addition of the uncertainty
threshold; ‘+2’ is used to represent when the value of the performance
index is in the range of the performance index for normal operation with
the consideration of the uncertainty threshold. In contrast to Table 2, a
non-zero integer ‘+2’ instead of ‘0’ is used to represent the
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characteristics of the performance indices that fall within the normal
operating range. A performance index can still be a useful signature
when the performance index under a specific faulty operation consis-
tently behaves similarly to normal operations. Such a performance index
can be used to differentiate the specific fault from other faults under
which the performance index is out of the normal operating range. In
this study, the integer matrix was generated based on the performance
indices for faulty operation relative to normal operation except for the
performance index—the change rates of supply water flow s;. Absolute
values of s; were considered by assigning ‘+2’ for values smaller than
0.1 and ‘1’ otherwise. The fault matrix was based on the ground truth of
different operation scenarios (either faulty operation or normal
operation).

Step 2. Any duplicate fault symptoms for the same fault or any fault
symptoms with limited occurrence (e.g., five times or less) should be
removed so that unique fault symptoms with high frequency are left for
each fault. In this context, a fault symptom represents a particular
pattern of signed integers for performance indices established in step 1.
For all the training data in the case study, 39 symptoms representing
different operation behaviors for normal or faulty operations were left
after this process. The 39 symptoms were grouped into nine operation
scenarios (normal operation and eight faulty operations, with stuck
chilled water valve 0% as a new unknown fault). For example, after the
duplicated symptoms or symptoms with less occurrence were removed,
the fault CBV_ 50% had seven different unique symptoms left as sum-
marized in Table 3. The highlighted performance indices are those
having consistent characteristics for all seven symptoms. The charac-
teristics of performance indices including AC, Af, and AT, were incon-
sistent over time.

Step 3. This step involves the construction of the parameter matrix P.
Each row of the matrix P contains a performance “signature” for a
particular fault or for normal operation. The rows are initialized using
fault symptoms from step 2 and then evolve through the optimization
process. In initializing a row for a particular fault scenario, a single
signature is established using the fault symptom results from step 2 by
replacing any inconsistent fault features with a ‘0’. A ‘0’ represents a
performance index that should not be considered as a fault feature
during optimization. Applying this logic to the example of Table 3, a
unique performance signature for CBV_50% was determined and is given
in Table 4.

Step 4. This step involves the application of linear programming to
determine an optimal parameter matrix P as described in Section 6.2.
The optimization process eliminates performance indices that have fault
features assigned a “0" (i.e., leads to inconsistent performance) or that
aren’t needed in producing unique performance signatures that differ-
entiate between fault cases (i.e., needed for unique fault diagnoses).
However, in order to provide redundancy, any performance index that
has non-zero and non-identical fault features across the different faults is
added as additional columns to the final parameter matrix. For the PCB
system case study, the selected performance indices determined through
optimization using the training data were s , cusum_Ap, and

Table 3
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cusum ATszar based on optimization. Then, cusum Af was added for
redundancy since cusum_Af was non-zero and non-identical across the
different faults in the parameter matrix P. The key signatures of the
selected performance indices for the eight different faults are summa-
rized in Table 5. The selected performance indices were used to compose
fault feature vector i.

7. Fault detection and diagnostic results

This section develops the transfer function H for fault diagnosis of
the passive chilled beam system and presents diagnosed results for both
known and unknown faults. The four fault features presented in Table 5
represent normal operation and the eight known fault scenarios as well
as the normal operation. As described earlier, 5-min interval data for the
case study system were divided into training and testing data sets. The
training data included 3456 data points (12 days) of normal operation
and 288 data points (1 day) for each of the implemented faults. For the
chilled water control valve at a fully closed position (CHV_0%) fault, the
288 training data points were used for applying the evolving learning
FDD training method. The testing data included 3744 data points (13
days) of normal operation and 288 data points (1 day) for each fault
type. The testing data were evenly divided into two data sets with equal
numbers of data points: testing data for FDD without evolving and
testing data for evolving transfer function H.

7.1. Fault detection and diagnostic results for known faults

The training data set for normal operation and the eight known faults
were used to train a GMR model as the transfer function H. The testing
data for the FDD algorithm without evolving covers normal operation
(1873 data points) and nine faults including CHV_0% (144 data points
for each fault).

It is important to note that the uncertainty thresholds defined in Eq.
(9), Section 6.3 for determining whether a performance index behaves
normally or is out of normal operating range affect the testing results for
normal operation. Testing results for normal operation at different
thresholds are summarized in Table 6. As shown in Eq. (9), a is a coef-
ficient for adjusting the threshold. @ = 2 represents that the uncertainties
of performance indices are two standard deviations of the performance
indices. As the uncertainties increase from zero to two standard de-
viations, the accuracy for testing results of normal operations improved;
false alarm rates for normal operations were reduced from 14.8% to
1.3% and the percentage of normal operation data categorized as an
unknown operation was reduced from 25% to 0%. However, if the un-
certainties were increased substantially, individual faults lost their fault
signatures and the diagnosis accuracy was reduced.

Table 7 shows fault diagnosis results of testing data under various
faulty operations for the chilled beam system. For each fault, there were
144 data points in this testing. Testing data of individual faults except
for the fault for the chilled water valve stuck at 0% (CHV_0%) were
diagnosed with 100% accuracy. The fault diagnosis results are consistent
with the three different uncertainty thresholds (¢« = 0, 1.0, and 2.0). As

List of 7 unique fault symptoms for chilled beam valve stuck at 50% (CBV_50%). (AC: deviations between predicted and actual cooling rates; Af: deviations between
predicted and actual flow rates; Sy change rates of supply water flow; Ap: deviations between loop pressure and its setpoint; ATz47: deviations between zone air
temperature and its setpoint; AT, temperature differences between supply and return water temperature; AT;za7: temperature differences between supply water
temperature and zone air temperature setpoints; cusum: cumulative sums of AC, Af, Ap, ATza1, AT, and ATza7 over a 24-h moving window.).

AC cusum_AC Af cusum_Af S, Ap cusum_Ap
2 2 1 1 2 2 1
2 2 1 1 2 2 1
2 2 2 1 2 2 1
2 2 2 1 2 2 1
2 2 -1 1 2 2 1
2 2 -1 1 2 2 1
-1 2 2 1 2 2 1

AT, cusum AT, | AT | cusum_AT AT, cusum AT
2 2 2 2 2 2
2 2 2 1 2 2
2 2 2 2 2 2
2 2 2 1 2 2
2 2 2 2 2 2
2 2 2 1 2 2
2 2 2 2 2 2
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Table 4

Performance signature for chilled beam valve stuck at 50% (CBV_50%)(AC: deviations between predicted and actual cooling rates; Af: deviations between predicted
and actual flow rates; Sy change rates of supply water flow; Ap: deviations between loop pressure and its setpoint; ATz47: deviations between zone air temperature and
its setpoint; AT,.s: temperature differences between supply and return water temperature; AT;z41: temperature differences between supply water temperature and zone

air temperature setpoints; cusum: cumulative sums of AC, Af, Ap, ATzart, ATy, and AT;za over a 24-h moving window.).

AC cusum_AC Af cusum_Af S, Ap cusum_Ap AT, cusum_AT, AT | cusum_AT AT, cusum AT
0 2 0 1 2 2 1 2 2 0 2 2
algorithm returns an unknown ID (e.g. “0”) different from any ID for
Table 5

Key signatures of selected fault features with eight different known fault types.
(4f: deviations between predicted and actual flow rates; Sz change rates of
supply water flow; Ap: deviations between loop pressure and its setpoint; ATsza7:
temperature differences between supply water temperature and zone air tem-
perature setpoints; cusum: cumulative sums of Af, Ap, and ATzar over a 24-h
moving window.)

normal operation or existing faults which represents neither normal
operation nor existing faults.

7.2. Detection and diagnosis of an unknown fault

The fault chilled water valve stuck at 0% (CHV_0%) was used to test

cusum_Af S, cusum_Ap cusum AT . . . . .

Normal operation 9 1 2 9 the evolving lee}rnlng-based .transfer fur}ct1on H for fault. diagnosis.

Chilled beam control valve: stuck 1 2 -1 1 Based on the testing results, without evolving, the fault was diagnosed as
at 0% an unknown fault. Then 288 data points for the fault CHV_0% were used

Chlue‘éubeam control valve: stuck 1 2 1 2 for evolving learning FDD training to update the transfer function H.
at 50% . . . . .

Chilled beam control valve: stuck 1 P ) Anoth.er testlng.data s.et including normal opergtlon (1871 data points)
at 100% and nine faults including CHV_0% (144 data points for each fault) were

Supply water temperature sensor -1 12 1 used to test the evolving feature of the FDD algorithm.
offset: +9 °F

Supply water temperature sensor -1 1 2 -1
pply wat p Table 8
offset: 9 °F N . X X L

Space temperature sensor offset: 2 1 1 1 Signature comparison of fault features with nine faults. (Af: deviations between
4+5°F predicted and actual flow rates; Sy change rates of supply water flow; Ap: de-

Space temperature sensor offset: -1 1 -1 1 viations between loop pressure and its setpoint; ATsz47: temperature differences
5°F between supply water temperature and zone air temperature setpoints; cusum:

Pump stuck at a constant speed: 1 1 -1 2 cumulative sums of Af, Ap, and ATza7 over a 24-h moving window.)

50%
cusum_Af S, cusum_Ap cusum AT
Normal operation 2 1 2 2
Chilled beam control valve: stuck 1 2 -1 1
Table 6 at 0%
Testing results for normal operation (1873 data points) for different thresholds. Chill;((i);eam control valve: stuck 1 2 1 2
at ()

o False Alarm Unknown Accuracy Chilled beam control valve: stuck -1 2 -1 2

0 14.8% 25.0% 60.2% at 100%

1.0 4.5% 8.3% 87.9% Supf;;ly Yvatex; 1gemperature sensor -1 1 2 1

2.0 1.3% 0.0% 98.7% offset: +9

Supply water temperature sensor -1 1 2 -1
offset: 9 °F
. . S t t ffset: 2 1 -1 -1
shown in Table 7, the testing data for unknown fault CHV_0% were all picseo:mp erature sensor ofise
diagnosed as unknown/unseen states. Space temperature sensor offset: -1 1 -1 1
Table 8 compares signatures of fault features for the nine individual 5°F
faults including the unknown fault CHV_0%. Built upon Table 5, Table 7 Pump stuck at a constant speed: 1 1 -1 2
. . . . . 0,
shows that the signature for the fault CHV_0% is unique in comparison 50%
. . . HX chilled water control valve: 1 1 -1 1
with other faults and thus this fault was categorized as an unknown fault stuck at 0%
with the testing data. If a fault is unknown, the fault diagnostic
Table 7
Fault diagnosis results of testing data under various faulty operations for the chilled beam system.

Testing Data CBV_0% (144 CBV_50% (144 CBV_100% (144 CHV_0% (144 SWT+9F (144 SWT-9F ZAT+5F (144 ZAT-5F VFD_50% (144
Diagnosis data points) data points) data points) data points) data points) (144 data data points) (144 data data points)
Results points) points)

CBV_0% 100%

CBV_50% 100%

CBV_100% 100%

CHV_0% 0%

SWT+9F 100%

SWT-9F 100%

ZAT+5F 100%

ZAT-5F 100%

VFD_50% 100%

Unknown 100%

Notes: Unknown: unknown/unseen state; CBV_0%: chilled beam control valve stuck at 0%; CBV_50%: chilled beam control valve stuck at 50%; CBV_100%: chilled
beam control valve stuck at 100%; CHV_0%: chilled water control valve stuck at 0%; SWT-+9F: supply water temperature sensor offset +9 °F; SWT-9F: supply water
temperature sensor offset -9 °F; ZAT+5F: zone air temperature sensor offset +5 °F; ZAT-5F: zone air temperature sensor offset -5 °F; VFD_50%: pump stuck at a constant
speed 50%.

10
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The best matching component and the minimum Mahalanobis dis-
tance of the Gaussian mixture regression were used to evaluate the
effectiveness of the evolving learning feature of the FDD algorithm. The
best matching component is defined as the Gaussian component corre-
sponding to the maximum non-zero probability density of each data.
Mahalanobis distance My (Eq. (10)) measures the distance between
multivariate data and a Gaussian distribution.
M=/l )5, (d~ ) a0
where d is the multivariate data point, y; represents the mean of the jth
Gaussian component, §; represents the covariance matrix of the jth
component.

Figs. 7 and 8 illustrate the minimum Mahalanobis distance and best
matching component for individual faults before and after evolving
learning for the FDD algorithm, respectively. Besides the unknown ID
returned from the FDD algorithm, measurements of an unknown fault
are featured with no matching component and a large minimum
Mahalanobis distance. Before the evolving learning, the fault CHV_0%
has no matching component and a large minimum Mahalanobis distance
among Gaussian components (538.5). After the evolving learning,
covariance matrices of Gaussian components were updated. The best
matching component (component 9) was identified for the fault
CHV_0% and the minimum Mahalanobis distance was less than 1.0. The
accuracy of FDD testing results using the evolving test data set was 100%
for all the individual faults.

8. Conclusion

This study represents the first in creating and applying an evolving
learning-based FDD method for detecting and diagnosing common faults
for HVAC systems. We used a passive chilled beam system to demon-
strate the evolving learning-based FDD method. The FDD algorithm
presented in this work accurately detected and diagnosed known faults
and successfully diagnosed a new unknown fault after evolving. The
evolving learning-based FDD method overcomes the limitation of the
traditional FDD methods—that learn from training data obtained under
limited operating conditions, after which they stop learning—by
updating key parameters of the baseline model and the transfer function
over time.

The case study application of the method involved nine common
faults for a passive chilled beam system that was implemented by
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Fig. 7. The minimum Mahalanobis distance and best matching component for
individual faults before evolving learning. (CBV_0%: chilled beam control valve
stuck at 0%; CBV_50%: chilled beam control valve stuck at 50%; CBV_100%:
chilled beam control valve stuck at 100%; CHV_0%: chilled water control valve
stuck at 0%; SWT+9F: supply water temperature sensor offset +9 °F; SWT-9F:
supply water temperature sensor offset -9 °F; ZAT+5F: zone air temperature
sensor offset +5 °F; ZAT-5F: zone air temperature sensor offset -5 °F; VFD_50%:
pump stuck at a constant speed 50%.)
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Fig. 8. The minimum Mahalanobis distance and best matching component for
individual faults after evolving learning. (CBV_0%: chilled beam control valve
stuck at 0%; CBV_50%: chilled beam control valve stuck at 50%; CBV_100%:
chilled beam control valve stuck at 100%; CHV_0%: chilled water control valve
stuck at 0%; SWT-+9F: supply water temperature sensor offset +9 °F; SWT-9F:
supply water temperature sensor offset -9 °F; ZAT+5F: zone air temperature
sensor offset +5 °F; ZAT-5F: zone air temperature sensor offset -5 °F; VFD_50%:
pump stuck at a constant speed 50%.)

overriding controls within the building control system. The performance
of various operation scenarios for this system with the normal and faulty
operations was trended for developing and testing the evolving learning-
based fault detection and diagnosis algorithm. Eight of the nine faults
were trained and tested as known fault types. These known faults were
detected and diagnosed with an accuracy of 100%. The new fault was
first tested without evolving and categorized as an unknown fault type.
Measurements of an unknown fault are featured with the unknown ID
returned from the FDD algorithm, no matching component, and a large
minimum Mahalanobis distance with a value of 538.5. After evolving
the transfer function by updating the key parameters of the Gaussian
components, the best matching component was identified for the un-
known fault, the minimum Mahalanobis distance was less than 1.0, and
the unknown fault was diagnosed with 100% accuracy.

We developed a novel feature selection method for FDD that was
demonstrated using the passive chilled beam system. To enhance the
transferability of the FDD algorithm to other systems, we created and
utilized generalized performance indices for fault discrimination,
including deviations between predictions (expectations) and measure-
ments, relative differences between parameters, and features extracted
from other performance indices such as cumulative differences or
changes of parameters over time.

An uncertainty threshold determining whether a performance index
was within the range of normal operation influences false alarm rates.
By increasing the uncertainty thresholds from zero to two standard de-
viations, false alarm rates for the normal operation were reduced from
14.8% to 1.3% and the percentage of normal operation data categorized
as an unknown operation was reduced from 25% to 0%. However, if the
thresholds are increased substantially, fault diagnosis accuracy is
compromised due to the fact that individual faults lose their key sig-
natures. Based on testing results, two standard deviations were selected
as the uncertainty threshold to categorize performance indices into
normal or faulty operations.

When a new state (either an unseen fault or unseen normal opera-
tion) is identified by the algorithm, the FDD algorithm requires inter-
action from an experienced building operator for the assessment and
determination of the new state. The evolvement process needs external
new input data. The algorithm requires sufficient data to evolve the
transfer function and thus to successfully diagnose a new fault. In the
future, both the evolving learning-based FDD method and the unique
feature selection method can be applied for other high-performance
HVAC system types as well as for conventional systems such as
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variable air volume systems and rooftop units. The approach of creating
performance indices for the passive chilled beam system can also be
adopted for other HVAC systems. However, the set of performance
indices and selected fault features should be unique for each type of
HVAC system. The new FDD method was tested in a living laboratory in
this study. Field implementations and continuous evaluation of the new
FDD method should be carried out for demonstration and verification.
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