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A B S T R A C T   

Traditional fault detection and diagnosis (FDD) methods learn from training data obtained under limited 
operating conditions, after which they stop learning. In this study, we developed an evolving learning-based FDD 
method for HVAC systems, which learns as the performance of a building system and its components changes. 
Specifically, an evolving learning algorithm—growing Gaussian mixture regression—is used to construct both a 
data-driven model representing normal performance and a transfer function for fault diagnosis. The evolving 
learning-based FDD method was demonstrated for detecting and diagnosing common faults of passive chilled 
beam systems. We employ generalized performance indices, such as the deviations between predictions (ex
pectations) and measurements, the differences between two parameters, and other features extracted from pa
rameters. A novel feature selection method was developed for selecting fault signatures. An uncertainty threshold 
determining whether a performance index was within the range of normal operation influences false alarm rates. 
By increasing the uncertainty thresholds from zero to two standard deviations, false alarm rates for normal 
operations were reduced from 14.8% to 1.3% and the percentage of normal operation data categorized as an 
unknown operation was reduced from 25% to 0%. Eight known faults were detected and diagnosed with an 
accuracy of 100%. A new fault was first categorized as an unknown fault before evolving. After evolving the 
transfer function by updating the key parameters of the Gaussian components, the unknown fault was also 
accurately diagnosed. The evolving learning-based FDD method and novel feature selection method can be 
employed for detecting and diagnosing common faults of other systems or subsystems in the built environment.   

1. Introduction 

Buildings account for 40% of total energy consumption [1], 74% of 
electricity use [2], and 37% of greenhouse gas emissions in the U.S [3]. 
Therefore, environmental impacts and resource consumption associated 
with building operations are significant throughout the entire life cycle 
of buildings. Heating, ventilation and air conditioning (HVAC) systems 
account for about 67% of the total energy use in buildings. Despite na
tional efforts toward improving system performance and sustainability, 
most HVAC systems in existing buildings do not operate close to their 
design efficiency due to equipment degradation, out-of-calibration 
sensors, or improper control operations. These issues can lead to high 
maintenance costs, occupant discomfort, and an energy use penalty of 
between 15% and 30% for commercial buildings [4]. 

Fault detection and diagnosis (FDD) for HVAC systems in buildings 

can enable early detection and identification of operational faults based 
on the analysis of measured behaviors. FDD is critical in achieving the 
goal of reducing energy waste in buildings caused by operational faults 
and ensuring the persistence of building commissioning. The FDD sub
ject of conventional HVAC systems has been studied since the 1990s 
[5–8]. 

Traditional FDD approaches that are applied to existing buildings 
learn from training data obtained under limited operating conditions to 
detect and diagnose faults, after which they stop learning. The major 
challenge is that the training data available to create diagnostic algo
rithms do not include all possible operating conditions that the tested 
systems and components experience throughout their life cycles. It is 
expected that building system performance such as energy use changes 
over time due to natural wear, changing control sequences, equipment 
replacement or addition, or other external factors. This can lead to 
missed detections and false alarms when traditional FDD approaches are 
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applied [9,10]. Performance indices such as energy use require that the 
baseline models for predicting energy use evolve along with the dynamic 
changes in building systems and components. Furthermore, fault 
severity levels and fault symptoms may change over time. Given that the 
training set for FDD does not cover all operating conditions and fault 
scenarios, FDD algorithms for building HVAC systems need to evolve 
over time. 

As opposed to FDD applied to conventional HVAC systems (e.g., 
variable air volume systems), FDD for high-performance HVAC systems 
has rarely been studied. To meet the goals of the net-zero energy 
building initiatives for commercial buildings, FDD technologies that can 
continuously ensure thermal comfort and energy efficiency are needed 
especially for the operation of high-performance HVAC systems that 
have the potential to achieve high indoor environmental quality and 
deep energy reduction through integrated system design and advanced 
operation for commercial buildings. These high-performance HVAC 
systems (such as chilled beam [11], radiant heating/cooling [12], and 
mixed-mode ventilation [13,14]) are complex in operation. 

To address the research gaps discussed above, the objective of the 
study is to develop an evolving learning-based FDD method for HVAC 
systems, which learns as the performance of a building system and its 
components changes. Specifically, an evolving learning algorithm—
growing Gaussian mixture regression—is used to construct both a data- 
driven model representing normal performance and a transfer function 
for fault diagnosis. A novel feature selection method was also developed 
for selecting fault signatures to enhance the robustness and trans
ferability of the FDD algorithm. The evolving learning-based FDD 
method as well as the feature selection method were demonstrated for 
detecting and diagnosing common faults of passive chilled beam systems 
in this study. 

The methodology of the evolving learning-based FDD and the dy
namic updating mechanism for growing Gaussian mixture regression 
were presented in Section 2. A demonstration of the evolving learning- 
based FDD method is presented in Sections 4-7 for a passive chilled 
beam system. Section 3 describes fault implementation in the passive 
chilled beam system; Section 4 presents the development of an evolving 
learning-based GGMR model representing cooling rates of the PCB sys
tem under normal operation; Sections 5 and 6 present evaluation and 
selection of key performance indices for fault detection and diagnosis; 
Section 7 develops a GGMR model for fault diagnosis of the passive 
chilled beam system and presents diagnosis results for both known and 
unknown faults. 

2. Methodology 

2.1. Evolving learning-based fault detection and diagnosis 

A schematic diagram of an evolving learning-based FDD method is 
illustrated in Fig. 1. The evolving learning-based approach is used to 
construct both a data-driven model representing normal performance 
and a transfer function H for fault diagnosis. The evolving learning- 
based FDD method includes two stages: “detection” and “diagnosis.” 

Detection: Performance indices for a system of interest were 
composed for the purpose of fault detection. These performance indices 
include the deviations between predictions (expectations) and mea
surements, the differences between two key parameters, and other fea
tures extracted from parameters (e.g., cumulative differences or changes 
of parameters over time). Furthermore, the performance indices are 
categorized into static (non-evolving) performance indices and evolving 
performance indices. 

Key performance parameters of HVAC systems such as cooling/ 
heating energy rates and air/water flow rates evolve with the changes in 
HVAC operating environments, building systems, and components over 
their life cycles. These key performance parameters can be predicted 
using evolving learning-based models [15]. The evolving performance 
indices are created using the predictions from these evolving 
learning-based models and their corresponding measurements. One 
example of the evolving performance indices is the differences between 
cooling/heating energy rates predicted from evolving learning 
method-based models and their measurements. Traditional 
data-driven-based modeling is limited by the training data which do not 
include all possible operating conditions for the system of interests. The 
evolving learning-based models overcome this limitation of the tradi
tional data-driven-based modeling approach by updating key parame
ters over time. 

The non-evolving performance indices do not include predictions 
from evolving learning-based models. Instead, they are built upon actual 
measurements and/or control operating parameters. An example of the 
non-evolving performance index could be the differences between sup
ply water temperature and its setpoint. The expected ranges of non- 
evolving performance indices are static and should not change over 
time such as the acceptable deviations between controlled variables and 
setpoints. For detecting degradation faults such as coil fouling under 
which performance gradually changed over time, static performance 
indices should be used. 

Nomenclature 

Symbols 
E expectation operator [−] 
k number of components [−] 
N probability distribution function of a multi-variable 

Gaussian distribution [−] 
Sf change rates of supply water flow [gpm/hr] 
t sample index [−] 
q expected posterior [−] 
w updated weight coefficient [−] 
π weight coefficient [−] 
β learning rate [−] 
ρ learning factor [−] 
ΔC deviations between predicted and actual cooling rates 

[kW] 
Δf deviations between predicted and actual flow rates [gpm] 
Δp: deviations between loop pressure and its setpoint [psi] 
ΔT temperature deviations between temperature and its 

setpoint, or temperature differences [◦F] 

d multi-variable data [−] 
f̂ fault diagnosis results [−] 
f individual faults [−] 
F fault matrix [−] 
H a transfer function for fault diagnosis [−] 
i a fault feature vector [−] 
P parameter matrix [−] 
S fault signature matrix [−] 
μ mean vector [−] 
δ covariance matrix [−]Prefix 
cusum cumulative sums over a 24-h moving window 

Subscripts 
j the jth component in a Gaussian mixture model 
X independent variables 
Y dependent variable 
ZAT zone air temperature 
r-s: between supply and return water temperature 
sZAT between supply water temperature and zone air 

temperature setpoints  
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For performance indices with the evolving feature, the baseline 
models for performance parameters such as predicted energy use would 
evolve along with the changes in building systems and components to 
represent normal operation over time. For non-evolving performance 
indices, the calculated index values are compared to the expected ranges 
under normal operation. If statistically significant deviations between 
the prediction (expected ranges) and the measurement of performance 
indices are observed, a fault, multiple faults, or an unseen normal 
operation is detected, and the diagnosis stage is initiated. Otherwise, the 
system is operating normally and the evolving learning-based model is 
updated with the measurement. Because the performance indices 
include both static (non-evolving) performance indices and evolving 
performance indices, the FDD method is applicable for different types of 
faults with either sudden or gradual performance changes. 

Diagnosis: Finding a diagnosis transfer function H is essential to 
enable fault diagnosis. An evolving learning-based transfer function H is 
used to relate the fault feature vector i comprising various performance 
indices to the fault vector f based on experimental data. Given H, faults 
can be identified based on the fault feature vector i by using f̂ = H(i), 
where f̂ is the fault diagnosis results using integers representing indi
vidual faults. If no faults can be diagnosed for the measurements in the 
diagnosis state, the measurement is identified as a new state, which is 
either an unseen fault or an unseen normal operation. After a new state 
(either an unseen fault or unseen normal operation) is identified by the 
algorithm, a message about the new state will be sent to a building 
operator, and then the building operator will assess the new state and 
determine 1) whether the system is in a new normal operating mode or 
an unseen faulty operation, and 2) the root cause of the fault if it is an 
unseen faulty operation through measurement and verification. Once 
the new state is unveiled, the measurement of the new state is used to 
update the evolving learning-based model (normal operation) or the 
transfer function (faulty operation) based on the building operator’s 
assessment. 

2.2. Growing Gaussian mixture regression (GGMR) 

The growing Gaussian mixture regression (GGMR) was used in this 
study to construct a model representing normal operation and the 
transfer function H as the evolving learning-based data-driven method. 
GGMR integrates a growing Gaussian mixture model (GGMM) [16] with 

a Gaussian mixture regression (GMR) [17]. GGMM updates the param
eters of the Gaussian components through a recursive procedure, merges 
Gaussian components, and creates a new Gaussian component based on 
new measurements. GMR is then used to predict the value of the 
dependent variable given the observations of independent variables and 
GGMM parameters. 

A flow chart of the GGMR algorithm is shown in Fig. 2. A Gaussian 
mixture model (GMM) assumes that the observed data are made up of a 
mixture of multiple Gaussian distributions, and is thus a parametric 
probability density function represented as a weighted sum of Gaussian 
component densities, as shown in Eq. (1). 

Fig. 1. Schematic diagram of evolving learning-based fault detection and diagnosis method.  

Fig. 2. Flow chart of GGMR algorithm.  

L. Wang et al.                                                                                                                                                                                                                                   



Energy 265 (2023) 126337

4

prob =
∑k

j=1
πjN

(
i, f

⃒
⃒μj, δj

)
(1)  

where πj, μj, and δj denote the weight coefficient, mean vector, and 

covariance matrix of the jth component, respectively. N(i, f
⃒
⃒
⃒μj, δj) rep

resents the probability distribution function of a multi-variable Gaussian 
distribution. A growing Gaussian mixture model (GGMM) offers the 
evolution of both the GMM model structure and the parameters in real- 
time. The learning mechanism includes updating the parameters of the 
GMR, adding a new component to the existing model, as well as splitting 
and merging the Gaussian mixture model components. 

First, GGMM identifies which Gaussian components will be updated 
based on the calculated probability density of each. The parameters of 
the component with the highest probability density (non-zero), 
including the weight coefficient πj, mean vector μj , and covariance 
matrix δj are updated using a recursive filtering approach, as shown in 
Eqs. (2)–(4) [16]. 

πj(t) = (1 − β)πj(t − 1) + βqj (2)  

μj(t) =
(
1 − ρj

)
μj(t − 1) + ρjd(t) (3)  

δj(t) =
(
1 − ρj

)
δj(t − 1) + ρj

(
d(t) − μj(t)

)(
d(t) − μj(t)

)T (4)  

where d(t) = [i(t),f(t)], qj is the expected posterior of the j th component, 
β is the learning rate, and ρj is the learning factor corresponding to 
updating μj and δj. 

Second, if the calculated probability density of all Gaussian compo
nents based on the new data is zero, this indicates that there is no 
existing Gaussian mixture component matching the new data. The 
GGMM then generates a new component and initializes its parameters 
[16]. 

Third, after the GGMM model is updated, merging and splitting 
criteria are checked to ensure the health of the updated model structure. 
When the volume of a Gaussian component — the determinant of its 
covariance matrix — exceeds a maximum threshold, the Gaussian 
component is split into two. The distance between two Gaussian com
ponents is measured by the Kullback-Leibler divergence (KLD) [18]. If 
the KLD of any two Gaussian components is smaller than a minimum 
threshold, the two components are merged. 

Lastly, a Gaussian mixture regression (GMR) [17] is used to predict 
the dependent variable f̂ (i) such as diagnosed faults represented by in
tegers (0, 1, 2 …) given the observed independent variables such as 
performance indices described in Section 5 and the GGMM parameters 
of the test data. ̂f (i) represents the prediction of the fault labels f(i). wj(i)
is the updated weight coefficients given the observed independent var
iables for the j th component, as shown in Eqs. (5) and (6). 

f̂ k(i) = E(Y|X = i) =
∑k

j=1
wj(i)

(
μjY + δjYXδjXX

−1(
i − μjX

))
(5)  

wj(i) =
πjN

(
i; μjX , δjXX

)

∑k

j=1
πjN

(
i; μjX, δjXX

)
(6)  

3. Fault implementation 

Living Lab 1 (W: 9.5 m × L:10.7 m) at Herrick Laboratories, Purdue 
University is an open office with a south-facing double-skin façade. The 
space can be served by a passive chilled beam system (PCB), a hydronic 
radiant slab system, and/or displacement ventilation from a variable air 
volume system (VAV). In this study, we implemented five types of 
common faults at different severity levels (nine individual faults in total) 
into the passive chilled beam (PCB) system of Living Lab 1 between 

September 15, 2021 and November 5, 2021. Trend data of the PCB 
system performance and environmental conditions under normal oper
ation were recorded from April 1, 2021 to July 26, 2021. During the 
experiments, the radiant slab system was turned off, space heating was 
served by the VAV system, and space cooling was served by both PCB 
and VAV systems. Condensation is a common operating issue of chilled 
beam systems. However, it is avoidable by controlling the supply water 
temperature above space air dew point temperature via control se
quences. To prevent any risk of condensation in Living Lab 1, the supply 
water temperature setpoint was set dynamically based on thermal loads 
but at least 1.7 ◦C (3 ◦F) above the dew point of the space air. 

In this study, we focused on mechanical faults associated with ac
tuators and sensors. The five fault types include stuck chilled beam 
control valves, stuck chilled water control valves of the heat exchanger, 
supply water temperature sensor offset, zone air temperature sensor 
offset, and stuck VFD controller at a constant pump speed. These com
mon faults implemented into the PCB system including severity level, 
associated components, and labels used in this paper were summarized 
in Table 1. 

Under normal operation, chilled beam valves and the chilled water 
valve were controlled using PI feedback loops that compare measured 
control variables and setpoints. For the stuck valve faults, constant 
signals (e.g., 0%, 50%, or 100%) were used to override the PI loop 
outputs. In addition to the actual (override) control valve positions, the 
output signals from PI loops for the control valves were also trended and 
were used for predicting PCB performance under normal operation. 

For temperature sensor offset faults, a constant offset was added to 
the control sequence via the building control system to adjust readings 
from the temperature sensors such as supply water temperature or zone 
air temperature before the temperature variables were provided as in
puts for various PI feedback controls. 

The supply water pump speed was controlled using a PI loop based 
on a differential pressure setpoint (10 psi). For the fault of the stuck 
pump VFD controller at a constant speed, a constant percentage of full 
pump speed was used to override the PI loop outputs. 

4. Baseline model 

The baseline model for predicting cooling energy rates of the PCB 
system under normal operation was constructed for the development of 
evolving performance indices using the evolving learning-based algo
rithm—GGMR for fault detection. The selection of input parameters and 
key performance parameters in GGMR was discussed in a recent study 
[15]. PCB flow rates were first predicted by the GMR model and were 
then fed into the GGMR model representing normal operation as one of 
the input parameters. 

We selected the set of inputs to include the zone air temperature 
(ZAT), average PCB control valve position, chilled water valve position, 
double façade temperature, and predicted flow rate. The Spearman’s 

Table 1 
Common faults of a passive chilled beam system.  

# Fault Severity Level Component Fault Label 

1 Stuck valve: 0% Chilled beam control valve CBV_0% 
2 Stuck valve: 50%  CBV_50% 
3 Stuck valve: 100%  CBV_100% 
4 Stuck valve: 0% HX chilled water control valve CHV_0% 
5 Temperature sensor offset: 

+9 ◦F 
Supply water temperature 
sensor 

SWT+9F 

6 Temperature sensor offset: 
9 ◦F  

SWT-9F 

7 Temperature sensor offset: 
+5 ◦F 

Zone air temperature sensor ZAT+5F 

8 Temperature sensor offset: 
5 ◦F  

ZAT-5F 

9 Stuck at a constant speed: 
50% 

VFD for supply water pump VFD_50%  
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rank correlation coefficients were calculated between two independent 
variables. The maximum correlation coefficient is 0.197 between zone 
air temperature and flow rates and the other coefficients are in the range 
of 0 and 0.006. Three-month (April 1, 2021–June 30, 2021) trend data 
for the normal operation were used to train the baseline GGMR model. 
The optimum number of components was 30. The learning rate was kept 
at a constant of 0.01. 

Trend data between July 1, 2021 and July 26, 2021 were used to test 
the GGMR model. Statistical analysis results for the prediction of cooling 
rates using the test data are a coefficient of variance of the root mean 
square error (CV-RMSE) of 20.7%, a mean bias error (MBE) of 0.5%, and 
an R-square of 0.909. A snapshot of the predicted and measured hourly 
PCB cooling rates for Living Lab 1 is shown in Fig. 3. The predicted 
hourly cooling rates agree well with the measured PCB cooling rates 
although there were some significant fluctuations throughout the day 
for hourly cooling rates. 

5. Fault symptom analysis 

In this section, various performance indices for capturing fault be
haviors were created and analyzed for validating the implementation of 
each fault and for the preparation of feature selection in Section 6 
Feature Selection. Symptoms or behaviors for each fault are presented in 
this section. 

Trend data (5-min intervals) for zone environmental conditions and 
PCB performance data of Living Lab 1 were collected through the 
building control system. The 15 trended parameters through the build
ing control system illustrated in Fig. 4 include 1) supply water pump 
speeds (VFD), 2) PCB supply water temperatures (SWT), 3) PCB return 
water temperatures (RWT), 4–6) control valve signals for north (CVN), 
central (CVC), and south (CVS) chilled beam banks, 7) differential 
pressure of the PCB loop (ΔP), 8) PCB system flow rates (Flow), 9) 
chilled water control valve signals at the heat exchanger side (CVHXC), 
10) heating hot water control valve signals at the heat exchanger side 
(CVHXH), 11) zone air temperature (ZAT), 12) zone air relative hu
midity, 13) façade space temperature, 14) outdoor air temperature, and 
15) outdoor air relative humidity. In addition to the 15 trended pa
rameters, two parameters including the predicted PCB cooling rates and 
the predicted flow rates from GGMR models were also taken into 
consideration. 

Various performance indices were constructed based on the de
viations between baseline model predictions (expectations) and mea
surements, the relative differences between parameters, and/or 
extracted features of parameters such as cumulative differences or the 
change of parameters over time. They were evaluated and analyzed for 
various faults. The fault feature vector i is composed of the selected 
performance indices from Section 6 Feature Selection. They do not pri
marily rely on absolute values from a specific system. Therefore, these 
derived performance indices can improve the transferability of the FDD 

algorithms from one system to other. 
The specific performance indices include 1) deviations between 

predicted and actual cooling rates ΔC, 2) deviations between predicted 
and actual flow rates Δf, 3) deviations between loop pressure and its 
setpoint Δp, 4) deviations between zone air temperature and its setpoint 
ΔTZAT, 5) temperature differences between supply and return water 
temperature ΔTr-s, 6) temperature differences between supply water 
temperature and zone air temperature setpoints ΔTsZAT, and 7) change 
rates of supply water flow Sf (Eq. (7)). The parameter Sf is defined as the 
difference between the maximum flow rate f max and minimum flow rate 
f min occurring over a 24-h moving window divided by the period (24 h). 
The cumulative sums (cusum) of ΔC, Δf, Δp, ΔTZAT, ΔTr-s, and ΔTsZAT over 
a 24-h moving window were also considered as key performance indices. 
The cooling rates and flow rates of the PCB system were predicted on an 
hourly time interval. Thus, ΔC, Δf, cusum_ΔC, and cusum_Δf were 
calculated for each hour. These parameters were synchronized with 
other performance indices on a 5-min time interval assuming semi- 
steady state conditions of cooling rates and flow rates within each 
hour for feature selection, fault detection, and diagnosis. Among all the 
performance indices, ΔC, Δf, cusum_ΔC, and cusum_Δf have evolving 
features requiring baseline models for predicted energy use and flow 
rates evolve along with the changes in building systems and components 
over time. 

Sf =
(fmax − fmin)

time period
(7) 

The performance indices, including ΔC, Δf, Δp, ΔTZAT, ΔTr-s and 
ΔTsZAT, characterize performance at a given time and are subject to 
short-term dynamic fluctuations, while the moving cumulative sums 
filter the shorter-term dynamics, and better represent performance trend 
over time. Under faulty operation, deviation of system performance 
from the normal operation may not be significant or even consistent for 
individual data points due to uncertainties in measurements and 
external factors while the cumulative sums show cumulative effects over 
time and amplify the effects of faulty operations. 

There were 25 days of measurement data for normal operation and 
about two days of measurement data for each fault at a 5-min interval. 
The data were divided into training and testing data sets. The training 
data included 3456 data points (12 days) of normal operation and 288 
data points (1 day) for each of the implemented faults. The testing data 
included 3744 data points (13 days) of normal operation and 288 data 
points (1 day) for each fault type. For each data point, cumulative 
indices were calculated based on the sum of the deviation over a moving 
24-h period (288 data points for 5-min data). The cumulative indices for 
each data point of the second day under a specific fault can be easily 
calculated. To calculate the cumulative indices for each data point of the 
first day of the same fault, the second day was treated as the day before 
the first day for cumulative indices calculation. In other words, the data 
of the deviation of each data point on the second day were used as the 

Fig. 3. The hourly PCB cooling rate prediction for testing data from Living Lab 1 measurement.  
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data before the first day for cumulative indices calculation of the first 
day. 

As an example, the cumulative sum performance index for flow rates 
(cusum_Δf) for all the operation scenarios is shown in Fig. 5 for all the 
training data including normal (3456 data points) and faulty operations 
(about 288 data points per fault). 

The 24-h cumulative sums for each operation scenario stayed within 
a relatively narrow range except for the faults of CBV_50% and CHV_0%. 
This performance index has consistent and clear characteristics for every 
operation scenario. cusum_Δf is close to zero under normal operation. 
CBV_0%, CBV_50%, CHV_0%, and VFD_50% have large positive values 
of cusum_Δf. CBV_100% and ZAT-5◦F have large negative values of 
cusum_Δf. 

Fig. 6 shows the change rates of supply water flow rates for normal 
and faulty operation scenarios for all the training data including normal 
(3456 data points) and faulty operations (about 288 data points per 
fault). The larger the Sf values, the more supply water flow rates fluc
tuate over time. It was found that Sf was nearly zero for a stuck chilled 
beam valve fault (CBV_0%, CBV_50%, and CBV_100%). 

Table 2 presents a qualitative summary of the behavior of the per
formance indices for normal operation and each implemented fault. In 
Table 2, all the performance indices except the change rates of supply 
water flow rate Sf were presented as positive (+), negative (−), or zero 
(0) relative to the range of normal operation with the consideration of 
uncertainties. The uncertainty thresholds were discussed in Section 6.3 
Feature Selection Procedure. The change rates of supply water flow Sf are 
presented in Table 2 as absolute values. If any performance index for a 
specific fault showed inconsistent characteristics—sometimes positive 
(+), sometimes negative (−), or zero (0) in comparison with normal 
operation, the cell in Table 2 for the corresponding fault and perfor
mance index was left blank. A blank field indicates that the performance 
index should not be used as an indicator for diagnosing this specific fault 
because of the inconsistency of the behavior. It is also important to note 
that some performance indices, including Δp, ΔTZAT, ΔTr-s, and ΔTsZAT, 
are all zeros and thus cannot be used to differentiate between normal 
operation and faulty operation. 

Fig. 4. The system diagram for Living Lab 1 passive 
chilled beam system with trended control and per
formance parameters. (VFD: supply water pump 
speeds; SWT: PCB supply water temperatures; RWT: 
PCB return water temperatures; CVN: control valve 
signals for north chilled beam bank; CVC: control 
valve signals for central chilled beam bank; CVS: 
control valve signals for south chilled beam bank; ΔP: 
differential pressure of the PCB loop; Flow: PCB sys
tem flow rates; CVHXC: chilled water control valve 
signals at the heat exchanger side; CVHXH: heating 
hot water control valve signals at the heat exchanger 
side; ZAT: zone air temperature).   

Fig. 5. cusum_Δf for normal operation and faulty 
operations (CBV_0%: chilled beam control valve stuck 
at 0%; CBV_50%: chilled beam control valve stuck at 
50%; CBV_100%: chilled beam control valve stuck at 
100%; CHV_0%: chilled water control valve stuck at 
0%; SWT+9F: supply water temperature sensor offset 
+9 ◦F; SWT-9F: supply water temperature sensor 
offset -9 ◦F; ZAT+5F: zone air temperature sensor 
offset +5 ◦F; ZAT-5F: zone air temperature sensor 
offset -5 ◦F; VFD_50%: pump stuck at a constant speed 
50%.).   
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6. Feature selection 

In this section, key performance indices created from Section 5 were 
selected and used to compose fault feature vector i. A fault signature 
matrix S describing relationships between a set of parameters and the 
capability for diagnosing specific faults was developed using an opti
mization approach. Finding the best set of parameters for detecting and 
diagnosing common faults in HVAC systems can be defined as an opti
mization problem [19–21] that maximizes the level of diagnosability 
with analytical redundancy taken into consideration. The feature se
lection method presented in this paper was inspired by Fijany and 
Vatan’s study [19], but was customized for this application. 

6.1. Fault signature matrix 

Fault signature matrix S is composed of two matrices: fault matrix F 
and parameter matrix P. Fault matrix F, parameter matrix P, and fault 
signature matrix S have the same number of rows, representing the 
collections of performance features for faulty operations. Fault signature 
matrix S establishes a relationship between faulty operation scenarios in 
F and parameters in P. Fault matrix F describes specific faulty operation 
scenario(s) with unsigned binary integers by assigning ‘1’ to a specific 
column or columns representing specific faulty operation scenarios and 
‘0’ to the rest of columns in each row. The number of columns in fault 
matrix F represents the number of fault types to be diagnosed. 

Parameter matrix P describes combinations of sensors/performance 
indices which can be used to diagnose faults in HVAC systems. These 
parameters include deviations between predictions (expectations) and 
measurements of a set of parameters (e.g., cooling rates, flow rates, 
temperatures) and/or extracted features of parameters (e.g., cumulative 
sums of the deviations, the change of parameters over time). P is an 
integer matrix with elements of ‘0’ or a signed integer ‘-1/+1, −2/+2, 
…’ If characteristics of a performance index are important for a specific 
fault or faults, the element in the parameter matrix P is a non-zero 
integer ‘-1/+1, −2/+2, …’ If characteristics of a performance index 
are inconsistent over time, the element of the performance index is ‘0.’ 

For example, suppose we identified six parameters available for 
detecting common faults of one component in an HVAC system and 
there are five common faults. An example of the parameter matrix P, the 
fault matrix F, and the fault signature matrix S are shown as follows. 

P =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 − 1 0 0 0
1 2 0 0 0 0
0 0 0 0 0 1
0 1 0 1 0 0
0 0 2 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

; F =

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

S = [P, F] =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 − 1 0 0 0

1 2 0 0 0 0

0 0 0 0 0 1

0 1 0 1 0 0

0 0 2 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

The first row of the fault signature matrix S indicates that a combination 
of the 2nd and 3rd parameters in the parameter matrix can be used to 
diagnose the first fault, a combination of the 1st and 2nd parameters in 
the parameter matrix are used to diagnose the second fault, the 6th 
parameter in the parameter matrix is used to diagnose the third fault, 
and a combination of the 2nd and 4th parameters in the parameter 
matrix is used to diagnose the fourth fault. 

6.2. Optimal set of parameters to detect and diagnose faults 

Finding optimal sets of parameters for detecting and diagnosing 
specific faults in HVAC systems can be defined as an optimization 
problem that attempts to maximize the level of diagnosability. The 
optimization approach attempts to minimize the number of parameters 
in the parameter matrix—with analytical redundancy taken into con
sideration—while maintaining the same level of diagnosability as with 
all possible parameters. We can formulate the problem of finding the 
optimal sets of parameters into an integer programming problem [19] as 
defined in equation (8). 

The constraints of this integer programming optimization [19] 
include two conditions to be satisfied to keep the maximum level of 
diagnosability the same as with all possible parameters for the param
eter matrix P: 1) there is no all-zero row and 2) all rows are distinct. 
Integer programming is used to find a vector x that minimizes a linear 
function subject to linear constraints. 

min gT x Subject to U • x ≤ b (8) 

In the defined integer programming problem, the element of a vector 
g is 1 if there are non-zero elements in the column of the parameter 

Fig. 6. Change rates of supply flow rates over 24 h 
for normal operation and faulty operations (CBV_0%: 
chilled beam control valve stuck at 0%; CBV_50%: 
chilled beam control valve stuck at 50%; CBV_100%: 
chilled beam control valve stuck at 100%; CHV_0%: 
chilled water control valve stuck at 0%; SWT+9F: 
supply water temperature sensor offset +9 ◦F; SWT- 
9F: supply water temperature sensor offset -9 ◦F; 
ZAT+5F: zone air temperature sensor offset +5 ◦F; 
ZAT-5F: zone air temperature sensor offset -5 ◦F; 
VFD_50%: pump stuck at a constant speed 50%.).   
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matrix P and otherwise 0; x is a binary vector to be found and de

termines the optimal sets of parameters; U =

[
−M1
−M2

]

; M1 is the same as 

the parameter matrix P; M2 is the matrix composed of the difference 
between a pair of rows in M1. Each row in M2 contains the absolute 
differences between each pair of rows Rij =

⃒
⃒Ri −Rj

⃒
⃒ in matrix M1 if the 

two rows Ri, Rj in matrix M1 are distinct, or is equal to any of the two 
rows Ri, Rj if Ri and Rj in matrix M1 are the same. To meet the two 
prerequisite conditions for the parameter matrix P: constraints M1 • x ≥

1 (no all-zero rows) and M2 • x ≥ 1 (all rows are distinct) are required 
where 1 is an all-one vector and b is a linear inequality constraint vector. 
In this optimization task, b = -1 is an all negative-one vector. Therefore, 

the constraint for this linear programming problem is 
[

−M1
−M2

]

• x ≤ − 1. 

The linear programming solution can be further customized to select 
more favorable parameters/sensors with the consideration of other 
factors such as cost and high fidelity besides diagnosability. The ele
ments of the vector g corresponding to less favorable parameters or 
sensors can be multiplied to a large weighting factor (greater than one). 
Then the specific elements in the vector g become the weighting factor 
multiplied by the number of non-zero elements in the corresponding 
columns of the parameter matrix P. Therefore, the parameters/sensors 
with large weighting factors have less chance to be selected. 

6.3. Feature selection procedure 

The feature selection method described in Sections 6.1 and 6.2 was 
used to select features for detecting and diagnosing common faults of 
PCB systems. All the performance indices were considered in the feature 
selection with training data. The training data contained 3456 data 
points (12 days) of normal operation and 288 data points (1 day) for 
each implemented fault except the fault for the stuck chilled water 
control valve at a fully closed position (CHV_0%). The CHV_0% fault was 
used to test the evolving feature of the FDD algorithm as a new “un
known” fault and therefore data for this fault was not used for training. 
There are four key steps in feature selection. 

Step 1. The values of performance indices for different operation 
scenarios (either normal or faulty operations) are analyzed and used to 
create a signed integer matrix of fault “symptoms". 

The values of performance indices under different operation sce
narios (either normal or faulty operation) are compared to the range of 
those based on the training data set for normal operation with the 
consideration of uncertainties. The normal operating range of a per
formance index was defined in Eq. (9) with the consideration of 
uncertainties. 

z ∈ normal operation when min − α × std(z) ≤ z ≤ max + α × std(z) (9)  

where z represents a performance index; min and max represent the 
minimum and maximum of the performance index under normal oper
ation based on training data; std(z) is the standard deviation of the 
performance index under normal operation; α is a coefficient for 
adjusting the threshold. α×std(z) represents the uncertainties of the 
threshold. 

Different non-zero integers are used to differentiate characteristics 
for a performance index. For example, ‘-1’ is used for cases where the 
value of the performance index is smaller than the value of the minimum 
of the performance index for normal operation subtracting the uncer
tainty threshold; ‘+1’ is used for cases where the value of the perfor
mance index is larger than the value of the maximum of the performance 
index for normal operation with the addition of the uncertainty 
threshold; ‘+2’ is used to represent when the value of the performance 
index is in the range of the performance index for normal operation with 
the consideration of the uncertainty threshold. In contrast to Table 2, a 
non-zero integer ‘+2’ instead of ‘0’ is used to represent the Ta
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characteristics of the performance indices that fall within the normal 
operating range. A performance index can still be a useful signature 
when the performance index under a specific faulty operation consis
tently behaves similarly to normal operations. Such a performance index 
can be used to differentiate the specific fault from other faults under 
which the performance index is out of the normal operating range. In 
this study, the integer matrix was generated based on the performance 
indices for faulty operation relative to normal operation except for the 
performance index—the change rates of supply water flow Sf . Absolute 
values of Sf were considered by assigning ‘+2’ for values smaller than 
0.1 and ‘1’ otherwise. The fault matrix was based on the ground truth of 
different operation scenarios (either faulty operation or normal 
operation). 

Step 2. Any duplicate fault symptoms for the same fault or any fault 
symptoms with limited occurrence (e.g., five times or less) should be 
removed so that unique fault symptoms with high frequency are left for 
each fault. In this context, a fault symptom represents a particular 
pattern of signed integers for performance indices established in step 1. 
For all the training data in the case study, 39 symptoms representing 
different operation behaviors for normal or faulty operations were left 
after this process. The 39 symptoms were grouped into nine operation 
scenarios (normal operation and eight faulty operations, with stuck 
chilled water valve 0% as a new unknown fault). For example, after the 
duplicated symptoms or symptoms with less occurrence were removed, 
the fault CBV_ 50% had seven different unique symptoms left as sum
marized in Table 3. The highlighted performance indices are those 
having consistent characteristics for all seven symptoms. The charac
teristics of performance indices including ΔC, Δf, and ΔTr-s were incon
sistent over time. 

Step 3. This step involves the construction of the parameter matrix P. 
Each row of the matrix P contains a performance “signature” for a 
particular fault or for normal operation. The rows are initialized using 
fault symptoms from step 2 and then evolve through the optimization 
process. In initializing a row for a particular fault scenario, a single 
signature is established using the fault symptom results from step 2 by 
replacing any inconsistent fault features with a ‘0’. A ‘0’ represents a 
performance index that should not be considered as a fault feature 
during optimization. Applying this logic to the example of Table 3, a 
unique performance signature for CBV_50% was determined and is given 
in Table 4. 

Step 4. This step involves the application of linear programming to 
determine an optimal parameter matrix P as described in Section 6.2. 
The optimization process eliminates performance indices that have fault 
features assigned a “0" (i.e., leads to inconsistent performance) or that 
aren’t needed in producing unique performance signatures that differ
entiate between fault cases (i.e., needed for unique fault diagnoses). 
However, in order to provide redundancy, any performance index that 
has non-zero and non-identical fault features across the different faults is 
added as additional columns to the final parameter matrix. For the PCB 
system case study, the selected performance indices determined through 
optimization using the training data were Sf , cusum_Δp, and 

cusum_ΔTsZAT based on optimization. Then, cusum_Δf was added for 
redundancy since cusum_Δf was non-zero and non-identical across the 
different faults in the parameter matrix P. The key signatures of the 
selected performance indices for the eight different faults are summa
rized in Table 5. The selected performance indices were used to compose 
fault feature vector i. 

7. Fault detection and diagnostic results 

This section develops the transfer function H for fault diagnosis of 
the passive chilled beam system and presents diagnosed results for both 
known and unknown faults. The four fault features presented in Table 5 
represent normal operation and the eight known fault scenarios as well 
as the normal operation. As described earlier, 5-min interval data for the 
case study system were divided into training and testing data sets. The 
training data included 3456 data points (12 days) of normal operation 
and 288 data points (1 day) for each of the implemented faults. For the 
chilled water control valve at a fully closed position (CHV_0%) fault, the 
288 training data points were used for applying the evolving learning 
FDD training method. The testing data included 3744 data points (13 
days) of normal operation and 288 data points (1 day) for each fault 
type. The testing data were evenly divided into two data sets with equal 
numbers of data points: testing data for FDD without evolving and 
testing data for evolving transfer function H. 

7.1. Fault detection and diagnostic results for known faults 

The training data set for normal operation and the eight known faults 
were used to train a GMR model as the transfer function H. The testing 
data for the FDD algorithm without evolving covers normal operation 
(1873 data points) and nine faults including CHV_0% (144 data points 
for each fault). 

It is important to note that the uncertainty thresholds defined in Eq. 
(9), Section 6.3 for determining whether a performance index behaves 
normally or is out of normal operating range affect the testing results for 
normal operation. Testing results for normal operation at different 
thresholds are summarized in Table 6. As shown in Eq. (9), α is a coef
ficient for adjusting the threshold. α = 2 represents that the uncertainties 
of performance indices are two standard deviations of the performance 
indices. As the uncertainties increase from zero to two standard de
viations, the accuracy for testing results of normal operations improved; 
false alarm rates for normal operations were reduced from 14.8% to 
1.3% and the percentage of normal operation data categorized as an 
unknown operation was reduced from 25% to 0%. However, if the un
certainties were increased substantially, individual faults lost their fault 
signatures and the diagnosis accuracy was reduced. 

Table 7 shows fault diagnosis results of testing data under various 
faulty operations for the chilled beam system. For each fault, there were 
144 data points in this testing. Testing data of individual faults except 
for the fault for the chilled water valve stuck at 0% (CHV_0%) were 
diagnosed with 100% accuracy. The fault diagnosis results are consistent 
with the three different uncertainty thresholds (α = 0, 1.0, and 2.0). As 

Table 3 
List of 7 unique fault symptoms for chilled beam valve stuck at 50% (CBV_50%). (ΔC: deviations between predicted and actual cooling rates; Δf: deviations between 
predicted and actual flow rates; Sf: change rates of supply water flow; Δp: deviations between loop pressure and its setpoint; ΔTZAT: deviations between zone air 
temperature and its setpoint; ΔTr-s: temperature differences between supply and return water temperature; ΔTsZAT: temperature differences between supply water 
temperature and zone air temperature setpoints; cusum: cumulative sums of ΔC, Δf, Δp, ΔTZAT, ΔTr-s, and ΔTsZAT over a 24-h moving window.).  

ΔC cusum_ΔC Δf cusum_Δf S
f 

Δp cusum_Δp ΔT
ZAT 

cusum_ΔT
ZAT 

ΔT
r-s 

cusum_ΔT
r-s 

ΔT
sZAT 

cusum_ΔT
sZAT 

2 2 1 1 2 2 1 2 2 2 2 2 2 
2 2 1 1 2 2 1 2 2 2 1 2 2 
2 2 2 1 2 2 1 2 2 2 2 2 2 
2 2 2 1 2 2 1 2 2 2 1 2 2 
2 2 −1 1 2 2 1 2 2 2 2 2 2 
2 2 −1 1 2 2 1 2 2 2 1 2 2 
−1 2 2 1 2 2 1 2 2 2 2 2 2  
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shown in Table 7, the testing data for unknown fault CHV_0% were all 
diagnosed as unknown/unseen states. 

Table 8 compares signatures of fault features for the nine individual 
faults including the unknown fault CHV_0%. Built upon Table 5, Table 7 
shows that the signature for the fault CHV_0% is unique in comparison 
with other faults and thus this fault was categorized as an unknown fault 
with the testing data. If a fault is unknown, the fault diagnostic 

algorithm returns an unknown ID (e.g. “0”) different from any ID for 
normal operation or existing faults which represents neither normal 
operation nor existing faults. 

7.2. Detection and diagnosis of an unknown fault 

The fault chilled water valve stuck at 0% (CHV_0%) was used to test 
the evolving learning-based transfer function H for fault diagnosis. 
Based on the testing results, without evolving, the fault was diagnosed as 
an unknown fault. Then 288 data points for the fault CHV_0% were used 
for evolving learning FDD training to update the transfer function H. 
Another testing data set including normal operation (1871 data points) 
and nine faults including CHV_0% (144 data points for each fault) were 
used to test the evolving feature of the FDD algorithm. 

Table 4 
Performance signature for chilled beam valve stuck at 50% (CBV_50%)(ΔC: deviations between predicted and actual cooling rates; Δf: deviations between predicted 
and actual flow rates; Sf: change rates of supply water flow; Δp: deviations between loop pressure and its setpoint; ΔTZAT: deviations between zone air temperature and 
its setpoint; ΔTr-s: temperature differences between supply and return water temperature; ΔTsZAT: temperature differences between supply water temperature and zone 
air temperature setpoints; cusum: cumulative sums of ΔC, Δf, Δp, ΔTZAT, ΔTr-s, and ΔTsZAT over a 24-h moving window.).  

ΔC cusum_ΔC Δf cusum_Δf S
f 

Δp cusum_Δp ΔT
ZAT 

cusum_ΔT
ZAT 

ΔT
r-s 

cusum_ΔT
r-s 

ΔT
sZAT 

cusum_ΔT
sZAT 

0 2 0 1 2 2 1 2 2 2 0 2 2  

Table 5 
Key signatures of selected fault features with eight different known fault types. 
(Δf: deviations between predicted and actual flow rates; Sf: change rates of 
supply water flow; Δp: deviations between loop pressure and its setpoint; ΔTsZAT: 
temperature differences between supply water temperature and zone air tem
perature setpoints; cusum: cumulative sums of Δf, Δp, and ΔTsZAT over a 24-h 
moving window.)   

cusum_Δf S
f 

cusum_Δp cusum_ΔT
sZAT 

Normal operation 2 1 2 2 
Chilled beam control valve: stuck 

at 0% 
1 2 −1 1 

Chilled beam control valve: stuck 
at 50% 

1 2 1 2 

Chilled beam control valve: stuck 
at 100% 

−1 2 −1 2 

Supply water temperature sensor 
offset: +9 ◦F 

−1 1 2 1 

Supply water temperature sensor 
offset: 9 ◦F 

−1 1 2 −1 

Space temperature sensor offset: 
+5 ◦F 

2 1 −1 −1 

Space temperature sensor offset: 
5 ◦F 

−1 1 −1 1 

Pump stuck at a constant speed: 
50% 

1 1 −1 2  

Table 6 
Testing results for normal operation (1873 data points) for different thresholds.  

α False Alarm Unknown Accuracy 

0 14.8% 25.0% 60.2% 
1.0 4.5% 8.3% 87.2% 
2.0 1.3% 0.0% 98.7%  

Table 7 
Fault diagnosis results of testing data under various faulty operations for the chilled beam system.  

Testing Data 
Diagnosis 
Results 

CBV_0% (144 
data points) 

CBV_50% (144 
data points) 

CBV_100% (144 
data points) 

CHV_0% (144 
data points) 

SWT+9F (144 
data points) 

SWT-9F 
(144 data 
points) 

ZAT+5F (144 
data points) 

ZAT-5F 
(144 data 
points) 

VFD_50% (144 
data points) 

CBV_0% 100%         
CBV_50%  100%        
CBV_100%   100%       
CHV_0%    0%      
SWT+9F     100%     
SWT-9F      100%    
ZAT+5F       100%   
ZAT-5F        100%  
VFD_50%         100% 
Unknown    100%      

Notes: Unknown: unknown/unseen state; CBV_0%: chilled beam control valve stuck at 0%; CBV_50%: chilled beam control valve stuck at 50%; CBV_100%: chilled 
beam control valve stuck at 100%; CHV_0%: chilled water control valve stuck at 0%; SWT+9F: supply water temperature sensor offset +9 ◦F; SWT-9F: supply water 
temperature sensor offset -9 ◦F; ZAT+5F: zone air temperature sensor offset +5 ◦F; ZAT-5F: zone air temperature sensor offset -5 ◦F; VFD_50%: pump stuck at a constant 
speed 50%. 

Table 8 
Signature comparison of fault features with nine faults. (Δf: deviations between 
predicted and actual flow rates; Sf: change rates of supply water flow; Δp: de
viations between loop pressure and its setpoint; ΔTsZAT: temperature differences 
between supply water temperature and zone air temperature setpoints; cusum: 
cumulative sums of Δf, Δp, and ΔTsZAT over a 24-h moving window.)   

cusum_Δf S
f 

cusum_Δp cusum_ΔT
sZAT 

Normal operation 2 1 2 2 
Chilled beam control valve: stuck 

at 0% 
1 2 −1 1 

Chilled beam control valve: stuck 
at 50% 

1 2 1 2 

Chilled beam control valve: stuck 
at 100% 

−1 2 −1 2 

Supply water temperature sensor 
offset: +9 ◦F 

−1 1 2 1 

Supply water temperature sensor 
offset: 9 ◦F 

−1 1 2 −1 

Space temperature sensor offset: 
+5 ◦F 

2 1 −1 −1 

Space temperature sensor offset: 
5 ◦F 

−1 1 −1 1 

Pump stuck at a constant speed: 
50% 

1 1 −1 2 

HX chilled water control valve: 
stuck at 0% 

1 1 −1 1  
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The best matching component and the minimum Mahalanobis dis
tance of the Gaussian mixture regression were used to evaluate the 
effectiveness of the evolving learning feature of the FDD algorithm. The 
best matching component is defined as the Gaussian component corre
sponding to the maximum non-zero probability density of each data. 
Mahalanobis distance Md (Eq. (10)) measures the distance between 
multivariate data and a Gaussian distribution. 

Md,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
d − μj

)T δ−1
j

(
d − μj

)√

(10)  

where d is the multivariate data point, μj represents the mean of the jth 
Gaussian component, δj represents the covariance matrix of the jth 
component. 

Figs. 7 and 8 illustrate the minimum Mahalanobis distance and best 
matching component for individual faults before and after evolving 
learning for the FDD algorithm, respectively. Besides the unknown ID 
returned from the FDD algorithm, measurements of an unknown fault 
are featured with no matching component and a large minimum 
Mahalanobis distance. Before the evolving learning, the fault CHV_0% 
has no matching component and a large minimum Mahalanobis distance 
among Gaussian components (538.5). After the evolving learning, 
covariance matrices of Gaussian components were updated. The best 
matching component (component 9) was identified for the fault 
CHV_0% and the minimum Mahalanobis distance was less than 1.0. The 
accuracy of FDD testing results using the evolving test data set was 100% 
for all the individual faults. 

8. Conclusion 

This study represents the first in creating and applying an evolving 
learning-based FDD method for detecting and diagnosing common faults 
for HVAC systems. We used a passive chilled beam system to demon
strate the evolving learning-based FDD method. The FDD algorithm 
presented in this work accurately detected and diagnosed known faults 
and successfully diagnosed a new unknown fault after evolving. The 
evolving learning-based FDD method overcomes the limitation of the 
traditional FDD methods—that learn from training data obtained under 
limited operating conditions, after which they stop learning—by 
updating key parameters of the baseline model and the transfer function 
over time. 

The case study application of the method involved nine common 
faults for a passive chilled beam system that was implemented by 

overriding controls within the building control system. The performance 
of various operation scenarios for this system with the normal and faulty 
operations was trended for developing and testing the evolving learning- 
based fault detection and diagnosis algorithm. Eight of the nine faults 
were trained and tested as known fault types. These known faults were 
detected and diagnosed with an accuracy of 100%. The new fault was 
first tested without evolving and categorized as an unknown fault type. 
Measurements of an unknown fault are featured with the unknown ID 
returned from the FDD algorithm, no matching component, and a large 
minimum Mahalanobis distance with a value of 538.5. After evolving 
the transfer function by updating the key parameters of the Gaussian 
components, the best matching component was identified for the un
known fault, the minimum Mahalanobis distance was less than 1.0, and 
the unknown fault was diagnosed with 100% accuracy. 

We developed a novel feature selection method for FDD that was 
demonstrated using the passive chilled beam system. To enhance the 
transferability of the FDD algorithm to other systems, we created and 
utilized generalized performance indices for fault discrimination, 
including deviations between predictions (expectations) and measure
ments, relative differences between parameters, and features extracted 
from other performance indices such as cumulative differences or 
changes of parameters over time. 

An uncertainty threshold determining whether a performance index 
was within the range of normal operation influences false alarm rates. 
By increasing the uncertainty thresholds from zero to two standard de
viations, false alarm rates for the normal operation were reduced from 
14.8% to 1.3% and the percentage of normal operation data categorized 
as an unknown operation was reduced from 25% to 0%. However, if the 
thresholds are increased substantially, fault diagnosis accuracy is 
compromised due to the fact that individual faults lose their key sig
natures. Based on testing results, two standard deviations were selected 
as the uncertainty threshold to categorize performance indices into 
normal or faulty operations. 

When a new state (either an unseen fault or unseen normal opera
tion) is identified by the algorithm, the FDD algorithm requires inter
action from an experienced building operator for the assessment and 
determination of the new state. The evolvement process needs external 
new input data. The algorithm requires sufficient data to evolve the 
transfer function and thus to successfully diagnose a new fault. In the 
future, both the evolving learning-based FDD method and the unique 
feature selection method can be applied for other high-performance 
HVAC system types as well as for conventional systems such as 

Fig. 7. The minimum Mahalanobis distance and best matching component for 
individual faults before evolving learning. (CBV_0%: chilled beam control valve 
stuck at 0%; CBV_50%: chilled beam control valve stuck at 50%; CBV_100%: 
chilled beam control valve stuck at 100%; CHV_0%: chilled water control valve 
stuck at 0%; SWT+9F: supply water temperature sensor offset +9 ◦F; SWT-9F: 
supply water temperature sensor offset -9 ◦F; ZAT+5F: zone air temperature 
sensor offset +5 ◦F; ZAT-5F: zone air temperature sensor offset -5 ◦F; VFD_50%: 
pump stuck at a constant speed 50%.) 

Fig. 8. The minimum Mahalanobis distance and best matching component for 
individual faults after evolving learning. (CBV_0%: chilled beam control valve 
stuck at 0%; CBV_50%: chilled beam control valve stuck at 50%; CBV_100%: 
chilled beam control valve stuck at 100%; CHV_0%: chilled water control valve 
stuck at 0%; SWT+9F: supply water temperature sensor offset +9 ◦F; SWT-9F: 
supply water temperature sensor offset -9 ◦F; ZAT+5F: zone air temperature 
sensor offset +5 ◦F; ZAT-5F: zone air temperature sensor offset -5 ◦F; VFD_50%: 
pump stuck at a constant speed 50%.) 
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variable air volume systems and rooftop units. The approach of creating 
performance indices for the passive chilled beam system can also be 
adopted for other HVAC systems. However, the set of performance 
indices and selected fault features should be unique for each type of 
HVAC system. The new FDD method was tested in a living laboratory in 
this study. Field implementations and continuous evaluation of the new 
FDD method should be carried out for demonstration and verification. 
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