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Abstract

There exist various types of network block models such as the Stochastic
Block Model (SBM), the Degree Corrected Block Model (DCBM), and the
Popularity Adjusted Block Model (PABM). While this leads to a variety
of choices, the block models do not have a nested structure. In addition,
there is a substantial jump in the number of parameters from the DCBM
to the PABM. The objective of this paper is formulation of a hierarchy of
block model which does not rely on arbitrary identifiability conditions. We
propose a Nested Block Model (NBM) that treats the SBM, the DCBM
and the PABM as its particular cases with specific parameter values, and,
in addition, allows a multitude of versions that are more complicated than
DCBM but have fewer unknown parameters than the PABM. The latter
allows one to carry out clustering and estimation without preliminary testing,
to see which block model is really true.

AMS (2000) subject classification. 05C80, 62F12, 62H30.
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1 Introduction

Consider an undirected network with n nodes, no self-loops and multiple
edges. Let A ∈ {0, 1}n×n be a symmetric adjacency matrix of the network
with Ai,j = 1 if there is a connection between nodes i and j, and Ai,j = 0
otherwise. We assume that

Ai,j ∼ Bernoulli(Pi,j), 1 ≤ i < j ≤ n, where Ai,j are conditionally
independent given Pi,j , and Ai,j = Aj,i, Pi,j = Pj,i for i > j.

The probability matrix P has low complexity and can be described by a
variety of models. One of the ways to address this phenomenon is to assume
that all nodes in the network can be partitioned into communities, which
are groups that exhibit somewhat similar behavior.
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The classical (Erdös and Rényi, 1959) random graph model assumes
that the edges in a random graph are drawn independently with an equal
probability and does not allow community structure.

The simplest random graph model for networks with community struc-
ture is the Stochastic Block Model (SBM) studied by, e.g., Lorrain andWhite
(1971) and Abbe (2018). Under the K-block SBM, all nodes are partitioned
into communities Gk, k = 1, . . . ,K, and the probability of connection be-
tween nodes is completely defined by the communities to which they belong:
Pi,j = Bz(i),z(j) where Bk,l is the probability of connection between commu-
nities k and l, and z : {1, ..., n} → {1, ...,K} is a clustering function such
that z(i) = k whenever i ∈ Gk. The Erdős-Rényi model can be viewed as
the SBM with only one community K = 1.

Since the real-life networks usually contain a very small number of high-
degree nodes while the rest of the nodes have very low degrees, the SBM
fails to explain the structure of many networks that occur in practice. The
Degree-Corrected Block Model (DCBM), introduced by Karrer and New-
man (2011), addresses this deficiency by allowing these probabilities to be
multiplied by the node-dependent weights.

Under the DCBM, the elements of matrix P are modeled as

Pi,j = hiBz(i),z(j)hj , i, j = 1, . . . , n, (1.1)

where h = [h1, h2, ..., hn] is a vector of the degree parameters of the nodes,
and B is the (K ×K) matrix of baseline interaction between communities.
Matrix B and vector h in Eq. 1.1 are defined up to a scalar factor, which is
usually fixed via the so called identifiability condition, that can be imposed
in a variety of ways. For example, Karrer and Newman (2011) enforce a
constraint of the form

∑

i∈Gk

hi = 1, k = 1, ...,K. (1.2)

The DCBM implies that the probability of connection of a node is uni-
formly proportional to the degree of this node across all communities. This
assumption, however, is violated in a variety of practical applications. For
this reason, Sengupta and Chen (2018) introduced the Popularity Adjusted
Block Model (PABM). The PABM presents the probability of a connection
between nodes as a product of popularity parameters, that depend on the
communities to which the nodes belong as well as on the pair of nodes them-
selves:

Pi,j = Vi,z(j)Vj,z(i). (1.3)
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Although the popularity parameters in Eq. 1.3 are defined up to scalar
constants and require an identifiability condition for their recovery, clus-
tering of the nodes and fitting the matrix of connection probabilities do
not require any constraints. According to Noroozi et al. (2021), if one re-
arranged the nodes, so that the nodes in every community are grouped
together, then matrix P of the connection probabilities would appear as
(K × K) block matrix with every block P (k,l), k, l = 1, . . . ,K, being of
rank one.

Having several types of block models introduces a variety of choices, but
also leads to some significant drawbacks. Specifically, although the block
models can be viewed as progressively more elaborate with the Erdős-Rényi
model being the simplest and the PABM being the most complex, the simpler
models cannot be viewed as particular cases of the more sophisticated ones
as one paradigm.

For this reason, majority of authors carry out estimation and clustering
under the assumption that the model which they use is indeed the correct
one. There are only very few papers that study goodness of fit in block
models setting, and majority of them are concerned with either testing that
there are no distinct communities, that is K = 1 in SBM or DCBM (see,
e.g., Banerjee and Ma (2017), Gao and Lafferty (2017) and Jin et al. (2018)),
or testing the exact number of communities K = K0 in the SBM (see, e.g.,
Gangrade et al. (2018), Lei (2016) and Mukherjee and Sen (2017)).

To the best of our knowledge, Mukherjee and Sen (2017) is the only
paper where testing the SBM versus the DCBM is implemented, and the
testing in their paper is carried out under rather restrictive assumptions.

On the other hand, using the most flexible model, the PABM, may not
always be the right choice since there is a substantial jump in complexity
from the DCBM with O(n + K2) parameters to the PABM with O(nK)
parameters.

The objective of the present paper is to provide a unified approach to
block models. We would like to point out that we are building a hierarchy
of block models, and not a hierarchical stochastic block model. In our paper,
we consider a multitude of block models and provide an enveloping nested
model that includes them all as particular cases. In what follows, we shall
deal only with the graphs where each node belongs to one and only one
community, thus, leaving aside the mixed membership models studied by,
e.g., Airoldi et al. (2008) and Jin et al. (2017). Specifically, our purpose is
formulation of a hierarchy of block models which does not rely on arbitrary
identifiability conditions, treats the SBM, the DCBM and the PABM as its
particular cases (with specific parameter values) and, in addition, allows a
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multitude of versions that are more complicated than DCBM but have fewer
unknown parameters than the PABM.

The aim of this construction is to treat all block models as a part of
one paradigm and, therefore, carry out estimation and clustering without
preliminary testing to see which block model fits data at hand.

2 The Hierarchy of Block Models

Consider an undirected network with n nodes that are partitioned into
K communities Gk, k = 1, . . . ,K, by a clustering function z : {1, . . . , n} →
{1, . . . ,K} with the corresponding clustering matrix Z.

Denote by B the matrix of average connection probabilities between com-
munities, so that for k, l = 1, 2, · · · ,K, one has

Bk,l =
1

nk nl

n∑

i,j=1

Pij I(z(i) = k) I(z(j) = l), (2.1)

where nk is the number of nodes in the community k.
In order to better understand the relationships between various block

models, consider a rearranged version P (Z) of matrix P where its first n1

rows correspond to nodes from class 1, the next n2 rows correspond to nodes
from class 2, and the last nK rows correspond to nodes from class K.

Denote the (k1, k2)-th block of matrix P (Z) by P (k1,k2)(Z). Then, the
block models vary by how dissimilar matrices P (k1,k2)(Z) are.

Indeed, under the SBM

P (k1,k2)(Z) = Bk1,k21nk1
1Tnk2

(2.2)

where 1k is the k-dimensional column vector with all elements equal to one.
In the DCBM, there exists a vector h ∈ R

n
+, with sub-vectors h(k) ∈ R

nk
+ ,

k = 1, . . . ,K, such that, for k1, k2 = 1, 2, · · · ,K,

P (k1,k2)(Z) = Bk1,k2h
(k1)(h(k2))T . (2.3)

In the PABM, instead of one vector h, there are K vectors Λ(1), · · · , Λ(K)

with sub-vectors

Λ(k1,k2) ∈ R
nk1
+ , k1, k2 = 1, 2, · · · ,K. (2.4)

In this case, vectors Λ(k) form the (n×K) matrix Λ with columns partitioned
into sub-columns Λ(k1,k2), and

P (k1,k2)(Z) = Bk1,k2Λ
(k1,k2)(Λ(k2,k1))T , (2.5)
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for every k1, k2 = 1, 2, · · · ,K. Hence, Eq. 2.2 and Eq. 2.3 coincide if h ≡ 1n,
and Eq. 2.5 reduces to Eq. 2.3 if all columns of matrix Λ are identical, i.e.

Λ(k1,k2) ≡ h(k1), k1, k2 = 1, 2, · · · ,K. (2.6)

Since in the DCBM there is only one vector h that models heterogeneity
in probabilities of connections, the ratios Pi1,j/Pi2,j of the probabilities of
connections of two nodes, i1 and i2, that belong to the same community,
are determined entirely by the nodes i1 and i2 and are independent of the
community with which those nodes interact.

On the other hand, for the PABM, each node has a different degree of
popularity (interaction level) with respect to every other community, so that
Pi1,j1/Pi2,j1 �= Pi1,j2/Pi2,j2 if nodes j1 and j2 belong to different communi-
ties. In the PABM, those variable popularities are described by the matrix
Λ ∈ [0, 1]n×K which reduces to a single vector h in the case of the DCBM.
One can easily imagine the situation where nodes do not exhibit different
levels of activity with respect to every community but rather with respect
to some groups of communities, “meta-communities”, so that there are L,
1 ≤ L ≤ K, different vectors H(l) ∈ R

n
+, l = 1, 2, · · · , L, and each of

columns Λk, k = 1, 2, · · · ,K, of matrix Λ is equal to one of vectors H(l).
In other words, there exists a clustering function c : {1, ...,K} → {1, ..., L}
with the corresponding clustering matrix C such that

Λk = H(l), l = c(k), l = 1, . . . , L, k = 1, . . . ,K.

We name the resulting model the Nested Block Model (NBM) to em-
phasize that the model is equipped with the nested structure that allows to
obtain a multitude of popular block models as its particular cases.

3 The Nested Stochastic Block Model (NBM)

The NBM contains two types of communities, the regular communities
that can be distinguished by the average probabilities of connections between
them (like in the SBM or the DCBM) and the meta-communities that are
described by the distinct patterns of probabilities of connections of individual
nodes across the communities.

Observe that both concepts are quite natural. Indeed, in random net-
work models, specifically in assortative network models that are most com-
mon, communities are usually loosely defined as groups of nodes that have
higher probability of connection than the rest. In our case, we retain the
notion and define communities as groups of nodes with a specific (average)
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probability of connection between them. The meta-communities refer to the
node-to-community specific connection weights. In DCBM, each node has
only one specific weight to account for the difference in connection proba-
bilities with the rest; in PABM, the weights can be different for any node
and community pair. In our nested model, we allow some of the node-to-
community interactions have the same patterns for a group of communities,
the meta-communities.

For instance, consider an example of College of Sciences of a university
that includes Departments of Biology, Chemistry, Mathematics, Physics,
Psychology, Sociology, and Statistics. Each of the departments forms a
natural community, and the average density of connections is much higher
within the communities than between them. However, one can naturally
partition College of Sciences into meta-communities of natural sciences (Bi-
ology, Chemistry, and Physics), social sciences (Psychology and Sociology)
and mathematics and data sciences (Mathematics and Statistics). For ex-
ample, faculty in mathematics and data sciences who are working on various
problems in astronomy, genetics, dynamical systems, or theory of chemical
reactions will have high probability of connections with the natural sciences
meta-community. On the other hand, those who are involved in, for exam-
ple, studying social interactions, monitoring cyber and homeland security, or
relationships between countries, will have more dense interactions with the
social sciences meta-community. While one can use the PABM and model
interactions between each pair of the departments separately, the patterns
within meta-communities may be similar enough that using the most com-
plex PABM with O(nK) parameters may not be justified.

Note that the meta-communities introduced in this paper should not
be mixed with the mega-communities considered in Wakita and Tsurumi
(2007) and Li et al. (2020). The difference between the present paper and
the above cited publications is that in Wakita and Tsurumi (2007) and Li
et al. (2020) the mega-communities are determined by intermediate results
of the clustering algorithms while we define the meta-communities on the
basis of the distinct patterns of the connection probabilities of nodes with
respect to different communities. Our approach is also very different from
the hierarchical stochastic block model studied in, e.g., Li et al. (2020) or
Lyzinski et al. (2017). In those papers, the authors examine SBMs with a
large number of communities, that can be partitioned into groups based on
some similarities in the matrix of block probabilities. We, on the other hand,
deal with more diverse block models, for which the SBM is the simplest one.
In addition, the authors in Lyzinski et al. (2017) impose assumptions that
require the SBM to be very strongly assortative. Hence, the only common
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feature between our paper and the above mentioned ones is that there exist
groups of communities; everything else is completely different.

For any M and K ≤ M , denote by MM,K the collection of all clus-
tering matrices Z ∈ {0, 1}M×K with the corresponding clustering function
z : {1, . . . ,M} → {1, . . . ,K} such that Zi,k = 1 iff z(i) = k, i = 1, . . . ,M .
Then, ZTZ = diag(n1, . . . , nK) where nk is the size of community k, k =
1, . . . ,K. The NBM, with K communities and L ≤ K meta-communities,
is defined by two clustering matrices Z ∈ Mn,K and C ∈ MK,L with cor-
responding clustering functions z and c that, respectively, partition the n
nodes into K communities, and K communities into L meta-communities.
If the l-th meta-community consists of Kl communities and the community
sizes are nk, then the total number of nodes in meta-community l is Nl,
where

Nl =
K∑

k=1

nk I(c(k) = l),
L∑

l=1

Kl = K,
L∑

l=1

Nl = n, l = 1, · · · , L. (3.1)

The communities are characterized by their average connection probability
matrix, with elements Bk1,k2 , k1, k2 = 1, 2, . . . ,K, defined in Eq. 2.1.

In order to better understand the meta-communities, consider a permu-
tation matrix PZ,C that arranges nodes into communities consecutively, and
orders communities so that the Kl blocks within the l-th meta-community
are consecutive, l = 1, 2, . . . , L. Recall that PZ,C is an orthogonal matrix
with P−1

Z,C = PT
Z,C and denote

P (Z,C) = PT
Z,C P PZ,C , P = PZ,C P (Z,C)PT

Z,C .

According to Z and C, matrix P is partitioned into K2 blocks P (k1,k2)

(Z,C) ∈ [0, 1]nk1
×nk2 , k1, k2 = 1, . . . ,K, with the block-averages given by

Eq. 2.1. In addition, blocks P (k1,k2)(Z,C) can be combined into the L2

meta-blocks

P̃ (l1,l2)(Z,C) ∈ [0, 1]Nl1
×Nl2 ,

corresponding to probabilities of connections between meta-communities l1
and l2, l1, l2 = 1, . . . , L.

Consider matrix H ∈ R
n×L
+ (Figure 1, top middle), where each column

Hl, l = 1, . . . , L, can be partitioned into K sub-vectors h(k,l) ∈ R
nk
+ of

lengths nk, k = 1, . . . ,K. Those sub-vectors are combined into L meta sub-
vectors H(m,l) ∈ R

Nm
+ of lengths Nm, m = 1, · · · , L, according to matrix

C, where Nm is defined in Eq. 3.1. Similarly, matrix B ∈ [0, 1]K×K of
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Figure 1: Matrices associated with the NBM with K = 5, L = 2, K1 = 3,
K2 = 2. Bold lines identify the meta-blocks. Top left: matrix B partitioned
into blocks B(l1,l2). Top, middle: matrix H. Top right: matrix H with
columns expressed via vectors h(k,l) and repeated: column 1- K1 times;
column 2 - K2 times. Bottom: the probability matrix with K2 blocks and
L2 meta-blocks

block probabilities is partitioned into sub-matrices B(l1,l2) ∈ [0, 1]Kl1
×Kl2 ,

l1, l2 = 1, · · · , L. With these notations, for any l1, l2 = 1, · · · , L, the (l1, l2)-
th meta-block of P can be presented as

P̃ (l1,l2)(Z,C) =
(
H(l1,l2)(H(l2,l1))T

)
◦
(
J (l1)B(l1,l2)(J (l2))T

)
, (3.2)
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where A ◦ B is the Hadamard product of A and B, and matrices J (l) ∈
{0, 1}Nl×Kl , l = 1, . . . , L, are of the form

J (l) =

⎡

⎢⎢⎢⎣

1nk1
0 · · · 0

0 1nk2
· · · 0

...
... · · ·

...
0 0 · · · 1nkKl

⎤

⎥⎥⎥⎦ . (3.3)

By rewriting Eq. 3.2 in an equivalent form, one can conclude that each
of the meta-blocks P̃ (l1,l2)(Z,C) (and, hence, P̃ (l1,l2) if we scramble them to
the original order) follows the (non-symmetric) DCBM model with Kl1×Kl2

blocks. Specifically, for a pair of sub-vectors H(l1,l2) ∈ R
Nl1
+ and H(l2,l1) ∈

R
Nl2
+ of matrix H and a matrix B(l1,l2) ∈ [0, 1]Kl1

×Kl2 containing average
probabilities of connections for each pair of communities within the meta-
community (l1, l2) one has

P̃ (l1,l2)(Z,C) = Q(l1,l2)J (l1)B(l1,l2)(J (l2))TQ(l2,l1).

Here, Q(l1,l2) = diag(H(l1,l2)) and the (k1, k2)-th block of P (Z,C) is given
by

P (k1,k2)(Z,C) = Bk1,k2h
(k1,l2)

(
h(k2,l1)

)T
, li = c(ki), i = 1, 2, (3.4)

where h(k,l) ∈ R
nk
+ is a sub-vector of H(m,l) with m = c(k).

Observe that the formulation above imposes a natural scaling on the
sub-vectors h(k,l) of H, since it follows from equations 2.1 and 3.4, that for
any pair of communities (k1, k2) which belong to a pair of meta-communities
(l1, l2), one has

nk1 nk2 Bk1,k2 = 1Tk1 P
(k1,k2)(Z,C) 1k2 = Bk1,k2

(
1Tk1h

(k1,l2)
) (

1Tk2 h
(k2,l1)

)
.

(3.5)
The latter implies that for any k = 1, . . . ,K and l = 1, . . . , L,

1Tk h
(k,l) = nk, k = 1, . . . ,K, l = 1, . . . , L. (3.6)

Now, it is easy to see that all block models, the SBM, the DCBM and
the PABM, can be viewed as particular cases of the NBM introduced above.
Indeed, the DCBM is a particular case of the NBM with L = 1 while the
PABM corresponds to the setting of L = K. Finally, due to Eq. 3.6, the
SBM constitutes a particular case of the NBM with L = 1 and matrix H
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Figure 2: The hierarchy of block models

reduced to vector 1n, the n-dimensional column vector with all entries equal
to one (Figure 2).

Moreover, the absence of the community structure (whether in the SBM
or the DCBM) is equivalent to K = 1, and implies that the NBM necessarily
reduces to the DCBM. This one-community DCBM is indeed just the Chung-
Lu model introduced in Chung and Lu (2002).

Remark 1. The case of unconnected communities. Note that equa-
tions 3.4 and 3.5 become identities for any vectors h(k1,l2) and h(k2,l1) if
Bk1,k2 = 0, c(k1) = l1 and c(k2) = l2, which happens if matrix P (k1,k2)(Z,C)
is identically equal to zero. In this case, there are two possibilities. If there
exists k̃2 with c(k̃2) = l2 such that Bk1,k̃2

�= 0, then set h(k1,l2) = h(k1,c(k̃2)).

If no such k̃2 exists (which corresponds to the case when the whole row
of matrix Bl1,l2) is equal to zero), then set h(k1,l2) = 1nk1

. The latter
can be interpreted as an understanding that, if all nodes in community
k1 are not connected to nodes in meta-community l2, they are “equally
unconnected”.
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Observe that treating zero elements of matrix B in this manner leads
to the smallest number of meta-communities and, hence, to the smallest
number of parameters in the model. For example, in the extreme case when
matrix B is diagonal, one obtains that matrix H has only one column, L = 1
and the NBM just reduces to DCBM.

4 Optimization Procedure for Estimation and Clustering

Note that, in terms of the matrices J (l) defined in Eq. 3.3, the scaling
conditions Eq. 3.6 appear as

(J (l))T Q(l,l′) J (l) = (J (l))T J (l), l, l′ = 1, ..., L. (4.1)

Let P
̂Z, ̂C

be the permutation matrix corresponding to estimated clustering

matrices Ẑ ∈ Mn,K̂ and Ĉ ∈ MK̂,L̂. Consider the set 	(n,K,L) of matrices

Θ with blocks Θ(l1,l2) ∈ [0, 1]Nl1
×Nl2 , l1, l2 = 1, ..., L, such that conditions

Eq. 3.1 and Eq. 4.1 hold and

Θ =
⋃

l1,l2
Θ(l1,l2), Θ(l1,l2) = Q(l1,l2)J (l1)B(l1,l2)(J (l2))TQ(l2,l1),

B(l1,l2) ∈ [0, 1]Kl1
×Kl2 , Q(l1,l2) ∈ Dl1 , (4.2)

Z ∈ Mn,K , C ∈ MK,L, l1, l2 = 1, ..., L,

where Dm the set of diagonal matrices with diagonals in R
m
+ .

Then, it is easy to see that P = PT
Z,C ΘPZ,C , so its estimator can be

obtained as
P̂ = P

̂Z, ̂C
Θ̂(Ẑ, Ĉ) PT

̂Z, ̂C
. (4.3)

Here, for given values of K and L, (Ẑ, Ĉ, Θ̂) is a solution of the following
optimization problem

(Ẑ, Ĉ, Θ̂) ∈ argmin
Z,C,Θ

‖A(Z,C)−Θ‖2F (4.4)

subject to conditions A(Z,C) = PT
Z,C APZ,C , Eq. 3.1, Eq. 4.1 and Eq. 4.2.

In real life, however, the values of K and L are unknown and need to be
incorporated into the optimization problem by adding a penalty Pen(K,L)
on K and L:

(Θ̂, Ẑ, Ĉ, K̂, L̂) ∈ argmin
Z,C,K,L,Θ

{
‖A(Z,C)−Θ‖2F + Pen(K,L)

}
, (4.5)

where optimization is carried out subject to conditions A(Z,C) = PT
Z,C

APZ,C , Eq. 3.1, Eq. 4.1 and Eq. 4.2.
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After that, the estimator P̂ of P∗ can be obtained as Eq. 4.3.
The penalty in Eq. 4.5 should account for the difficulty of estimating

nL + K2 unknown parameters (nL entries in matrix H and K2 entries in
matrix B) and uncertainty of clustering which is of the logarithmic order
n lnK of the cardinality of the set of clustering matrices. For this reason,
we choose the penalty of the form

Pen(K,L) = C1(nL+K2) lnn+ C2n lnK (4.6)

where C1 and C2 are absolute constants. The logarithmic factor lnn in
Eq. 4.6 is due to the proof technique and, can possibly be removed.

In practice, one would need to solve optimization problem Eq. 4.4 for
each K = 1, ..., n, and L = 1, . . . ,K, and then find the values (K̂, L̂) that
minimize the right hand side in Eq. 4.5. After that, the estimator P̂ of P is
obtained as Eq. 4.3. Then, the following statement holds.

Theorem 1. Let Assumptions A1 and A2 hold. Let (Θ̂, Ẑ, Ĉ, K̂, L̂) be
a solution of optimization problem Eq. 4.5 subject to conditions A(Z,C) =
PT

Z,CAPZ,C , Eq. 3.1, Eq. 4.1 and Eq. 4.2 with the penalty given by Eq. 4.6.

Then, for the estimator P̂ given by Eq. 4.3, the true matrix P∗, any
K, L, Z ∈ Mn,K , C ∈ MK,L and any matrix P = PZ,CΘPT

Z,C with Θ ∈
	(n,K,L), one has

P

{
‖P̂−P∗‖2F ≤3

[
‖P−P∗‖2F + Pen(K,L)

]}
≥ 1− (n2 log2 n+ 1)e−n/32,

E‖P̂ − P∗‖2F ≤ 3
[
‖P − P∗‖2F + Pen(K,L)

]
+ n5e−n/32.

Solution of optimization problem Eq. 4.5 requires a search over the con-
tinuum of matrices Θ ∈ 	(n,K,L). In order to simplify the estimation,
we consider a solution of a more straightforward optimization problem. It
is easy to observe (see Figure 1) that each of the block columns of matrix
P is a matrix of rank one and, given the clustering, it can be obtained
by the rank one projection of the respective adjacency sub-matrix. Denote
the block columns of the re-arranged matrices P and A by P (l,k)(Z,C) and

A(l,k)(Z,C). Then, the optimization problem appears as

( ̂Z, ̂C, K̂, L̂) ∈ argmin
Z,C,K,L

{

L
∑

l=1

K
∑

k=1

∥

∥

∥A
(l,k)(Z,C)−Π(1)

(

A(l,k)(Z,C)
)∥

∥

∥

2

F
+ Pen(K,L)

}

s.t. A(Z,C) = PT
Z,CAPZ,C , (4.7)

whereΠ(1)

(
A(l,k)(Z,C)

)
is the rank one projection of the matrixA(l,k)(Z,C).

Then, Θ̂ is the block matrix with blocks Θ̂(l,k) = Π(1)

(
A(l,k)(Ẑ, Ĉ)

)
, l =

1, · · · , L̂, k = 1, · · · , K̂. Note that the new formulation requires estimation
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of the larger number of parameters (nK +K2) versus (nL+K2) in Eq. 4.5,
so the new penalty is of the form

Pen(K,L) = Ψ1nK + Ψ2K
2 lnn+ Ψ3n lnK, (4.8)

where Ψ1, Ψ2, and Ψ3 are positive absolute constants.

Theorem 2. Let Assumptions A1 and A2 hold. Let (Θ̂, Ẑ, Ĉ, K̂, L̂) be a
solution of optimization problem Eq. 4.7 with Pen(K,L) of the form Eq. 4.8.

Then, for the estimator P̂ of P∗ given by Eq. 4.3 and any t > 0, one has

P

{∥∥∥P̂ − P∗
∥∥∥
2

F
≤ C̃ [Pen(n,K∗, L∗) + t]

}
≥ 1− 3e−t,

E

∥∥∥P̂ − P∗
∥∥∥
2

F
≤ C̃ [Pen(n,K∗, L∗) + 3].

Here K∗ and L∗ are the true number of communities and meta-communities
and

C̃ = C̃(Ψ1, Ψ2, Ψ3) > 0

is an absolute constant.

Observe that Theorem 2 delivers smaller error rates if K∗/L∗ � lnn,
i.e., if n is large. In addition, for known values of K and L, one needs to
carry optimization in Eq. 4.7 only over the set of clustering matrices. In
this sense, optimization problem Eq. 4.7 can be viewed as a kind of modu-
larity optimization which has been used for estimation and clustering in the
SBM ((Bickel and Chen, 2009)), the DCBM ((Zhao et al., 2012)) and the
PABM ((Sengupta and Chen, 2018)). The deficiency of this sort of approach
is that it is NP-hard and requires some replacement by a computationally
viable method. In our case, this relaxation is provided by a subspace clus-
tering which allows us to find the clustering matrix C and hence detect
the meta-communities. Subsequently, we detect the communities within
meta-communities using spectral clustering. We describe those procedures
in detail in the next section.

5 Detectability of Communities and Meta-Communities

As we have mentioned above, in what follows, we focus on the optimiza-
tion problem Eq. 4.7.

Observe that the viability of the NBM introduced above relies on the
correct detection of communities and meta-communities. In order to assess
identifiability of clustering matrices Z and C, consider a noiseless model
where one can observe the probability matrix P∗ instead of the adjacency
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matrix A. Indeed, if matrices Z and C can be correctly recovered (up to
permutation of columns), then matrix B can be obtained by averaging the
probabilities in P∗(Z,C) using formula Eq. 3.5.

Furthermore, it follows from Eq. 3.2 that sub-columns H(l1,l2) of matrix
H can be obtained by applying rank one approximations to the Hadamard
quotient of P̃ (l1,l2)(Z,C) and J (l1)B(l1,l2)(J (l2))T .

One however does not need to identify all those quantities in order to es-
timate clustering matrices Z and C. Optimization problem Eq. 4.7 suggests
that matrices Z and C can be obtained just on the basis of modularity opti-
mization based on the partitions of the adjacency matrix. In order to confirm
that the communities and meta-communities are detectable, we assume that
K = K∗ and L = L∗ are known and impose the following assumptions:

A1. Matrix B is non-singular with the smallest singular value bounded
away from zero: λmin(B) ≥ λ0 > 0.

A2. For each k = 1, · · · ,K, vectors h(k,l), l = 1, · · · , L, are linearly inde-
pendent.

Under those assumptions, it is easy to see that the meta-columns of
matrix P∗, corresponding to the l-th meta-community, lie in the distinct
linear subspace Sl of the dimension K∗ with the basis defined by K distinct
combinations of sub-vectors h(k,l), k = 1, ...,K∗.

For this reason, one can find meta-communities by identifying those sub-
spaces.

Subsequently, for finding communities within meta-communities, one
notes that the l-th diagonal block of the probability matrix P̃ (l,l)(Z∗, C∗) in
Eq. 3.2, corresponding to the l-th meta-community, l = 1, ..., L, follows the
DCBM model. Due to Assumption A2, matrix B(l,l) in Eq. 3.2 is of full rank,
which guarantees identifiability of communities in the meta-community l.

Specifically, the following statement is true:

Lemma 1. Let Assumptions A1 and A2 hold. Let K = K∗ and L = L∗
be known. Let Z∗ ∈ Mn,K and C∗ ∈ MK,L be the true clustering matrices,
while Z ∈ Mn,K and C ∈ MK,L be arbitrary clustering matrices. Then,

L
∑

l=1

K
∑

k=1

∥

∥

∥P
(l,k)
∗ (Z∗, C∗) − Π(1)

(

P (l,k)
∗ (Z∗, C∗)

)∥

∥

∥

2

F
(5.1)

≤
L
∑

l=1

K
∑

k=1

∥

∥

∥P
(l,k)
∗ (Z,C)−Π(1)

(

P (l,k)
∗ (Z,C)

)∥

∥

∥

2

F

where, for any matrix B, Π(1)(B) is its rank one approximation. Moreover,
equality in Eq. 5.1 occurs if and only if matrices Z and Z∗, C and C∗ coincide
up to a permutation of columns.
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Lemma 1 ensures that, if the optimization problem Eq. 4.7 is applied to
the true probability matrix with known K and L, then the true clustering
matrices Z∗ and C∗ will be recovered up to the permutation of columns.
However, since optimization procedures in Eq. 4.5 and Eq. 4.7 are NP-hard,
they cannot be implemented in practice.

6 Implementation of Clustering

In this section, we describe a computationally tractable clustering proce-
dure that can replace optimization procedures in Eq. 4.5 and Eq. 4.7. Since
the model requires identification of meta-communities and regular commu-
nities, naturally, the clustering is carried out in two steps. First, we find
the clustering matrix C that arranges the nodes into L meta-communities.
Subsequently, we detect communities within each of the meta-communities,
obtaining the clustering matrix Z.

In order to accomplish the first task, we observe that, under Assumptions
A1 and A2, the meta-columns of matrix P , corresponding to the l-th meta-
community, lie in the distinct linear subspace Sl of the dimension K with the
basis defined by K distinct combinations of subvectors h(k,l), k = 1, ...,K.
For this reason, one can find meta-communities by identifying those sub-
spaces. This can be done by subspace clustering, the technique which has
been well developed by the computer vision community. Subsequently, for
finding communities within meta-communities, one notes that the proba-
bility matrix of each meta-community follows the non-symmetric DCBM
model, for which there exist several clustering methods.

Subspace clustering is designed for separation of points that lie in the
union of subspaces. Let {Xj ∈ R

D}nj=1 be a given set of points drawn

from an unknown union of K � 1 linear or affine subspaces {Si}Ki=1 of
unknown dimensions di = dim(Si), 0 < di < D, i = 1, ...,K. In the case
of linear subspaces, the subspaces can be described as Si = {x ∈ R

D :
x = Uiy}, i = 1, ...,K, where Ui ∈ R

D×di is a basis for subspace Si and
y ∈ R

di is a low-dimensional representation for point x. The goal of subspace
clustering is to find the number of subspaces K, their dimensions {di}Ki=1,
the subspace bases {Ui}Ki=1, and the segmentation of the points according to
the subspaces.

Several methods have been developed to implement subspace
clustering such as algebraic methods ((Boult and Gottesfeld Brown, 1991),
(Ma et al., 2008), (Vidal et al., 2005)), iterative methods ((Agarwal and
Mustafa, 2004), (Bradley and Mangasarian, 2000), (Tseng, 2000)), and self
representation based methods ((Elhamifar and Vidal, 2009), (Elhamifar and
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Vidal, 2013), (Favaro et al., 2011), (Liu et al., 2013), (Liu et al., 2010),
(Soltanolkotabi et al., 2014), (Vidal, 2011)).

In this paper we use the self-representation type method, the Sparse
Subspace Clustering (SSC) developed by Elhamifar and Vidal (2013). The
technique is based on representation of each of the vectors as a sparse linear
combination of all other vectors, with the expectation that a vector is more
likely to be represented as a linear combination of vectors in its own subspace
rather than other subspaces. The weights obtained by this procedure are
used to form the affinity matrix which, in turn, is partitioned using the
spectral clustering methods.

If matrix P∗ were known, the weight matrix W would be based on writ-
ing every data point as a sparse linear combination of all other points by
minimizing the number of nonzero coefficients

min
Wj

‖Wj‖0 s.t. (P∗)j =
∑

k �=j

Wk,j(P∗)k (6.1)

where, for any matrix B, Bj is its j-th column. The affinity matrix of the
SSC is the symmetrized version of the weight matrix W .

Note that since, due to Assumption A2, the subspaces are linearly inde-
pendent, the solution to the optimization problem Eq. 6.1 is Wj such that
Wk,j �= 0 only if points k and j are in the same subspace. Since the problem
Eq. 6.1 is NP-hard, one usually solves its convex LASSO relaxation

min
Wj

‖Wj‖1 s.t. (P∗)j =
∑

k �=j

Wk,j(P∗)k (6.2)

In the case of data contaminated by noise, the SSC algorithm does not
attempt to write data as an exact linear combination of other points and
replaces Eq. 6.2 by penalized optimization. Specifically, in our simulations,
we solve the elastic net problem

̂Wj ∈ argmin
Wj

{[

0.5 ‖Aj −AWj‖22 + γ1 ‖Wj‖1 +γ2 ‖Wj‖22
]

s.t. Wj,j = 0
}

, j = 1, . . . , n,

(6.3)

where γ1, γ2 > 0 are tuning parameters. The quadratic term stabilizes the
LASSO problem by making the problem strongly convex. We solve Eq. 6.3
using a fast version of the LARS algorithm implemented in SPAMS Matlab
toolbox (Mairal et al., 2014). Given Ŵ , the clustering matrix C is then

obtained by applying spectral clustering to the affinity matrix |Ŵ |+ |Ŵ T |,
where, for any matrix B, matrix |B| has absolute values of elements of
B as its entries. Algorithm 1 summarizes the SSC procedure described
above.



The Hierarchy of Block Models 17

The correctness of the SSC relies on the so called self-expressiveness
property (SEP), which guarantees that each column of the probability matrix
P∗ will be represented using columns of its own subspace rather than columns
of the other subspaces. The latter leads to the n × n estimated matrix of
weights Ŵ where Ŵi,j = 0 if nodes i and j are in different meta-communities.
Subsequently, according to Algorithm 1, one applies spectral clustering to
the symmetrized matrix of weights |Ŵ |+ |Ŵ T |. It is easy to see that, if the
true matrix of probabilities P∗ were available, then, under Assumptions A1
and A2, matrix Ŵ obtained as a solution of Eq. 6.1 or Eq. 6.2, satisfies the
SEP. Since matrix A is generated on the basis of matrix P∗, one expects that
the entries of matrix Ŵ , obtained as a solution of Eq. 6.3, are equal to zero
for pairs of nodes that belong to different meta-communities. Although the
latter fact is supported by simulations, the formal proof of this statement is
very nontrivial and is not presented in this paper.

Once the meta-communities are discovered, one needs to detect com-
munities inside of each meta-community. Recall that each meta-community
follows the non-symmetric DCBM. One of the popular clustering methods
for the DCBM is the weighted k-median algorithm used in Lei and Rinaldo
(2015) and Gao et al. (2018). Algorithm 2 follows (Gao et al., 2018).

For the known number of communities K, the algorithm starts with
estimating the probability matrix P by the best rank K approximation of
the adjacency matrix, obtaining P̂ = UDUT , where U ∈ R

n×K contains
K leading eigenvectors and D is a diagonal matrix of top K eigenvalues.
After that, the columns of P̂ are normalized, leading to P̃i = P̂i/‖P̂i‖1,
i = 1, 2, . . . , n. Finally, the k-median algorithm is applied to P̃ to find the
community assignment.
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In the first step of clustering, we apply Algorithm 1 to the adjacency
matrix A to find L meta-communities defined by the clustering matrix C.
In the second step, Algorithm 2 is applied to each of L meta-communities,
obtained at the first step. Specifically, we apply Algorithm 2 with k = Kl and
n = Nl to cluster the l-th meta-community, l = 1, ..., L. The union of these
communities combined with the clustering matrix C, yields the clustering
matrix Z. We elaborate on the implementation of this two-step clustering
procedure in Section 7.1.

Remark 2. Finding the number of communities and meta-communities.
In theory, in order to find the unknown values of K and L, one needs to
solve optimization problem Eq. 4.5 or Eq. 4.7 for each K = 1, ..., n and
L = 1, . . . ,K, and then find the values (K̂, L̂) that minimize the right hand
side in Eq. 4.5 or Eq. 4.7. In practice, however, the constants in the penalties
are too large and will lead to significant underestimation of the number of
communities and meta-communities. For this reason, in practice, one should
run optimization with several small values of L (say, L = 1, 2, 3). For each of
the values of L, one finds the meta-communities using SSC (Algorithm 1). As
soon as the meta-communities are identified, each of those meta-communities
follow the DCBM, hence, the problem reduces to finding the number of
communities in those DCBMs. Several authors tackled this problem, see,
e.g., Ma et al. (2019). Subsequently, one can choose the number of meta-
communities using a common complexity penalty such as AIC or BIC.

Remark 3. Alternative way of clustering.
Under the assumptions of the paper, if the SSC was applied to the ma-

trix P∗ instead of the adjacency matrix A, it would yield Wi,j = 0 when
nodes i and j are in the same meta-community but different communities.
Hence, it is possible to reverse the procedure and first cluster nodes into the
communities using the SSC and then, subsequently cluster the communi-
ties into the meta-communities. However, since clustering is carried out on
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the basis of matrix A, and the meta-communities are in general larger than
communities (and there are fewer of them), the procedure used in the paper
is more precise and stable, so that the estimated weights are more likely to
satisfy the self-expressiveness property (SEP).

7 Simulations and a Real Data Example

7.1. Simulations on Synthetic Networks In the experiments with syn-
thetic data, we generate networks with n nodes, L meta-communities and
K communities that fit the NBM. For simplicity, we consider perfectly bal-
anced networks where the number of nodes in each community and meta-
community are respectively n/K and n/L, and there are K/L communities
in each meta-community. First, we generate L distinct n-dimensional ran-
dom vectors with entries between 0 and 1. To this end, we generate a random
vector Y ∈ (0, 1)n and partition it into K blocks Y (k), k = 1, ...,K, of size
n/K. The vector h̄(1) is generated from Y by sorting each block of Y in
ascending order. After that, we partition each of the K blocks, h̄(k,1) of h̄(1),

into L sub-blocks h̄
(k,1)
i , i = 1, ..., L, of equal size. To generate the k-th block

h̄(k,2) of h̄(2), we reverse the order of entries in each sub-block h̄
(k,1)
i and rear-

range them in descending order. The blocks h̄(k,s) of subsequent vectors h̄(s),

s = 3, ..., L, are formed by re-arranging the order of sub-blocks h̄
(k,2)
i in each

sub-vector h̄(k,2). The L vectors h̄(l), l = 1, ..., L, generated by this proce-
dure have different patterns leading to detectable meta-communities. Subse-
quently, we scale the vectors as H(k,l) = (n/K) h̄(k,l)/‖h̄(k,l)‖1, k = 1, ...,K,
l = 1, ..., L, obtaining matrix H. After that, we replicate K/L times each of
the columns of H (Fig. 1, top right) and denote the resulting matrix by H̃.
Matrix B has entries

Bk,l = B̃k,l

[
(H̃max)k,l

]−2
, k, l = 1, ...,K, (7.1)

where B̃ is a (K ×K) symmetric matrix with random entries between 0.35
and 1 to avoid very sparse networks, and the largest entries of each row
(column) are on the diagonal. Matrix H̃max is a K ×K symmetric matrix
defined as

(H̃max)k,l = max
(
H̃(k,l), H̃(l,k)

)
, k, l = 1, ...,K,

where H̃(k,l) is the (k, l)-th block of matrix H̃. The term
[
(H̃max)k,l

]−2
in

Eq. 7.1 guarantees that the entries of probability matrix P (Z,C) do not
exceed one. To control how assortative the network is, we multiply the off-
diagonal entries of B by the parameter ω ∈ (0, 1). The values of ω close
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to zero produce an almost block diagonal probability matrix P (Z,C) while
the values of ω close to one lead to P (Z,C) with more diverse entries. We
obtain the probability matrix P (Z,C) as

P (k,l)(Z,C) = Bk,l H̃
(k,l)

(
H̃(l,k)

)T
, k, l = 1, ...,K.

After that, to obtain the probability matrix P , we generate random
clustering matrices Z ∈ Mn,K and C ∈ MK,L and their corresponding
n × n permutation matrices P(Z) and P(C), respectively. Subsequently,
we set PZ,C = P(Z)P(C) and obtain the probability matrix P as P =
PZ,CP (Z,C)(PZ,C)

T . Finally we generate the lower half of the adjacency
matrixA as independent Bernoulli variablesAi,j ∼ Bern(Pi,j), i = 1, . . . , n, j =
1, . . . , i−1, and set Ai,j = Aj,i when j > i. In practice, the diagonal diag(A)
of matrix A is unavailable, so we estimate matrix P without its knowledge.

We apply Algorithm 1 to find the clustering matrix Ĉ. Since the diagonal
elements of matrix A are unavailable, we initially set Ai,i = 0, i = 1, ..., n.

We use γ1 = 30ρ(A) and γ2 = 125(1−ρ(A)) where ρ(A) is the density of
matrix A, the proportion of nonzero entries in A. The spectral clustering in
step 2 of the Algorithm 1 is carried out by the normalized cut algorithm of
Shi and Malik (2000). Once the meta-communities are obtained, we apply
Algorithm 2 to detect communities inside each meta-community. The union
of detected communities and the clustering matrix Ĉ yields the clustering
matrix Ẑ.

Given Ẑ and Ĉ, we generate matrix A(Ẑ, Ĉ) = PT
̂Z, ̂C

AP
̂Z, ̂C

with blocks

A(k,l)(Ẑ, Ĉ), k = 1, . . . ,K, l = 1, . . . , L, and obtain Θ̂(k,l)(Ẑ, Ĉ) by using the
rank one projection for each of the blocks. Finally, we estimate matrix P by
P̂ , given by formula Eq. 4.3.

For evaluation of the performance of our method, we generate networks
from three different models: the DCBM (with K = 6, L = 1), the NBM
(with K = 6, L = 2 and 3), and the PABM (with K = 6, L = 6), for
n = 900 and n = 1260 and ω = 0.6 and ω = 0.8. Then we fit the DCBM,
the NBM, and the PABM to each of the generated networks. The proportion
of misclassified nodes (clustering error) is evaluated as

Err(Z, Ẑ) = (2n)−1 min
PK∈PK

‖ZPK − Ẑ‖2F (7.2)

where PK is the set of permutation matrices PK : {1, ...,K} → {1, ...,K}.
Table 1 shows the accuracy of clustering for fitting correct and incorrect
models to the generated networks. For all settings, the clustering errors
of fitting the correct model are smaller than those of the incorrect ones.
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Moreover, in the NBM, since meta-communities are detected first, the ac-
curacy of detecting K communities depends on the precision of detecting L
meta-communities. One can see from Table 1 that, when the NBM is the
true model, there is a significant improvement in the accuracy of detecting
K communities using the two-step clustering procedure, with finding the
meta-communities being the key task.

It is also worth noting that when DCBM is the true model of the net-
works, then there is only one meta-community. Hence, when NBM is fitted
to the networks, there is no need to detect meta-communities (as there is
only one). Hence, we just detect communities by applying Algorithm 2,
which leads to the results identical to the ones obtained by fitting the true
model (DCBM). Similarly, when the true model of the network is PABM,
there is only one community inside of each meta-community. Thus, when
NBM is fitted to the networks, one only needs to detect meta-communities
using Algorithm 1, attaining the same results as the ones obtained by fitting
the true model (PABM).

Since the model with larger number of parameters allows for a more
accurate estimation of matrix P , we measure the accuracy of an estimator
P̂ of P by the squared Frobenius norm of their difference with the added
AIC-type penalty

Δ(P̂ ) = n−2
{
‖P̂ − P‖2F + 2P̄ NPar

}
. (7.3)

Here, ‖P̂ − P‖2F acts as a pseudo likelihood, P̄ = n−2
∑n

i,j=1 Pij is the
average density of P , and NPar is the number of parameters in a model:
NPar = n+K(K+1)/2− 1 for the DCBM, NPar = nL+K(K+1)/2−KL
for the NBM, and NPar = nK for the PABM. In DCBM, P̂ is obtained by
solving a low rank approximation problem, as it is explained in Gao et al.
(2018). In the PABM, P̂ is found by the post-clustering estimation, which
is based on rank one approximations (see Noroozi et al. (2019)). Table 1
shows that, even if the AIC penalty on the number of parameters is added,
correctly fitted models have smaller estimation error Eq. 7.3 than incorrectly
fitted ones.

Thus, the results in Table 1 can be summarized as follows. If the true
model is NBM, then NBM fits best and the other models fit rather poorly.
On the other hand, if the true model is DCBM (or PABM), then DCBM
(or PABM) fits best, but NBM also fits well, with accuracy not much worse
than the true model. Therefore, without knowledge of the true model (as it
happens in real-world scenarios), fitting NBM is the safest option.
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7.2. Real Data Examples In this section, we describe application of the
two-step clustering procedure of Section 6 to two real life networks, a but-
terfly similarity network and a human brain network.

We consider the butterfly similarity network extracted from the Leeds
Butterfly dataset (Wang et al., 2018), which contains fine-grained images
of 832 butterfly species that belong to 10 different classes, with each class
containing between 55 and 100 images. In this network, the nodes represent
butterfly species and edges represent visual similarities (ranging from 0 to
1) between them, evaluated on the basis of butterfly images. We extract
the five largest classes and draw an edge between two nodes if the visual
similarity between them is greater than zero, obtaining a simple graph with
462 nodes and 28799 edges. We carry out clustering of the nodes, employ-
ing the two-step clustering procedure, first finding L = 4 meta-communities
by Algorithm 1, and then using Algorithm 2 to find communities within
meta-communities. We conclude that the first meta-community has two
communities, while the other three meta-communities have one community
each. We also applied Algorithms 1 and 2 separately for detection of five
communities. Here, Algorithms 1 and 2 correspond, respectively, to the
PABM and the DCBM settings with K = 5. Subsequently, we compare
the clustering assignments with the true class specifications of the species.
Algorithms 1 and 2 lead to 74% and 77% accuracy, respectively, while the
two-step clustering procedure provides better 84% accuracy, thus, justify-
ing the application of the NBM. The better results are due to the higher
flexibility of the NBM.

The second example deals with analysis of a human brain functional
network, based on the brain connectivity dataset, derived from the resting-
state functional MRI (rsfMRI) (Crossley et al., 2013). In this dataset, the
brain is partitioned into 638 distinct regions and a weighted graph is used
to characterize the network topology. For a comparison, we use the Asymp-
totical Surprise method (Nicolini et al., 2017) which is applied for clustering
the GroupAverage rsfMRI matrix in Crossley et al. (2013). Asymptotical
Surprise detects 47 communities with sizes ranging from 1 to 133. Since
the true clustering as well as the true number of clusters are unknown for
this dataset, we treat the results of the Asymptotical Surprise as the ground
truth. In order to generate a binary network, we set all nonzero weights to
one in the GroupAverage rsfMRI matrix, obtaining a network with 18625
undirected edges. For our study, we extract 7 largest communities derived
by the Asymptotical Surprise, obtaining a network with 450 nodes and 16570
edges. Similarly to the previous example, we apply Algorithms 1 and 2 sep-
arately to detect seven communities, obtaining, respectively, 88% and 73%
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Figure 3: The adjacency matrices of the butterfly similarity network with
57598 nonzero entries and 5 clusters (left) and the brain network with 33140
nonzero entries and 7 clusters (right) after clustering

accuracy. We also use the the two-step clustering procedure above, detecting
six meta-communities and seven communities, attaining 92% accuracy.

Figure 3 shows the adjacency matrices of the butterfly similarity network
(left) and the human brain network (right) after clustering.

8 Discussion

The present paper examines the hierarchy of block models with the pur-
pose of treating all existing singular-membership block models as a part of
one formulation, which is free from arbitrary identifiability conditions. The
blocks differ by the average probability of connections and can be combined
into meta-blocks that have common heterogeneity patterns in the connection
probabilities.

The hierarchical formulation proposed above (see Fig. 2) can be utilized
for a variety of purposes. Since the NBM treats all other block models as
its particular cases, one can carry out estimation and clustering without
assuming that a specific block model holds, by employing the NBM with K
communities and L meta-communities, where both K and L are unknown.
The values of K and L can later be derived on the basis of penalties.

Furthermore, in the framework above, one can easily test one block model
versus another. For instance, L = K suggests the PABM while L = 1 implies
the DCBM. If, additionally, H = 1n, then DCBM reduces to SBM. Finally,
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one can see from Fig. 2 that the absence of distinct communities (K = 1)
always leads to DCBM, which reduces to Erdős-Rényi model if H = 1n.

9 Proofs

9.1. Proof of Theorem 1 Let Ξ = A− P∗. We let PZ,C,K,L denote the
permutation matrix that arranges meta-blocks consecutively and also blocks
all meta-blocks consecutively. For simplicity, let

P ≡ PZ,C,K,L,P∗ ≡ PZ∗,C∗,K∗,L∗ , P̂ ≡ PẐ,Ĉ,K̂,L̂.

For any matrix S, denote

S(Z,C,K,L) = PT
Z,C,K,LSPZ,C,K,L. (9.1)

Then, for any Z,C,K, and L:
∥

∥

∥P̂TAP̂ − Θ̂(Ẑ, Ĉ, K̂, L̂)
∥

∥

∥

2

F
+ Pen(n, K̂, L̂) ≤

∥

∥

∥PTAP − PTPP
∥

∥

∥

2

F
+ Pen(n,K,L).

Therefore,

∥∥∥A− P̂Θ̂(Ẑ, Ĉ, K̂, L̂)P̂T
∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤ ‖A− P‖2F + Pen(n,K,L)

or ∥∥∥A− P̂
∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤ ‖A− P‖2F + Pen(n,K,L). (9.2)

Subtracting and adding P∗ in the norms in both sides of Eq. 9.2, we rewrite
it as
∥∥∥P̂ − P∗

∥∥∥
2

F
≤ ‖P − P∗‖2F + 2〈Ξ, P̂ − P 〉+ Pen(n,K,L)− Pen(n, K̂, L̂).

(9.3)
Denote

P0(K,L) = inf
P∈�(n,K,L)

‖P − P∗‖2F ,

(K0, L0) = inf
K,L

{
‖P0(K,L)− P∗‖2F + Pen(n,K,L)

}
.

Then, for P̂ ≡ P̂ (K̂, L̂) and P0 ≡ P0(K0, L0), one has

∥∥∥P̂ − P∗
∥∥∥
2

F
≤ ‖P0 − P∗‖2F + 2〈Ξ,P∗ − P0〉

2〈Ξ, P̂ − P∗〉+ Pen(n,K0, L0)− Pen(n, K̂, L̂).
(9.4)

Denote

τ(n,K,L) = n lnK +K lnL+ (K2 + 2nL) ln (9nL) (9.5)
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and consider two sets Ω and Ωc

Ω =
{
ω :
∥∥∥P̂ − P∗

∥∥∥
F
≥ C02

s0
√
τ(n,K0, L0)

}
,

Ωc =
{
ω :
∥∥∥P̂ − P∗

∥∥∥
F
≤ C02

s0
√
τ(n,K0, L0)

} (9.6)

where s0 is a constant. If ω ∈ Ωc, then

∥∥∥P̂ − P∗
∥∥∥
2

F
≤ C2

02
2s0τ(n,K0, L0). (9.7)

Consider the case when ω ∈ Ω. It follows from Hoeffding inequality that,
for any fixed matrix G, any α > 0 and any t > 0 one has

P

{
2〈Ξ,G〉 ≥ α ‖G‖2F + 2t/α

}
≤ e−t. (9.8)

Then, there exists a set Ω̃t such that P (Ω̃t) ≥ 1− e−t and for ω ∈ Ω̃t

2〈Ξ,P∗ − P0〉 ≤ α ‖P∗ − P0‖2F + 2t/α. (9.9)

Note that the set Ω can be partitioned as Ω =
⋃
K,L

ΩK,L, where

ΩK,L =

{
ω :
(∥∥∥P̂ − P∗

∥∥∥
F
≥ C02

s0
√
τ(n,K0, L0)

)
∩ (K̂ = K, L̂ = L)

}

(9.10)
with ΩK1,L1 ∩ΩK2,L2 = ∅ unless K1 = K2 and L1 = L2. Denote

Δ(n,K,L) = C2
0C2τ(n,K,L) + n, (9.11)

where τ(n,K,L) is defined in Eq. 9.5. Then,

P

{[
2〈Ξ, P̂ (n, K̂, L̂)− P∗〉 −

1

2

∥∥∥P̂ (n, K̂, L̂)− P∗
∥∥∥
2

F
− 2Δ(n, K̂, L̂)

]
≥ 0

}

≤
n∑

K=1

K∑

L=1

P

{
sup

P̂∈ΩK,L

[
2〈Ξ, P̂ − P∗〉 −

1

2

∥∥∥P̂ − P∗
∥∥∥
2

F
− 2Δ(n,K,L)

]
≥ 0

}
.

By Lemma 4 in Section 9.4, there exist sets Ω̃K,L ⊆ ΩK,L ⊂ Ω such that
P(Ω̃c

K,L) ≤ log2 n · exp (−n · 22s0−7) and, for ω ∈ Ω̃K,L, one has

{
2〈Ξ, P̂ − P∗〉 ≤

1

2

∥∥∥P̂ − P∗
∥∥∥
2

F
+ 2Δ(n,K,L)

}
∩
{
K̂ = K, L̂ = L

}
.
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Denote

Ω̃ =

(
∩

K,L
Ω̃K,L

)
∩ Ω̃t (9.12)

and observe that

P

(
Ω̃
)
≥ 1− n2 log2 n · exp (−n · 22s0−7)− e−t.

Then, for ω ∈ Ω̃, one has

2〈Ξ, P̂ − P∗〉 ≤
1

2

∥∥∥P̂ − P∗
∥∥∥
2

F
+ 2Δ(n, K̂, L̂) (9.13)

and it follows from (9.9) with α = 1/2 that

2〈Ξ,P∗ − P0〉 ≤
1

2
‖P∗ − P0‖2F + 4t. (9.14)

Plugging (9.13) and (9.14) into (9.4), obtain that for ω ∈ Ω̃ one has
∥∥∥P̂ − P∗

∥∥∥
2

F
≤ ‖P0 − P∗‖2F + Pen(n,K0, L0) +

1

2

∥∥∥P̂ − P∗
∥∥∥
2

F
+

2Δ(n, K̂, L̂) +
1

2
‖P∗ − P0‖2F + 4t− Pen(n, K̂, L̂).

Finally, setting

Pen(n,K,L) = 2Δ(n,K,L) = 2
[
C2
0τ(n,K,L) + n

]
,

obtain that for any t > 0, for ω ∈ Ω̃, one has
∥∥∥P̂ − P∗

∥∥∥
2

F
≤ 3 ‖P0 − P∗‖2F + 2Pen(n,K0, L0) + 8t,

for any ω ∈ Ω. Now, for ω ∈ Ωc, it follows from (9.7) that
∥∥∥P̂ − P∗

∥∥∥
2

F
≤ C2

02
2s0τ(n,K0, L0) ≤ 22s0−1Pen(n,K0, L0).

Setting s0 = 1 and t = n/32, obtain

P

{

∥

∥

∥P̂ − P∗

∥

∥

∥

2

F
≤

[

3 ‖P0 − P∗‖2F + 2Pen(n,K0, L0)
]

+
n

4

}

≥ 1− (n2 log2 n+ 1)e−
n
32 ,

so that

P

{

∥

∥

∥P̂ − P∗

∥

∥

∥

2

F
≤ 3 inf

P∈�(n,K,L)

[

‖P − P∗‖2F + Pen(n,K,L)
]

}

≥ 1− (n2 log2 n+ 1)e−
n
32 .

Since
∥∥∥P̂ − P∗

∥∥∥
2

F
≤ n2, obtain

E

∥∥∥P̂ − P∗
∥∥∥
2

F
≤ 3 min

P∈M (n,K,L)

[
‖P − P∗‖2F + Pen(n,K,L)

]
+ n5e−n/32.
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9.2. Proof of Theorem 2 Let

F1(n,K,L) = C1nK + C2K
2 ln(ne) + C3(lnn+ (n+ 1) lnK +K lnL)

F2(n,K,L) = 2 lnn+ 2(n+ 1) lnK + 2K lnL,

where C1, C2, and C3 are absolute constants. Denote Ξ = A−P∗ and recall
that, given matrix P∗, entries Ξi,j = Ai,j − (P∗)ij of Ξ are the independent
Bernoulli errors for 1 ≤ i ≤ j ≤ n and Ai,j = Aj,i. Then, following notation
Eq. 9.1, for any Z, C, K, and L

Ξ(Z,C,K,L) = PTΞP

P∗(Z,C,K,L) = PTP∗P,

where P ≡ PZ,C,K,L. Then it follows from Eq. 4.7 that
∥∥∥P̂TAP̂ − Θ̂(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤

∥∥PT
∗ AP∗ − PT

∗ P∗P∗
∥∥2
F
+ Pen(n,K∗, L∗)

where P∗ ≡ PZ∗,C∗,K∗,L∗ . Using the fact that permutation matrices are
orthogonal, we can rewrite the previous inequality as
∥∥∥A− P̂Θ̂(Ẑ, Ĉ, K̂, L̂)P̂T

∥∥∥
2

F
+ Pen(n, K̂, L̂) ≤ ‖A− P∗‖2F + Pen(n,K∗, L∗).

(9.15)
Hence, Eq. 9.15 and Eq. 4.3 yield

∥∥∥A− P̂
∥∥∥
2

F
≤ ‖A− P∗‖2F + Pen(n,K∗, L∗)− Pen(n, K̂, L̂). (9.16)

Subtracting and adding P∗ in the norm of the left-hand side of Eq. 9.16,
we rewrite Eq. 9.16 as

∥∥∥P̂ − P∗
∥∥∥
2

F
≤ Δ(Ẑ, Ĉ, K̂, L̂) + Pen(n,K∗, L∗)− Pen(n, K̂, L̂), (9.17)

where
Δ ≡ Δ(Ẑ, Ĉ, K̂, L̂) = 2Tr

[
ΞT (P̂ − P∗)

]
. (9.18)

Again, using orthogonality of the permutation matrices, we can rewrite

Δ = 2〈Ξ(Ẑ, Ĉ, K̂, L̂), (Θ̂(Ẑ, Ĉ, K̂, L̂)− P∗(Ẑ, Ĉ, K̂, L̂))〉,

where 〈A,B〉 = Tr(ATB). Then, in the block form, Δ appears as

Δ =
L̂∑

l=1

K̂∑

k=1

Δ(l,k) (9.19)
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where

Δ(l,k) = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂), Πû,v̂(A
(l,k)(Ẑ, Ĉ, K̂, L̂))− P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)〉

and Πû,v̂ is defined in Eq. 9.52 of Lemma 5.

Let ũ = ũ(l,k)(Ẑ, Ĉ, K̂, L̂) and ṽ = ṽ(l,k)(Ẑ, Ĉ, K̂, L̂) be the singular

vectors of P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂) corresponding to the largest singular value of

P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂). Then, according to Lemma 5

Πũ,ṽ

(
P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)
= ũ(l,k)(ũ(l,k))TP

(l,k)
∗ ṽ(l,k)(ṽ(l,k))T . (9.20)

Recall that

Πû,v̂(A
(l,k)(Ẑ, Ĉ, K̂, L̂)) = Πû,v̂

[
P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂) + Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)

]
.

Then, Δ(l,k) can be partitioned into the sums of three components

Δ(l,k) = Δ
(l,k)
1 +Δ

(l,k)
2 +Δ

(l,k)
3 , l = 1, 2, · · · , L̂, k = 1, 2, · · · , K̂ (9.21)

where

Δ
(l,k)
1 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂), Πû,v̂(Ξ

(l,k)(Ẑ, Ĉ, K̂, L̂))〉 (9.22)

Δ
(l,k)
2 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂), Πũ,ṽ(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)〉

(9.23)

Δ
(l,k)
3 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂), Πû,v̂(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))−Πũ,ṽ(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))〉.

(9.24)

With some abuse of notations, for any matrixB, letΠũ,ṽ

(
B(Ẑ, Ĉ, K̂, L̂)

)

be the matrix with blocksΠũ,ṽ

(
B(l,k)(Ẑ, Ĉ, K̂, L̂)

)
andΠû,v̂

(
B(Ẑ, Ĉ, K̂, L̂)

)

be the matrix with blocks

Πû,v̂

(
B(l,k)(Ẑ, Ĉ, K̂, L̂)

)
, l = 1, 2, · · · , L̂, k = 1, 2, · · · , K̂.

Then, it follows from Eq. 9.21–Eq. 9.24 that

Δ = Δ1 +Δ2 +Δ3 (9.25)

where

Δ1 = 2〈(Ξ(Ẑ, Ĉ, K̂, L̂), Πû,v̂(Ξ(Ẑ, Ĉ, K̂, L̂))〉 (9.26)
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Δ2 = 2〈Ξ(Ẑ, K̂), Πũ,ṽ(P∗(Ẑ, Ĉ, K̂, L̂))− P∗(Ẑ, Ĉ, K̂, L̂)〉 (9.27)

Δ3 = 2〈Ξ(Ẑ, Ĉ, K̂, L̂), Πû,v̂(P∗(Ẑ, Ĉ, K̂, L̂))−Πũ,ṽ(P∗(Ẑ, Ĉ, K̂, L̂))〉.
(9.28)

Observe that

Δ
(l,k)
1 = 2〈Ξ(l,k)(Ẑ, Ĉ, K̂, L̂), Πû,v̂(Ξ

(l,k)(Ẑ, Ĉ, K̂, L̂))〉

= 2
∥∥∥Πû,v̂(Ξ

(l,k)(Ẑ, Ĉ, K̂, L̂))
∥∥∥
2

F

≤ 2
∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

op
.

Now, fix t and let Ω1 be the set where

L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
≤ F1(n, K̂, L̂) + C3t.

According to Lemma 8,

P(Ω1) ≥ 1− exp(−t), (9.29)

and, for ω ∈ Ω1, one has

|Δ1| ≤ 2
L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
≤ 2F1(n, K̂, L̂) + 2C3t. (9.30)

Now, consider Δ2 given by Eq. 9.27. Note that

|Δ2| = 2
∥∥∥Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
F

|〈Ξ(Ẑ, Ĉ, K̂, L̂), Hũ,ṽ(Ẑ, Ĉ, K̂, L̂)〉| (9.31)

where

Hũ,ṽ(Ẑ, Ĉ, K̂, L̂) =
Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

‖Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)‖F

.

Since for any a, b, and α1 > 0, one has 2ab ≤ α1a
2 + b2/α1, obtain

|Δ2| ≤ α1

∥∥∥Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
+

1/α1 |〈Ξ(Ẑ, Ĉ, K̂, L̂), Hũ,ṽ(Ẑ, Ĉ, K̂, L̂) 〉|2.
(9.32)
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Observe that if K, L, Z ∈ Mn,K , and C ∈ MK,L are fixed, then
Hũ,ṽ(Z,C,K,L) is fixed and, for any K, L, Z, and C, one has
‖Hũ,ṽ(Z,C,K,L)‖F = 1. Note also that, for fixed K, L, Z, and C, permuted
matrix Ξ(Z,C,K,L) ∈ [0, 1]n×n contains independent Bernoulli errors. It is
well known that if ξ is a vector of independent Bernoulli errors and h is a
unit vector, then, for any x > 0, Hoeffding’s inequality yields

P(|ξTh|2 > x) ≤ 2 exp(−x/2).

Since

〈Ξ(Z,C,K,L), Hũ,ṽ(Z,C,K,L)〉 = [vec(Ξ(Z,C,K,L))]T vec(Hũ,ṽ(Z,C,K,L)),

obtain for any fixed K, L, Z, and C:

P
(
|〈Ξ(Z,C,K,L), Hũ,ṽ(Z,C,K,L)〉|2 − x > 0

)
≤ 2 exp(−x/2).

Now, applying the union bound, derive

P

(

|〈Ξ(Ẑ, Ĉ, K̂, L̂), Hũ,ṽ(Ẑ, Ĉ, K̂, L̂)〉|2 − F2(n, K̂, L̂) > 2t
)

≤ P

[

max
1≤K≤n

max
1≤L≤K

max
Z∈Mn,K

max
C∈MK,L

(|〈Ξ(Z,C,K,L), Hũ,ṽ(Z,C,K,L)〉|2 − F2(n,K,L)) > 2t
]

(9.33)

≤ 2nKKnLK exp {−F2(n,K,L)/2− t} = 2 exp(−t),

where F2(n,K,L) = 2 lnn+ 2(n+ 1) lnK + 2K lnL.
By Lemma 6, one has

∥∥∥Πũ,ṽ

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
≤

∥∥∥Πû,v̂

(
P∗(Ẑ, Ĉ, K̂, L̂)

)
− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
≤
∥∥∥P̂ − P∗

∥∥∥
2

F
.

Denote the set on which Eq. 9.33 holds by ΩC
2 , so that

P(Ω2) ≥ 1− 2 exp(−t). (9.34)

Then inequalities Eq. 9.32 and Eq. 9.33 imply that, for any α1 > 0, t > 0
and any ω ∈ Ω2, one has

|Δ2| ≤ α1

∥∥∥P̂ − P∗
∥∥∥
2

F
+ 1/α1 F2(n, K̂, L̂) + 2 t/α1. (9.35)

Now consider Δ3 defined in Eq. 9.28 with components Eq. 9.24. Note
that matrices

Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))−Πũ,ṽ

(
P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)
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have rank at most two. Use the fact that (see, e.g., Giraud (2014), page 123)

〈A,B〉 ≤ ‖A‖(2,r) ‖B‖(2,r) ≤ 2 ‖A‖op ‖B‖F , r = min{rank(A), rank(B)}.
(9.36)

Here ‖A‖(2,q) is the Ky-Fan (2, q) norm

‖A‖2(2,q) =
q∑

j=1

σ2
j (A) ≤ ‖A‖2F ,

where σj(A) are the singular values of A. Applying inequality Eq. 9.36 with
r = 2 and taking into account that for any matrix A one has ‖A‖2(2,2) ≤
2 ‖A‖2op, derive

|Δ(l,k)
3 | ≤ 4

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
op

∥∥∥

Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)−Πũ,ṽ

(
P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
F
.

Then, for any α2 > 0, obtain

|Δ3| ≤
L̂∑

l=1

K̂∑

k=1

|Δ(l,k)
3 | ≤ 2

α2

L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
+ (9.37)

2α2

L̂∑

l=1

K̂∑

k=1

∥∥∥Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)−Πũ,ṽ

(
P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
2

F
.

Note that, by Lemma 6,
∥∥∥Πû,v̂(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))−Πũṽ

(
P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
2

F

≤ 2
∥∥∥Πû,v̂(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
+

2
∥∥∥Πũ,ṽ(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F

≤ 4
∥∥∥Πû,v̂(P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))− P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F

≤ 4
∥∥∥Πû,v̂(A

(l,k)(Ẑ, Ĉ, K̂, L̂))− P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F

= 4
∥∥∥Θ̂(l,k)(Ẑ, Ĉ, K̂, L̂)− P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
.

Therefore,

L̂∑
l=1

K̂∑
k=1

∥∥∥Πû,v̂(P
(l,k)
∗ (Ẑ, Ĉ, K̂, L̂))−Πũ,ṽ

(
P

(l,k)
∗ (Ẑ, Ĉ, K̂, L̂)

)∥∥∥
2

F
≤
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4
∥∥∥Θ̂(Ẑ, Ĉ, K̂, L̂)− P∗(Ẑ, Ĉ, K̂, L̂)

∥∥∥
2

F
= 4

∥∥∥P̂ − P∗
∥∥∥
2

F
. (9.38)

Combine inequalities Eq. 9.37 and Eq. 9.38 and recall that

L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
≤ F1(n, K̂, L̂) + C3 t

for ω ∈ Ω1. Then, for any α2 > 0 and ω ∈ Ω1, one has

|Δ3| ≤ 8α2

∥∥∥P̂ − P∗
∥∥∥
2

F
+ 2/α2F1(n, K̂, L̂) + 2C3 t/α2. (9.39)

Now, let Ω = Ω1 ∩Ω2. Then, Eq. 9.29 and Eq. 9.34 imply that P(Ω) ≥
1 − 3 exp(−t) and, for ω ∈ Ω, inequalities Eq. 9.30, Eq. 9.35 and Eq. 9.39
simultaneously hold. Hence, by Eq. 9.25, derive that, for any ω ∈ Ω,

|Δ| ≤ (2 + 2/α2)F1(n, K̂, L̂)) + 1/α1 F2(n, K̂, L̂)+

(α1 + 8α2)
∥∥∥P̂ − P∗

∥∥∥
2

F
+ 2(C3 + 1/α1 + C3/α2) t.

Combination of the last inequality and Eq. 9.17 yields that, for α1+8α2 < 1
and any ω ∈ Ω,

(1− α1 − 8α2)
∥∥∥P̂ − P∗

∥∥∥
2

F
≤
(
2 +

2

α2

)
F1(n, K̂, L̂) +

1

α1
F2(n, K̂, L̂) + Pen(n,K∗, L∗)− Pen(n, K̂, L̂)

+2(C3 + 1/α1 + C3/α2) t.

Setting Pen(n,K,L) = (2 + 2/α2)F1(n,K,L) + 1/α1F2(n,K,L) and di-
viding by (1− α1 − 8α2), obtain that

P

{∥∥∥P̂ − P∗
∥∥∥
2

F
≤ (1− α1 − 8α2)

−1 Pen(n,K∗, L∗) + C̃ t

}
≥ 1− 3e−t

(9.40)
where

C̃ = 2 (1− α1 − 8α2)
−1 (C3 + 1/α1 + C3/α2). (9.41)

Moreover, note that for ξ = ‖P̂ − P∗‖2F − (1−β1−β2)
−1 Pen(n,K∗, L∗),

one has E‖P̂ − P∗‖2F = (1− β1 − β2)
−1 Pen(n,K∗, L∗) + Eξ, where

Eξ ≤
∫ ∞

0
P(ξ > z)dz = C̃

∫ ∞

0
P(ξ > C̃t)dt ≤ C̃

∫ ∞

0
3 e−t dt = 3C̃,

By rearranging and combining the terms, the penalty Pen(n,K,L) can
be written in the form Eq. 4.8 completing the proof.
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9.3. Proof of Detectability of Clusters in Lemma 1 Note that the left
hand side of inequality Eq. 5.1 is equal to identical zero, so we need to show
that, for any matrices Z ∈ Mn,K and C ∈ MK,L such that Z and C cannot
be obtained from Z∗ and C∗ by permutations of columns, the right-hand
side of Eq. 5.1 is greater than zero. Consider matrix G∗ = Z∗C∗. It is easy
to check that G∗ ∈ Mn,L is the clustering matrix that partitions n nodes
into L meta-communities. We first show that G∗ coincides with G = ZC up
to permutation of columns. Subsequently, we shall show that communities
in each meta-community are identifiable.

Consider a block P
(l,k)
∗ (Z∗, C∗) of matrix P∗. Let c(k) = m. Let j1, . . . , jKl

be the indices of the communities in meta-community l, so that c(jt) = l.

Then, P
(l,k)
∗ (Z∗, C∗) is a rank one matrix which is a product of the vector

obtained by the vertical concatenation of vectors Bjt,kh
(jt,m), t = 1, . . . ,Kl

and (h(k,l))T . Assume that a node j̃ such that z(j̃) = k̃ and c(k̃) = l̃ �= l was
erroneously placed into meta-community l instead of l̃. This is equivalent to

adding a row c0,j̃ (h
(k,l̃))T to matrix P

(l,k)
∗ (Z∗, C∗) where c0,j̃ = Bk̃,k h

(k̃,m)

j̃
.

If c0,j̃ �= 0, then the resulting matrix will be of rank at least two, since

vectors h(k,l̃) and h(k,l) are linearly independent for l̃ �= l by Assumption

A1. If c0,j̃ = Bk̃,k h
(k̃,m)

j̃
= 0, find k such that c0,j̃ = Bk̃,k h

(k̃,m)

j̃
�= 0

and then repeat the previous argument for the matrix P
(l,k)
∗ (Z∗, C∗) for

that value of k. Note that such k exists since, otherwise, row j̃ would be
identically equal to zero and, hence, node j̃ would be disconnected from
the network.

Therefore, meta-communities are detectable. To prove that communi-
ties within meta-communities are identifiable, consider diagonal meta-blocks
P̃ (l,l)(Z∗, C∗) in Eq. 3.2. It follows from Interlace Theorem for eigenvalues
and Assumption A1 that λmin(B

(l,l)) ≥ λmin(B) ≥ λ0 > 0, and therefore
columns of matrix B(l,l) are linearly independent. Now, consider again ma-

trix P
(l,k)
∗ (Z∗, C∗), where m = c(k) = l. Recall that columns of this matrix

are multiples of vector p̃(k) obtained by the vertical concatenation of vectors
Bjt,kh

(jt,l), t = 1, . . . ,Kl. Now, assume that node j̃ with z(j̃) = k̃ �= k,
c(k̃) = l, is erroneously added to the community k. Then, the correspond-
ing column that is added to matrix P̃ (l,l)(Z∗, C∗) is obtained by the verti-
cal concatenation of vectors Bjt,k̃

h(jt,l), t = 1, . . . ,Kl. This vector is lin-

early independent from p̃(k) due to linear independence of columns of matrix
B(l,l). Then, the rank of the resulting matrix will be at least two and the
right hand side of the inequality Eq. 5.1 will be positive. This completes
the proof.
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9.4. Supplementary Statements and their Proofs

Lemma 2. The logarithm of the cardinality of a δ-net on the space of
non-symmetric DCBMs of size n1 × n2 with K1 ×K2 blocks is

(K1K2 + n1 + n2) ln

(
9

δ

)
+

(
K1K2 +

n1 + n2

2

)
ln(n1n2).

Proof. Let Z1 and Z2 be fixed. Then by rearranging Θ, rewrite it as
Θ = Q1BQT

2 , where B and Qi, i = 1, 2, have the sizes K1×K2 and ni×Ki,
respectively.

Here, Qi is of the form

Qi =

⎡

⎢⎢⎢⎣

qi,1 0 · · · 0
0 qi,2 · · · 0
...

... · · ·
...

0 0 · · · qi,Ki

⎤

⎥⎥⎥⎦ . (9.42)

We re-scale components of matrices Q1, Q2 and B, so that vectors qi,j ∈
R
ni,j

+ , j = 1, · · · ,Ki, i = 1, 2, have unit norms ‖qi,j‖2 = 1, and
∑Ki

j=1 ni,j =

ni. Let Θ
(k1,k2) ∈ R

n1,k1
×n2,k2 be the (k1, k2)-th block of Θ. Then,

Θ(k1,k2) = Bk1,k2q1,k1q
T
2,k2

and ∥∥∥Θ(k1,k2)
∥∥∥
2

F
= B2

k1,k2 ‖q1,k1‖
2
2 ‖q2,k2‖

2
2 = B2

k1,k2 ≤ nk1 · nk2 ,

due to
∥∥abT

∥∥2
F
≤ ‖a‖22 ‖b‖

2
2 (for any vectors a and b) and ‖Θ‖∞ ≤ 1. Hence,

Bk1,k2 ≤ √
nk1 · nk2 ≤ √

n1 · n2.
Let D1(δ1), D2(δ2), and DB(δB) be the δ1, δ2, and δB nets for Q1, Q2, and

B, respectively. The nets Di(δi) are essentially constructed for Ki vectors of
length 1 in R

ni,j , hence, by Pollard (1990)

card(Di(δi)) ≤ ΠKi
j=1 (3/δi)

ni,j = (3/δi)
ni , i = 1, 2.

Let b = vec(B). Then, b ∈ R
K1K2 and ‖b‖ ≤ √

n1n2 since

‖b‖2 = ‖B‖2F =
∑

k1,k2

B2
k1,k2 =

∑

k1,k2

nk1nk2 = n1n2.

Therefore,

card(DB(δB)) ≤
(
3n1n2

δB

)K1K2

.
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Now, let us check what values of δ1, δ2, and δB result in a δ-net. Let
Θ = Q1BQT

2 and Θ̃ = Q̃1B̃Q̃T
2 . Then

∥∥∥Θ̃ −Θ
∥∥∥
F
=
∥∥∥Q̃1B̃Q̃T

2 −Q1BQT
2

∥∥∥
F
≤

∥∥∥(Q̃1 −Q1)B̃Q̃T
2

∥∥∥
F
+
∥∥∥Q1(B̃ −B)Q̃T

2

∥∥∥
F
+
∥∥∥Q1B(Q̃2 −Q2)

T
∥∥∥
F
.

Note that

‖A1A2‖F ≤ min
(
‖A1‖F ‖A2‖op , ‖A1‖op ‖A2‖F

)

for any matrices A1 and A2, and that also

QT
i Qi = diag

(
‖qi,1‖2 , · · · , ‖qi,Ki‖2

)
= IKi , i = 1, 2.

Hence

‖Qi‖op = 1; ‖Qi‖F =
√
Ki, i = 1, 2.

Similarly, if Q̃i, Qi ∈ Di(δi), then

(Q̃i −Qi)
T (Q̃i −Qi) = diag

(
‖q̃i,1 − qi,1‖2 , · · · , ‖q̃i,Ki − qi,Ki‖2

)
.

Thus ∥∥∥Q̃i −Qi

∥∥∥
op

= δi;
∥∥∥Q̃i −Qi

∥∥∥
F
≤
√
Kiδi, i = 1, 2.

Also, for i = 1, 2

Tr(BTQT
i QiB) = ‖QiB‖2F = ‖B‖2F = n1n2.

Hence, ∥∥∥Θ̃ −Θ
∥∥∥
F
≤
∥∥∥Q̃1 −Q1

∥∥∥
op

∥∥∥B̃Q̃T
2

∥∥∥
F

+ ‖Q1B‖F
∥∥∥Q̃2 −Q2

∥∥∥
op

+ ‖Q1‖op
∥∥∥B̃ −B

∥∥∥
F

∥∥∥Q̃2

∥∥∥
op

= (δ1 + δ2)
√
n1n2 + δB ≤ δ.

Set δB = δ
3 and δ1 = δ2 =

δ
3
√
n1n2

. Then

card(DB(δB)) =

(
9n1n2

δ

)K1K2

,

card(Di(δi)) =

(
9
√
n1n2

δ

)ni

,

which completes the proof.
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Lemma 3. Consider the set of matrices P which can be transformed
by a permutation matrix PZ,C into a block matrix Θ ∈ 	(n,K,L) where
	(n,K,L) is defined in Eq. 4.2. Let Y (ε, n,K,L) be an ε-net on the set
	(n,K,L) and |Y (ε, n,K,L)| be its cardinality. Then, for any K and L,
1 ≤ K ≤ n, 1 ≤ L ≤ K, one has

|Y (ε, n,K,L)| ≤ n lnK +K lnL+ (K2 + 2nL) ln

(
9nL

ε

)
. (9.43)

Proof. First construct nets on the set of matrices Z and C with the
respective cardinalities Kn and LK . After that, validity of the lemma follows
from Lemma 2.

Lemma 4. Let C2
0 = 3009, C2 = 1, s0 > 0 be an arbitrary constant and

ΩK,L be defined in Eq. 9.10. Then,

P

{
sup

P̂∈ΩK,L

[
2〈Ξ, P̂ − P∗〉 −

1

2

∥∥∥P̂ − P∗
∥∥∥
2

F

−2Δ(n,K,L)
]
≥ 0

}
≤ log2 n · exp

(
− n · 22s0−7

)

where Δ(n,K,L) is defined in Eq. 9.11.

Proof. Consider sets

χs(K,L) =
{
∃Z,C : P (Z,C) ∈ 	(n,K,L);

C02
s
√

τ(n,K0, L0) ≤ ‖P − P∗‖F ≤ C02
s+1
√
τ(n,K0, L0)

}
,

and

Js(K,L)=
{
∃Z,C :P (Z,C)∈ 	(n,K,L); ‖P−P∗‖F ≤C02

s
√
τ(n,K0, L0)

}
.

Note that the set Ω can be partitioned as

Ω =
⋃

K,L

ΩK,L
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where ΩK,L are defined in Eq. 9.10. Then

P

{
sup

P̂∈ΩK,L

[
〈Ξ, P̂ − P∗〉 −

1

4

∥∥∥P̂ − P∗
∥∥∥
2

F
−Δ(n,K,L)

]
≥ 0

}
≤

smax∑

s=s0

P

{
sup

P̂∈χs(K,L)

[
〈Ξ, P̂ − P∗〉 −

1

4

∥∥∥P̂ − P∗
∥∥∥
2

F
−Δ(n,K,L)

]
≥ 0

}
≤

smax∑

s=s0

P

{
sup

P̂∈χs(K,L)

〈Ξ, P̂ − P∗〉 ≥ C2
02

2s−2τ(n,K0, L0) +Δ(n,K,L)

}
≤

smax∑

s=s0

P

{
sup

P̂∈Js+1(K,L)

〈Ξ, P̂ − P∗〉 ≥ C2
02

2s−2τ(n,K0, L0) +Δ(n,K,L)

}
.

Here, smax ≤ log2 n since
∥∥∥P̂ − P∗

∥∥∥
F
≤ n.

Construct a 1-net Ys(n,K,L) on the set of matrices in Js+1(K,L) and
observe that, for any P̂ ∈ Js(K,L), there exists P̃ ∈ Ys(n,K,L) such that
‖P̂ − P̃‖F ≤ 1. Then,

sup
P̂∈Ys+1(n,K,L)

〈Ξ, P̂ − P∗〉 ≤

max
P̃∈Ys(n,K,L)

[
〈Ξ, P̃ − P∗〉+ 〈Ξ, P̂ − P̃ 〉

]
≤

max
P̃∈Ys(n,K,L)

〈Ξ, P̃ − P∗〉+ n.

Hence,

P

{
sup

P̂∈ΩK,L

[
〈Ξ, P̂ − P∗〉−

1

4

∥∥∥P̂ − P∗
∥∥∥
2

F
−Δ(n,K,L)

]
≥ 0

}
≤

smax∑

s=s0

P

{
max

P̃∈Ys(n,K,L)
〈Ξ, P̃ − P∗〉 ≥ C2

02
2s−2τ(n,K0, L0) +Δ(n,K,L)− n

}
≤

smax∑

s=s0

∑

P̃∈Ys(n,K,L)

P

{
〈Ξ, P̃ − P∗〉 ≥ C2

02
2s−2τ(n,K0, L0) +Δ(n,K,L)− n

}
.

Below we shall use the following version of Bernstein inequality (see, e.g.,
Klopp et al. (2019), Lemma 26): if Ξ is a matrix of independent Bernoulli
errors and G is an arbitrary matrix of the same size, then for any t > 0 one
has

P {〈Ξ,G〉 > t} ≤ max

(
e
− t2

4‖G‖2
F , e

− 3t
4‖G‖∞

)
. (9.44)
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We apply Eq. 9.44 with G = P̃ − P∗ and

t = C2
0

[
22s−2τ(n,K0, L0) + C2τ(n,K,L)

]
. (9.45)

Then, ‖G‖∞ = 1 and ‖G‖2 ≤ C2
02

2s+2τ(n,K0, L0) due to P̃ ∈ Ys(n,K,L) ⊆
Js+1(K,L).

Denote

d
(s)
K,L = max

{
e
− t2

4C2
022s+2 τ(n,K0,L0) , e−

3t
4

}
(9.46)

dK,L =

smax∑

s=s0

d
(s)
K,L · exp {τ(n,K,L)} . (9.47)

Obtain

P

{
sup

P̂∈ΩK,L

[
〈Ξ, P̂ − P∗〉 −

1

4

∥∥∥P̂ − P∗
∥∥∥
2

F
−Δ(n,K,L)

]
≥ 0

}
≤ dK,L.

(9.48)
Observe that

exp
{
− t2

4C2
02

2s+2τ(n,K0, L0)

}
≥ exp

{
− 3t

4

}

is equivalent to t ≤ 3C2
02

2s+2τ(n,K0, L0) which can be rewritten as

C2τ(n,K,L) ≤ 47 · 22s−2τ(n,K0, L0). (9.49)

Now, consider two cases: when Eq. 9.49 holds and when it does not.
Case 1: If (9.49) holds, then

d
(s)
K,L ≤ exp

{
− C2

0

[
22s−8τ(n,K0, L0) +

C2
2τ

2(n,K,L)

22s+4τ(n,K0, L0)

]}
,

so that

d
(s)
K,L exp

{
τ(n,K,L)

}
≤

exp

{
−
[
C2
02

2s−8τ(n,K0, L0)−
47 · 22s−2

C2
τ(n,K0, L0)

]}
≤

exp

{
− τ(n,K0, L0) · 22s0−8

[
C2
0 − 47 · 64

C2

]}
.

Thus, it follows from Eq. 9.46 and Eq. 9.47 that

dK,L ≤ log2 n · exp
{
−τ(n,K0, L0)2

2s0−8C̃
}

(9.50)
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where C̃ = (C2
0C2 − 47 · 64)/C2, provided C0C2 ≥ 47 · 64.

Case 2: If (9.49) does not hold, then

d
(s)
K,L ≤

exp

{
− 3C2

0

4

[
22s−2τ(n,K0, L0) + C2τ(n,K,L)

]}
≤

exp

{
− τ(n,K,L)− τ(n,K,L)

(3C2
0C2

4
− 1
)}

.

Hence, if 3C2
0C2 > 4, then

dK,L ≤ log2 n · exp
{
− τ(n,K,L)

(3C2
0C2 − 4

4

)}
. (9.51)

Combine Eq. 9.50 and Eq. 9.51 and observe that for C2 = 1 and C2
0 =

47 · 64 + 1 = 3009 inequalities C0C2 ≥ 47 · 64 and 3C2
0C2 > 4 hold.

Then, due to τ(n,K,L) ≥ 2n, for any (K,L)

dK,L ≤ log2 n · exp
{
− 2n · 22s0−8

}
,

so that validity of the lemma follows from Eq. 9.48.

Lemma 5. For any matrices A,B ∈ R
m×n and any unit vectors u ∈ R

m

and v ∈ R
n, let

Πu,v(A) = (uuT )A(vvT ) (9.52)

denote the projection of matrix A on the vectors (u, v). Then,

〈Πu,v(B), A−Πu,v(A)〉 = 0. (9.53)

Furthermore, if we let û and v̂ be the singular vectors of matrix A corre-
sponding to its largest singular value σ, the best rank one approximation of
A is given by

Πû,v̂(A) = (ûûT )A(v̂v̂T ) = σûv̂T . (9.54)

Lemma 6. Let (û, v̂) and (u, v) denote the pairs of singular vectors of
matrices A and P , respectively, corresponding to their largest singular values.
Then,

‖Πu,v(P )− P‖F ≤ ‖Πû,v̂(P )− P‖F ≤ ‖Πû,v̂(A)− P‖F (9.55)

where Πu,v(·) is defined in Eq. 9.52.

Proof. See Noroozi et al. (2021) for the proof.
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Lemma 7. Let elements of matrix Ξ ∈ (−1, 1)n×n be independent
Bernoulli errors and matrix Ξ be partitioned into KL sub-matrices Ξ(l,k),
l = 1, · · · , L, k = 1, · · · ,K. Then, for any x > 0

P

{
L∑

l=1

K∑

k=1

∥∥∥Ξ(l,k)
∥∥∥
2

op
≤ C1nK + C2K

2 ln(ne) + C3x

}
≥ 1− exp(−x),

(9.56)
where C1, C2 and C3 are absolute constants independent of n,K, and L.

Proof. See Noroozi et al. (2021) for the proof.

Lemma 8. For any t > 0,

P

⎧
⎨

⎩

L̂∑

l=1

K̂∑

k=1

∥∥∥Ξ(l,k)(Ẑ, Ĉ, K̂, L̂)
∥∥∥
2

op
− F1(n, K̂, L̂) ≤ C3t

⎫
⎬

⎭ ≥ 1− exp (−t),

(9.57)
where F1(n,K,L) = C1nK+C2K

2 ln(ne)+C3(lnn+(n+1) lnK+K lnL).

Proof. See Noroozi et al. (2021) for the proof.
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