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Although chilled beam systems are considered as one of the best performing HVAC systems, few studies
have looked into data-driven-based modeling for chilled beam systems. Furthermore, no learning-based
data-driven methods have been applied to chilled beam systems in buildings. In this study, we used an
evolving learning method, growing Gaussian mixture regression (GGMR), to predict cooling rates for pas-
sive chilled beam (PCB) systems where the training, evolution, and validation were carried out using data
from real system measurements and from building energy simulation. GGMR updates key parameters
such as weight coefficients, means, and covariance matrices of Gaussian components to adapt to changes
in system operation beyond training data. This case study demonstrated that GGMR is an effective evolv-
ing learning-based data-driven method for accurately predicting cooling rates of PCB systems. The selec-
tion of key performance parameters of GGMR models including the number of components, training data
size, and the learning rate was discussed in this paper. It is recommended that GGMR models could be
further explored for predicting the performance of other complex HVAC systems such as radiant slab
or mixed-mode ventilation systems.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Chilled beams can be categorized into passive chilled beams
and active chilled beams [1]. A passive chilled beam exchanges
cooling energy with spaces through natural convection. In addi-
tion, displacement ventilation [2] or variable air volume systems
are commonly employed to meet space heating and ventilation
requirements. Active chilled beams exchange energy with spaces
through forced convection. For active chilled beams, room air is
induced across finned coils and then mixed with primary air.
Active chilled beams can be used for space heating or cooling.

A chilled beam system is considered one of the high-
performance HVAC systems. Convection is the primary heat trans-
fer for chilled beam systems [3]. Compared to conventional cooling
systems, supply chilled water temperatures can be significantly
higher, and thus the number of hours for running a free cooling
chilled water system can be extended and the efficiency of the chil-
ler operation can also be improved [4]. In addition, fan energy con-
sumption can be reduced due to reduced airflow rate although the
savings may be compromised by increased pump energy consump-
tion for the chilled water distribution system [5]. Kim et al. [4] sim-
ulated four passive chilled beam system configurations in different
U.S. climatic zones and concluded that a passive chilled beam sys-
tem could result in up to 20% energy savings depending on climate
zones in comparison with a variable air volume system. Rumsey
and Weale [6] predicted a 57% reduction in energy use for a
3,716 m2 laboratory in California, U.S. conditioned by an active
chilled beam system and dedicated outdoor air system with addi-
tional features that included a heat recovery ventilator, cogenera-
tion, waterside economizer, and a photovoltaic system that met
10% of electricity demands. The system was compared with a base-
line having a variable air volume system with none of the addi-
tional features. In addition, computational fluid dynamic (CFD)
simulations have been employed to evaluate indoor air thermal
stratification and cooling effectiveness of chilled beam systems
[7–9].

Existing modeling efforts for predicting chilled beam energy use
can be categorized into first-principle-based [10], data-driven-
based [11], or hybrid [12] methods. Kim et al. [13] reviewed mod-
eling methods for passive ceiling cooling including chilled beams,
chilled ceiling panels, and radiant slabs, and categorized the pas-
sive ceiling modeling approaches into component models, indoor
environmental models, and integrated models between the two.
Betz and McNeill [10] summarized the capability of building
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energy programs for modeling chilled beams and their limitations.
Kim et al. [11] created regression models for predicting cooling
rates and chilled surface temperature of passive chilled beams
based on experimental results. The input parameters to the regres-
sion model include water flow rate, water supply temperature, the
air temperature above the chilled beam, and area-weighted
uncooled surface temperature in the space. Chen et al. [12] devel-
oped a dynamic model for predicting the performance of active
chilled beams. Air mixing and cooling coil heat transfer were mod-
eled based on first principles and experimental data were used to
fit unknown model parameters. Filipsson et al. [14] modeled an
active chilled beam based on the number of transfer units (NTU)
method and empirical equations for air induction ratio. With the
complexity of system operation, calibration of first-principle-
based simulation models for chilled beam systems is a challenging
task, and therefore, this has limited the application of first-
principle-based models of chilled beam systems for operational
use such as retro-commissioning, advanced controls, and fault
detection and diagnostics. The intent of existing energy simulation
efforts for chilled beam systems is to facilitate chilled beam system
design rather than operation and maintenance. Data-driven-based
or hybrid modeling for chilled beam systems are promising
approaches that could inform system operation and increase
energy savings for high-performance systems, but have received
limited study [15].

With the advancement of sensing and monitoring technologies,
large amounts of building system performance data have increas-
ingly become available. Various data-driven-based algorithms
[16,17] have been investigated for predicting energy consumption
and indoor environmental conditions in buildings. This is mainly
due to the advantages of data-driven models, such as easier imple-
mentation for model predictive controls[18] and less model devel-
opment effort in comparison with first-principle-based models.
The main challenge of data-driven-based modeling is that the
developed data-driven model is sensitive to training data size,
the accuracy of the training data, and the operating conditions
under which the data were collected [19,20]. The training data
available do not include all possible operating conditions that the
target systems and components experience throughout their life
cycles. It is expected and important that data-driven models for
advanced controls and fault diagnostics can adapt and learn with
the evolution of building systems. Evolving learning refers to the
feature that the model evolves with the changes in the dynamic
system of interest, specifically HVAC operating environments,
building systems, and components in our study. The evolving
learning method overcomes this limitation through updating key
parameters over time.

Currently, no learning-based data-driven methods have been
used to model high-performance HVAC systems, such as passive
chilled beam systems. The novelty of the study is the development,
application and evaluation of an evolving learning method, grow-
ing Gaussian mixture regression (GGMR), as a modeling approach
for predicting cooling rates of passive chilled beam systems. This
study represents the first application of an evolving learning
method for predicting the performance of complex building
systems.
2. Methodology

Before discussing the GGMR algorithm, we introduce the Gaus-
sian mixture model (GMM) and Gaussian mixture regression
(GMR). Both GMM and GMR have been successfully applied as
effective data-driven methods for building energy use prediction
[19,21,22]and fault detection and diagnosis [23,24]for the built
environment. The methods have also been actively used in other
2

disciplines such as material design[25], energy storage[26], and
robotics[27].

A Gaussian mixture model (GMM) is a parametric joint proba-
bility density function represented as a weighted sum of Gaussian
component densities (Eq. (1)).

prob u; yð Þ ¼
XM
m¼1

amN u; yjlm; rm
� � ð1Þ
lm ¼ lm;X

lm;Y

" #
ð2Þ
rm ¼ rm;XX rm;XY

rm;YX rm;YY

� �
ð3Þ

where u is a zero-mean row vector of measurement for independent
variables X; y is the observation for dependent variable Y; prob(u, y)
is a multivariate probability density function of a Gaussian Mixture
Model, am is non-negative mixing coefficient of the m-th compo-
nent, lm(Eq. (2)) and rm (Eq. (3)) are the mean vector and covari-
ance matrix of the m-th Gaussian component. N represents a
probability density function of a Gaussian component. M is the
number of GMM components. Training data are required to develop
the mixture model for key parameters. The expectation–maximiza
tion (EM) algorithm is used for finding maximum likelihood esti-
mates of GMM parameters such as am;lm and rm based on a train-
ing dataset.

Gaussian mixture regression (GMR) [28] is then used to predict
the value of the dependent variable by (Eq. (4)) given the observa-
tions u of independent variables and GMM parameters. by repre-
sents the prediction of the dependent variable Y . am uð Þ (Eq. (5))
is the mixing coefficient vector given observed independent vari-
ables. Mean value lm;YjX of dependent variable Y given observa-
tions is updated based on Eq. (6).
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For every new data, growing Gaussian mixture regression
(GGMR) continuously updates lm and rm in GMM and am in
GMR, which were static and were calculated based on training
data. The parameters of the component with the highest probabil-
ity density (non-zero) including the weight coefficients am, means
lm , and covariances rm are updated using a recursive filtering
approach, as shown in Eqs. (7) to (9) [29].

am tð Þ ¼ 1� bð Þam t � 1ð Þ þ bqm ð7Þ
lm tð Þ ¼ 1� qmð Þlm t � 1ð Þ þ qmd tð Þ ð8Þ
rm tð Þ ¼ 1� qmð Þrm t � 1ð Þ þ qm d tð Þ � lm tð Þ� �
d tð Þ � lm tð Þ� �T ð9Þ

where d tð Þ ¼ u tð Þ; y tð Þ½ �, qm is the expected posterior of the m th

component, b is the learning rate, and qm is the learning factor cor-
responding to updating lm and rm. GGMR can adapt to changes in
operation beyond training data or the replacement of HVAC equip-
ment or systems.



Fig. 2. Typical floor plan of the large office building prototype.
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3. Case study buildings

In this section, we described the two passive chilled beam (PCB)
systems used as case studies: the PCB system in a modified DOE
large office reference building prototype implemented as an Ener-
gyPlus model and a real PCB system in the Living Lab 1, Herrick
Laboratories at Purdue University. We used GGMR models to pre-
dict cooling rates for both PCB systems. The cooling rates _Q (kW) of
PCB systems are defined by Eq. (10).

_Q ¼ _mCp tr � tsð Þ ð10Þ
where _m is supply water flow rates of PCB systems (kg/s); Cp is the
specific heat of water (kJ/(kg�K)); tr is the return water temperature
of PCB systems(�C); ts is the supply water temperature of PCB sys-
tems (�C).

3.1. The DOE large office reference building prototype

The EnergyPlus model for the DOE large office reference build-
ing prototype [30] was used and modified in this study. The large
office building prototype has 12 stories and a basement. The geom-
etry model of this prototype is shown in Fig. 1. Thermal zones of
the basement, the first floor, the middle floor (6th floor), and the
top floor were explicitly added in the model. To account for floor
area, zone loads, and internal gains, and system and equipment siz-
ing of typical floors for the 2nd through 11th stories, a ‘‘multiplier”
of 10 was applied to the middle floor’s thermal zones. The typical
floor plan of the building is shown in Fig. 2. There are five condi-
tioned thermal zones per floor including four perimeter zones
and one core zone. The average window to wall ratio is 40%.

In the EnergyPlus models for the large office building prototype,
there are four single duct variable air volume (VAV) systems serv-
ing the basement, first floor, middle floors, and top floor, respec-
tively. There are two water-cooled chillers and one natural gas
boiler providing chilled water and heating hot water to water coils.
The EnergyPlus models across different climate zones comply with
ANSI/ASHRAE/IESNA Standard 90.1-2004 [31] for new
construction.

In this study, the HVAC system models were modified. Models
for a passive chilled beam system and a baseboard water heating
system were employed for cooling and heating. The air systems
were modified to only meet latent loads and ventilation require-
ments. The passive chilled beam system accounts for a majority
of the building’s sensible cooling loads. The system diagram of
Fig. 1. Geometry model of the large office building prototype.
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the modified mechanical system is shown in Fig. 3. A water-to-
water heat exchanger was added to the secondary loop. The chilled
water supply temperature setpoint was 15 �C to the passive chilled
beams in the thermal zones.

3.2. Living Lab 1, Herrick Laboratories at Purdue University

Living Lab 1—one of the four living labs in the Herrick Laborato-
ries at Purdue University —is equipped with high-performance
HVAC systems. Living Lab 1 (W: 9.5 m� L:10.7 m) is an open office,
which has a capacity of 20 people and features a passive chilled
beam system (PCB), a hydronic radiant slab system (RS), displace-
ment ventilation from a variable air volume system (VAV), and a
south-facing double-skin façade with motorized openings. The
indoor environment and the HVAC systems are intensively moni-
tored and controlled via a Niagara/AX software framework through
Tridum JACE controllers which can connect devices (sensors and
actuators) and systems utilizing diverse communication protocols.

For the purpose of this study on modeling PCB cooling rates,
both PCB and VAV systems control the space temperature simulta-
neously and serve space cooling while the RS system and façade
ventilation were off. As shown in Fig. 4, there are 30 passive chilled
beam panels installed in the suspended ceiling of Living Lab 1. The
dimension of each chilled beam panel is 1.2 m (L) � 0.52 m
(W) � 0.14 m (H). The 30 panels are divided into three banks
(North, Middle, and South). A control valve for each bank can mod-
ulate water flow rates. For this study, the supply water tempera-
ture to the PCBs was controlled based on a PI feedback loop to
maintain the space temperature thermostat at a setpoint
(22.8 �C). The supply water temperature was adjusted by mixing
hot water that was heated using the campus district heating with
cold water cooled by campus chilled water using heat exchangers
that are depicted in Fig. 4. This is not a typical arrangement and
control approach for a PCB system because it was designed to be
used for experimental purposes and not for energy efficiency. A
typical PCB system would be connected directly to cooling equip-
ment controlled to maintain a constant supply water temperature
to the PCBs that is above the dewpoint of the room air with feed-
back control of the PCB water flows to maintain the zone temper-
ature setpoint. This was not possible for this experimental system
because the cooling is provided with a campus-wide chilled water
system that provides water at a temperature that is well below
room air dewpoint. Even though this system is not typical, it is still
useful for studying the application of GGMR method to a complex
HVAC system. During operation in cooling mode for this study, the
supply water temperature setpoints to the PCBs varied between
16.7 and 22.8 �C for the living lab. The system control sequence
was set to ensure that the supply water temperature setpoint
was always above the dew point of the space air to avoid any risk



Fig. 3. System diagram of the chilled water loop for the large office building model (HX: heat exchanger, CC: cooling coil, PCB: passive chilled beam).

Fig. 4. System diagram of passive chilled beam system for Living Lab 1 (HX: heat
exchanger, PCB: passive chilled beam).
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of condensation. When measured supply water temperatures are
above supply water temperature setpoint, cooling exchange
between campus chilled water and the PCB system was enabled.
Otherwise, heating exchange between campus hot water and the
PCB system was enabled. The supply water temperature setpoint
was used to set the control valve positions based on PI feedback
loops for heating/cooling exchange between water in the PCB sys-
tem and the campus hot and chilled water supply.
4. Selection of input parameters for GGMR

Both simulation data from EnergyPlus and measurement data
from Living Lab 1 were first normalized using Eq. (11) before being
used for GGMR model creation and testing. Each parameter z was

normalized based on its mean z
�
and standard deviation s. The nor-

malized parameter was represented by z0 in Eq. (11).The purpose of
normalization is to ensure that the parameters with large values
Table 1
Correlation coefficients between hour cooling rate of the passive chilled beam system and p
relative humidity; ZAT: zone air temperature).

OAT RH ZAT Op

PCB cooling rate (kW) 0.41 �0.35 �0.77 0.8
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don’t have too much influence on model prediction in data-
driven models [19].

z
0 ¼ z� z

�

s
ð11Þ
4.1. EnergyPlus simulation data

The simulation data from the EnergyPlus model for the large
office building located in Miami, Florida was used to demonstrate
the process of selecting input parameters for GGMR models that
predict cooling rates of the passive chilled beam system.

Correlation coefficients were first used to evaluate the correla-
tion between dependent variables and potential input parameters.
The correlation coefficients between hourly cooling rates and input
parameters such as environmental parameters and operation
schedules are summarized in Table 1. We selected the parameters
having relatively high correlations with cooling rates. Based on the
correlation coefficient results from Table 1, outdoor air tempera-
ture (OAT), outdoor air relative humidity (RH), zone air tempera-
ture (ZAT), HVAC system operation status (e.g., on/off), and solar
radiation have a relatively strong correlation with PCB cooling
rates. The HVAC system operation status determines when HVAC
systems are available for running. Therefore, those parameters
are selected as initial input parameters for performance evaluation.

A few scenarios with different combinations of input parame-
ters were tested. During the selection of input parameters, the
number of components M was set as 10 and the learning rate b
was 0.001 for GGMR models. Performance data for January (744
hourly data points) were used for model training and the data from
February to December (8016 hourly data points) for testing. For
evolving learning method, the required training data volume is rel-
atively small because key parameters of the means, covariance
matrices, and weight factors of Gaussian components are updated
with new testing data.

Table 2 summarized the list of input parameters for each sce-
nario. In scenario 1, OAT, RH, ZAT, operation status, direct radia-
otential input parameters for EnergyPlus models. (OAT: outdoor air temperature; RH:

eration status Direct radiation Diffuse horizontal radiation

9 0.53 0.6



Table 2
List of input parameters for each scenario using EnergyPlus simulation data.

List of Input Parameters

S1 OAT, RH, ZAT, operation status, direct radiation, and diffuse radiation
S2 OAT, ZAT, operation status, and direct radiation
S3 OAT, ZAT, operation status, direct radiation, and historical cooling rates

for the previous three hours
S4 OAT, ZAT, operation status, direct radiation, historical cooling rates for

the previous three hours, and the occupancy ratio

Table 3
Statistical analysis results for performance prediction of scenarios 1–4 with
EnergyPlus simulation data.

PCB cooling rate S1 S2 S3 S4

CV-RMSE 20.5% 25.2% 8.7% 5.8%
MBE �1.8% �4.6% �0.8% �0.3%
R2 0.936 0.888 0.990 0.995
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tion, and diffuse radiation were selected for PCB cooling rates. In
scenario 2, RH and diffuse radiation were removed and the input
parameters were OAT, ZAT, operation status, and direct radiation.
In scenario 3, PCB cooling rates for the previous three hours were
added as inputs to scenario 1 to consider the high thermal capac-
itance of both the PCB system and the large office building. In sce-
nario 4, the 3-hour time history for PCB cooling rates was added to
scenario 2 and an additional input was included that is the ratio of
the number of occupants to full occupancy. The occupancy input is
important in accounting for differences that occur between week-
days and weekends.

Statistical testing results for the coefficient of variation of root
mean square error (CV-RMSE), normalized mean bias error
(MBE), and R squared (R2) of scenarios 1–4 are summarized in
Table 3. Eqs. (12) to (13) are for calculating CV-RMSE, MBE, and R2.

CV � RMSE ¼ 1

Y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Yi � bY i

� �2
r

N

MBE ¼
Pn

i¼1 Yi � bY i

� �
N � Y

� ð13Þ

R2 ¼ 1�
Pn

i¼1 Yi � bY i

� �2

Pn
i¼1 Yi � Y

�� �2 ð14Þ
Fig. 5. Comparison of predicted PCB cooling rates before evo
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where N is the number of samples, Y represents the measurements,bY represents the predictions from GGMR.
For scenario 1, the coefficient of variance of the root mean

square error (CV-RMSE) was 20.5% with Gaussian component evo-
lution in the GGMR. For scenario 2 without RH and diffuse radia-
tion as inputs, the CV-RMSE increased to 25.2%. However, the
model for this input scenario still meets the modeling require-
ments of ASHRAE Guideline 14 [32]. For scenario 3 that uses recent
historical data for PCB cooling rates, the prediction performance
improved significantly with a CV-RMSE of 8.7% compared to
20.5% without the time history. Scenario 4 that also employed
the 3-hour time history, but with an occupancy input and without
RH and diffuse solar as inputs, had the best prediction accuracy
with a CV-RMSE of 5.8%.

All of the results presented in Table 3 employed Gaussian com-
ponent evolution associated with the GGMRmethod. The CV-RMSE
was reduced from 14.8% with GMR (without the evolvement) to
8.7% with the evolvement of Gaussian components in GGMR.
Fig. 5 contrasts the prediction difference before and after evolving
the GMR model and shows predicted PCB cooling rates before
evolving (GMR) from July 3 to July 9 and after evolving (GGMR)
from July 10 to July 16 in comparison with EnergyPlus model sim-
ulation results when employing the scenario 3 inputs. The ‘‘Mea-
sured” PCB cooling rates were from EnergyPlus model simulation
results. Both the GMR model (before evolving) and the GGMR
model (after evolving) are compared to the ‘‘Measured” results in
this figure. Before evolving, the predicted PCB cooling rates from
the GMR model tend to underestimate both peak cooling demands
and the cooling rates when the cooling rates were low. The hourly
averaged offset between the predicted cooling rates from the GMR
model and ‘‘Measured” cooling rates for 07/03–07/09 is �2.9% (-
19.2 kW) of the hourly averaged ‘‘Measured” cooling rates. After
evolving by updating the means, covariance matrices, and weight
coefficients of Gaussian components, the predicted PCB cooling
rates from the GGMR model matched the peak cooling demands
relatively well. The hourly averaged offset between the predicted
cooling rates from the GMR model and ‘‘Measured” cooling rates
for 07/10–07/16 is 1.0% (6.38 kW) of the hourly averaged ‘‘Mea-
sured” cooling rates. Although predicted cooling rates for the PCB
system from GGMR for scenario 3 and the simulation data from
EnergyPlus model agreed well in general, the GGMR model sub-
stantially overestimated PCB cooling rates on Saturday morning
as shown (circled) in Fig. 5.

The differences in internal heat gains between weekdays and
weekends most likely account for inaccurate predictions of PCB
cooling rates for GGMR during those weekend hours. The sched-
ules for occupants, lighting, and equipment for weekdays and
lving (GMR) and after evolving (GGMR) for scenario 3.
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Fig. 7. Predicted PCB cooling rates after evolving (GGMR) for scenario 4.
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Saturdays are shown in Fig. 6. Schedules for internal heat gains on
Sundays were constant values (no occupants, lighting: 0.05, equip-
ment: 0.3). From Fig. 6, it can be observed that schedule patterns
for weekdays and weekends are consistent between occupants,
6

lighting, and equipment. Therefore, in scenario 4, the input param-
eters for the GGMR model included only the occupant schedule
category. Fig. 7 shows comparisons of time series data between
GGMR predictions in scenario 4 and EnergyPlus simulation results
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for the two weeks. In comparison with the GGMR prediction in sce-
nario 3, the GGMR model in scenario 4 agrees extremely well with
the simulation data and can accurately predict PCB cooling rates
for both weekdays and weekends.

Based on prediction results, we selected the input parameters
from scenario 4 for the GGMR model. The input parameters in sce-
nario 4 are OAT, ZAT, HVAC operation status, occupant schedule,
direct solar radiation, and PCB cooling rates for the previous three
hours.
4.2. Living Lab 1 measurement data

A similar procedure was used to select input parameters and
performance parameters for the Living Lab PCB system. During
the selection process for input parameters, we used a learning rate
of b = 0.001 and the number of components of M = 10.

Trend data between April 1, 2021 and July 26, 2021were col-
lected via the Niagara system. Compared with the EnergyPlus sim-
ulation results, the prediction of PCB cooling rates for this real
system is challenging due to the dynamics of the PCB system oper-
ating with actual control sequences including PI control loops in
real-time. 5-minute time interval trend data for Living Lab 1 were
obtained from Niagara and then preprocessed to remove any miss-
ing data and/or outliers. Measurement data obtained during equip-
ment maintenance or when sensor communication issues occurred
were also removed for baseline model development. Based on the
current control sequence, the PCB system can provide both heating
and cooling to the space. However, only cooling rates from PCB
were considered when the supply water temperature was lower
than the space temperature.

As shown in Fig. 8, significant and frequent fluctuations of cool-
ing rates were observed for data with the five-minute interval.
Instead of directly using the five-minute data, we averaged the
five-minute cooling rates over each hour as a means of filtering
the significant fluctuations as shown in Fig. 8. The hourly average
cooling rates for the PCB system were used for GGMR model
creation.

A similar approach was taken for the selection of input param-
eters as was used for the EnergyPlus simulation data. Based on the
correlation coefficients summarized in Table 3 for use of hourly
Fig. 8. Comparison of PCB cooling rates with 5-minute average and 1-hour average.

Table 4
Correlation coefficients between cooling rates of the passive chilled beam system, and pote
temperature).

OAT RH ZAT P

Cooling rates (kW) 0.47 �0.42 0.37 0

7

average data, the input parameters considered for cooling rate pre-
dictions are the outdoor air temperature, outdoor relative humid-
ity, zone air temperature, average PCB control valve position,
chilled water valve position, and double façade temperature. The
training data for the PCB system were from April 01, 2021 to
May 31, 2021 and the testing data were from June 1, 2021 to July
26, 2021.

Four scenarios with different input parameters were summa-
rized in Table 4. The overall test performance results for each sce-
nario were shown in Table 5. In scenario 1, OAT, outdoor relative
humidity, ZAT, average PCB control valve position, chilled water
valve position, and double façade temperature were selected as
the input parameters for GGMR. For scenario 1, the CV-RMSE
was 32.4% after the evolvement of Gaussian components with an
R-square of 0.707 for testing data. The statistical results do not
meet the requirement for CV-RMSE by ASHRAE Guideline 14 [32].

In scenario 2, we took a nested GGMR modeling approach for
predicting cooling rates using predicted PCB water flow rates.
The PCB cooling rates have a strong correlation coefficient with
water flow rates (0.44) because the cooling rates are determined
with an energy balance using water flow rates and the temperature
difference between supply and return water. The supply water
flow rate for the passive chilled beam system was first predicted
using a Gaussian mixture model (GMR). With other input parame-
ters in scenario 1including OAT, outdoor relative humidity, ZAT,
average PCB control valve position, chilled water valve position,
and double façade temperature, the predicted chilled water flow
was fed into a GGMR for the prediction of the PCB cooling rates.
The flow rates in GMR were predicted using the PCB control valve
position and differential pressure as inputs. The CV-RMSE for flow
prediction was 4.5% with an R -square of 0.980. The CV-RMSE for
cooling rate prediction in scenario 2 was reduced to 28.0%.

Similar to scenario 3 for predicting cooling rates of the PCB sys-
tem in EnergyPlus simulation, historical data for PCB cooling rates
of the previous three hours were also added to the GGMR model
based on scenario 2. The prediction was improved with slightly
reduced CV-RMSE and increased R-square. In scenario 4, OAT and
outdoor relative humidity were removed from the input parame-
ters. Statistical results for GGMR in scenario 4 were similar to
the results in scenario 3. Input parameters in scenario 4 were
selected for further testing. These parameters include ZAT, average
PCB control valve position, chilled water valve position, double
façade temperature, predicted flow rate, and historical cooling
rates for the previous three hours.
5. Evaluation of performance parameters

In this section, we consider the impacts of performance param-
eters in the GGMR model training on performance prediction with
the selected list of input parameters of scenario 4 for PCB systems
in both simulation and living lab 1. These performance parameters
include the number of components M, train data size N, and the
learning rate b.

5.1. Number of components m and training data size N

The number of components affects the accuracy and complexity
of Gaussian mixture models. Because of the evolvement of key
ntial input parameters for Living Lab 1. (OAT: outdoor air temperature; ZAT: zone air

CB valve Chilled water valve Double façade temperature

.12 0.55 0.61



Table 5
List of input parameters for each scenario using Living Lab 1 measurement data.

List of Input Parameters

S1 OAT, outdoor relative humidity, ZAT, average PCB control valve position,
chilled water valve position, and double façade temperature

S2 OAT, outdoor relative humidity, ZAT, average PCB control valve position,
chilled water valve position, double façade temperature, and predicted
flow rate

S3 OAT, outdoor relative humidity, ZAT, average PCB control valve position,
chilled water valve position, double façade temperature, predicted flow
rate, and historical cooling rates for the previous three hours

S4 ZAT, average PCB control valve position, chilled water valve position,
double façade temperature, predicted flow rate, and historical cooling
rates for the previous three hours.

Fig. 9. The variation of CV-RMSE with the number of components in the Gaussian
mixture model for EnergyPlus simulation with one-month training data.

Table 6
Statistical analysis results for performance prediction of each scenario with Living Lab
1 measurement data.

PCB cooling rate S1 S2 S3 S4

CV-RMSE 32.4% 28.0% 27.3% 27.4%
MBE 4.5% 4.5% �0.8% 3.2%
R2 0.707 0.79 0.809 0.805
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parameters in growing Gaussian mixture regression models with
measurement data, traditional model discrimination methods such
as Akaike information criterion (AIC) or Bayesian information crite-
rion (BIC) methods [33] are not applicable for identifying the opti-
mal number of components. Instead of using AIC or BIC, a range of
numbers of components was tested for data from both EnergyPlus
simulation and Living Lab 1. The number of components was
selected based on the best statistical results.

The impacts of the number of components in growing Gaussian
mixture regression models on testing accuracy for EnergyPlus sim-
ulation data are illustrated in Fig. 9 for one month of training data.
Without the evolvement of Gaussian components, the optimum
number of components is 15. With the evolvement in GGMR, the
optimum number of components was 20.
Table 7
Statistical analysis results for performance prediction with increased training data size.

PCB cooling rate EnergyPlus (N = 1-mon.) En

Optimum number of components 20 60
CV-RMSE 4.6% 3.8
MBE �0.3% �0
R2 0.997 0.9
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Table 6 shows the impact of training data size on model predic-
tion accuracy for both the simulation and measurement data. We
observed that the optimum number of components varies with
the number of training data points. The optimum number of com-
ponents for GGMR was 60 with six months of training data in com-
parison with 20 components with one month of training data for
EnergyPlus simulation. When measurement data from Living Lab
1 was used, the optimum number of components for GGMR was
15 with two-month training data while the optimum number of
components was 20 with three-month training data. For both sim-
ulation and measurement data, the model prediction accuracy
increased with the amount of training data. For the simulation
data, increasing the training data size from one month to six
months led to a decrease of CV-RMSE for cooling rate prediction
from 4.6% to 3.8% and an increase in the R-square from 0.997 to
0.998. For the measurement data, the CV-RMSE for the prediction
of PCB cooling rates decreased from 25.8% to 19.6% and the R-
square increased from 0.833 to 0.921 by adding one more month
of training data. Access to good-quality training data would
improve the accuracy of the GGMR prediction.
5.2. Learning rate b

Learning rate is another key performance parameter in GGMR.
We tested five different learning rates (0.0001, 0.001, 0.01, 0.1,
and 0.2) with one-month training data and 20 Gaussian compo-
nents using EnergyPlus simulation data. Those learning rates were
tested with two-month training data and 15 Gaussian components
using measurement data from Living Lab 1. Results for the impact
of learning rate on testing accuracy are presented in Table 7.

The accuracy of PCB cooling rate prediction when the learning
rate b was set as 0.001 and 0.01 is relatively higher than that with
other tested learning rates. The selection of the learning rate in
GGMR represents a trade-off between the updating speed of the
Gaussian component and model stability. When the learning rate
was increased to 0.1 and 0.2, the prediction accuracy of the GGMR
model developed using EnergyPlus simulation data was compro-
mised. The prediction with high learning rates became unstable
and occasionally did not converge, requiring much more simula-
tion time than when using smaller learning rates. The prediction
accuracy was also significantly reduced with relatively large learn-
ing rates for measurement data from Living Lab 1. For example, the
CV-RMSE was increased from 25.8% to 42.9% for PCB cooling rate
prediction when the learning rate was increased from 0.1 to 0.2.
A learning rate of 0.001 was selected for PCB cooling rate predic-
tion for the testing data from EnergyPlus simulation and a learning
rate of 0.01 was used for the testing data of Living Lab 1
measurement.
6. Discussion

6.1. Measurement data vs simulation data

The input parameters of the GGMR model for the data from
EnergyPlus simulation include OAT, ZAT, operation status, occu-
pant schedule, direct solar radiation, and PCB cooling rates for
ergyPlus (N = 6-mon.) LL1 (N = 2-mon.) LL1 (N = 3-mon.)

15 20
% 25.8% 19.6%
.2% �0.2% �2.2%
98 0.833 0.921



Fig. 10. The hourly PCB cooling rate prediction for testing data from Living Lab 1 measurements.
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the previous three hours. The input parameters of the GGMRmodel
for the data from Living Lab 1 measurements include ZAT, average
PCB control valve position, chilled water valve position, double
façade temperature, predicted flow rate, and historical cooling
Fig. 11. Comparisons of mean vectors for two components (components 3 and 5) of
the model before and after evolving for Living Lab 1.
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rates for previous three hours. For both GGMR models, historical
cooling rates in previous hours improved PCB cooling rate predic-
tions. Since they have a direct effect on space cooling loads, both
OAT and direct solar radiation were selected as input parameters
for the model built from EnergyPlus simulation. Without measure-
ment data for solar radiation, the double façade space temperature
is a surrogate that indirectly reflects the effect of solar radiation
heat gains on Living Lab 1. For the model developed from Energy-
Plus simulation data, HVAC operation status was also used to
describe the availability of the PCB system. The PCB system oper-
ates 24/7 in Living Lab 1, and therefore the operation status was
not included as one of the input parameters.

Fig. 10 presents hourly PCB cooling rate predictions and mea-
surements associated with testing data for Living Lab 1. Two
months of training data, 15 Gaussian components, and a learning
rate of 0.01 were used for developing the GGMR model using the
Living Lab 1 measurement data. We observed that hourly cooling
rates ramp up from the early morning and usually peak at around
15:00 or 16:00 in the late afternoon although there are some fluc-
tuations of hourly cooling rates throughout the day. These fluctua-
tions due to imperfect control of the system make hourly cooling
rates for the PCB system difficult to predict. This is also the reason
that the GGMR model developed from simulation data performed
much better (CV-RMSE = 4.6% and R2 = 0.997) than the GGMR
model developed from measurement data (CV-RMSE = 23.7% and
R2 = 0.867). Furthermore, the GGMR model developed from mea-
surement data using the nested GGMR approach is more compli-
cated than that developed from building simulation data. The
flow rates were first predicted by a GMR model and then the pre-
dicted flow rates from the GMR model were used as one of the
Fig. 12. The changes of weight coefficients before and after evolving for Living
Lab 1.



Table 8
Statistical analysis results for performance prediction with different learning rates.

Learning rate 0.0001 0.001 0.01 0.1 0.2

EnergyPlus CV-RMSE 4.6% 4.6% 4.7% 6.4% 11.6%
MBE �0.9% �0.3% �0.9% 0.2% �0.2%
R2 0.997 0.997 0.997 0.994 0.981

Living Lab 1 CV-RMSE 26.3% 25.8% 23.7% 25.8% 42.9%
MBE 0.08% 0.2% 0.5% 0.8% �0.8%
R2 0.825 0.833 0.867 0.858 0.563

Table 9
Statistical analysis results for performance prediction with various climate zones.

Miami (1A) Houston (2A) Phoenix (2B) Atlanta (3A) Los Angeles (3B) Baltimore (4A) Albuquerque (4B)

Number of components 20 25 25 20 40 40 25
CV-RMSE 4.6% 8.4% 5.2% 9.5% 4.8% 11.0% 7.7%
MBE �0.3% �1.1% �0.4% �0.9% �0.4% �1.3% �1.1%
R2 0.997 0.993 0.997 0.991 0.998 0.990 0.994
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input parameters for predicting PCB cooling rates in the GGMR
model.

Key parameters of Gaussian components including weight coef-
ficients am, means lm, and covariance matrices rm:of Gaussian
components were continuously updated for every new data point
during testing. Fig. 11 illustrates the changes of mean vectors for
two components (components 3 and 5) of the model before and
after evolving using the training data. Fig. 12 shows the changes
of weight coefficients before and after evolving with testing data.
The changes of weight coefficient ranged from 0.16% to 13.8%.
Among the 15 components, components 3, 8 and 14 experienced
relatively large changes of 13.8%, 6.2%, and 6.4%, respectively.
6.2. Simulation data from different climates

In addition to GGMR model development for Miami, FL (ASH-
RAE Climate 1A) based on EnergyPlus simulation data, GGMRmod-
els were developed for six other climate zones with relatively high
cooling demands in the U.S. including Houston (2A), Phoenix (2B),
Atlanta (3A), Los Angeles (3B), Baltimore (4A), and Albuquerque
(4B). The GGMRmodels were created based on one-month training
data and tested for the rest of 11 months using EnergyPlus simula-
tion data. The learning rate was fixed at 0.001. In all the simulation
models, the PCB cooling system accounted for the majority of the
sensible cooling demands for the large office building prototype
and VAV systems were only sized to account for latent loads and
ventilation requirements.

As summarized in Table 8, the CV-RMSEs of GGMR models for
predicting PCB cooling rates ranged from 4.6% to 11.0% for the
seven climate zones with high R-squares all above 0.99. The input
parameters for all the GGMR models were OAT, ZAT, operation sta-
tus, occupant schedule, direct solar radiation, and PCB cooling rates
for the previous three hours. It should also be noted that the opti-
mum number of components varies with the climate zones.Table 9.
7. Conclusion and recommendation

In this study, the GGMR method was applied to predict cooling
rates of passive chilled beam systems using data from real system
measurements and building energy simulations. The key parame-
ters in growing Gaussian mixture regression models, such as mean
vector and covariance matrix for each Gaussian component, evolve
as system performance over time due to seasonal variation or sys-
tem degradation. Both CV-RMSE and MBE of the GGMR models for
10
PCB cooling rate prediction meet the requirements of ASHRAE
Guideline 14 for hourly data prediction.

This case study demonstrated that GGMR is an effective evolv-
ing learning-based data-driven method for accurately predicting
PCB system performance. The selected input parameters for the
models are commonly monitored and can be trended. Baseline
models representing the normal operation of a PCB system can
be used for advanced applications such as fault detection and diag-
nosis and model predictive control. This GGMR method can poten-
tially be applied to other high-performance complex systems in the
built environment, such as radiant slabs and hybrid ventilation.

Although reasonable CV-RMSE and R-square for testing data
were obtained using both simulation and measurement data,
advanced features [29] of GGMR models could be further explored
for complex HVAC systems. These features include training and
creating new Gaussian components, splitting oversized Gaussian
components, or merging Gaussian components with similarities.
The core of a creating, splitting, and merging approach is to set
up the mean vector and covariance matrix for newly generated
components. Importantly, thresholds switching between updating,
creating new components, splitting, and merging need to be
selected and tested for each model. In addition, a hybrid modeling
approach between evolving learning-based data-driven models
(e.g. GGMR), physical models, and grey-box models (e.g. resis-
tance–capacitance thermal network models) could be tested for
complex systems that are used in the built environment. The
hybrid approach could take advantage of the benefits of different
methods for modeling building performance.
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