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Abstract— We model a vehicle equipped with an au-
tonomous cyber-defense system in addition to its inherent
physical resilience features. When attacked, this ensemble
of cyber-physical features (i.e., “bonware”) strives to resist
and recover from the performance degradation caused
by the malware’s attack. We model the underlying dif-
ferential equations governing such attacks for piecewise
linear characterizations of malware and bonware, develop
a discrete time stochastic model, and show that averages of
instantiations of the stochastic model approximate solutions
to the continuous differential equation. We develop a
theory and methodology for approximating the parameters
associated with these equations.

I. INTRODUCTION

In this paper, we report progress we have made
on a project called Quantitative Measurement of Cy-
ber Resilience (QMoCR) whose goals include building
a mathematical model to characterize cyber resilence,
and finding objective quantitative measures of cyber
resilience. In [1], we began to develop the tools to
model cyber resilience mathematically. In a companion
paper [2], we described an experimental testbed we
have developed, and gave examples of the data we can
produce. In the current paper, we continue to develop
the mathematical model. In particular, we expand on the
piecewise linear model we described in [1] and exhibit
its stochastic counterpart.

The QMoCR program has focused on two research
areas: (1) mathematical modeling of cyber resilience and
(2) framing an infrastructure for experimentation and
measurements.
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In the mathematical modeling work, we model the
impact on a surrogate vehicle of actions by malware
as well as “bonware” — the ensemble of cyber-physical
features that defend the vehicle’s computer system and
allow it to recover from attack. We develop a differential
equation that models the effects of these competing
forces on the system. We extend this to a stochastic
differential equation model that captures the effects of
uncertainty and randomness in the activity times of
malware and bonware.

In parallel with the mathematical modeling, we have
developed an inexpensive experimental environment to
test the effects of malware and bonware on the Controller
Area Network (CAN) bus of a generic military vehicle.
Our testbed includes (a) a PASTA platform: a vehicle
security testbed developed by Toyota which features
a set of connected electrical control units or ECUs),
(b) Unity: a popular game development platform, and
(c) the Active Defense Framework (ADF): a government-
developed framework used to quickly produce and test
network-based cyber-defense techniques. When running
this environment, we capture data that can be used
to characterize cyber resilience metrics of the modeled
vehicles.

Although we have made significant progress in both
of these areas, we have also identified some areas that
may benefit from collaboration with research partners.
Thus far, we have modeled the impact on a single
vehicle. By considering a network of vehicles, many
interesting problems can be formulated. If one vehicle
is under attack, what are the impacts on other vehicles
that exchange information with this vehicle or that are
in physical proximity? What are the probabilities that
neighboring vehicles in the network are also under
attack? How can our understanding of vehicle networks
and robotics inform each other? What other techniques
can we draw from to formulate models and compute
metrics (for example game theory, neural networks,
dueling network architectures, etc.)?



II. PRIOR WORK

In [1], we reviewed literature related to qualitative and
quantitative assessments of a cyber system. We refer
the reader to that paper for a more detailed summary.
Here, we briefly review the quantitative work to date,
and motivate the need for stochastic modeling of cyber
resilience.

Most approaches to quantitative measurements of cy-
ber resilience tend to involve the area under the curve
(AUC) method [3, 4]. An experimental system engages
in a collection of missions where it subject to cyber
attack. Data containing the functionality of the system
is collected, and a metric based on the area under the
functionality curve is computed. Figure 1 illustrates the
concept. One or more attacks compromise a system,
causing the functionality to diminish. The ratio of the
area under the curve and the area under the baseline
curve (recorded during a mission where there is no
attack) is computed.
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Figure 1. Resilience can be measured by subjecting a system to cyber
attacks computing the ratio of the area under the compromised system
functionality curve to that of the normal functionality curve.

This class of measures seems reasonable, however,
AUC-based resilience measures are rather simple, and
reveal little about the underlying processes. In [1] we
began to explore ways to quantify the resilience impact
of the bonware and quantify the impact of malware on a
system. We also looked to understand how these values
of impactfulness vary over time during an incident.

III. CONTINUOUS MODEL

We are interested in the functionality of our system,
F(t), which we defined in [1] to be the time derivative
of mission accomplishment. We also proposed a baseline
functionality (normal functionality), which in general
could be time varying, but in our analysis, we take
normal functionality, Fy(t) = F\, to be a constant.
We also assume that the system, prior to any attack
or other deviation from normal operations, is operating

normally: F(ty) = Fy. We assume that functionality
is differentiable at least once and both malware impact
and bonware impact are continuous functions of time:
F € C' and M, B € C°. The impact on functionality
is the sum of the impacts of malware and bonware, and

dF

o T QOF(E) = ENB(1), (D
where Q(t) = M(t) + B(t). In [1], we reasoned that
B(t), M(t) >0, Fx > 0, and Fy > F(t) > 0 and found
the general solution to this first-order linear differential
equation with initial condition:

t
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0

In [1] we also exhibited solutions for a number of
elementary examples. Figure 2 contains plots of piece-
wise constant and piecewise linear models. The models’
differential equations and their solutions are summarized
in Table 1.

IV. STOCHASTIC DIFFERENTIAL EQUATION MODEL

In this section, we develop the stochastic differential
equation (SDE) model associated with the piecewise
linear model that we introduced in [1] (see Table I). The
extension is motivated by the discontinuous nature of
the notional data in Figure 1. Whereas the differential
equation model assumed a smooth functionality curve,
our stochastic version allows for a more punctuated
attack-and-restoration pattern. In [1] we obtained

dF
S = (R — F(1) AX0)EY(t) — F()A™ () E™ (1)
which we approximate by the stochastic difference equa-

tion
Fy, = Fp 1+ A (k) E* (k) (Fn—Fi_1)—A™(k)E™ (k) Fy
2)

with parameters

A™(t) ~ Bern(0™(t)),
A1) ~ Bern(ﬁb(t)) ,
E™(t) ~ Unif(0,7™(¢)),

Eb(t) ~ Unif(0,7°(t)),

where Bern(¢) indicates the Bernoulli distribution with
rate 6 and Unif(0,~) indicates a uniform distribution
with lower bound 0 and upper bound ~.

Hence, 0™ (t) € [0,1] is the probability that malware
is successful at time ¢, #°(t) € [0,1] is the probability
that bonware is successful at time ¢, y™(t) € (0,1] is
the maximum fraction of damage inflicted by malware,
and 7°(t) € (0,1] is the maximum fraction of damage
undone by bonware.

Like the ordinary differential equation (ODE) model,
the SDE model allows for a number of interesting
variants. In the remainder of this section, we introduce
its extension to piecewise linear models.



Table 1
MATHEMATICAL MODELS DEVELOPED IN [1]
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A. Piecewise linear parameters

In the plot on the left of Figure 2, malware is propor-
tional to the difference of two step functions (malware
is active starting from time ¢ = 0 seconds and is
turned off starting at time ¢ = 20 seconds. Various
levels of bonware are depicted. Each is expressed as a
weighted step function, which turns on at time ¢ = 20
seconds. In the plot on the right, malware impact is
originally at M(0) = 0.5 and decreases over time, but
we enforce M > 0. Various linear functions of bonware
are shown. In both figures, curves with initial conditions
of {0,0.5,1.0} are illustrated.

In the example depicted in Figure 3, we set:

0™ (t) = 2M(t) = max(0,0.5 — 0.135¢),
0°(t) = 2B(t) = min(1, 0.6 + 0.009¢).
B. Relationship between continuous and SDE model

With the parameters of the stochastic model selected
appropriately, we showed in [1] that as the number of

stochastic realizations increases, the expectation of the
solution to the stochastic differential equation model
approaches that of the ODE model. In [1] we proved
the following theorem:

Theorem. Let y* ~ Bern(2M), y? ~ Bern(2B),
2™ ~ Unif (0, F), 22 ~ Unif(0, Fy — F},), and

Fro1=F —yreal + b2l (k=1,...,K).

Let Fy,, = Fflj, (j=1,...,n), then
Fr = E(Fy) = lim,oo Frp and Fy, = F(k), for
large k, where F(t) is the solution to the initial value

problem given by Equation 1 with F(0) = Fy.

V. GENERATING STOCHASTIC REALIZATIONS

In [1] we developed a method to extract the parameters
of the stochastic model associated with a continuous
model. In the left pane of Figure 3, we plot a continuous
model along with the average over 10,000 runs of its
associated stochastic model. After the first two or three
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Figure 2. Left: Normalized functionality, F'(¢t)/F\, is shown for piecewise constant models (Row 3 in Table 1). The malware impact is
M(t) = [u(t) — u(t — 20)] and the bonware impact is B = bu(t — 20). Initially, malware attacks at mission time ¢ = 0. At time ¢ = 20
seconds, bonware becomes aware of the attack, counters malware, and brings the system back towards normal operations. Right: Normalized
functionality, F'(t)/Fx, is shown for piecewise linear models (Row 5 in Table 1). The malware impact is M (¢) = max(0,0.5 — 0.1¢) and the
bonware impact is 3 = bg + 0.04¢. Both malware and bonware impacts are initially linear functions of time. When malware impact reaches
M = 0, then malware impact is zero but bonware impact continues to increase. The function w(t) is the unit step function: u(t) = 0 when

t < 0 and u(t) =1 when ¢ > 0. The figure on the right is from [1], used by permission.
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Figure 3. Left: The functionality for a piecewise linear model is shown in blue. M(¢) = max(0,0.25 — 0.00675t) and
B(t) = min(0.5,0.3 + 0.0045t). The average of 10,000 runs for the corresponding stochastic model is shown in orange. Right: The

average of n € {10,100, 1000, 10,000} runs. As the number of runs averaged increases, the aggregate stochastic model approaches the

solution of the continuous differential equation.

initial points, the agreement is excellent. In the right pane
of Figure 3, we show averages of n instantiations of the
stochastic model, for n € {10,100, 1000, 10,000}. As n
increases, we see better agreement with the solution to
the continuous differential equation model. In Figure 4,
we plot the absolute error between the two models. After
the first five seconds of data, the absolute error between
the continuous model solution and the average of the
stochastic ensemble is less than 0.01.

VI. PARAMETER ESTIMATION

Given the deterministic solutions to the stochastic
differential equations presented above (see Eq. 2), we
can now proceed to the estimation of model parameters
from data.

The parameter estimation has two components: (a)
a loss function that describes the distance between the
observed data Y and the data implied by the model with

parameter vector O, and (b) an optimization routine to
find those values for © that minimize the loss.

We considered two loss functions, depending on
whether the performance data are constrained to a fixed
domain or not. First, we considered the case where our
performance data is expressed as a fraction of optimal
performance and constrained to the open (0, 1) interval.
For such cases, a convenient option is the beta loss
function [5]:

Lg(©)= =) F.(0)log(Yi)
k
> (1= F:(©))log (1 -Yy),
k

where [}, (©) is the model-predicted performance at
the k™ observation, given parameter vector ©; and Y,
is the k" observed performance value. F} (©) can be
calculated as the deterministic solution to the SDE as in
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Figure 4. The absolute error of the stochastic model calculated as the
absolute value of the difference between the solution to the differential
equation and the average of 10,000 runs.

Equation 2, if that solution is available. Alternatively,
if such a solution is unavailable or cumbersome to
compute, Fj (©) could be numerically approximated
using an iterative method such as the forward Euler
method or other Runge-Kutta methods [6].

However, in our applications, the data are not usually
restricted to this limited domain — nominal performance
levels are often unknown or variable, and when they
are known, performance is often at 100%. Therefore, in
practice, we will use a squared error loss function [5]:

L. (©) =) (Vi — Fx(©))*.

k

The parameter vector O itself usually contains at
least some elements that are restricted to a limited
domain (e.g., the bonware and malware effectiveness
parameters are strictly positive). This leaves us with
a complex constrained optimization problem. Fortu-
nately, there exist several well-known algorithms that
can quickly find optima of loss functions under con-
straint, especially if the dimensionality of © is low,
as it is here. We opted for a Nelder-Mead simplex
optimization algorithm [7], which is fast, robust, and
easy to implement. The Nelder-Mead simplex proce-
dure is implemented in MATLAB’s fminsearch, R’s
optim, and Python’s scipy.minimize. The opti-
mization procedure will yield the estimated parameter
vector © = arg ming L, (©).

VII. NEXT STEPS

The next steps in the development of our technology
for quantifying cyber resilience will be to test the effi-
ciency and precision of these estimation models through
numerical experiments (i.e., simulation studies). While
the methods we use are well established, their application
to the piecewise linear SDE models is not.

One specific issue to examine is that of mimicry
— a phenomenon where multiple distinct combinations
of parameters yield predictions that are impossible to
distinguish with the available amounts of data. Figure 5
illustrates this issue. Here, we generated 10 runs of 60
observations using the same parameters as those used
to generate Figure 3: M(t) = max{0,m¢ — mqt}
and B(t) = min{0.5,by + b1t} with mg = 0.25,
my = 0.00675, by = 0.3, and b; = 0.0045. However, the
estimated parameters were Mg ~ 0.3146, m1 ~ 0.5227,
130 ~ (.5447, and Z;l ~ (0.5568. Despite these clear
differences, the model captures the fast-downward-then-
slow-upward pattern in the data well. This indicates that
the parameters of this model may be difficult to identify
given the other qualities of the data (such as the sample
size and magnitude of the random variability) or certain
specific features of the generating parameter sets (e.g.,
the relative timing of the effective onset of malware and
bonware).
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Figure 5. Model fit to the average of 10 runs. The model captures the
general trend of the data well despite the fact that estimated parameters
are quite different from the generating parameters.

VIII. LINEAR FILTERING

Obtaining an initial approximation of the parameters
of the stochastic difference equation (2), and positing
an estimate of their uncertains, we can apply linear
filtering theory, and frame our estimation problem as
a Kalman-Bucy filter [8]. Our piecewise linear model
includes abrupt changes in the trajectories of both mal-
ware and bonware. These changes can be accounted for
by allowing random maneuvers in the “target dynamics”
[9] or by employing interacting multiple models (IMM)
[10] [11] where multiple filters track the parameters and
a mechanism is established to choose which filter is
most appropriate at each time increment [12]. For each
of a finite set of parameters governing both malware
and bonware impact, a filter may be established, and



transitions can be tracked by evaluating the relative
performance of these filters. A related approach [13] is
to view our system as a linear stochastic system with
unknown jumps (changes in the linear models governing
the malware and bonware impacts). Since the changes
occur infrequently, a monitoring system is set up to
monitor filter residuals. When these become large, an
adjustment is made to the filter.

IX. DISCUSSION AND CONCLUSION

In [1], we have presented a broadly applicable frame-
work for the analysis of the cyber resilience of military
artifacts. Our framework relies on the construction of
a custom differential equation time series model that
shows good qualitative correspondence to the function-
ality of vehicles performing missions.

Both types of models can be extended to a large
variety of custom circumstances, including the case
where model parameters change gradually, abruptly, or
predictably as a result of experimental manipulation. In
this paper, we have extended the stochastic model to
include piecewise linear malware and bonware activities.
The piecewise linear model is mathematically tractable
and can be used to generate data that qualitatively cor-
respond to performance data in our lab tests. However,
further analysis is needed to establish the conditions
under which parameters of the model can be reliably
estimated.
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