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Abstract—More specialized chips are exploiting available
high transistor density to expose parallelism at a large scale
with more intricate instruction sets. This paper reports on a
compilation system GCD?, developed to support complex Deep
Neural Network (DNN) workloads on mobile DSP chips. We
observe several challenges in fully exploiting this architecture,
related to SIMD width, more complex SIMD/vector instructions,
and VLIW pipeline with the notion of soft dependencies. GCD?*
comprises the following contributions: 1) development of matrix
layout formats that support the use of different novel SIMD
instructions, 2) formulation and solution of a global optimization
problem related to choosing the best instruction (and associated
layout) for implementation of each operator in a complete
DNN, and 3) SDA, an algorithm for packing instructions
with consideration for soft dependencies. These solutions are
incorporated in a complete compilation system that is extensively
evaluated against other systems using 10 large DNN models.
Evaluation results show that GCD? outperforms two product-
level state-of-the-art end-to-end DNN execution frameworks
(TFLite and Qualcomm SNPE) that support mobile DSPs by up
to 6.0x speedup, and outperforms three established compilers
(Halide, TVM, and RAKE) by up to 4.5 x, 3.4 X, and 4.0
x speedup, respectively. GCD” is also unique in supporting
real-time execution of certain DNNs, while its implementation
enables two major DNNs to execute on a mobile DSP for the
first time.

Keywords-VLIW instruction packing; compiler optimization;
deep neural network; mobile devices;

I. INTRODUCTION

Despite the upcoming end of Moore’s law, the last several
years have seen a quick increase in transistors density. For
example, in going from 22 nm technology to 10 nm, Intel
chips saw a nearly 7x increase in transistor density, and the
most chip manufacturers are building chips with more than
100 million transistor per square millimeter at the time of
writing this paper!. All processors, but more particularly the
specialized ones, have exploited this density by supporting
an increasing amount of parallelism, often combined with
intricate ways in which this parallelism can be exploited. Even
in mainstream processors, the SIMD width has increased

Uhttps://www.techcenturion.com/7nm-10nm- 14nm-fabrication
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and the flexibility of programming API has improved with
AVX-512 instruction set that has features like scatter, gather,
and masks.

An example of a class of specialized chips that offer a
programming interface suited for general purpose processing
is the Digital Signal Processing (DSP) chips. Particularly,
smartphones have invested in sophisticated DSP chips that are
also capable of accelerating other highly parallel workloads.
To date, however, there is only a limited exploration on the
use of DSP chips for other workloads [1], [2], [3], [4].

In recent years, machine learning (ML) or deep learning
(DL) workloads, particularly the Deep Neural Networks
(DNNs), have emerged as important workloads that have
been targeted on a range of hardware — from mainstream
processors and accelerators [5], [6], [7], [8], [9], [10], [11],
[12] to mobile devices [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23] (including mobile DSP [24]) to
chips specifically designed for them [25], [26], [27], [28].
A particular requirement, and the driver of our work, is
performing inference using complex Deep Neural Network
(DNN) models on mobile phones in a time, memory, and
power-efficient manner. We observe that DSP chips are a
natural candidate for accelerating DNN inference in a mobile
setting, not only because mobile phone already have a DSP
chip, but also because these chips are optimized for matrix
and vector computations on fixed-point values.

This paper reports a compilation system that optimizes
Deep Neural Networks (DNNs) for execution on a mobile
DSP chip. As a quick motivation for this effort, results from
Table I show that with an existing framework, TFLite [14],
execution on a DSP chip outperforms both mobile CPU and
GPU in terms of execution time and power. Conceptually,
however, it also turns out that compiling for the DSP chip
involves dealing with many advanced features, especially
with respect to low-level parallelism exposed through its
instruction set, requiring techniques well beyond the ones
implemented in current systems or otherwise developed.
More specifically, modern (mobile) DSP chips have much
more complex SIMD instruction sets with both a larger
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Table I: Latency and Power Comparisons among Mobile
CPU, GPU, and DSP. Experiments are conducted on a
Samsung Galaxy S20 with TFLite [14]. CPU, GPU, and DSP
uses int8, float16, and int8, respectively. Power is collected by
the Android system interface. Results are for each inference.

- Latency (ms) Power*
Model #MACS" | cpyy GPU DSP|CPU GPU DSP
EfficientNei-h0 [33] 004G | 53 113 9.1 [107 16 10
ResNet [34] 41G | 62 344 139]62 23 10
PixOr [35] 88G | 280 646 43 | 67 18 1.0
CycleGAN [36] 186G |4320 477 450 | 55 12 1.0

T #MACS denotes the number of multiply-accumulate operations.
* Normalized by DSP’s power for readability.

width and a greater variety of instructions as compared
to the mainstream processors, and thus require techniques
beyond those explored in current literature [29], [30], [31].
Besides 1024-bit width, there are instructions combining
vector operations and reductions in different ways, going
even beyond Intel’s additions under VNNIW and FMAPS
extentions [32]. In addition, VLIW instructions exist that
can combine multiple SIMD instructions for simultaneous
execution, and there are other performance characteristics that
require new methods for effective mapping of the workload.

This paper develops techniques for exploiting these archi-
tectural features. Our contributions include:

« Methods for Exploiting Disparate SIMD Instructions.
We develop data layouts and execution schemes that use
different new instructions for key Deep Learning (DL)
kernels. We also investigate the trade-offs between different
approaches depending upon the size of the operands.
Formulating and Solving a Global Optimization Prob-
lem. We show how the choice of instruction (and their
corresponding data layouts) for one operator impacts
the choice for their successor and formulate a global
optimization problem. We show an optimal linear-time
solution for this problem when the operators form a linear
chain, and develop useful heuristics for the general case
of a computational graph.

« VLIW Packing (i.e., Scheduling) Problem. Considering
many unique aspects of our target architecture (including
the notion of soft dependencies, and latency sensitivity), we
present a novel Soft Dependencies Aware (SDA) algorithm
for instructions packing.

o Design of an End-to-End Compilation System. We
engineer a system that includes a nuanced code generation
design and several additional optimizations.

GCD? is extensively evaluated on 10 real-world large
DNNs, with a range of model sizes and operator counts
and designed for various ML tasks, targeting popular mobile
DSPs. Compared with two state-of-the-art DNN frameworks
(TFLite [14] and Qualcomm SNPE [37]) that support end-
to-end mobile DSPs execution, GCD? achieves 2.8x and
2.1x speedup (in geometric mean), respectively, reaching
real-time execution for some of them for the first time. In
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fact, for two of the models, GCD? implementation supports
mobile DSP execution for the first time. While comparing
with three established compilers (Halide [38], TVM [5],
and RAKE [4]) that support efficient kernels execution on
mobile DSPs, GCD? achieves 4.5, 3.4x, and 4.0x speedup,
respectively. GCD? outperforms others primarily because of
improved SIMD execution and optimized VLIW instruction
scheduling and the evaluation justifies the choices made in
GCD?’s algorithms for these optimizations.

II. EXECUTING DNNS ON MOBILE DSPs

Modern mobile DSPs have become increasingly powerful
with key features as follows: 1) larger SIMD widths, 2) richer
vector instructions with growing computation capabilities, and
3) more flexible instruction pipelines that can tolerate certain
data dependencies. Take Qualcomm Hexagon 698 DSP [39]?
as an example. Its SIMD width is 1024-bit, twice that of
Hexagon 680 [40] and its instruction set includes multiple
SIMD/vector instructions (e.g., vimpy, vmpa, and vrmpy
elaborated in Section III), and can support complicated
MAC (multiply—accumulate) operations. Multiple vector (and
scalar) instructions can be packed into a VLIW pipeline,
further improving the computational throughput. Finally, the
pipeline offers hardware mechanisms to guarantee execution
correctness even in the presence of certain dependencies,
thus offering more flexibility.

Mobile DSPs support fix-point operations (8/16/32-bit)
with extremely high performance (e.g., the theoretical peak
for Hexagon 698 DSP is 15 TOPS [41]). While considering
DSP chips for DNN execution, the important context here
is that Quantization, a well-known technique to convert
floating-point values to integer ones, has been very effective
in accelerating DNN executions, particularly on resource-
constraint devices [42], [43]. The cutting-edge DNN ac-
celeration frameworks, (e.g., TFLite [14] and SNPE [37],
and Qualcomm’s built-in library Hexagon NN [44]) aim to
combine the benefits of both quantization and mobile DSPs
to accelerate DNN execution, achieving both (near) state-of-
the-art model accuracy and lower latency as compared to
the other parts of the mobile SoC (i.e., CPUs and GPUs).
Similarly, MobiSR schedules the super-resolution model over
Heterogeneous Mobile Processors (including CPU, GPU, and
DSP) [45].

Despite these rapid developments, compilers and libraries
built for DSP chips cannot fully exploit the device’s computa-
tion power — this applies to, but is not limited to, the compilers
and libraries for DNN execution listed above. Specifically,
the performance of the mobile DSP is sensitive to 1) the
input/output data layout, and 2) the VLIW instruction packing

2Qualcomm Snapdragon is one of the most popular SoC and many
generations of Snapdragon are equipped with Hexagon DSPs. Although
our presentation and evaluation is on Hexagon DSP, the work is generally
applicable to other mobile DSPs as well, e.g., Cadence, which is the other
major player in the mobile DSP market.
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Table II: Execution Latency w/ Different SIMD Instruc-
tions (and Layouts) for Matrix Multiplication C = A x B.
M, K, and N denote the dimension size of Matrix A (M x K),
B (K x N), and C (M x N), respectively. Execution latency
and total data size with padding are normalized by vmpy
for readability. Smaller numbers mean better latency or less
padding. Bold ones denote the best case.

Execution Latency Total Data Size w/ Pad

M K vmpy vmpa vVvrmpy | vimpy vmpa VvImpy
32 32 32 1.00 0.79 0.63 1.00 0.56 0.33
64 64 64 1.00 0.69 0.76 1.00 0.60 0.60
9% 96 96 1.00 1.06 0.89 1.00 1.00 0.82
128 128 128 | 1.00 1.10 1.23 1.00 1.00 1.00

(or scheduling) in view of all hardware resource constraints.
This is because first, various SIMD/vector instructions are
designed to perform MAC operations in different ways and
they are friendly to different input/output data sizes and data
layouts. Second, the VLIW pipeline imposes many constraints
on the instructions that can be packed together.

In the context of DNN acceleration, complex DNN designs
challenge the DSP-oriented implementations in multiple ways.
First, modern DNNs usually consist of many operators (e.g.,
the latest BERT consists of over 1000 operators [46]), and
even with the same operator, operands can be of different
shapes and sizes. Mapping growing SIMD/vector width and
instruction set (variety) to these operators and operands
is challenging. Second, as discussed above, the complex
opportunities and constraints in VLIW packing need to be
considered for implementations of specific operators.

III. INSTRUCTIONS AND LAYOUTS

Our target instruction set includes novel and complex
SIMD instructions capable of optimizing computations found
in ML (and scientific) workloads. We show three representa-
tive instructions in Figure 1. While these instructions are used
for multiple operators in a DNN (e.g., the convolutions), our
presentation here uses matrix multiplication for illustration.
Similarly, other instructions like vtmpy and vmpye can also
be used to implement these operators. Our discussion here
considers only three instructions. However, as a motivation,
we first show the trade-offs between their use.

Table II shows how the cost of matrix multiplication varies
with the three choices when input tensors have different
shapes. We can see that the instruction vmpy (and the
corresponding 1-column layout, both are elaborated later)
provides better execution efficiency if the operands have
a certain length. However, for other cases, this instruction
causes padding overheads, thus making the other instructions
more time- and space -efficient.

As additional background, many recent works show that
the floating-point representations (and operations) for weights
and activations are not necessary to achieve good accuracy
for DNNs, but instead fixed point (8-bit or even less) suffices
[42], [47], [48], [49], [50], [51]. However, one caution is
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that the product between two 8-bit values should be stored
in 16-bits to avoid data overflow, and similarly, accumulating
several such products requires 32-bits. In either case, a
requantization phase is required to generate the 8-bit final
output.

With this motivation and background, we explain the
existing instructions and associated data layouts we have
developed. In Figure 1 (a), we show the instruction vmpy,
whose inputs are a vector with 128 8-bit values and four
scalar values. In vmpy, four consecutive values in the vector
are multiplied by four distinct scalars, with the output being
two vectors with 64 16-bit values, each storing alternate
results of multiplications.

In Figure 1 (b), the input for the instruction vmpa are two
vectors with 128 8-bit values each. A pair of corresponding
values from the two vectors are multiplied by two scalar
values and then added together. Specifically, alternate pairs
are multiplied with the first two and the last two scalars,
respectively, and accumulated to two different output vectors.

Finally, in Figure 1 (c), the instruction vrmpy is illus-
trated — here, four consecutive values from the vector are
successively multiplied by four distinct scalar values, and
accumulated together. The result is a vector with 32 32-bit
values.

In this work, we have developed novel dense matrix
data layouts that optimize the use of these instructions
for multiple key operators in DNN computations (e.g.,
MatMul, CONV, Depthwise CONV, etc.), and this part
takes matrix multiplication (MatMul), a critical kernel for
our target workload as an example. Developing layouts for
implementing arbitrary loop nests using these or similar
instructions is an open problem beyond the scope of this
paper.

In Figure 2 (a), we show the layout that enables the use of
vmpy instruction shown earlier in Figure 1 (a). For efficiency,
it is very important that the set of values that are to be loaded
to or stored from a vector register are stored in a contiguous
fashion. The layout we use is referred to as the 1-column
layout. The numbers shown in the boxes represent the offset
of the location of that element. In 1-column layout, a set
of 128 rows is stored in a column-major way, and this pattern
is repeated for the next set of rows. In carrying out the matrix
multiplication, the first column is loaded to a vector and all
values are multiplied with the first weight (0) stored in the
scalar register. The outputs are two vectors storing 64 16-bit
elements each, which will eventually be shuffled to obtain
an output layout matching the input layout. The process
continues by loading the next 128 elements physically stored
in our layout, multiplying them with the second weight (1),
and reducing the output to the same two vectors.

In Figure 2 (b), we show the layout and the key steps
of matrix multiplication with the instruction vmpa, which
was shown earlier in Figure 1 (b). The layout we have
designed is referred to as 2—-column layout — within the
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Figure 1: SIMD/Vector Multiply Instruction Examples in Mobile DSP Chip
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(b) 2-column layout example (instruction: vmpa).
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(c) 4-column layout example (instruction: vrmpy).

Figure 2: Data Layouts to Support Usage of Varied
SIMD Instructions for Matrix Multiplication. Each number
denotes the linear storage offset of an element. A blue, yellow,
and orange cell takes 1, 2, and 4 bytes, respectively. Left
shows data storage, and right shows computation.

64-row panels, values for 2 columns are stored adjacent to
each other, before following the column-major storage. In
applying matrix multiplication, elements 0, 1, 128, and 129,
which are from the same rows of the matrix, are multiplied
by the output weights 0, 1, 2, and 3, respectively, stored
in scalar registers. Note that the two corresponding output
elements in the output vectors need to be further added to
obtain the results.

In Figure 2 (c), we show the matrix multiplication
operations and layouts with the use of the instruction vrmpy
shown in Figure 1 (c). The input and weight matrix are
of different shapes as compared to the previous examples,
in order to illustrate the layout and the computation. Here,

515

panels of 32 rows are used and four elements from each row
are stored together. Four elements in a row are multiplied
with four weights stored in scalar registers. We also note that
while there is an instruction somewhat similar to vrmpy in
Intel instruction set (vpdpbusd), there are no counterparts
to vmpy or vmpa at the current time.

Overall, our work considers a relatively small number of
candidate instructions for implementing a single operation,
using a “pre-designed”” approach for each pair of operator and
instruction. Efforts do exist on trying to automate the selection
of instruction and code generating using the instruction [3],
[4], [52]. We have conducted a brief comparison of our
approach against the code generated by the most recent
of these efforts (which also targets the same instruction
set), i.e. RAKE [4]. As shown in Table III, our approach
is able to deliver significantly higher performance. Thus,
while automation of instruction selection and code generation
is valuable, current approaches are not matching the “pre-
designed” approach we are taking.

IV. SYSTEM DESIGN OF GCD?

This section highlights the major optimizations developed
in GCD?, followed by a brief summary of implementations.

A. SIMD Global Opt. Problem Formulation

From the discussion earlier in Section III, the important
takeaway is that different instructions can be used for
the same operation, but with different requirements on
input formats, resulting in different output formats, and
with different trade-offs (which were summarized earlier
in Table II).

With a relatively small number of instructions available
to implement a single operation, the instruction and the
layout selection can be performed (in isolation) by explicitly
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Figure 3: Examples of Computational Graphs. Left and
right show partial CGs in ResNet [34] and TinyBERT [53].

considering all choices and choosing the one that requires the
fewest cycles for execution. However, it turns out that with
distinct input and output layouts for different instructions,
choices for each operation cannot be made in isolation.
Suppose an operator A can be implemented in the most
efficient fashion using the instruction vmpa. Let the output
of the operation A be the input to the operation B. Without
considering the need for the formatting of input tensors,
let the most efficient implementation of B be using the
instruction vrmpy. However, the output tensor from the
operation A will be in the two-column format (Figure 2 (b)),
whereas if B is implemented using vrmpy, it is expected
that the input tensors are in the four-column format (Figure 2
(c)). Converting the layout of a tensor itself is a time-
consuming step. Thus, if the sequence of two operators
A and B are considered, it is possible that the most efficient
implementation involves using the same instructor (and thus
layouts) for the two operators. In practice, DNN models use
many operators (e.g., the model EfficientDet-D0 used in our
evaluation has 822 operators), and thus, we have a complex
optimization problem.

To formulate this global optimization problem, we use an
existing intermediate representation called the Computational
Graph (CG) [5], which captures the data-flow and basic
operator information like the operator type and parameters.
Figure 3 shows examples of such graphs. Let V be the set of
vertices in a CG and let E be the set of edges. Each vertex
is an operation that produces exactly one output tensor. A
directed edge (vi,v;) denotes that the output of the vertex
(operation) v; is (one of) input(s) to the operation v;. The
source of the edge e is also denoted as vin(e) and similarly,
the destination of e is denoted as vout(e).

Now, given an operator (vertex) ¢ in the CG, let it have a
set of immediate predecessors we denote as Pre(¢). By each
predecessor, we denote interchangeably both the operators
and their output. After performing the local analysis of
possible implementations and associated layouts for the
operator ¢ we obtain a set of possible execution plans
EP(0), comprising execution plans ep; (&), ep,(0), and
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so on. Associated with every execution plan, there is a
cost of execution, denoted by Cost(ep;(0), which is based
on the number of instructions (cycles) required. This cost
calculation assumes that all input tensors are already stored
in the required layout for the SIMD instruction used.

We consider an execution plan ep;(¢’) and a predecessor
tensor of ¢, which we denote as . (& € Pre(0)). If
the operator .# is executed with the plan ep;(.#), then
there could be a data transformation with the associated
cost TC(epj(.#), epi(0)) (this cost will be 0 when data
transformation is not required).

Given this background, the global optimization problem is
as follows. For each operator (vertex) v in the CG, we want
to select an execution plan ep,, such that the total cost of
execution for the graph G, which is denoted as

Agg_Cost(G) =Y Cost(epy(v)) +
vev

Z Tc(epvin(e) (Vil”(e))-, €Dyout(e) (Vout(e))>

ecE

1

is minimized. In the expression above for Agg_Cost(G),
the first term is the cost of execution associated with each
operation under the choice of plan made, whereas the second
term is the cost of data transformation between the layouts
for the source and the sink of the edge, under the choices
of implementation plans chosen for the source and sink
operators.

B. Layout & Instruction Select Solution

It is easy to see that a trivial approach for solving this
problem will involve comparing V| options, where |V] is the
number of vertices in the graph and & is number of (assumed
fixed for all operators) options available for each operator.
Even when k is 2 or 3, this cost can be easily prohibitive for
realistic DNN models. Furthermore, the above problem is
really a Partitioned Boolean Quadratic Programming (PBQP)
problem, which is known to be NP-hard [54].

If we simply have a linear chain of operations
01,0;,...,0,, then the following approach can be used
to solve the problem. Let Sol(i, j) denote the lowest possible
cost of execution operations O1,0»,...,0; such that the
output from the operator O; is the j//* available choice (j < k,
where k is the number of choices available for each operator).
Then, we have

Sol(i, j) = mini—y_ x(Sol(i=1,1) + TC(epi(0i-1),ep;(0:)) (2)

Here, Sol(i, j) is computed by comparing k choices, which
are the lowest cost ways of reaching each of the k different
output formats for the previous operation in the chain. It is
easy to see that this recurrence can be solved in O(|V| x k?)
time. Moreover, this solution can be easily extended to the
cases when either every path from a “source” vertex of a
DAG to a given vertex is of the same length, or when every
vertex has at most one output. However, this approach does
not work for an arbitrary DAG and we focus on an effective
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heuristic solution. While considering a PBQP solver [54],
[55], which is not guaranteed to provide an optimal solution
but is in practice close, is an option, we instead focus on
exploiting the properties of our target domain. For this, we
consider the following definition:

Definition IV.1 (Cost Optimal Partitioning). Given a com-
putational graph G, a cost optimal partitioning of G is a
disjoint graph partitioning P = {Gy,G,...,G,}, such that
for Agg_Cost(G) (as defined in Equation 1), we have

Agg_Cost(G) = Agg_Cost(Gy) + Agg_Cost(Gy) +

...+Agg_Cost(Gy) ®

Note that we use the popular definition of graph partition-
ing, where the edges between vertices that are in different
partitions are not considered part of either partition. If
such partitioning can be found, the optimal plans for all
operators within each partition can be determined in isolation,
translating to a significant reduction in the complexity of
search.

In practice, What we can hope to achieve is to find
a set of partitions that can be optimized independently,
i.e. where the lowest cost for the entire graph is achieved
by choosing plans within each partition independently. To
achieve this, we note that an edge e = (v;,v;) is a desirable
partitioning edge if 1) the node v; has only one predecessor
(vi), and 2) The operator v; is a layout transformation
operator or the transformation along the edge e is a profitable
transformation. Typical examples of layout transformation
operators include Reshape and Transpose — they do
not perform any computations but change the shape of
the operand. A transformation along an edge is considered
profitable if the reduction in execution time of the successor
operator with the transformed layout is higher than the cost of
the data transformation itself. The intuition for this definition
of desirable partitioning edge is that decisions on nodes
leading up to this edge and vertices following this edge can
be made in isolation.

However, as next challenge for us, partitioning a graph
typically involves many cut edges. Now, if we can find
a cut edge that is dominant, i.e, if every path from the
(assumed to be unique) source vertex in the DAG to the
(again, assumed unique) sink vertex passes through this edge,
then the problem is simplified. When this is not feasible, we
can add complementary edges to the identified cut edges to
create complete partitions.

C. VLIW Optimization

Instruction packing or scheduling is a long-standing
issue in VLIW research that has been proved to be NP-
hard [56], [57]. Because of the specific opportunities as well
as challenges associated with our target architecture, a new
algorithm is developed in this work.

Optimization Foundation: Hard/Soft Dependencies. For
our target architecture, dependencies between two instructions

517

Execution pipelines
—Stage: read — ——— Stage: execute ——}-Stage: write -

[Assign R1+R2 to R3|[Wrrite R3 to RF|
(a) Read after loading
{R3'€ R1+R2 {[Read R1 from RF|| Assign R1+R2to R3 |

istore(R3, ad) :
store(R3,ad)
Read ad from RF

(b) Store after writing

[ Write R3 to RF|

Figure 4: Two Examples of Packing Instructions with
Soft Dependencies. Different colors show different VLIW
execution pipeline stages (read in green, execute in or-
ange, and write in blue). In (a), the second stage (Assign
R1+R2 to R3) of the second instruction requires to wait
for the completion of the first instruction, incurring packing
penalty. A similar situation happens to (b) between Assign
and Store.

can be characterized into two types with respect to their
implication on placing them in the same VLIW packet?

e Hard dependency denotes a strict dependence relationship
where placing such instructions in the same packet likely
produces incorrect results.

o Soft dependency denotes a relaxed dependence relationship,
and placing instructions together produces correct results;
however, the resulted execution performance is likely
degraded to a certain degree. An example of the soft
dependency in our target architecture is the one between a
scalar addition operation and a consumer of the result of
such an addition.

To further illustrate the nuances associated with soft
dependencies, we show two examples of packing instructions
with soft dependencies in Figure 4. Figure 4 (a) shows a
dependency between a load operation and an arithmetic
operation that consumes the loaded value. Each of these
two instructions takes 3 clock cycles4 individually, however,
if they are packed in the same packet, they can execute
correctly by taking 4 cycles in total>. This example shows
that packing instructions with soft dependencies together
takes less clock cycles than not packing them together at
all (i.e., treating the soft dependency as a hard dependency).
However, if sufficient number of instructions are available
without any dependencies between them, we will prefer
to not pack instructions with soft dependencies together.
Figure 4 (b) shows a similar example with a soft dependency
between an arithmetic operator and a store operation. Which

3This classification is independent of the traditional classification of
dependencies into flow/RAW, output/WAW, and anti/WAR, though soft
dependencies can only be RAW or WAR.

4According to the target microarchitecture design, each VLIW pipeline
execution comprises three stages, read from Register File (RF), execute,
and write to RF, though some of these stage can be be empty. Our
explanations will assume that each stage is 1 clock cycle [58].

SMobile DSP processors (e.g., Hexagon DSPs) execute instructions within
each VLIW packet in parallel, but without overlap between packets.
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Figure 5: An Instruction Packing Example. The left part
shows part of the pseudo assembly code for the innermost
nested loop performing 2D Element-wise Addition: R = A
+ B + C, where A, B, and C are two-dimensional uint8
arrays and R is a two-dimensional int16 array. v2:1 denotes
a 16-bit register combining 2 8-bit registers v2 and v1. The
middle part shows an IDG, in which, solid edges denote hard
dependency, dot edges denote soft, and critical path is colored
in red. Right shows the packing results from our solution
and an sub-optimal solution that treats all soft dependencies
as hard (soft to hard). N denotes an empty instruction slot.

dependencies are soft and which ones are hard depends upon
the microarchitecture. This information needs to be obtained
from the details of processor implementation (e.g., [58])
and made available to the instruction packing algorithm.
Soft Dependencies Aware (SDA) VLIW Packing Algo-
rithm. Because of the notion of soft dependencies, we have
developed a new VLIW instruction packing algorithm. Be-
sides handling the distinction between soft/hard dependencies,
the algorithm is cognizant of other constraints. While a packet
can have up to 4 instructions, there can be a limited number
of slots for each type of instruction. As an example, packing
two shift operations together is not allowed. This instruction
packing is implemented as an additional optimization step
of LLVM’s assembly code generation.

Like much of the previous work, the packing algorithm
uses the notion of a critical path [59]. and its overall goal
of minimizing execution time as two sub-goals: 1) reducing
the total number of instruction packets, and 2) packing
instructions with identical or similar latency together to
minimize VLIW pipeline stalls. The work also has many
similarities with algorithms for code generation targeting
superscalars, in the sense the goal is to minimize intra-bundle
RAW stalls [60].

Our presentation of the algorithm (as shown in Algo-
rithm 1) is supported by the running example from Figure
5. Its left hand side shows the pseudo assembly code for a
part of an innermost nested loop of a frequently occurring
Add operator in deep neural networks (R = A + B + C),
where A, B, and C are two-dimensional uint8 arrays and
R is a two-dimensional int16 array. Take the instruction of
v2 : 1 =vadd(v1,v2) in this pseudo assembly code as an
example. vl and v2 are two 8-bit registers. v2:1 denotes a
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Algorithm 1: Soft-dependency-aware VLIW Packing

Func packing: instructions < [Packet]
1 cfg < build_cfg(instructions)
2 all_packets < Stack()
3 foreach block in cfg.block do
4 idg < build_IDG(block)
free_insts < Set()
find_free_instruction(idg, free_insts)
while free_insts is not empty do
/+ Build critical path from IDG =/
critical_path < get_critical_path(idg)
9 cur_packet < critical_path[-1]
/* Iterate all the free instruction =/
while len(cur_packet) ; 4 do
/+ Select the most profitable
instruction x/
inst <— select_instruction(free_insts, cur_packet)
find_free_instruction(idg, free_insts)
if inst is None then
14 | break
else

L

| all_packet.add(cur_packet)

ECIC NN

®

cur_packet.add(inst)
idg.remove(inst)

return all_packets

Func select_instruction: free_insts, packet <— Instruction
all_insts < resource_constraint(free_insts, packet)
if all_insts is empty then

L return NULL

hi_lat < highest_latency(packet)
best < NULL
foreach i in all_insts do
/* The criteria of profitability =/
i.score <— (i.order + i.pred) xw - abs(hi_lat - i.lat) x(1—w)
if soft_dependency(i, packet) then
| iscore < i.score - p(i, packet)

=

if best is NULL or best.score | i.score then
| best i

31 return best

16-bit register combining 2 8-bit registers (v2 and vl) to
store the addition result.

Returning to our algorithm, it first builds a Control-Flow
Graph (CFG) on assembly for each operator, and finds
the basic block corresponding to the computation kernel
of each operator (usually the largest basic block). Next, it
builds an instruction dependency DAG (called IDG) based on
the hard/soft dependency information, and finds the critical
path with the longest execution latency. The middle part
of Figure 5 shows the IDG — here, a vertex represents an
instruction, and an edge represents the dependence between
two instructions. A solid edge represents a hard dependency
and a dotted edge represents a soft dependency. Take the
instructions (or vertices) 4, 5, 6, and 7 in this figure as an
example. The dependencies between the instructions 4 and
5, 4 and 6, and 4 and 7 are all soft dependencies. IDG also
contains an artificial entry vertex. The number shown with
the vertex corresponds to the assembly instruction in the left.
The critical path is colored in red. The vertices with identical
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colors have the same rank (distance to the entry).

Based on the IDG and the critical path, the algorithm
now packs instructions. When creating a new packet, the
algorithm always uses the last (unpacked) instruction in the
critical path as a seed (line 9). Next, such an instruction is
packed with other instructions that either do not have any
outgoing edges or have only soft-dependence edges to an
instruction to be packed (all of these instructions are called
free instructions). This step consists of three major sub-steps:
i) iterating through all free instructions (line 7), 2) finding a
candidate instruction from the set of free instructions (line
11), and 3) grouping the candidate instruction into the current
packet. Particularly, the key second sub-step (i.e., finding a
candidate instruction) comprises of two steps: first, for the
current working packet, the algorithm finds all instructions
that can be packed while meeting the hardware constraints
(line 20), and also determines the highest latency (hi_lat)
among the instructions that are already in the current packet;
second, it iterates these available instructions to pick up the
best instruction and returns it (lines 25 to 30). Note that, the
best instruction selection is based on this instruction’s score
(i.score) that is calculated as follows:

i.score = (i.order +i.pred) xw—abs(hi_lat —i.lat) X (1—w)

“

According to Equation 4, the score of an instruction is
decided by its three attributes, its distance from the entry
node (i.order), its predecessor instruction count (i.pred), and
its latency (i.lat). The first two have positive impacts on the
score, while the absolute difference between this instruction’s
latency (i.lat) and the latency of the longest instruction
already in the current packet (hi_lat) has a negative impact
on the score. The former is because it is desirable to include
instructions that have a longer chain of dependencies and/or
a total large number of instructions that it is dependent
on. The latter, on the other hand, wants to create more
efficiency by packing instructions of the same (or very
similar) latency values together. This algorithm introduces
two new parameters (w is short of weight, and p is short for
penalty) that are empirically decided. w aims to control the
weight of the three factors’ impact (line 26), while p aims to
control the impact of soft dependency on this packing (line
28). Specifically, the value p depends both on the instruction
i under consideration and the instructions already placed in
the packet, and captures the stall that the soft dependence will
cause. For comparison in our experiments, we also create a
version of our algorithm that reduces all soft dependencies to
‘none’ or no dependence — this version of the algorithm will
ignore the calculation of this penalty. Next, to complete the
description of our algorithm, after one packet is created, the
algorithm repeats by finding the critical path of the remaining
sub-graph.

Returning to Figure 5, the right part shows the packets after
scheduling (N denotes an empty slot). This example compares
our Soft Dependencies Aware (SDA) packing algorithm
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Figure 6: System Workflow of GCD?.

(bottom) with a sub-optimal algorithm (called soft fo hard)
that treats all soft dependencies as hard ones (top). Taking
the first seed (vertex 8, i.e., the last instruction in the critical
path) as an example. 8 and 6 cannot be packed together
(because of hardware constraints) and 8 can be packed with
7. Our packing algorithm can continue to explore the packing
opportunity between 4 and 5/6 because 5 and 6 only have
soft dependencies to 4, and the soft dependencies allow the
packing for 1, 2, and 3; however, these opportunities do not
exist in soft to hard version of the algorithm. In summary, our
algorithm delivers a schedule with only three packets, while
the sub-optimal soft to hard version generates a schedule
with two additional packets. Evaluation results in Section V
further validate our algorithm’s efficacy.

Impact of Unrolling. Loop unrolling plays an important
role in the schedule quality by affecting the scheduling scope
and the register pressure. Different from previous work like
[61], GCD? employs a low-cost heuristic solution specifically
designed for DNN operators. The basic idea is to perform a
fast adaptive unrolling setting selection according to the shape
of output tensors, for example, for GEMM, different unrolling
settings are designed for varied output shapes (skinny, near-
square, and fat). Our empirical study in Section V proves
that this approach outperforms some simple selections while
also yielding comparable performance gains to a much more
expensive exhaustive search.

D. Putting Everything Together

GCD? is implemented on top of an existing end-to-end
DNN execution framework, PatDNN [62], [63], [64] to
support efficient mobile DSP execution. Figure 6 shows the
system workflow of GCD?. First, it converts the post-training
quantized model to a computational graph (and optimizes it
with various techniques, e.g., constant folding) by leveraging
the existing framework. Second, it feeds the (optimized)
computational graph to the SIMD global optimization module
to conduct the local layout (instruction) enumeration and
the global layout (instruction) selection. The result here is
an optimized SIMD code generation plan including the data
layout for each operator and corresponding SIMD instructions
to use. This is followed by a pass where other optimizations
are applied, e.g., replacing an expensive division operation
with a database lookup operation. As the next step, the
existing framework and the optimized SIMD code generation
plan lead to a “low-level” C code with input/output tensor
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storage details and optimized SIMD intrinsics. Finally, it
employs LLVM [65] with our VLIW packing optimization to
generate the optimized executable code on the mobile DSP.

V. EVALUATION

This section evaluates the performance of GCD? by com-
paring it with five state-of-the-art frameworks, TFLite [14]
(V2.6.0), SNPE [37] (V1.55), Halide [38] (V12.0.1), TVM [5]
(V0.8.0), and RAKE [4] (V1f99dfl). More specifically,
TFLite, SNPE, and TVM are the state-of-the-art production-
level DNN execution frameworks that can support (or
partially support) our target mobile DSP. Both TFLite and
SNPE call Hexagon NN, an expert-written hand-tuned library
designed by Qualcomm. However, as end-to-end DNN exe-
cution frameworks, their computational graph optimizations
(graph rewriting, operator fusion, etc.) are different, thus
resulting in very different execution performance (as shown
in Table 1IV). Halide, TVM, and RAKE use LLVM as
their back-end to generate DSP instructions. They perform
packet generation without distinguishing between soft and
hard dependencies (i.e., they treat each soft dependency as
a hard dependency). It should be noted that Halide, TVM,
and RAKE are tensor compilers, while GCD? comprises
both tensor compiler optimizations (e.g., global data layout
optimization) and language compiler optimization (instruction
packing). We introduce a version of GCD? to facilitate a
comparison of tensor compiler aspect of our work with
these systems, as we will describe later. Our evaluation
has four main objectives: 1) to demonstrate that GCD?
outperforms all of these state-of-the-art frameworks on
mobile DSP (Section V-B); 2) to identify the benefits of
specific optimizations and the choices made in our algorithms
(Section V-C); 3) to study the power consumption and energy
efficiency of GCD? against alternative implementations on
the same chip (Section V-D); 4) to compare the inference
speed and energy efficiency of our mobile DSP-based solution
with other embedded DNN accelerators (Section V-E).

A. Evaluation Setup

Models and Datasets. GCD? is evaluated on 10 state-of-the-
art neural networks (see Table IV) that are categorized
into seven groups according to the tasks they perform.
Particularly, they include 1) three image classification two-
dimensional CNNs (MobileNet-V3 [66], EfficientNet-bO
[33], and ResNet-50 [34]); 2) one image style transfer
two-dimensional CNN (FST [67]); 3) one image-to-image
translation GAN (CycleGAN [36]); 4) one super resolution
two-dimensional CNN (WDSR-b [68]); 5) two object
detection two-dimensional CNNs (EfficientDet-d0 [69], and
PixOr [35]); 6) one trans-former-based NLP model (Tiny-
BERT [53]); and finally, 7) one transformer-based speech
recognition model (Conformer [70]). All the evaluated
models in this section are quantized by a standard approach
used by well-known TFlite [71](with identical post-training
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quantization across all frameworks) with 8-bit integers being
used for weights and feature maps (activations).

It should be noted that the choice of datasets has a

negligible impact on the final inference latency or relative
execution speeds, which are the primary metrics in our
evaluation. Therefore, and also because of space limita-
tions, we report results from one dataset for each model.
MobileNet-V3, EfficientNet-B0O, ResNet-50, and CycleGAN
are trained on the ImageNet dataset [72], WDSR-b is trained
on DIV2K [73], EfficientDet-dO0 and FST are trained on
COCO [74], PixOr is trained on KITTI [75], TinyBERT is
trained on BooksCorpus [46] and English Wikipedia [46], and
Conformer is trained on [76]. Because all frameworks employ
the identical model quantization approach, they achieve the
same accuracy on all models and datasets, and thus accuracy
is not reported.
Test Bed. Most of the experiments described in this section
are conducted on a Samsung Galaxy S20 (with Snapdragon
865 SoC [39]) that consists of an octa-core Kryo 585 CPU,
Adreno 650 GPU, and Hexagon 698 DSP (with Vector
eXtensions support). We also tested our framework on
older series Snapdragon platforms, which show the similar
performance gains against other baseline frameworks. We
omit the results due to the space constraints. We note that
our optimization designs are general, potentially applicable
to other mobile DSP architectures (e.g., Cadence DSPs with
increasingly complex SIMD and VLIW supports). All models
are executed with their best configurations while the same
parameters are used for all execution platforms. Each data
involves inferences on 50 different inputs. After excluding
the highest/lowest time, an average is taken and reported. As
the variation is negligible, ranges are not reported.

B. Comparison with Other Frameworks

This part evaluates the overall performance of GCD?

by comparing it against five state-of-the-art frameworks,
TFLite, SNPE, Halide, TVM, and RAKE. We compare
the performance of GCD? with TFLite and SNPE over 10
models. While Halide, TVM, and RAKE have the capability
to generate code for the DSP chip, they currently cannot
execute full DNN models on this platform. Thus, a Conv2d
kernel is used for comparison against Halide, TVM, and
RAKE.
Execution Latency. Table IV shows the overall performance
comparison for all 10 models. TFLite and SNPE do not
support Transformer-based models. For the other 8 models,
GCD? achieves 1.5x to 6.0x, and 1.5x to 4.1x speedup
over TFLite and SNPE, respectively. Table IV shows that

GCD? outperforms TFLite and SNPE mainly because
of 1) optimized SIMD instruction selection and layout
transformation, and 2) optimized SDA VLIW packing by
taking soft dependencies into account. TFLite and SNPE
employ a uniform SIMD implementation for each operator
type to support mobile DSP execution, and their VLIW
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Table IV: Overall Performance Comparison among TFLite, SNPE, and GCD? on Mobile DSP. “-” means this model
is not supported by the framework yet. OverT and OverS are the speedup of GCD? over TFLite, and SNPE, respectively.
GCD?’s overall compilation time for these models ranges from 5 minutes (WDSR-b) to 25 minutes (EfficientDet-d0).

Model Type Task #MACS #Params #Operators | TFLite (ms) | SNPE (ms) GCD? (ms) | OverT OverS
MobileNet-V3 2D CNN Classification 0.22G 5.5M 193 7.5 6.2 4.0 1.9 1.6
EfficientNet-b0 2D CNN Classification 0.40G 4M 254 9.1 9.2 6.0 1.5 1.5
ResNet-50 2D CNN Classification 4.1G 25.5M 140 13.9 11.6 71 2.0 1.6
FST 2D CNN Style transfer 161G 1.7M 64 935 870 211 4.4 4.1
CycleGAN GAN Image translation 186G 11IM 84 450 366 181 2.5 2.0
WDSR-b 2D CNN Super resolution 11.5G 22.2K 32 400 137 66.7 6.0 2.1
EfficientDet-d0 2D CNN 2D object detection 2.6G 4.3M 822 62.8 - 26 24 -
PixOr 2D CNN 3D object detection 8.8G 2.1M 150 43 26.4 11.7 3.7 2.3
TinyBERT Transformer NLP 1.4G 4.7M 211 - - 12.2 - -
Conformer Transformer  Speech recognition 5.6G 1.2M 675 - - 65 - -
Speedup (geometric mean) 2.8 2.1
5| 0 Halide B TVM ] RAKE Il SNPE [ TFLite [ GcD? £
o |0 eepe B eep? £1.00 §100 Emg
3 30.75 s 5
33| s E 8
7l $0.50 o 90 2 90
(2] ’_I-H Jof @« E
o o [7)
1 i Hre =
0l 0l
ENT-BORNT-50 FST WDSR PixOr ENT-BORNT-50 FST WDSR PixOr

CO C1 C2 C3 C4 C5 C6 C7 CO C1 C2 C3 C4 C5 C6 C7

(a) Speedup. (b) Packet count.

Figure 7: Performance Comparison of GCD?, Halide,
TVM, and RAKE with Individual Kernels. Left shows the
speedup and right shows the packet counts, both normalizing
Halide as 1. Conv2D operators (from ResNet-50) are used.
GCD? is a sub-optimal version of GCD? that contains tensor
optimizations only without VLIW packing.

packing does not consider soft dependencies as GCD?. It
turns out that GCD? achieves the most speedup (6.0x over
TFLite) on WDSR-b. The reason is that feature map shapes in
WDSR vary significantly among different operators, and our
instruction selection and layout transformation optimizations
deliver much better performance over others.

We also note that GCD*for the first time enables mobile
DSP execution of two DNNs (TinyBERT and Conformer)
because it supports more operators than TFLite and SNPE,
e.g., more variants of MatMul, and Pow. It also the first
time supports real-time mobile DSP execution of another
(EfficientDet-d0).

Next, we compare several individual convolutional compu-
tation kernels with Halide, TVM, and RAKE. Because our
native compiler optimizations (SDA VLIW instruction pack-
ing) built on LLVM can be applied to all other frameworks as
well to further improve their performance, we separate tensor
compiler optimizations (e.g., our data layout and instruction
selection) and native/language compiler optimizations (e.g.,
SDA VLIW instruction packing) in this comparison by
introducing a new version of GCD? called GCD?. GCD”
only contains tensor compiler optimizations, and can be
viewed as a more fair comparison against these three tensor
compilers. In this comparison, the first 8 unique Conv2D
operators in ResNet-50 are used. Figure 7 (a) and (b) show
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(a) DSP utilization.

Figure 8: DSP Utilization and Memory Bandwidth
Comparison. These results are as reported by Snapdragon
Profiler [77], and normalized with GCD?.

(b) Memory bandwidth.

the speedup and the packet count for these 8 Conv2D kernels,
respectively, and all results are normalized by Halide. It turns
out that GCD? outperforms Halide, TVM, and RAKE with
significant speedups due to both its layout optimizations and
VLIW instruction packing. In comparing GCD? with other
tensor compilers, GCD? achieves up to 3.8x, 2.7x, and
3.3x over Halide, TVM, and RAKE due to tensor compiler
optimizations like layout and instruction selection. In addition,
our instruction packing algorithm results in fewer numbers
of packets (25% < Halide, 19% < TVM, and 21% < RAKE
on average, respectively). Please also refer to Section V-C
for a more detailed performance breakdown study.
Overall Performance Analysis. To further understand the
performance difference among above frameworks, Figure
8 compares DSP utilization and memory bandwidth. This
experiment uses 5 representative models out of 8 supported by
both TFLite and SNPE, including EfficientNet-BO (ENT-B0),
ResNet-50 (RNT-50), FST, WDSR, and PixOr. Experiments
on other models show similar trends and are excluded because
of space limits. The data is collected from Snapdragon
Profiler [77]. For DSP utilization, TFLite and SNPE can only
achieve 88% to 93%, and 89% to 95% of GCD?’s utilization,
respectively. For memory bandwidth, TFLite and SNPE
can only utilize 86% to 93% and 90% to 94% of GCD?’s,
respectively. These results show GCD? better utilizes mobile
DSP’s computing and memory resources with better VLIW
instruction pipeline execution and higher SIMD parallelism.
It should be noted that the theoretical peak performance
of Hexagon 698 reported by Qualcomm is 15 TOPS [41].
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Figure 9: Performance Breakdown Analysis. Speedup over
the baseline (normalized with the no-opt version). DSP
utilization and memory bandwidth analysis (both normalized
with the GCD? optimal version as 100%). The results are
collected from Snapdragon Profiler [77].

However, this number includes its Neural Processing Unit
that is not publicly programmable yet. To get the peak
performance of the publicly available vector processing unit
(HVX), we test the highly optimized matrix multiplication
kernel in the Qualcomm Hexagon SDK with small inputs that
can fit into the L-1 cache, and achieve the performance of 3.7
TOPS. Our evaluation shows GCD? achieves up to 1.51 TOPS
for an individual layer in DNN inference. Considering the
necessary data loading and memory latency costs involved,
this value shows effective practical use of the hardware.

C. Impact of Opt. and Algorithmic Features

Impact of Different Optimizations. To understand how
different optimizations (instruction and layout selection,
VLIW packing, and other optimizations) contribute towards
performance speedups, Figure 9 (a) studies the impact of
these optimizations with 5 representative models that cover
2D CNN, GAN, and Transformer (EfficientNet-BO (ENT-BO0),
ResNet-50 (RNT-50), FST, WDSR, and PixOr). We evaluate
each compiler-based optimization speedup incrementally over
our baseline (w/o proposed optimizations). Compared with
No opt, instruction and layout selection brings 1.4x to
2.9x gains, VLIW scheduling achieves additional 1.2x to
2.0x speedup, and finally, other optimizations (e.g., replacing
an expensive division operation with a database lookup) add
1.1x to 1.4x speedup. Figure 9 (b) and Figure 9 (c) further
reveal that instruction and layout selection also has the largest
impact on DSP utilization and memory bandwidth.

Instruction (and Layout) Selection Analysis. This section
justifies the choice we have made in performing global
layout selection. Specifically, we compare the algorithm
used in GCD? with two baselines - local optimal

and exhaustive search based global optimal solutions.

The local optimal solution selects the layout with the best
performance independently for each operator, whereas the
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Figure 10: Layout Optimization Analysis. X-axis denotes
the number of operators in the computational graph. The left
figure shows the speedup over local optimal with different
numbers of operators. The right figure shows the search time,
and its y-axis is logarithmically scaled.

global optimal always conducts an (expensive) exhaustive
search on the entire computational graph to find the optimal
solution.

For the purpose of these experiments, partial computational
graphs are extracted from ResNet-50 using contiguous
operators. Figure 10 (a) compares the model execution
performance among local optimal, global optimal, and our
two versions — GCD*> (13) and GCD? (17) mean the
maximum number of operators within each sub-graph is 13,
and 17, respectively. Compared with local optimal, GCD?
brings 1.55x to 1.7x speedup, while global optimal brings
1.56x to 1.72x speedup. This validates the design choice we
have made — specifically, the performance of GCD* (13) is
almost identical to global optimal. At the same time, it is clear
that local-only decisions impose large data transformation
overheads and do not achieve good performance.

Figure 10 (b) compares the search time for the four
solutions. Obviously, the search time in global optimal
solution increases exponentially, making it impracticable even
when there are 25 operators (complete models have more
operators, see Table IV). The search time is over 80 hours
with only 25 operators in the graph, while GCD> (13)
and GCD?> (17) need less than 2 seconds and 1 minute,
respectively.

VLIW Packing Analysis. One of the unique aspects of our
SDA VLIW instruction packing is the treatment of soft
dependencies. We evaluate this by comparing our method
against two versions: 1) all soft dependencies are treated as
hard dependencies, i.e., separating all instructions with soft
dependencies into different packets (soft to hard;2) all
soft dependencies are treated as no dependencies soft to
none (i.e., removing lines 27, 28 in Algorithm 1 and thus
not associating with penalty with packing an instruction with
a soft dependency). Figure 11 reports the effectiveness of
our optimization using 5 models and establishes our current
algorithm does better than either of these choices. GCD?
achieves up to 2.1 x, and 1.4x speedup compared with soft
to hard and soft to none, respectively because of
better packing efficiency as compared to soft to hard
and fewer runtime stalls as compared to soft to none.
Unrolling Analysis. Figure 12 (a) shows the performance

Authorized licensed use limited to: William & Mary. Downloaded on June 01,2023 at 02:21:04 UTC from IEEE Xplore. Restrictions apply.



[ Soft to hard dependency [l Soft to none dependency [ GCD?
2

Speedup

1

RNT-50 FST CycleGAN PixOr TinyBERT

Figure 11: VLIW Scheduling Analysis. The version treating
all soft dependencies as hard ones is used as the baseline.
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Figure 12: Unrolling Factor Analysis on a Single MatMul
Kernel and on Multiple MatMul Kernels. The x-axis in
the left figure denotes the unrolling factors. The right figure
shows the performance comparison among the best settings
of three unrolling strategies (Out, Mid, and GCDZ) on 8
operators (from O1 to O8). For comparison, it also shows
versions w/o unrolling and w/ exhaustive search.

comparison of different unrolling strategies for a matrix
multiplication kernel (three loop-levels): Out (only unroll
the outer-most-level loop), Mid (only unroll the mid-level
loop), and Exhaustive (unroll the loops by an exhaustive
search). We omit the inner-most-level loop as a possibility as
vectorization is performed at that level. The x-axis denotes
the unrolling factor, while the speedup is normalized by no
unrolling, i.e., when the unrolling factor is 1. The unrolling
settings of GCD? for both loop levels are also labeled in this

figure. The best configuration by exhaustive search is 4 —4.

GCD? achieves higher performance compared with the other
two options. For all options, we see the expected result that
the performance drops if unrolling factor is too large due
to increasing register spilling. Figure 12 (b) compares the
performance of Out, Mid, Exhaustive search, and GCD?
under different matrix multiplication kernels — here again

the y-axis is normalized by No unrolling in each kernel.

Unrolling factor in No unrolling is 1, while Out and
Mid both use the best unrolling factor obtained from Figure
12 (a). Compared with exhaustive search (Exhaustive
that searches the best unroll plan for a loop structure in
some common unrolling configurations), GCD? achieves very
comparable performance while saving significant search time
(exhaustive search generally takes over 3 minutes for each
kernel). GCD? unrolling achieves much higher performance
compared with the other two strategies across all kernels.

D. Power Consumption and Energy Efficiency

Figure 13 compares the total power consumption and
energy efficiency of GCD? against TFLite and SNPE also
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Figure 13: Comparison of Total Power Consumption (left)
and Energy Efficiency in Inference Frames/Watt (right).
Three DSP frameworks and TFLite with GPU back-end on
4 representative DNNs.

Table V: Inference Speed and Energy Efficiency Com-
parison with ResNet-50 on EdgeTPU [78] and NVIDIA
Jetson Xavier [79]. FPS is short for frames per second,
and FPW represents for inference frames per Watt.

Platform Device FPS Power FPW
EdgeTPU [78] Edge TPU (int8) 17.8 2 W 8.9
Jetson Xavier [79] GPU + DLA (fpl16) 291 ~30 W 9.7
Jetson Xavier [79] GPU + DLA (int8) 1100 =30W  36.7
GCD? DSP (int8) 141 26W 542

executed on DSP (x-DSP) on four representative DNN
models ( EfficientNet-bO, ResNet-50, PixOr, and Cycle-
GAN). As additional baseline, TFLite on a mobile GPU,
Qualcomm Adreno 650 GPU on the same Snapdragon 865
SoC (TF1ite-GPU) is also included. Figure 13 (a) shows
the total power consumption of each solution, where we
see that TFLite—-GPU consumes the most power (rang-
ing from 2.1 Watt to 3.8 Watt), and three DSP-based
solutions consume less power. GCD?-DSP consumes less
power than TFLite-GPU (by around 3.6% on average)
while consuming slightly higher power than TFLite-DSP
and SNPE-DSP (7.2% and 6.7% on average, respectively).
GCD?-DSP consumes more power than other DSP solutions
mainly because of its better DSP and memory utilization. As
this results in reduced execution times, GCD?-DSP achieves
much better energy efficiency as measured in inference
frames per Watt — specifically improving on TFLite-DSP
and SNPE-DSP by around 1.7x and 1.5X on average,
respectively (Figure 13). Figure 13 also shows that all mobile
DSP-based solutions result in better energy efficiency than the
state-of-the-art mobile GPU-based solution, TFLite—-GPU.
Specifically, GCD? outperforms it by 2.9x in energy effi-
ciency.

E. Comparison with Other DNN Accelerators

To better understand the inference speed and energy
efficiency of mobile DSP, we also compare GCD? with
two popular embedded DNN accelerator-based solutions,
EdgeTPU [78] and Jetson Xavier [79] using a representative
DNN (ResNet-50). EdgeTPU is a low-power embedded
platform with an edge TPU aiming to accelerate integer
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computations. Jetson Xavier utilizes both a GPU and DLA
(deep learning accelerator), with operators not supported by
DLA executed by the GPU. In this evaluation, EdgeTPU
and Jetson Xavier use TFLite, and TensorRT, respectively, as
their inference engine. The evaluation results are presented
in Table V. Jetson Xavier with int8 results in the highest FPS
(frames per second) though with more power consumption.
Our mobile DSP solution, GCD? achieves 6.1x and 1.48x
better energy efficiency (FPW) with the same data type (int8)
over EdgeTPU and Jetson Xavier, respectively.

VI. RELATED WORK

This section discusses efforts related to DNN acceleration
and compilation, SIMD optimizations, VLIW instruction
packing, and other compilation work targeting DSP chips.
DNN Acceleration and ML/DL Compilers. There are many
recent efforts on accelerating DNN inference on edge and
mobile devices including DeepX [13], TFLite [14], TVM [5],
MNN [15], DeepCache [16], DeepMon [17], DeepSense [18],
MCDNN [19], and MobiSR [45]. Some of them (e.g., TVM,
and TFLite) rely extensively on compiler techniques, and
hence are called ML or DL compilers. Most of these efforts
do not target DSP, except TVM, TFLite, and MobiSR that
offer options to call certain versions of Hexagon NN [44].
They do not focus on SIMD/VLIW optimizations as GCD?.
TASO [9] and AccPar [80] are two recent DNN acceleration
efforts with some similarities to GCD?. TASO’s computation-
graph-level optimization is restricted to a sub-graph with a
limited number of operators, aiming to assist in their proposed
effective operator substitution; while GCD? focuses on a
global optimization aiming to find a data layout solution
that can result in the optimized execution of the entire
DNN. The partitioning problems considered by AccPar have
similarities with the data layout (and instruction) selection
problem GCD? considered. However, AccPar’s formulation is
different and can always be solved by dynamic programming,
while GCD?’s problem maps to an NP-complete problem,
PBQP [54], and thus requires a different solution.
Compiling for DSP Chips. Digital Signal Processing chips
have been around for several decades and there have been
multiple systems developed for compiling for them [81], [82],
[83], [84], including considering SIMD features [85] and
exploring VLIW instructions [86], [87]. However, the DSP
chip instructions set targeted in this earlier work do not have
much correspondence to a modern mobile DSP chip like the
one considered in this work. The techniques presented in
this work are all related to advances in SIMD instruction
sets and properties of VLIW instruction execution. Recently,
Ahmad et al. [4] have reported a system that does instruction
selection and code generation for the same instruction set
as the one we have targeted. Their work is more general
in considering arbitrary loop nests but does not address the
global optimization problem. Moreover, their approach has
a high compilation cost, and they report results on small
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kernels only — our experimental comparison shows better
results for our system even on individual operators. The work
from Vanhattum ez al. [3], [52] also has similar focus (and
limitations) but their target backend is different, making a
direct experimental comparison infeasible. Next, Yang et al.
have mapped a vision-related DNN to a chip that comprises
several DSP processors, performing effective mapping to
their vector instruction [2]. However, their work has been
applied to a single model and does not include a general
compiler-based optimization framework. Prior to that, another
system (based on Halide system) was extended to support
DSP chips [1], but this work did not emphasize data layout
issues.

SIMD Optimizations. Compiler-driven code optimization
and generation for SIMD [88], [89], [90] goes back several
decades. Earlier work was heavily driven by the fact that Intel
SIMD extensions required operands of vector instructions to
be contiguous [88], [91], [92]. More advanced techniques in
this area used polyhedral models to map arbitrary loop nests
for SIMD execution [29], [30] or even consider irregular
applications [93]. Because of our target workloads, where
there are relatively fewer options for the computations within
one operator, but there can be a very long chain of operators,
the challenges we address are related to global optimization,
and not dealing with arbitrary loop nests. Previous work on
global optimizations for SIMD [94], [95] did not consider
a comparable instruction set as ours, and therefore, SIMD
instruction selection and associated data layout optimizations
were not their focus. Recently, Chen et al. have developed
VeGen [31] that targets the growing diversity in available
SIMD and vector instructions. The VeGen compiler extracts
what they term as lane-level parallelism by finding the
instruction most suitable for a loop (nest). This work,
however, does not consider the possibility (and costs) of data
transformation to use specific instructions, does not target
instructions as complicated as the one we have handled, and
there are no global optimizations in their work. In another
recent work, a JIT compilation system was presented to
use Intel SIMD advances for convolution operations [32] —
this work, however, does not consider any layout or global
optimizations.

VLIW Instruction Packing. VLIW instruction scheduling
with timing and resource constraints is a long-standing issue,
and many solutions have been proposed for various DSP
architectures (that are different from modern mobile DSPs),
including advanced software pipelining [96], [97], [98], [99].
Closely related to this work, Six er al. [59] discussed a
critical path based approach based on a variant of Coffman-
Graham list scheduling [100]. This approach is top-down
by leveraging the heuristic that instructions with the longest
latency path to the exit have priority. However, our scheduling
is bottom-up by considering a heuristic of assigning higher
priority to instructions that are on a critical path and can
enable more instructions packing if they are packed early.
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More importantly, compared with all existing efforts, GCD?
categorizes data dependencies and tolerates soft dependencies
with advanced hardware support, and focuses on a more
domain-specific design for DNN accelerations on mobile
DSP.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a compilation system, GCD?, for
efficiently mapping real-world complex DNN workloads on
modern mobile DSP architectures. GCD? consists of three
major optimizations including the development of matrix
layout formats to support novel advanced SIMD instructions
in the mobile DSP, a global SIMD optimization procedure
that selects optimal SIMD instructions and associated layouts,
and an SDA VLIW instruction packing that considers the
effect of soft dependencies. GCD? is extensively evaluated
with ten real-world complex DNNs on popular mobile DSPs.
The results show that GCD? outperforms two cutting-edge
end-to-end DNN execution frameworks supporting mobile
DSPs by up to 6.0x and outperforms three established
compilers that support efficient computation kernels execution
on mobile DSPs by up to 4.5x because of the improved
SIMD execution and optimized VLIW instruction scheduling.
For certain DNNs, GCD? is unique in supporting the real-
time execution of the model. For two of these ten models,
GCD? implementation has, for the first, enabled execution on
mobile DSPs. The overall compilation time is also justified.
In the future, we plan to design and integrate a more advanced
(or customized) Quantization approach [42] to GCD?, and
explore DSP-friendly operator fusion [63] to further improve
the performance.
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