Check for
Updates

End-to-End LU Factorization of Large Matrices on
GPUs

Yang Xia
Department of Computer Science and Engineering
The Ohio State University
Columbus, OH, USA
xia.425@osu.edu

Gagan Agrawal
School of Computer and Cyber Sciences
Augusta University
Augusta , GA, USA
gagrawal@augusta.edu

Abstract

LU factorization for sparse matrices is an important comput-
ing step for many engineering and scientific problems such
as circuit simulation. There have been many efforts toward
parallelizing and scaling this algorithm, which include the
recent efforts targeting the GPUs. However, it is still challeng-
ing to deploy a complete sparse LU factorization workflow
on a GPU due to high memory requirements and data depen-
dencies. In this paper, we propose the first complete GPU
solution for sparse LU factorization. To achieve this goal,
we propose an out-of-core implementation of the symbolic
execution phase, thus removing the bottleneck due to large
intermediate data structures. Next, we propose a dynamic
parallelism implementation of Kahn’s algorithm for topolog-
ical sort on the GPUs. Finally, for the numeric factorization
phase, we increase the parallelism degree by removing the
memory limits for large matrices as compared to the existing
implementation approaches. Experimental results show that
compared with an implementation modified from GLU 3.0,
our out-of-core version achieves speedups of 1.13-32.65X.
Further, our out-of-core implementation achieves a speedup
of 1.2-2.2 over an optimized unified memory implementa-
tion on the GPU. Finally, we show that the optimizations we
introduce for numeric factorization turn out to be effective.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP °23, February 25-March 1, 2023, Montreal, QC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0015-6/23/02...$15.00
https://doi.org/10.1145/3572848.3577486

288

Peng Jiang
Department of Computer Science
University of Iowa
Iowa City , Iowa, USA
peng-jiang@uiowa.edu

Rajiv Ramnath
Department of Computer Science and Engineering
The Ohio State University
Columbus, OH, USA
ramnath@cse.ohio-state.edu

CCS Concepts: - Computing methodologies — Parallel
algorithms; Linear algebra algorithms.

Keywords: GPU acceleration, LU factorization, Memory lim-
its

1 Introduction

A wide range of engineering and scientific computing appli-
cations require a solution of the large linear algebraic system
of equations, i.e. A X x = b. The direct method to solve
this problem involves transforming the matrix A into two
matrices: the lower triangular matrix L and upper triangular
matrix U such that A = L X U. This transformation is done
with a method that is commonly referred to as LU factoriza-
tion. After invoking this procedure, solution x can be easily
obtained by solving equations involving these two triangular
matrices, which are computationally much easier. For many
applications, (for example, circuit simulation [16, 24, 30]),
matrix A can be very large and sparse. As a result, LU fac-
torization of large sparse matrices becomes a critical kernel
for these applications.

Sparse LU factorization generally introduces new fill-ins
(i.e. non-zero elements in L or U that were not non-zeroes in
A). The positions of these new fill-ins are unknown before
the runtime. As a result, LU factorization involves a symbolic
factorization phase where the numbers (and likely positions)
of these fill-ins are determined. This step is followed by a
numeric factorization phase where the actual non-zero values
are now computed.

Due to the importance of LU factorization, research on
accelerating sparse LU factorization has been ongoing for
decades [3-5, 8-11, 15, 19, 27, 32]. As the High Performance
Computing (HPC) arena is getting dominated by heteroge-
neous and accelerator-based computing, several recent re-
search efforts have specifically considered sparse LU factor-
ization on GPUs [6, 13, 29]. However, each of these efforts has
accelerated only a part of the computation using the GPUs -
specifically either only numerical factorization [19, 28, 32, 36]

https://doi.org/10.1145/3572848.3577486
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572848.3577486&domain=pdf&date_stamp=2023-02-21

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

or only symbolic factorization (and further limited to count-
ing the number of non-zeroes and not their locations) [11].
As a result, these works are not able to take full advantage
of the parallelism from GPUs.

In this paper, we deliver the first efficient implementation
that conducts all the steps of a sparse LU solver on a GPU,
while also working with large matrices where intermediate
memory requirements may exceed the available memory on
a GPU. To achieve this goal, we address three major issues.
The first issue is the large memory usage during the sym-
bolic factorization step. To scale the implementation to large
matrices, we propose an out-of-core GPU implementation
that performs symbolic factorization iteratively.

The second issue is the parallelization of the scheduling
procedure. As a background, the implementation of numeric
factorization is column by column and it is required to de-
tect the dependencies among the columns and determine
their order for numeric factorization. Previous works either
use an elimination tree[10, 38] or a levelization algorithm
[32, 33], but deploy the procedure on the CPU. In this work,
we make the observation that this scheduling step is essen-
tially a topological sort and propose an efficient GPU imple-
mentation with the dynamic parallelism feature of Kahn’s
algorithm [20].

Finally, previous GPU implementations [19, 32] use the
dense data format for the matrix to enable fast data access
during the numeric factorization step. In such a case, each col-
umn requires O(n) memory space and the number of columns
that can be stored on the GPU (and thus can be processed
in parallel) gets limited. This can become a significant chal-
lenge while dealing with large matrices (i.e. as n increases).
To solve this issue, we propose to switch to a sparse data
format when the matrix size increases. Although the data
access (i.e. searching for a row id for a given column id) on
sparse data formats would be less efficient, we show that we
can still achieve better performance with a binary search-
based access algorithm because the limit on the number of
parallel columns is removed.

We evaluate our implementation using a set of matrices
from SuiteSparse matrix collection [7]. We summarize our
observations as follows. First, our out-of-core GPU sym-
bolic factorization can support large matrices and delivers
speedups in the range from 1.13 to 32.65 over an efficient
CPU implementation from a recent publication (i.e. GLU
3.0[32]). Second, compared with an optimized unified mem-
ory solution for symbolic factorization, our out-of-core GPU
solution achieves speedups in the range of 1.2-2.2 because it
can access GPU device memory more efficiently. Then, we
demonstrate that our optimization on numeric factorization
further improves the performance by up to 3.33 times for
large matrices, which is due to memory efficiency that leads
to increased parallelism.

289

Yang Xia, Peng Jiang, Gagan Agrawal, and Rajiv Ramnath

! °
;| @ °
s °

. ° °
s @ o o

. ° °
’ °

8

° oo Oeoe
0 ° o0 |0

(b) Graph representation

of matrix A
level | Column Ids
0 12367
1 45
2 8
3 9
4 10

(d) Column ids for different
levels

(c) Dependency graph of
matrix A

Figure 1. Example matrix. (a) Symbolic factorization on
sparse matrix A with row 9 under analysis, the red circle rep-
resents the new fill-in (b) The graph representation of matrix
A, the read line presents the new fill-in (c) The dependency
graph for matrix A, the dotted lines separate columns from
different levels (d) A table to show column ids for different
levels.

2 Background

The LU factorization of an n X n matrix, A, has the form
A = LxU, where L is a lower triangular matrix and U is an
upper triangular matrix. LU factorization implementation
generally involves major steps of pre-processing, symbolic
factorization, and numerical factorization. During the pre-
processing procedure, row and column permutations are per-
formed in order to improve numerical stability and reduce
the number of fill-ins in the L and U matrices [9, 10, 27]. Be-
cause our implementation primarily concerns numerical and
symbolic factorization stages, we review them here. Specifi-
cally, we first introduce symbolic factorization in detail and
then give an overview of a GPU implementation of numeric
factorization: GLU3.0[19, 32]. Finally, we briefly explain the
motivation for our work.

2.1 Symbolic Factorization and GPU Implementation

The LU factorization involves a sequence of elementary row
operations, where the pivoting row is multiplied by a non-
zero scalar and updated into another row below, which has
non-zero in the pivoting column. As a result, for a sparse

End-to-End LU Factorization of Large Matrices on GPUs

matrix, LU factorization often introduces new non-zero en-
tries, which are known as fill-ins. Figure 1 shows an example
matrix A, which will be used throughout this paper. Con-
sidering row 9 in Figure 1(a), since row 9 has a non-zero at
column 5, row 5 needs to perform row operations on row 9.
As a result, it produces a new fill-in (9, 8).

As stated previously, a symbolic factorization step is needed
to identify the non-zero structures of L and U matrices. The
locations of new fill-ins are determined by the following
theorem:

Theorem 1. A fill-in at the index (i, j) is introduced if and
only if there exists a directed path from i to j, with the inter-
mediate vertices being smaller than both i and j[34].

Based on Theorem 1, several algorithms have been pro-
posed to implement symbolic factorization [14, 15, 34]. In this
section, we briefly summarize the fill2 algorithm, which
exhibits a high degree of parallelism and thus is suitable for
GPUs. The detailed procedure is shown in Algorithm 1. It
uses an array fill to indicate an already visited vertex by
setting fill(neighbor) = src. At the beginning of the algo-
rithm, it performs initialization, and then for each threshold
that is treated as a frontier, it checks its neighbors, updates
the status of the neighbors, and adds new fill-ins to either
L(src,:) or U(sre,:), as well as to the newFrontierQueue(:).
Subsequently, it will proceed to the next threshold vertex in
line 11.

Recently, a GPU implementation of fill2 algorithm was
proposed to accelerate symbolic factorization [11]. As in-
dicated in Algorithm 1, symbolic factorization from each
source row is independent. Thus, we can perform parallel
traversals from all columns. However, with such indepen-
dent traversal, each node requires O(n) memory, which leads
to O(n?) overall memory requirements. Though using a dis-
tributed collection of resources can increase the aggregate
available memory (previous study [11] deployed up to 44
nodes and 264 GPUs), better memory efficiency will be de-
sirable. It should also be noted that their solution just counts
the number of new fill-ins in each row, which is insufficient
information for the subsequent numeric factorization step
(which they do not implement on GPUs).

2.2 Numeric Factorization and GPU Implementation

The traditional numeric factorization method is right-looking
LU factorization:
ull
L22

111
[121
Here, [11, ul1 are scalars and [11 = 1, [21 are column vector
with size (n — 1) X 1, u12 is row vector with size 1 X (n — 1),
and L22 and U22 are the (n — 1) X (n — 1) sub-matrices. To
compute matrices L and U, we can first find that 11 = all,

u12 =al2,and [21 = a21/u11. Then, we can solve L22xU22 =
A22 — 121Xu12. As can be seen, the traditional right-looking

T la21 A22

ul2
U22

3 [all alz]

290

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Algorithm 1 Fill 2 algorithm based on Theorem 1. This
algorithm shows the procedure for the srct” row.

Input: src- the src-th row of the matrix, A(:, :)-original matrix
Output: Filled matrix L and U
1 fill(:) = 0;
2: fill(src) = src;
3: for vin A(src,:) do
4 fill(v) = src;
5 if v < src then
6: add v to L(src, :);
7 else
8 add v to U(sre,:);
9 end if
10: end for
11: for threshold = 0:src-1 s.t. fill(threshold) == src do

12: add threshold to frontierQueue(:);

13: for each frontier € frontierQueue(:) : do

14: for each neighbor € A(frontier,:) do

15: if fill(neighbor) < src then

16: fill(neighbor) = src

17: if neighbor > threshold then

18: add neighbor to L(src,:) or U(src,:);
19: else

20: add neighbor to newFrontierQueue(:);
21: end if

22: end if

23: end for

24: end for

25: swap (frontierQueue(:), newFrontierQueue(:))

26: goto line 13;

27: end for

method solves one row for the matrix U, followed by one
column for the matrix L, and recursively solves the matrix
with n iterations. However, this approach has sequential data
dependence, which would limit the amount of parallelism.

Thus, to overcome this issue, previous efforts [19, 23, 32]
proposed a hybrid column-based right-looking algorithm,
which can utilize column-level parallelism. The procedure
is shown in Algorithm 2. For each column j, the first step
is to compute the L part of the current column, which is
shown in lines 2-6. Then, it looks right to find all columns
k (k > j), which satisfies As(k, j) # 0. Such columns are
called sub-columns of the column j. Then, it can factorize all
sub-columns of j in parallel as shown in lines 8-14.

To schedule the order of factorization for different columns,
the algorithm needs to check the dependence relationship
among different columns. For example, for any U(i, j) # 0,
we can conclude that the column j depends on the column
i. Specifically, this is because the column j is a sub-column
of the column i and the algorithm will read As(j, i) when it
factorizes the column i, as shown in lines 8-14 in Algorithm 2.
There are other dependencies, but for brevity, we refer the
readers to the earlier publication[32]. GLU3.0 then derives

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Algorithm 2 The hybrid column-based right-looking algo-
rithm.
Input: As-the non-zero filled-in matrix of A after symbolic

analysis
1: for j=1;j <=n; j++ do
2 for k = j+1; k <=n; k++ do
3 if As(k, j) # 0 then
4: As(k, j) = As(k, j)[As(j,)
5: end if
6 end for
7 for k = j+1; k <=n; k++ do
8 if As(j, k) # 0 then
9 for i=j+1; i <= n; i++ do
10: if As(i, j) # 0 then
11: As(i,k) = As(i, k) — As(i, j) X As(j, k)
12: end if
13: end for
14: end if
15: end for
16: end for

all dependence information of columns and constructs a de-
pendency graph. Figurel(b) shows the dependency graph
for matrix A. An edge (i, j) in the graph indicates that the
column j depends on the column i. Based on the depen-
dence graph, the algorithm groups columns into levels so
that columns within a level are independent of each other
and thus can be factorized in parallel. Figure 1(c) shows the
level information for the matrix A. For example, columns 1, 2,
3, 6, and 7 are independent of each other and their processing
can be in parallel. The process for determining such levels is
essentially a topological sort but is also called levelization.

The GLU3.0 effort observed that potential parallelism
keeps changing across the levels. In general, they classified
the levels into three categories. In the beginning stage of fac-
torization, the levels are “type A" levels. Such levels typically
have a large number of parallelizable columns, while each
column has very few associated sub-columns. Thus, they
employ one thread block to factorize one column and one
warp is assigned to a sub-column. In contrast, type C levels
are at the end of the factorization process. In this stage, the
levels have a limited number of columns, while each column
generally has a large number of sub-columns. To exploit
the parallelism of sub-columns, thread blocks are assigned
to each sub-column, and kernel calls instead of blocks are
assigned to each column. Type B levels, which are in the
transitional stage, have great numbers of columns, and at
the same time columns also have many sub-columns.

2.3 Limitations of Current Work and Challenges

Previous research efforts demonstrated GPU to use for either
the numeric factorization phase [19, 32] or a partial symbolic
factorization phase [11]. However, a complete GPU solution
to solve the LU factorization has not been proposed. More

291

Yang Xia, Peng Jiang, Gagan Agrawal, and Rajiv Ramnath

#n?

| dense format | | Sparse format |

numeric factorization

Figure 2. Overall framework of GPU LU factorization for
large sparse matrices.

specifically, most closely related previous work [11] provides
a partial solution to GPU-based symbolic execution, i.e. the
the scheduling phase is executed on the CPU only. In addi-
tion, this work does not integrate symbolic and numerical
execution phases.

Based on the fact that the device memory of GPUs is get-
ting larger and more applications are being ported on GPUs,
we propose to develop the first ‘end-to-end’ sparse matrix
LU factorization implementation. The main challenges in
achieving this goal are: 1) the large memory requirements
at intermediate stages, and 2) computations involving data
dependencies.

3 End-to-end GPU LU factorization

In this section, we first introduce the framework of our end-
to-end GPU solution. Then, we show our out-of-core GPU
implementation to perform symbolic factorization and a GPU
implementation of a topological sort for the purpose of sched-
uling. Finally, we present optimizations to increase the par-
allelism for large matrices during the numeric factorization
step.

3.1 Overall Framework

The overall framework for our sparse LU factorization is
shown in Figure 2. Following the convention, we first per-
form certain pre-processing steps, i.e. row and column per-
mutations with the goals of reducing fill-ins and improving
numeric stability. Then, we perform symbolic factorization
in two phases. After that, a parallel version of levelization
is conducted on the GPU - the output of this step is used
to schedule parallel computations during the numeric fac-
torization phase. Finally, there is the numerical factorization

End-to-End LU Factorization of Large Matrices on GPUs

implementation, where our novel contribution is switching
to using a sparse data format when the number of rows
becomes large - this reduces memory requirements and in-
creases parallelism.

3.2 Out-of-Core Symbolic Factorization with
Dynamic Parallelism Assignment

We first illustrate the memory limitation for symbolic fac-
torization. As shown in Algorithm 1, associated with the
processing of each source row is the requirement to allo-
cate several arrays and each of which requires O(n) memory
space (where n is the number of rows). As a result, O(n?)
memory space is required in total, and exceeds the memory
limits even for a relatively small matrix size — it should be
noted that the original matrix is a sparse n X n matrix whose
memory requirements are much lower than n?.

One solution to solve the memory limitation is to use a
recently available feature (recent at least in the context of
NVIDIA GPUs), called unified memory [17, 31]. This feature
allows the applications to access the memory on the host
side transparently, and data is loaded to the physical GPU
memory while servicing page faults. Similar to the concept
of virtual memory on a typical CPU operating system, this
feature can significantly ease the programming, and indeed,
this option has been used for several out-of-core GPU imple-
mentations lately [1, 2, 12, 25, 26, 40].

However, it turns out that an implementation based on
this approach will have significant additional data movement
costs, especially in view of irregular accesses with symbolic
factorization — we demonstrate this experimentally later in
the paper. As an alternative, we focus on a version where
data movement is explicitly controlled. We first propose a
naive out-of-core GPU implementation for symbolic factor-
ization, which is shown as Algorithm 3. In the first step, it
computes the number of iterations, which is based on the
GPU’s memory size. Assume that the GPU’s device memory
size is L. Each source row requires at most ¢ X n storage for
graph traversal to store values like the intermediate vertices
- here, c, is a constant whose value turns out to be 6 for this
problem. Then,

chunk_size = L/(c X n).

Accordingly, the number of iterations, denoted as num_iter,
is n/chunk_size.

We also note that there are two issues in the only other
previous work on GPU-based symbolic factorization [11]
(which only performed part of symbolic factorization) for
our end-to-end out-of-core GPU implementation: First, it
only counts the total number of new fill-ins produced during
LU factorization. This is not sufficient information for the
subsequent numeric factorization, i.e., as can be seen from
Algorithm 2, the numeric factorization algorithm requires:
1) the number of new fill-ins of each row 2) the exact posi-
tions of each new fill-ins. Second, [11] used a fixed value for

292

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

les

1.0 25
0.8 | 2.0 ‘

0 0

@ 0.6 o 1.5

= E= 1

j= j=

S04 S10

% Y
0.2 05 j J
00 \ 0.0 muﬂjhmmmmm LS IMLL \

0

0 250 500 750 1000 1250

iter

500 1000

iter

(b) audikw_1

1500

(a) pre2
Figure 3. Frontier size (y-axis) per iteration (x-axis)
chunk_size. To guarantee that the intermediate data struc-

tures reside on GPUs, it would use a conservative value for
chunk_size and limit the parallelism degree correspondingly.

Algorithm 3 Naive out-of-core GPU implementation for
symbolic factorization.

: num_iter = n / chunk_size

: » Compute the number of the fill-ins in each row

: for iter = 0; iter < num_iter; iter++ do
symbolic_l<<<>>> (chunk_size)

: end for

: > fill_count record the number of non-zeros in each row
: prefix_sum(fill_count_d)

: Allocate memory for factorized matrix.

: » Compute the positions of the fill-ins in kernel symbolic_2
: for iter = 0; iter < num_iter; iter++ do
symbolic_2<<<>>> (chunk_size)

: end for

_ e
):‘O\DOO\]O\U‘I%UJN»—!

Ju
s+

To solve the first issue in [11], our implementation con-
tains two stages. For the first stage, we only compute the
number of non-zeroes in each row of the factorized matrix.
During each iteration, we launch kernel symbolic_1 to com-
pute the count of non-zeroes for chunk_size rows in parallel,
which is shown in lines 3-5 in Algorithm 3. The implementa-
tion of symbolic_1 is modified from a recent publication [11].
The counts of non-zeroes in each row are stored in the array
fill_count. Since we use the compressed sparse row (CSR)
data format to store the factorized matrix, we apply a GPU
implementation of prefix sum on the array fill_count to get
the starting position of each row and the total number of
non-zeroes (line 7). With this information, we are able to
allocate device memory for the factorized matrix (line 8).
Finally, for the second stage (lines 10-12), for each iteration,
we launch kernel symbolic_2 for chunk_size rows. The main
difference in the implementation of symbolic_2 (compared
to symbolic_1) is that once we find a fill-in, we also store its
location. This is also why symbolic; needs to be executed
ahead of time to find the space requirements.

For the second issue, we observed that the memory re-
quirements for each source row increase as the source row
identifier value goes up. More specifically, this is the result

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

of Theorem 1, i.e., there will be a more significant number of
intermediate vertices to consider as the source row identifier
value increases, since an intermediate vertex needs to have
a small value. We verify this with example matrices pre2 and
audikw_1, with results shown in Figure 3 — the intermediate
vertices that have smaller identifiers than the source row
identifier and need to be actively considered are denoted as
the frontiers. As can be observed from the figure, the number
of the frontiers is usually large for the last few iterations, and
small otherwise. Thus, we propose a dynamic parallelism
assignment implementation, which is summarized as Algo-
rithm 4. We first partition the rows into two parts: the first
part contains n1 rows and the second has the remaining (n2)
rows — here, n1 is the number of rows before we see a ‘large’
number of frontiers, which we define as 50% of the highest
number of frontiers we come across. The key difference is
that we calculate and use distinct chunk_size for these two
parts. Specifically, for the first part, the memory requirement
corresponding to each row is smaller and thus we assign a
large chunk_size to increase the parallelism. Then, we com-
pute the number of iterations for each part, which is shown
in lines 1-2 in the algorithm. Finally, for each part, we launch
kernel symbolic_1 iteratively to count non-zeroes, which is
shown in lines 4-6 and 8-9, respectively. The procedure of
the second stage is similar, which is omitted in the algorithm.
Note that in carrying out this optimization, using more than
2 phases can be explored, but it will also imply more kernel
launches.

Algorithm 4 Out-of-core GPU implementation for symbolic
factorization with dynamic parallelism assignment.

1: num_iter_1=nl/ chunk_size 1
2: num_iter_2 = n2 / chunk_size_2
3: > Compute the number of the fill-ins in each row
4: for iter = 0; iter < num_iter_1; iter++ do
5: symbolic_1<<<>>> (chunk_size_1)
6: end for
7 ...
8: for iter = 0; iter < num_iter 2; iter++ do
9: symbolic_1<<<>>> (chunk_size_2)
10: end for
11: > The second stage is similar ..
12:

3.3 Parallel Scheduling Procedure on GPUs

Based on the dependency graph, previous efforts calculate
the level numbers for each column as follows:

level(k) = max(—1, level(c1), level(c2),) + 1

where c1, c2, ... are the children of the node k. The proce-
dure is serial by nature since there are dependencies among
different columns: the level number of column k depends on
the level numbers of column c1, ¢2, and so on. As a result,

293

Yang Xia, Peng Jiang, Gagan Agrawal, and Rajiv Ramnath

previous efforts on LU factorization all performed leveliza-
tion on CPUs, and thus did not achieve an end-to-end LU
factorization on GPUs. To parallelize levelization on GPUs,
which is essentially a topological sort, we first note the limi-
tations of previous efforts on mapping this kernel to a GPU.
There have been some general GPU graph processing sys-
tems [21, 41] that report they can support topological sort.
However, none of them explicitly optimize for this algorithm.
Some publications [37] explicitly report GPU topological sort
implementation, but they use CPU to launch kernels and thus
can not fully utilize the parallelism provided by GPUs. In

Algorithm 5 Parallel levelization implementation on GPUs.

1: __global__ void Topo(){

2: level_num =0

3: > d_queue is the queue of all nodes with no incoming edges
4: cons_queue<<<>>>(...)

5: level_num++

6: while gsize > 0 do

7 update<<<>>>(...);

8 gsize = 0;

9 cons_queue<<<>>>(...)

10: level num++;

11: end while

12: }

13: procedure LEVELIZATION

14: cons_graph<<<>>>(...)
15: cnt_indegree<<<>>>(...)
16: Topo<<<>>>(...);

17: end procedure

this work, we propose a pure GPU implementation with
dynamic parallelism feature of cuda. Compared with [37],
our dynamic parallelism implementation has the following
benefits: First, it avoids the synchronizations and data trans-
fers between the CPU and the GPU. Second, with functions
called within GPUs, the kernel launch overheads are greatly
reduced. The detailed procedure is shown in Algorithm 5.
The method assumes that a dependency graph G has been
constructed, based on the method mentioned in Section 2
(line 14). Then, we count the in-degree for each node using
the kernel cnt_indegree (line 15). The actual topological sort
procedure starts as we launch the kernel Topo_Sort (line 16).
Inside the kernel, we first create the d_queue data structure,
which denotes the nodes to be processed. Initially, this set
includes all nodes with no incoming nodes - this is done
using a child kernel cons_queue (line 4). More specifically,
this kernel checks the in-degree for each node, and if the
in-degree of a node is zero, this method puts the node into
d_queue and sets the level number to 0. During each itera-
tion in the loop, a child kernel update is launched to update
the in-degree values of the neighbors for the nodes in the
d_queue. Then, we construct a new d_queue for such neigh-
bors (cons_queue procedure, line 9). We increase the level

End-to-End LU Factorization of Large Matrices on GPUs

number at the end of each iteration in line 10. We repeat this
procedure until there are no nodes with no incoming nodes,
i.e. g_size becomes zero.

Compared to the existing work on this problem we are
aware of [37], our improvement lies in calling functions
within the GPU, as opposed to using CPU to launch kernels.
While a direct comparison is not possible as the baseline code
is not available, we can expect significant improvement as
kernel launch overheads are removed. The computation com-
plexity of the sequential topological sort is O(N + M) where
N is the number of nodes and M is the number of edges. The
span (longest execution steps) of parallel topological sort is
the number of levels.

Algorithm 6 Binary search to access As(i,j).

Input: col_of fset - column offset of CSC format.
row_id - row ids of CSC format.
val - values of CSC format.

1: ...

2: fs = col_offset[]]

3: fe = col_offset[j+1]
4: while fe >=fs do

5: mid = (fs + fe) / 2
6 if row_id[mid] == i) then

7 As(ik) = As(i, k)- val[mid] x As(j,k)
8

9

break
: else if row_id[mid] > i then
10: fe = mid - 1
11: else
12: fs =mid + 1
13: end if

14: end while

3.4 Increasing Parallelism by Removing Memory
Limits for Numeric Factorization

Previous numerical factorization implementations on GPUs
- specifically the GLU implementations [19, 32, 33] — all used
a dense format for matrix As(i, j) (see Algorithm 2). To elab-
orate further, in Algorithm 2, we need to search a row id
i, which is larger than column id j. Thus, when we use a
dense format, we can access data efficiently because the po-
sition is direct i. However, we observe that this increases
the total memory requirements, limits the number of rows
that can be stored in a chunk, and thus reduces the amount
of parallelism. Assume that the total available device mem-
ory is L, and the maximum parallelizable columns M can be
calculated as:
L

Tnx sizeof (data type)

, where n is the number of vertices. Since we use a thread
block to perform the numeric factorization for one column,
M denotes the maximal possible concurrent thread blocks. As
can be seen from this expression, M would be smaller when n

294

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Table 1. Specifications of Nvidia Tesla V100.

GPUs Tesla V100

#SM 80

FP32 CUDA Cores/GPU 5120

Memory Interface 4096-bit HBM2

Register File Size / SM (KB) 65536

Max Registers / Thread 255

Shared Memory Size / SM (KB) | Configurable up to 96 KB
Max Thread Block Size 1024

keeps getting larger. Eventually, as n gets very large, M could
be smaller than the maximal number of concurrent threads
(denoted as TB_max). This would cause the implementation
is not able to utilize sufficient parallelism of GPUs.

To solve this issue, we propose to adopt the compressed
sparse column (CSC) data format for As(i, j), when we iden-
tify that n is larger than TBimaxXSl.zeﬁ Fdata type)” The chal-
lenge, however, with this change is that for a given column
id j, we are not able to get the row id i that is larger than
the column id j directly in this case. Thus, we utilize the
ascending property in the CSC format and perform a binary
search to find the position where the row id i is larger than
column id j .

The detailed procedure is shown in Algorithm 6. In this
algorithm, j denotes the column id and i denotes the row id,
and the indexes between col_of fset[j] and col_of fset[j+1]
are sorted. f's denotes the smallest possible indexes to search,
which is initialized as col_of fset[j] and fe denotes the
largest position indexes to search, which is initialized as
col_of fset[j+1]. In each iteration, we compare the middle
value of the indices, mid, with i. If the row id in mid is the
same as i, then we have found the index, which is mid. Oth-
erwise, if the row id in mid is larger than i, fe is updated as
mid — 1. Alternatively, if the row id in mid is smaller than i,
fs is updated as mid — 1, and we continue the search.

4 Evaluation and Performance Study

In this section, we present our experimental results on a
set of large matrices to demonstrate the effectiveness of our
end-to-end GPU implementation. We first show our experi-
mental environment and the features of the selected input
matrices. Then, to show the effectiveness of our out-of-core
GPU implementation for symbolic factorization, we compare
it with both a parallel implementation modified from GLU
3.0 [32] and an optimized unified memory implementation.
Next, we evaluate the benefits obtained from the optimiza-
tions that have been introduced, including the use of sparse
data representations during numeric factorization for the
largest of the matrices.

INote that our CSC format is sorted.

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Table 2. Input matrices where the memory requirements of
symbolic factorization exceed the size of GPU memory.

matrix abbr | n nnz nnz/n
g7jac200sc G7 59310 | 837936 14.1
rmal0 RM 46835 | 2374001 50.7
pre2 PR 659033 | 5959282 | 9.0
inline_1 IN 503712 | 18660027 | 37.0
crankseg_2 CR2 | 63838 | 7106348 | 111.3
bmwecra_1 BMC | 148770 | 5396386 | 36.3
crankseg_1 CR1 | 52804 | 5333507 | 101.0
bmw7st_1 BM7 | 141347 | 3740507 | 26.5
apache2 AP 715176 | 2766523 | 3.9
s3dkq4m2 S34 90449 | 2455670 | 27.1
s3dkt3m2 S33 90449 | 1921955 | 21.2
onetone2 OT2 | 36057 | 227628 6.3
rajat15 R15 37261 | 443573 11.9
bbmat BB 38744 | 1771722 | 45.7
mixtank_new MI 29957 | 1995041 | 66.6
Goodwin_054 GO 32510 | 1030878 | 31.7
onetonel OT1 | 36057 | 341088 9.5
windtunnel_evap3d | WI 40816 | 2730600 | 66.9

4.1 Experimental Design

Environment: We conducted our experiments on an Nvidia
Tesla V100. The specifications of the GPU are shown in Ta-
ble 1. The GPUs are attached to an Intel(R) Xeon(R) CPU
E5-2680 (2013 Ivy Bridge) running at 2.4 GHz - the CPU
contains 14 physical cores and provides hyper-threading
with 2 threads for each core, which is used for our baseline
implementation. The size of the host memory is 128 GB in
our experiments. The host operating system for our exper-
iments is CentOS Linux release 7.4.1708 (Core). Our GPU
implementations are based on CUDA 11.2 toolkit and NVCC
V11.2.152 is used to compile our programs.

Input Matrices: We select 18 matrices from the SuiteSparse
Matrix Collection [7] for detailed study and analysis. These
matrices were selected because LU factorization was possible
on these, and as we verified, the memory requirements for
the intermediate data structures exceed the size of the device
memory of the Nvidia Tesla V100. In other words, for each of
these matrices, symbolic factorization, cannot be executed on
a GPU without explicit data movement or the use of unified
memory. The specifications of the matrices are shown in
Table2. Our experiments use float as the data type.

Choice of Baselines: We primarily compare the per-
formance of our out-of-core GPU implementations with a
parallel implementation modified from GLU3.0[32], which
is a recent efficient implementation. For the symbolic part,
because our implementation directly starts with the code of
Gaihre et al. [11] and improves it on functionality (i.e., calcu-
lating nonzero positions for numerical phase and preventing
out-of-memory for larger data) instead of performance, a
comparison of performance will not have been meaningful.
Other efforts for numerical phase optimization have not al-
ways made code available, moreover, numerical phase is a
small part of the execution time of the full code. Finally, we

295

Yang Xia, Peng Jiang, Gagan Agrawal, and Rajiv Ramnath

have extensively compared against another design option,
which is to use unified memory.

4.2 Comparison with Modified GLU3.0
implementation

The results of this comparison are shown in Figure 4. The
execution times are broken down by time spent on symbolic
factorization and numeric factorization respectively. We note
that the speedups (for the entire execution) are in the range
1.13-32.65. It can also be seen that the difference between
our out-of-core GPU implementation and the GLU3.0 imple-
mentation is mainly from the symbolic factorization phase.
While the relative performance between the multi-core CPU
and GPU varies considerably, GPU speedups seem depen-
dent on the number of non-zeroes per row, nnz/n. When the
ratios are larger, the speedups tend to be larger. For exam-
ple, matrices WI and MI have both the highest values of the
ratio nnz/n and among the highest speedups, where AP and
OT2 are on the opposite spectrum. This is consistent with
the general observation that GPUs become more efficient as
computations get (relatively) dense.

4.3 Comparison with Unified-Memory Solution(s)

We further compare our out-of-core GPU implementation
with unified memory implementations. First, we note that
even the unified memory solution gets limited by the size
of the CPU main memory. Thus, for this experiment, we
selected 7 out of 18 matrices, for which the intermediate data
sizes can fit into CPU main memory but not for GPU device
memory. Specifically, these are the matrices with the 7 small-
est values of n in Table 2, all having fewer than 41,000 rows.
For our experiments, we further tuned the unified memory
implementation and tried different optimizations. We found
that prefetching the intermediate data structures results in
increased efficiency. The results comparing our implementa-
tion with the unified memory implementation (prefetching
enabled) are shown in Figure 5. As in the previous figure, the
execution times are broken down by time spent on symbolic
and numeric factorization phases respectively. We see that
our out-of-core GPU implementation is 1.06-2.22 times more
efficient than optimized unified memory implementation. A
closer analysis shows for matrices with a relatively higher
density, i.e., WI and MI, unified memory implementation is
quite competitive. On the other hand, for R15 and OT2 which
have the lowest density, the unified memory overheads are
larger. This matches our expectation that as there are fewer
computations, the effect of page faults would be larger.

We further created a version of unified memory imple-
mentation without any prefetching — this version is limited
to symbolic factorization. We compared the execution times
of the symbolic factorization phase of our out-of-core GPU
implementation with the unified memory-based implementa-
tions in Figure 6. As indicated in the figure, without prefetch-
ing, unified memory implementation performs worse. Their

End-to-End LU Factorization of Large Matrices on GPUs PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

=l ooc-symbolic @ ooc-numeric 7 GLU_symbolic ® GLU-numeric

35.00
30.00
25.00

20.00

15.00

Normalized time

10.00

5.00 =00 W _

000 1]]]]] edi] et o] el e]] o] |
G7 RM PR IN CR2 BMC CR1 BM7 AP S34 S33 O0OT2 R15 BB Ml GO OT1 WiI

Figure 4. Normalized end-to-end execution times (times for symbolic and numerical phases separated) for out-of-core GPU
implementation and the modified GLU3.0 baseline.
ooc-symbolic nooc-numeric ®unified memory-symbolic ¥ unified memory-numeric
2.50
2.00

1.50

1.00

Normalized time

0.50

0.00

0oT1 Wi

Figure 5. Normalized end-to-end execution times (times for symbolic and numerical phases separated) for out-of-core GPU
implementation and a unified-memory GPU baseline

ooc Munified memory wo prefetch unified memory w prefetch

o 35 4.74

£

= 4 3.67 3.58

:E 3 2.99

E) 2.20 245 o 2.10 1.92

IEEFEEEE
. =ll7, = %

O0T2 R15 BB MI GO OT1 WI

Figure 6. Normalized symbolic execution phase times for our out-of-core GPU implementation, unified memory implementa-
tions with and without prefetching.

relative performance gets worse for matrices with lower performance drawback of on-demand paging in the unified
density, like R15 and OT2. memory implementation is the overhead of GPU page faults.

Further elaboration on the performance differences be- As shown in the table, a significant amount of time for uni-
tween the three versions is shown in Table 3. The main fied memory versions is spent servicing page faults, whereas

296

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Table 3. Comparison of the numbers of GPU page fault
groups and the percentages of time to service GPU page
faults without and with prefetching. wp denotes with
prefetching and wo p denotes without prefetching.

matrix | # GPU faults wo p | faults wp | pc. wo p(%) | pc. wp(%) | pc. ooc(%)
0T2 16734 4638 78.37 56.60 0.06
R15 17322 4392 86.21 65.46 0.15
BB 19753 5798 46.98 26.94 0.09
MI 12803 4377 36.15 21.61 0.10
GO 13670 3848 78.19 57.39 0.33
OT1 16884 4717 69.58 45.18 0.06
WI 24977 8569 33.11 19.54 0.01
= original i dynamic
80.00
- 67.11
60.12
5 60.00
£ 48.02 46.20
g 40.00]
= —_—
=} e
Q —
2 20.00
m]
0.00 .
audikw_1 pre2

Figure 7. Execution times of our dynamic parallelism assign-
ment implementation and original symbolic factorization
implementation.

the out-of-core GPU implementation spends a very small
amount of time on data movement. Referring back to Figure 6,
we also observe that for matrices with significant computa-
tion overheads, such as MI and WI (which happen to be the
more dense matrices), the percentages of the time spent on
servicing GPU page faults are smaller, and correspondingly,
the benefits of our implementation are also smaller.

4.4 Evaluation of Optimizations

Dynamic Parallelism Assignment: We further demonstrate
the effectiveness and limitation of dynamic parallelism as-
signment. We compare our dynamic parallelism assignment
implementation with the native out-of-core implementation
for symbolic factorization on two large matrices. These ma-
trices are chosen because they are large and the numbers of
iterations are large. This comparison is shown in Figure 7.
We observed that the dynamic implementation achieves up
to 10% better performance than the naive implementation.
We also noticed that performance improvement is limited by
the implementation. During some steps in symbolic factor-
ization, the parallelism degree is determined by the number
of frontiers. Thus, when the numbers of frontiers are signifi-
cantly large, the performance improvement would be limited
for these steps.

Memory Optimization for Numeric Factorization: We next
demonstrate the effectiveness of our optimizations to in-
crease parallelism for numerical factorization. These benefits
are noticed only for very large matrices, with sizes beyond

297

Yang Xia, Peng Jiang, Gagan Agrawal, and Rajiv Ramnath

Table 4. Specifications of large matrices and the maximal
number of parallel thread blocks for original version

matrix Order nnz max #blocks
hugetrace-00020 16,002,413 | 47,997,626 124
delaunay_n24 16,777,216 | 100,663,202 | 119
hugebubbles-00000 | 18,318,143 | 54,940,162 109
hugebubbles-00010 | 19,458,087 | 58,359,528 102

= binary search Il original

1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

1.24

delaunay_n24

Normalized time

hugetrace-00020

hugebubbles-00000 hugebubbles-00010

Figure 8. Normalized numeric factorization times of our
binary search implementation and original implementation.

the ones we have used for other experiments so far. Specif-
ically, these matrices are shown in Table 4 - for these, n
is larger than TB_maxXSizeﬁ F(data Type) " Since these matrices
happen not to be LU-factorizable (they are not full rank). For
our experiments, we replaced their 0 diagonal elements with
a non-zero number (1000) to make them factorizable.

Table 4 also shows the maximal number of parallel thread
blocks for these matrices. Because the maximal number of
thread blocks of our GPU is 160, the original numeric factor-
ization implementation cannot exploit the full parallelism
on our GPU 2. We next compared the execution times of our
binary search implementation with the original implementa-
tion in Figure 8. As can be seen from the figure, our binary
search implementation achieves speedups of 2.88-3.33 since
the number of parallel columns is increased.

5 Related Work

In this section, we discuss related efforts on accelerating LU
factorization and certain relevant out-of-core implementa-
tions proposed in the context of graph processing and linear
algebra.

Accelerating LU Factorization: Motivated by the success
of supernodal method in accelerating Cholesky factoriza-
tion for symmetric positive definite matrices (SPD), supern-
odal LU method was proposed for unsymmetric matrices
[9, 10, 27]. Along these lines, Demmel et al. [9] introduced
five types of unsymmetric supernodes, and more specifi-
cally, to exploit the cache more efficiently, they proposed
supernode-panel updates and two-dimensional data parti-
tioning for SuperLU. They also further proposed a multi-
threaded version, SuperLU_MT[10] and a distributed version,
SuperLU_DIST [27], to exploit the intra-node and internode
parallelism, respectively. Attracted by the enormous paral-
lelism potentials of the GPUs, Gaihre et al. proposed GSOFA,

%In this experiment, the number of thread blocks for the binary search
implementation is fixed to be 160.

End-to-End LU Factorization of Large Matrices on GPUs

which was the first work on accelerating the symbolic factor-
ization on GPUs [11]. While their implementation can deal
with distributed environments, they are limited to just de-
termining the number of fill-ins on the GPUs. Davis et al.[8],
noticed that, for many sparse matrices, such as those from
circuit simulation, it is hard to form supernodes or dense
parts. Thus, they adopted Block Triangular Form based on
Gilbert Peierls (G/P) left-looking algorithm [15]. Chen et al.
parallelized the KLU algorithm[8] on multi-core architecture
by exploiting the column-level parallelism [4, 5]. Chen et
al. further observed that not every matrix is suitable for a
parallel algorithm and proposed a predictive method to de-
cide whether a matrix should use a parallel or a sequential
algorithm [3]. He et al. proposed GLU implementation to
accelerate LU factorization for sparse matrices based on a hy-
brid right-looking LU factorization algorithm [19]. However,
the hybrid right-looking introduces a new type of data depen-
dency, which is called double-U dependency. Furthermore,
GLU uses a fixed GPU thread allocation strategy, which lim-
its parallelism. To solve these issues, Peng et al. introduced
a relaxed but much more efficient data dependency detec-
tion algorithm and developed three different modes of GPU
kernel which adapt to different stages in LU factorization
[32]. However, these works all deploy the symbolic execution
phase on a CPU.

Out-of-Core GPU Implementations: Recently, many re-
search works on out-of-core GPU implementation were pro-
posed focusing on sparse linear algebra and graph compu-
tations. Among them, most research efforts focus on the
case where the input graph is too large to fit in GPU device
memory, which is unlike the challenge for LU where inter-
mediate data size is the likely bottleneck. Generally, there
are two major approaches to support GPU out-of-core imple-
mentations: partitioning-based and unified memory-based.
In the partitioning-based approach, one first partition the
input data to chunks such that each chunk can reside in
GPU memory, and processes one chunk at a time [18, 22, 39].
To reduce the data transfer overhead which can dominate
the time, Sengupta et al. [39] proposed to detect and skip
partitions that are not needed or are inactive. Han et al. 18]
further improve the approach, with the adoption of X-Stream
style graph processing and renaming techniques to reduce
the cost of explicit GPU memory management. Recently, Sa-
bet et al. [35] proposed efficient GPU-accelerated subgraph
generation techniques to further reduce the data transfer
overhead. Besides, they adopt asynchronous execution to
reduce the need for subgraph generations and reloading,.
Another general approach is to adopt the unified memory
[17, 31] feature. This feature provides a managed memory
space where CPUs and GPUs can observe a single address
space with a coherent memory image. With this approach,
over-subscription of GPU’s memory and an on-demand data
migration through page faults is supported. Lately, this has
become a popular approach [1, 2, 12, 25, 26, 40], though our

298

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

work has demonstrated that explicit data management can
result in better performance.

6 Conclusions

LU factorization for large sparse matrices is an important sci-
entific computing kernel, though none of the previous work
provided a full GPU-based solution. To achieve this goal, we
addressed a number of issues: We proposed an out-of-core
implementation for the symbolic factorization phase that
deals with the memory limits of the GPU, we have presented
a dynamic parallelism-based scheduling procedure on the
GPU, and to further improve the performance of the numeric
factorization, we proposed to switch to sparse data formats
when the matrices are very large. Our evaluation has shown
that our solution can support large matrices on GPUs obtain-
ing several fold speedups over an efficient solution modified
from GLU3.0. Further, our out-of-core GPU implementation
for symbolic factorization also outperforms unified memory
implementations, especially leading to significantly better
performance for very sparse matrices. We have also shown
significant performance improvements from our optimiza-
tions on the numeric factorization phase.

Acknowledgements: This work was partially supported by
NSF awards 2146852, 2131509, 2034850, and 2007793.

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

References

(1]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Tyler Allen and Rong Ge. 2021. In-depth analyses of unified virtual
memory system for GPU accelerated computing. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1-15.

Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, Xiaoyi
Lu, and Dhabaleswar K Panda. 2018. OC-DNN: Exploiting advanced
unified memory capabilities in CUDA 9 and volta GPUs for out-of-
core DNN training. In 2018 IEEE 25th International Conference on High
Performance Computing (HiPC). IEEE, 143-152.

Xiaoming Chen, Yu Wang, and Huazhong Yang. 2012. An adaptive LU
factorization algorithm for parallel circuit simulation. In 17th Asia and
South Pacific Design Automation Conference. IEEE, 359-364.
Xiaoming Chen, Yu Wang, and Huazhong Yang. 2013. NICSLU: An
adaptive sparse matrix solver for parallel circuit simulation. IEEE
transactions on computer-aided design of integrated circuits and systems
32,2 (2013), 261-274.

Xiaoming Chen, Wei Wu, Yu Wang, Hao Yu, and Huazhong Yang. 2011.
An escheduler-based data dependence analysis and task scheduling for
parallel circuit simulation. IEEE Transactions on Circuits and Systems
II: Express Briefs 58, 10 (2011), 702-706.

D Yu Chenhan, Weichung Wang, et al. 2011. A CPU-GPU hybrid
approach for the unsymmetric multifrontal method. Parallel Comput.
37, 12 (2011), 759-770.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse
Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011),
25 pages. https://doi.org/10.1145/2049662.2049663

Timothy A Davis and Ekanathan Palamadai Natarajan. 2010. Algo-
rithm 907: KLU, a direct sparse solver for circuit simulation problems.
ACM Transactions on Mathematical Software (TOMS) 37, 3 (2010), 1-17.
James W Demmel, Stanley C Eisenstat, John R Gilbert, Xiaoye S Li,
and Joseph WH Liu. 1999. A supernodal approach to sparse partial
pivoting. SIAM J. Matrix Anal. Appl. 20, 3 (1999), 720-755.

James W Demmel, John R Gilbert, and Xiaoye S Li. 1999. An asynchro-
nous parallel supernodal algorithm for sparse gaussian elimination.
SIAM 3. Matrix Anal. Appl. 20, 4 (1999), 915-952.

Anil Gaihre, Xiaoye Sherry Li, and Hang Liu. 2021. GSOFA: Scalable
Sparse Symbolic LU Factorization on GPUs. IEEE Transactions on
Parallel and Distributed Systems 33, 4 (2021), 1015-1026.

Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2019.
Interplay between hardware prefetcher and page eviction policy in
cpu-gpu unified virtual memory. In Proceedings of the 46th International
Symposium on Computer Architecture. 224-235.

Thomas George, Vaibhav Saxena, Anshul Gupta, Amik Singh, and
Anamitra R Choudhury. 2011. Multifrontal factorization of sparse SPD
matrices on GPUs. In 2011 IEEE International Parallel & Distributed
Processing Symposium. IEEE, 372-383.

John R Gilbert and Joseph WH Liu. 1993. Elimination structures for
unsymmetric sparse LU factors. SIAM J. Matrix Anal. Appl. 14, 2 (1993),
334-352.

John R Gilbert and Tim Peierls. 1988. Sparse partial pivoting in time
proportional to arithmetic operations. SIAM J. Sci. Statist. Comput. 9,
5 (1988), 862—874.

Laura Grigori, James W Demmel, and Xiaoye S Li. 2007. Parallel
symbolic factorization for sparse LU with static pivoting. SIAM Journal
on Scientific Computing 29, 3 (2007), 1289-1314.

Design Guide. 2013. Cuda ¢ programming guide. NVIDIA, July 29
(2013), 31.

Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Gra-
phie: Large-scale asynchronous graph traversals on just a GPU. In 2017
26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 233-245.

Kai He, Sheldon X-D Tan, Hai Wang, and Guoyong Shi. 2015. GPU-
accelerated parallel sparse LU factorization method for fast circuit

299

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Yang Xia, Peng Jiang, Gagan Agrawal, and Rajiv Ramnath

analysis. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 24, 3 (2015), 1140-1150.

Arthur B Kahn. 1962. Topological sorting of large networks. Commun.
ACM 5, 11 (1962), 558-562.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014.
CuSha: vertex-centric graph processing on GPUs. In Proceedings of
the 23rd international symposium on High-performance parallel and
distributed computing. 239-252.

Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jin-
wook Kim. 2016. Gts: A fast and scalable graph processing method
based on streaming topology to gpus. In Proceedings of the 2016 SIG-
MOD. 447-461.

Wai-Kong Lee, Ramachandra Achar, and Michel S Nakhla. 2018. Dy-
namic GPU parallel sparse LU factorization for fast circuit simulation.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 11
(2018), 2518-2529.

E Lezar and DB Davidson. 2010. GPU-based LU decomposition for
large method of moments problems. Electronics letters 46, 17 (2010),
1194-119%6.

Chen Li, Rachata Ausavarungnirun, Christopher] Rossbach, Youtao
Zhang, Onur Mutlu, Yang Guo, and Jun Yang. 2019. A framework
for memory oversubscription management in graphics processing
units. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 49-63.

Lingda Li and Barbara Chapman. 2019. Compiler assisted hybrid im-
plicit and explicit GPU memory management under unified address
space. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 1-16.

Xiaoye S Li and James W Demmel. 2003. SuperLU_DIST: A scalable
distributed-memory sparse direct solver for unsymmetric linear sys-
tems. ACM Transactions on Mathematical Software (TOMS) 29, 2 (2003),
110-140.

Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff, and Brian Vinter. 2016.
A synchronization-free algorithm for parallel sparse triangular solves.
In European Conference on Parallel Processing. Springer, 617-630.
Robert F Lucas, Gene Wagenbreth, Dan M Davis, and Roger Grimes.
2010. Multifrontal computations on GPUs and their multi-core hosts.
In International Conference on High Performance Computing for Com-
putational Science. Springer, 71-82.

Laurence W Nagel. 1975. SPICE2: A computer program to simulate
semiconductor circuits. Memorandom (1975), ERL-M520.

Dan Negrut, Radu Serban, Ang Li, and Andrew Seidl. 2014. Unified
memory in cuda 6.0. a brief overview of related data access and transfer
issues. SBEL, Madison, WI, USA, Tech. Rep. TR-2014-09 (2014).

Shaoyi Peng and Sheldon X-D Tan. 2020. GLU3. 0: Fast GPU-based
parallel sparse LU factorization for circuit simulation. IEEE Design &
Test 37, 3 (2020), 78-90.

Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, and Huazhong
Yang. 2012. Sparse LU factorization for parallel circuit simulation on
GPU. In Proceedings of the 49th Annual Design Automation Conference.
1125-1130.

Donald J Rose and Robert Endre Tarjan. 1978. Algorithmic aspects
of vertex elimination on directed graphs. SIAM J. Appl. Math. 34, 1
(1978), 176—-197.

Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Sub-
way: minimizing data transfer during out-of-GPU-memory graph pro-
cessing. In European Conference on Computer Systems. 1-16.

Piyush Sao, Richard Vuduc, and Xiaoye Sherry Li. 2014. A distributed
CPU-GPU sparse direct solver. In European Conference on Parallel
Processing. Springer, 487-498.

Rahul Saxena, Monika Jain, and DP Sharma. 2018. GPU-based paral-
lelization of topological sorting. In Proceedings of First International
Conference on Smart System, Innovations and Computing. Springer,

https://doi.org/10.1145/2049662.2049663

End-to-End LU Factorization of Large Matrices on GPUs

(38

[

(39]

411-421.

Olaf Schenk, Klaus Gartner, and Wolfgang Fichtner. 2000. Efficient
sparse LU factorization with left-right looking strategy on shared
memory multiprocessors. BIT Numerical Mathematics 40, 1 (2000),
158-176.

Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten
Schwan. 2015. Graphreduce: processing large-scale graphs on
accelerator-based systems. In SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and

300

[40]

[41]

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Analysis. IEEE, 1-12.

Pengyu Wang, Jing Wang, Chao Li, Jianzong Wang, Haojin Zhu,
and Minyi Guo. 2021. Grus: Toward unified-memory-efficient high-
performance graph processing on gpu. ACM Transactions on Architec-
ture and Code Optimization (TACO) 18, 2 (2021), 1-25.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D Owens. 2016. Gunrock: A high-performance graph
processing library on the GPU. In Proceedings of the 21st ACM SIGPLAN
symposium on principles and practice of parallel programming. 1-12.

	Abstract
	1 Introduction
	2 Background
	2.1 Symbolic Factorization and GPU Implementation
	2.2 Numeric Factorization and GPU Implementation
	2.3 Limitations of Current Work and Challenges

	3 End-to-end GPU LU factorization
	3.1 Overall Framework
	3.2 Out-of-Core Symbolic Factorization with Dynamic Parallelism Assignment
	3.3 Parallel Scheduling Procedure on GPUs
	3.4 Increasing Parallelism by Removing Memory Limits for Numeric Factorization

	4 Evaluation and Performance Study
	4.1 Experimental Design
	4.2 Comparison with Modified GLU3.0 implementation
	4.3 Comparison with Unified-Memory Solution(s)
	4.4 Evaluation of Optimizations

	5 Related Work
	6 Conclusions
	References

