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Abstract
LU factorization for sparse matrices is an important comput-

ing step for many engineering and scientific problems such

as circuit simulation. There have been many efforts toward

parallelizing and scaling this algorithm, which include the

recent efforts targeting the GPUs. However, it is still challeng-

ing to deploy a complete sparse LU factorization workflow

on a GPU due to high memory requirements and data depen-

dencies. In this paper, we propose the first complete GPU

solution for sparse LU factorization. To achieve this goal,

we propose an out-of-core implementation of the symbolic

execution phase, thus removing the bottleneck due to large

intermediate data structures. Next, we propose a dynamic

parallelism implementation of Kahn’s algorithm for topolog-

ical sort on the GPUs. Finally, for the numeric factorization

phase, we increase the parallelism degree by removing the

memory limits for large matrices as compared to the existing

implementation approaches. Experimental results show that

compared with an implementation modified from GLU 3.0,

our out-of-core version achieves speedups of 1.13-32.65X.

Further, our out-of-core implementation achieves a speedup

of 1.2-2.2 over an optimized unified memory implementa-

tion on the GPU. Finally, we show that the optimizations we

introduce for numeric factorization turn out to be effective.
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1 Introduction
A wide range of engineering and scientific computing appli-

cations require a solution of the large linear algebraic system

of equations, i.e. 𝐴 × 𝑥 = 𝑏. The direct method to solve

this problem involves transforming the matrix 𝐴 into two

matrices: the lower triangular matrix 𝐿 and upper triangular
matrix𝑈 such that 𝐴 = 𝐿 ×𝑈 . This transformation is done

with a method that is commonly referred to as LU factoriza-

tion. After invoking this procedure, solution 𝑥 can be easily

obtained by solving equations involving these two triangular

matrices, which are computationally much easier. For many

applications, (for example, circuit simulation [16, 24, 30]),

matrix 𝐴 can be very large and sparse. As a result, LU fac-

torization of large sparse matrices becomes a critical kernel

for these applications.

Sparse LU factorization generally introduces new fill-ins
(i.e. non-zero elements in 𝐿 or𝑈 that were not non-zeroes in

𝐴). The positions of these new fill-ins are unknown before

the runtime. As a result, LU factorization involves a symbolic
factorization phase where the numbers (and likely positions)

of these fill-ins are determined. This step is followed by a

numeric factorization phase where the actual non-zero values
are now computed.

Due to the importance of LU factorization, research on

accelerating sparse LU factorization has been ongoing for

decades [3–5, 8–11, 15, 19, 27, 32]. As the High Performance

Computing (HPC) arena is getting dominated by heteroge-

neous and accelerator-based computing, several recent re-

search efforts have specifically considered sparse LU factor-

ization on GPUs [6, 13, 29]. However, each of these efforts has

accelerated only a part of the computation using the GPUs –

specifically either only numerical factorization [19, 28, 32, 36]
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or only symbolic factorization (and further limited to count-

ing the number of non-zeroes and not their locations) [11].

As a result, these works are not able to take full advantage

of the parallelism from GPUs.

In this paper, we deliver the first efficient implementation

that conducts all the steps of a sparse LU solver on a GPU,

while also working with large matrices where intermediate

memory requirements may exceed the available memory on

a GPU. To achieve this goal, we address three major issues.

The first issue is the large memory usage during the sym-

bolic factorization step. To scale the implementation to large

matrices, we propose an out-of-core GPU implementation

that performs symbolic factorization iteratively.

The second issue is the parallelization of the scheduling
procedure. As a background, the implementation of numeric

factorization is column by column and it is required to de-

tect the dependencies among the columns and determine

their order for numeric factorization. Previous works either

use an elimination tree[10, 38] or a levelization algorithm

[32, 33], but deploy the procedure on the CPU. In this work,

we make the observation that this scheduling step is essen-

tially a topological sort and propose an efficient GPU imple-

mentation with the dynamic parallelism feature of Kahn’s

algorithm [20].

Finally, previous GPU implementations [19, 32] use the

dense data format for the matrix to enable fast data access

during the numeric factorization step. In such a case, each col-

umn requires O(𝑛) memory space and the number of columns

that can be stored on the GPU (and thus can be processed

in parallel) gets limited. This can become a significant chal-

lenge while dealing with large matrices (i.e. as 𝑛 increases).

To solve this issue, we propose to switch to a sparse data

format when the matrix size increases. Although the data

access (i.e. searching for a row id for a given column id) on

sparse data formats would be less efficient, we show that we

can still achieve better performance with a binary search-

based access algorithm because the limit on the number of

parallel columns is removed.

We evaluate our implementation using a set of matrices

from SuiteSparse matrix collection [7]. We summarize our

observations as follows. First, our out-of-core GPU sym-

bolic factorization can support large matrices and delivers

speedups in the range from 1.13 to 32.65 over an efficient

CPU implementation from a recent publication (i.e. GLU

3.0[32]). Second, compared with an optimized unified mem-
ory solution for symbolic factorization, our out-of-core GPU

solution achieves speedups in the range of 1.2-2.2 because it

can access GPU device memory more efficiently. Then, we

demonstrate that our optimization on numeric factorization

further improves the performance by up to 3.33 times for

large matrices, which is due to memory efficiency that leads

to increased parallelism.

(a) An example matrix A (b) Graph representation

of matrix A

(c) Dependency graph of

matrix A

(d) Column ids for different

levels

Figure 1. Example matrix. (a) Symbolic factorization on

sparse matrix A with row 9 under analysis, the red circle rep-

resents the new fill-in (b) The graph representation of matrix

A, the read line presents the new fill-in (c) The dependency

graph for matrix A, the dotted lines separate columns from

different levels (d) A table to show column ids for different

levels.

2 Background
The LU factorization of an 𝑛 × 𝑛 matrix, 𝐴, has the form

𝐴 = 𝐿 ×𝑈 , where 𝐿 is a lower triangular matrix and𝑈 is an

upper triangular matrix. LU factorization implementation

generally involves major steps of pre-processing, symbolic

factorization, and numerical factorization. During the pre-

processing procedure, row and column permutations are per-

formed in order to improve numerical stability and reduce

the number of fill-ins in the 𝐿 and 𝑈 matrices [9, 10, 27]. Be-

cause our implementation primarily concerns numerical and

symbolic factorization stages, we review them here. Specifi-

cally, we first introduce symbolic factorization in detail and

then give an overview of a GPU implementation of numeric

factorization: GLU3.0[19, 32]. Finally, we briefly explain the

motivation for our work.

2.1 Symbolic Factorization and GPU Implementation
The LU factorization involves a sequence of elementary row
operations, where the pivoting row is multiplied by a non-

zero scalar and updated into another row below, which has

non-zero in the pivoting column. As a result, for a sparse
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matrix, LU factorization often introduces new non-zero en-

tries, which are known as fill-ins. Figure 1 shows an example

matrix 𝐴, which will be used throughout this paper. Con-

sidering row 9 in Figure 1(a), since row 9 has a non-zero at

column 5, row 5 needs to perform row operations on row 9.

As a result, it produces a new fill-in (9, 8).

As stated previously, a symbolic factorization step is needed

to identify the non-zero structures of 𝐿 and 𝑈 matrices. The

locations of new fill-ins are determined by the following

theorem:

Theorem 1. A fill-in at the index (𝑖, 𝑗) is introduced if and
only if there exists a directed path from 𝑖 to 𝑗 , with the inter-
mediate vertices being smaller than both 𝑖 and 𝑗[34].

Based on Theorem 1, several algorithms have been pro-

posed to implement symbolic factorization [14, 15, 34]. In this

section, we briefly summarize the fill2 algorithm, which

exhibits a high degree of parallelism and thus is suitable for

GPUs. The detailed procedure is shown in Algorithm 1. It

uses an array 𝑓 𝑖𝑙𝑙 to indicate an already visited vertex by

setting 𝑓 𝑖𝑙𝑙 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ) = 𝑠𝑟𝑐 . At the beginning of the algo-

rithm, it performs initialization, and then for each threshold

that is treated as a frontier, it checks its neighbors, updates

the status of the neighbors, and adds new fill-ins to either

𝐿(𝑠𝑟𝑐, :) or𝑈 (𝑠𝑟𝑐, :), as well as to the 𝑛𝑒𝑤𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑄𝑢𝑒𝑢𝑒 (:).
Subsequently, it will proceed to the next threshold vertex in

line 11.

Recently, a GPU implementation of fill2 algorithm was

proposed to accelerate symbolic factorization [11]. As in-

dicated in Algorithm 1, symbolic factorization from each

source row is independent. Thus, we can perform parallel

traversals from all columns. However, with such indepen-

dent traversal, each node requires𝑂 (𝑛) memory, which leads

to 𝑂 (𝑛2) overall memory requirements. Though using a dis-

tributed collection of resources can increase the aggregate

available memory (previous study [11] deployed up to 44

nodes and 264 GPUs), better memory efficiency will be de-

sirable. It should also be noted that their solution just counts

the number of new fill-ins in each row, which is insufficient

information for the subsequent numeric factorization step

(which they do not implement on GPUs).

2.2 Numeric Factorization and GPU Implementation
The traditional numeric factorizationmethod is right-looking

LU factorization:[
𝑙11

𝑙21 𝐿22

] [
𝑢11 𝑢12

𝑈 22

]
=

[
𝑎11 𝑎12

𝑎21 𝐴22

]
Here, 𝑙11, 𝑢11 are scalars and 𝑙11 = 1, 𝑙21 are column vector

with size (𝑛 − 1) × 1, 𝑢12 is row vector with size 1 × (𝑛 − 1),
and 𝐿22 and𝑈 22 are the (𝑛 − 1) × (𝑛 − 1) sub-matrices. To

compute matrices 𝐿 and𝑈 , we can first find that 𝑢11 = 𝑎11,

𝑢12 = 𝑎12, and 𝑙21 = 𝑎21/𝑢11. Then, we can solve 𝐿22×𝑈 22 =

𝐴22 − 𝑙21×𝑢12. As can be seen, the traditional right-looking

Algorithm 1 Fill 2 algorithm based on Theorem 1. This

algorithm shows the procedure for the src
𝑡ℎ

row.

Input: src- the src-th row of the matrix, 𝐴(:, :)-original matrix

Output: Filled matrix L and U

1: 𝑓 𝑖𝑙𝑙 (:) = 0;

2: 𝑓 𝑖𝑙𝑙 (𝑠𝑟𝑐) = 𝑠𝑟𝑐;

3: for v in 𝐴(𝑠𝑟𝑐, :) do
4: 𝑓 𝑖𝑙𝑙 (𝑣) = 𝑠𝑟𝑐;

5: if v < src then
6: add v to 𝐿(𝑠𝑟𝑐, :);
7: else
8: add v to𝑈 (𝑠𝑟𝑐, :);
9: end if
10: end for
11: for threshold = 0:src-1 s.t. 𝑓 𝑖𝑙𝑙 (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) == 𝑠𝑟𝑐 do
12: add threshold to 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑄𝑢𝑒𝑢𝑒 (:);
13: for each frontier ∈ 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑄𝑢𝑒𝑢𝑒 (:) : do
14: for each neighbor ∈ 𝐴(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟, :) do
15: if 𝑓 𝑖𝑙𝑙 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ) < src then
16: 𝑓 𝑖𝑙𝑙 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ) = 𝑠𝑟𝑐

17: if neighbor > threshold then
18: add neighbor to 𝐿(𝑠𝑟𝑐, :) or𝑈 (𝑠𝑟𝑐, :);
19: else
20: add neighbor to 𝑛𝑒𝑤𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑄𝑢𝑒𝑢𝑒 (:);
21: end if
22: end if
23: end for
24: end for
25: swap (𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑄𝑢𝑒𝑢𝑒 (:), 𝑛𝑒𝑤𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑄𝑢𝑒𝑢𝑒 (:))
26: goto line 13;

27: end for

method solves one row for the matrix 𝑈 , followed by one

column for the matrix 𝐿, and recursively solves the matrix

with 𝑛 iterations. However, this approach has sequential data

dependence, which would limit the amount of parallelism.

Thus, to overcome this issue, previous efforts [19, 23, 32]

proposed a hybrid column-based right-looking algorithm,

which can utilize column-level parallelism. The procedure

is shown in Algorithm 2. For each column 𝑗 , the first step

is to compute the 𝐿 part of the current column, which is

shown in lines 2-6. Then, it looks right to find all columns

𝑘 (𝑘 > 𝑗 ), which satisfies 𝐴𝑠 (𝑘, 𝑗) ≠ 0. Such columns are

called sub-columns of the column 𝑗 . Then, it can factorize all

sub-columns of 𝑗 in parallel as shown in lines 8-14.

To schedule the order of factorization for different columns,

the algorithm needs to check the dependence relationship

among different columns. For example, for any𝑈 (𝑖, 𝑗) ≠ 0,

we can conclude that the column 𝑗 depends on the column

𝑖 . Specifically, this is because the column 𝑗 is a sub-column

of the column 𝑖 and the algorithm will read 𝐴𝑠 ( 𝑗, 𝑖) when it

factorizes the column 𝑖 , as shown in lines 8-14 in Algorithm 2.

There are other dependencies, but for brevity, we refer the

readers to the earlier publication[32]. GLU3.0 then derives
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Algorithm 2 The hybrid column-based right-looking algo-

rithm.

Input: 𝐴𝑠-the non-zero filled-in matrix of A after symbolic

analysis

1: for 𝑗 = 1; 𝑗 <= 𝑛; 𝑗++ do
2: for 𝑘 = j+1; 𝑘 <= 𝑛; 𝑘++ do
3: if 𝐴𝑠 (𝑘, 𝑗) ≠ 0 then
4: 𝐴𝑠 (𝑘, 𝑗) = 𝐴𝑠 (𝑘, 𝑗)/𝐴𝑠 ( 𝑗, 𝑗)
5: end if
6: end for
7: for 𝑘 = j+1; 𝑘 <= 𝑛; 𝑘++ do
8: if 𝐴𝑠 ( 𝑗, 𝑘) ≠ 0 then
9: for 𝑖=j+1; 𝑖 <= 𝑛; 𝑖++ do
10: if 𝐴𝑠 (𝑖, 𝑗) ≠ 0 then
11: 𝐴𝑠 (𝑖, 𝑘) = 𝐴𝑠 (𝑖, 𝑘) −𝐴𝑠 (𝑖, 𝑗) ×𝐴𝑠 ( 𝑗, 𝑘)
12: end if
13: end for
14: end if
15: end for
16: end for

all dependence information of columns and constructs a de-
pendency graph. Figure1(b) shows the dependency graph

for matrix 𝐴. An edge (𝑖, 𝑗) in the graph indicates that the

column 𝑗 depends on the column 𝑖 . Based on the depen-

dence graph, the algorithm groups columns into levels so
that columns within a level are independent of each other

and thus can be factorized in parallel. Figure 1(c) shows the

level information for the matrix𝐴. For example, columns 1, 2,

3, 6, and 7 are independent of each other and their processing

can be in parallel. The process for determining such levels is

essentially a topological sort but is also called levelization.
The GLU3.0 effort observed that potential parallelism

keeps changing across the levels. In general, they classified

the levels into three categories. In the beginning stage of fac-

torization, the levels are “type A" levels. Such levels typically

have a large number of parallelizable columns, while each

column has very few associated sub-columns. Thus, they

employ one thread block to factorize one column and one

warp is assigned to a sub-column. In contrast, type C levels

are at the end of the factorization process. In this stage, the

levels have a limited number of columns, while each column

generally has a large number of sub-columns. To exploit

the parallelism of sub-columns, thread blocks are assigned

to each sub-column, and kernel calls instead of blocks are

assigned to each column. Type B levels, which are in the

transitional stage, have great numbers of columns, and at

the same time columns also have many sub-columns.

2.3 Limitations of Current Work and Challenges
Previous research efforts demonstrated GPU to use for either

the numeric factorization phase [19, 32] or a partial symbolic

factorization phase [11]. However, a complete GPU solution

to solve the LU factorization has not been proposed. More

Figure 2. Overall framework of GPU LU factorization for

large sparse matrices.

specifically, most closely related previous work [11] provides

a partial solution to GPU-based symbolic execution, i.e. the

the scheduling phase is executed on the CPU only. In addi-

tion, this work does not integrate symbolic and numerical

execution phases.

Based on the fact that the device memory of GPUs is get-

ting larger and more applications are being ported on GPUs,

we propose to develop the first ‘end-to-end’ sparse matrix

LU factorization implementation. The main challenges in

achieving this goal are: 1) the large memory requirements

at intermediate stages, and 2) computations involving data

dependencies.

3 End-to-end GPU LU factorization
In this section, we first introduce the framework of our end-

to-end GPU solution. Then, we show our out-of-core GPU

implementation to perform symbolic factorization and a GPU

implementation of a topological sort for the purpose of sched-

uling. Finally, we present optimizations to increase the par-

allelism for large matrices during the numeric factorization

step.

3.1 Overall Framework
The overall framework for our sparse LU factorization is

shown in Figure 2. Following the convention, we first per-

form certain pre-processing steps, i.e. row and column per-

mutations with the goals of reducing fill-ins and improving

numeric stability. Then, we perform symbolic factorization

in two phases. After that, a parallel version of levelization
is conducted on the GPU – the output of this step is used

to schedule parallel computations during the numeric fac-

torization phase. Finally, there is the numerical factorization
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implementation, where our novel contribution is switching

to using a sparse data format when the number of rows

becomes large – this reduces memory requirements and in-

creases parallelism.

3.2 Out-of-Core Symbolic Factorization with
Dynamic Parallelism Assignment

We first illustrate the memory limitation for symbolic fac-

torization. As shown in Algorithm 1, associated with the

processing of each source row is the requirement to allo-

cate several arrays and each of which requires O(𝑛) memory

space (where 𝑛 is the number of rows). As a result, O(𝑛2)

memory space is required in total, and exceeds the memory

limits even for a relatively small matrix size – it should be

noted that the original matrix is a sparse 𝑛 ×𝑛 matrix whose

memory requirements are much lower than 𝑛2.

One solution to solve the memory limitation is to use a

recently available feature (recent at least in the context of

NVIDIA GPUs), called unified memory [17, 31]. This feature

allows the applications to access the memory on the host

side transparently, and data is loaded to the physical GPU

memory while servicing page faults. Similar to the concept

of virtual memory on a typical CPU operating system, this

feature can significantly ease the programming, and indeed,

this option has been used for several out-of-core GPU imple-

mentations lately [1, 2, 12, 25, 26, 40].

However, it turns out that an implementation based on

this approach will have significant additional data movement

costs, especially in view of irregular accesses with symbolic

factorization – we demonstrate this experimentally later in

the paper. As an alternative, we focus on a version where

data movement is explicitly controlled. We first propose a

naive out-of-core GPU implementation for symbolic factor-

ization, which is shown as Algorithm 3. In the first step, it

computes the number of iterations, which is based on the

GPU’s memory size. Assume that the GPU’s device memory

size is 𝐿. Each source row requires at most 𝑐 × 𝑛 storage for

graph traversal to store values like the intermediate vertices

– here, 𝑐 , is a constant whose value turns out to be 6 for this

problem. Then,

𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 = 𝐿/(𝑐 × 𝑛).
Accordingly, the number of iterations, denoted as 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 ,

is 𝑛/𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 .
We also note that there are two issues in the only other

previous work on GPU-based symbolic factorization [11]

(which only performed part of symbolic factorization) for

our end-to-end out-of-core GPU implementation: First, it

only counts the total number of new fill-ins produced during

LU factorization. This is not sufficient information for the

subsequent numeric factorization, i.e., as can be seen from

Algorithm 2, the numeric factorization algorithm requires:

1) the number of new fill-ins of each row 2) the exact posi-

tions of each new fill-ins. Second, [11] used a fixed value for

(a) pre2 (b) audikw_1

Figure 3. Frontier size (y-axis) per iteration (x-axis)

𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 . To guarantee that the intermediate data struc-

tures reside on GPUs, it would use a conservative value for

𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 and limit the parallelism degree correspondingly.

Algorithm 3 Naive out-of-core GPU implementation for

symbolic factorization.

1: num_iter = n / chunk_size

2: ⊲ Compute the number of the fill-ins in each row

3: for iter = 0; iter < num_iter; iter++ do
4: symbolic_1<<<>>> (𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒)
5: end for
6: ⊲ 𝑓 𝑖𝑙𝑙_𝑐𝑜𝑢𝑛𝑡 record the number of non-zeros in each row

7: prefix_sum(𝑓 𝑖𝑙𝑙_𝑐𝑜𝑢𝑛𝑡_𝑑)

8: Allocate memory for factorized matrix.

9: ⊲ Compute the positions of the fill-ins in kernel symbolic_2

10: for iter = 0; iter < num_iter; iter++ do
11: symbolic_2<<<>>> (𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒)
12: end for

To solve the first issue in [11], our implementation con-

tains two stages. For the first stage, we only compute the

number of non-zeroes in each row of the factorized matrix.

During each iteration, we launch kernel 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐_1 to com-

pute the count of non-zeroes for 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 rows in parallel,

which is shown in lines 3-5 in Algorithm 3. The implementa-

tion of 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐_1 is modified from a recent publication [11].

The counts of non-zeroes in each row are stored in the array

𝑓 𝑖𝑙𝑙_𝑐𝑜𝑢𝑛𝑡 . Since we use the compressed sparse row (CSR)

data format to store the factorized matrix, we apply a GPU

implementation of prefix sum on the array 𝑓 𝑖𝑙𝑙_𝑐𝑜𝑢𝑛𝑡 to get

the starting position of each row and the total number of

non-zeroes (line 7). With this information, we are able to

allocate device memory for the factorized matrix (line 8).

Finally, for the second stage (lines 10-12), for each iteration,

we launch kernel 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐_2 for 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 rows. The main

difference in the implementation of 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐_2 (compared

to 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐_1) is that once we find a fill-in, we also store its

location. This is also why 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐1 needs to be executed

ahead of time to find the space requirements.

For the second issue, we observed that the memory re-

quirements for each source row increase as the source row

identifier value goes up. More specifically, this is the result

292



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Yang Xia, Peng Jiang, Gagan Agrawal, and Rajiv Ramnath

of Theorem 1, i.e., there will be a more significant number of

intermediate vertices to consider as the source row identifier

value increases, since an intermediate vertex needs to have

a small value. We verify this with example matrices pre2 and
audikw_1, with results shown in Figure 3 – the intermediate

vertices that have smaller identifiers than the source row

identifier and need to be actively considered are denoted as

the frontiers. As can be observed from the figure, the number

of the frontiers is usually large for the last few iterations, and

small otherwise. Thus, we propose a dynamic parallelism

assignment implementation, which is summarized as Algo-

rithm 4. We first partition the rows into two parts: the first

part contains 𝑛1 rows and the second has the remaining (𝑛2)

rows – here, 𝑛1 is the number of rows before we see a ‘large’

number of frontiers, which we define as 50% of the highest

number of frontiers we come across. The key difference is

that we calculate and use distinct 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 for these two

parts. Specifically, for the first part, the memory requirement

corresponding to each row is smaller and thus we assign a

large 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 to increase the parallelism. Then, we com-

pute the number of iterations for each part, which is shown

in lines 1-2 in the algorithm. Finally, for each part, we launch

kernel 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐_1 iteratively to count non-zeroes, which is

shown in lines 4-6 and 8-9, respectively. The procedure of

the second stage is similar, which is omitted in the algorithm.

Note that in carrying out this optimization, using more than

2 phases can be explored, but it will also imply more kernel

launches.

Algorithm 4 Out-of-core GPU implementation for symbolic

factorization with dynamic parallelism assignment.

1: num_iter_1= n1 / chunk_size_1

2: num_iter_2 = n2 / chunk_size_2

3: ⊲ Compute the number of the fill-ins in each row

4: for iter = 0; iter < num_iter_1; iter++ do
5: symbolic_1<<<>>> (𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒_1)
6: end for
7: ...

8: for iter = 0; iter < num_iter_2; iter++ do
9: symbolic_1<<<>>> (𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒_2)
10: end for
11: ⊲ The second stage is similar ..
12: ...

3.3 Parallel Scheduling Procedure on GPUs
Based on the dependency graph, previous efforts calculate

the level numbers for each column as follows:

𝑙𝑒𝑣𝑒𝑙 (𝑘) =𝑚𝑎𝑥 (−1, 𝑙𝑒𝑣𝑒𝑙 (𝑐1), 𝑙𝑒𝑣𝑒𝑙 (𝑐2), ) + 1

where 𝑐1, 𝑐2, . . . are the children of the node 𝑘 . The proce-

dure is serial by nature since there are dependencies among

different columns: the level number of column 𝑘 depends on

the level numbers of column 𝑐1, 𝑐2, and so on. As a result,

previous efforts on LU factorization all performed leveliza-
tion on CPUs, and thus did not achieve an end-to-end LU

factorization on GPUs. To parallelize levelization on GPUs,

which is essentially a topological sort, we first note the limi-

tations of previous efforts on mapping this kernel to a GPU.

There have been some general GPU graph processing sys-

tems [21, 41] that report they can support topological sort.

However, none of them explicitly optimize for this algorithm.

Some publications [37] explicitly report GPU topological sort

implementation, but they use CPU to launch kernels and thus

can not fully utilize the parallelism provided by GPUs. In

Algorithm 5 Parallel levelization implementation on GPUs.

1: __global__ void Topo( ){

2: level_num = 0

3: ⊲ 𝑑_𝑞𝑢𝑒𝑢𝑒 is the queue of all nodes with no incoming edges

4: cons_queue<<<>>>(...)

5: level_num++

6: while qsize > 0 do
7: update<<<>>>(...);

8: qsize = 0;

9: cons_queue<<<>>>(...)

10: level_num++;

11: end while
12: }

13: procedure Levelization
14: cons_graph<<<>>>(...)

15: cnt_indegree<<<>>>(...)

16: Topo<<<>>>(...);

17: end procedure

this work, we propose a pure GPU implementation with

dynamic parallelism feature of cuda. Compared with [37],

our dynamic parallelism implementation has the following

benefits: First, it avoids the synchronizations and data trans-

fers between the CPU and the GPU. Second, with functions

called within GPUs, the kernel launch overheads are greatly

reduced. The detailed procedure is shown in Algorithm 5.

The method assumes that a dependency graph 𝐺 has been

constructed, based on the method mentioned in Section 2

(line 14). Then, we count the in-degree for each node using

the kernel cnt_indegree (line 15). The actual topological sort
procedure starts as we launch the kernel Topo_Sort (line 16).
Inside the kernel, we first create the d_queue data structure,
which denotes the nodes to be processed. Initially, this set

includes all nodes with no incoming nodes – this is done

using a child kernel cons_queue (line 4). More specifically,

this kernel checks the in-degree for each node, and if the

in-degree of a node is zero, this method puts the node into

d_queue and sets the level number to 0. During each itera-

tion in the loop, a child kernel update is launched to update

the in-degree values of the neighbors for the nodes in the

d_queue. Then, we construct a new d_queue for such neigh-

bors (cons_queue procedure, line 9). We increase the level
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number at the end of each iteration in line 10. We repeat this

procedure until there are no nodes with no incoming nodes,

i.e. 𝑞_𝑠𝑖𝑧𝑒 becomes zero.

Compared to the existing work on this problem we are

aware of [37], our improvement lies in calling functions

within the GPU, as opposed to using CPU to launch kernels.

While a direct comparison is not possible as the baseline code

is not available, we can expect significant improvement as

kernel launch overheads are removed. The computation com-

plexity of the sequential topological sort is𝑂 (𝑁 +𝑀) where
𝑁 is the number of nodes and𝑀 is the number of edges. The

span (longest execution steps) of parallel topological sort is

the number of levels.

Algorithm 6 Binary search to access As(i,j).

Input: 𝑐𝑜𝑙_𝑜 𝑓 𝑓 𝑠𝑒𝑡 - column offset of CSC format.

𝑟𝑜𝑤_𝑖𝑑 - row ids of CSC format.

𝑣𝑎𝑙 - values of CSC format.

1: ...

2: fs = col_offset[j]

3: fe = col_offset[j+1]

4: while fe >= fs do
5: mid = (fs + fe) / 2

6: if row_id[mid] == i) then
7: As(i,k) = As(i, k)- val[mid] × As(j,k)

8: break

9: else if row_id[mid] > i then
10: fe = mid - 1

11: else
12: fs = mid + 1

13: end if
14: end while

3.4 Increasing Parallelism by Removing Memory
Limits for Numeric Factorization

Previous numerical factorization implementations on GPUs

- specifically the GLU implementations [19, 32, 33] – all used

a dense format for matrix 𝐴𝑠 (𝑖, 𝑗) (see Algorithm 2). To elab-

orate further, in Algorithm 2, we need to search a row id

𝑖 , which is larger than column id 𝑗 . Thus, when we use a

dense format, we can access data efficiently because the po-

sition is direct 𝑖 . However, we observe that this increases

the total memory requirements, limits the number of rows

that can be stored in a chunk, and thus reduces the amount

of parallelism. Assume that the total available device mem-

ory is 𝐿, and the maximum parallelizable columns𝑀 can be

calculated as:

𝑀 =
𝐿

𝑛 × 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎 𝑡𝑦𝑝𝑒)
, where 𝑛 is the number of vertices. Since we use a thread

block to perform the numeric factorization for one column,

𝑀 denotes themaximal possible concurrent thread blocks. As

can be seen from this expression,𝑀 would be smaller when𝑛

Table 1. Specifications of Nvidia Tesla V100.
GPUs Tesla V100
#SM 80

FP32 CUDA Cores/GPU 5120

Memory Interface 4096-bit HBM2

Register File Size / SM (KB) 65536

Max Registers / Thread 255

Shared Memory Size / SM (KB) Configurable up to 96 KB

Max Thread Block Size 1024

keeps getting larger. Eventually, as 𝑛 gets very large,𝑀 could

be smaller than the maximal number of concurrent threads

(denoted as 𝑇𝐵_𝑚𝑎𝑥 ). This would cause the implementation

is not able to utilize sufficient parallelism of GPUs.

To solve this issue, we propose to adopt the compressed

sparse column (CSC) data format for 𝐴𝑠 (𝑖, 𝑗), when we iden-

tify that 𝑛 is larger than
𝐿

𝑇𝐵_𝑚𝑎𝑥×𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎 𝑡𝑦𝑝𝑒) . The chal-

lenge, however, with this change is that for a given column

id 𝑗 , we are not able to get the row id 𝑖 that is larger than

the column id 𝑗 directly in this case. Thus, we utilize the

ascending property in the CSC format and perform a binary

search to find the position where the row id 𝑖 is larger than

column id 𝑗 1
.

The detailed procedure is shown in Algorithm 6. In this

algorithm, 𝑗 denotes the column id and 𝑖 denotes the row id,

and the indexes between 𝑐𝑜𝑙_𝑜 𝑓 𝑓 𝑠𝑒𝑡[j] and 𝑐𝑜𝑙_𝑜 𝑓 𝑓 𝑠𝑒𝑡[j+1]

are sorted. 𝑓 𝑠 denotes the smallest possible indexes to search,

which is initialized as 𝑐𝑜𝑙_𝑜 𝑓 𝑓 𝑠𝑒𝑡[j] and 𝑓 𝑒 denotes the

largest position indexes to search, which is initialized as

𝑐𝑜𝑙_𝑜 𝑓 𝑓 𝑠𝑒𝑡[j+1]. In each iteration, we compare the middle

value of the indices,𝑚𝑖𝑑 , with 𝑖 . If the row id in𝑚𝑖𝑑 is the

same as 𝑖 , then we have found the index, which is𝑚𝑖𝑑 . Oth-

erwise, if the row id in𝑚𝑖𝑑 is larger than 𝑖 , 𝑓 𝑒 is updated as

𝑚𝑖𝑑 − 1. Alternatively, if the row id in𝑚𝑖𝑑 is smaller than 𝑖 ,

𝑓 𝑠 is updated as𝑚𝑖𝑑 − 1, and we continue the search.

4 Evaluation and Performance Study
In this section, we present our experimental results on a

set of large matrices to demonstrate the effectiveness of our

end-to-end GPU implementation. We first show our experi-

mental environment and the features of the selected input

matrices. Then, to show the effectiveness of our out-of-core

GPU implementation for symbolic factorization, we compare

it with both a parallel implementation modified from GLU

3.0 [32] and an optimized unified memory implementation.

Next, we evaluate the benefits obtained from the optimiza-

tions that have been introduced, including the use of sparse

data representations during numeric factorization for the

largest of the matrices.

1
Note that our CSC format is sorted.
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Table 2. Input matrices where the memory requirements of

symbolic factorization exceed the size of GPU memory.

matrix abbr n nnz nnz/n
g7jac200sc G7 59310 837936 14.1

rma10 RM 46835 2374001 50.7

pre2 PR 659033 5959282 9.0

inline_1 IN 503712 18660027 37.0

crankseg_2 CR2 63838 7106348 111.3

bmwcra_1 BMC 148770 5396386 36.3

crankseg_1 CR1 52804 5333507 101.0

bmw7st_1 BM7 141347 3740507 26.5

apache2 AP 715176 2766523 3.9

s3dkq4m2 S34 90449 2455670 27.1

s3dkt3m2 S33 90449 1921955 21.2

onetone2 OT2 36057 227628 6.3

rajat15 R15 37261 443573 11.9

bbmat BB 38744 1771722 45.7

mixtank_new MI 29957 1995041 66.6

Goodwin_054 GO 32510 1030878 31.7

onetone1 OT1 36057 341088 9.5

windtunnel_evap3d WI 40816 2730600 66.9

4.1 Experimental Design
Environment:We conducted our experiments on an Nvidia

Tesla V100. The specifications of the GPU are shown in Ta-

ble 1. The GPUs are attached to an Intel(R) Xeon(R) CPU

E5-2680 (2013 Ivy Bridge) running at 2.4 GHz – the CPU

contains 14 physical cores and provides hyper-threading

with 2 threads for each core, which is used for our baseline

implementation. The size of the host memory is 128 GB in

our experiments. The host operating system for our exper-

iments is CentOS Linux release 7.4.1708 (Core). Our GPU

implementations are based on CUDA 11.2 toolkit and NVCC

V11.2.152 is used to compile our programs.

Input Matrices:We select 18 matrices from the SuiteSparse

Matrix Collection [7] for detailed study and analysis. These

matrices were selected because LU factorization was possible

on these, and as we verified, the memory requirements for

the intermediate data structures exceed the size of the device

memory of the Nvidia Tesla V100. In other words, for each of

these matrices, symbolic factorization, cannot be executed on

a GPU without explicit data movement or the use of unified

memory. The specifications of the matrices are shown in

Table2. Our experiments use float as the data type.
Choice of Baselines: We primarily compare the per-

formance of our out-of-core GPU implementations with a

parallel implementation modified from GLU3.0[32], which

is a recent efficient implementation. For the symbolic part,

because our implementation directly starts with the code of

Gaihre et al. [11] and improves it on functionality (i.e., calcu-

lating nonzero positions for numerical phase and preventing

out-of-memory for larger data) instead of performance, a

comparison of performance will not have been meaningful.

Other efforts for numerical phase optimization have not al-

ways made code available, moreover, numerical phase is a

small part of the execution time of the full code. Finally, we

have extensively compared against another design option,

which is to use unified memory.

4.2 Comparison with Modified GLU3.0
implementation

The results of this comparison are shown in Figure 4. The

execution times are broken down by time spent on symbolic

factorization and numeric factorization respectively. We note

that the speedups (for the entire execution) are in the range

1.13-32.65. It can also be seen that the difference between

our out-of-core GPU implementation and the GLU3.0 imple-

mentation is mainly from the symbolic factorization phase.

While the relative performance between the multi-core CPU

and GPU varies considerably, GPU speedups seem depen-

dent on the number of non-zeroes per row, 𝑛𝑛𝑧/𝑛. When the

ratios are larger, the speedups tend to be larger. For exam-

ple, matrices WI and MI have both the highest values of the

ratio 𝑛𝑛𝑧/𝑛 and among the highest speedups, where AP and

OT2 are on the opposite spectrum. This is consistent with

the general observation that GPUs become more efficient as

computations get (relatively) dense.

4.3 Comparison with Unified-Memory Solution(s)
We further compare our out-of-core GPU implementation

with unified memory implementations. First, we note that

even the unified memory solution gets limited by the size

of the CPU main memory. Thus, for this experiment, we

selected 7 out of 18 matrices, for which the intermediate data

sizes can fit into CPU main memory but not for GPU device

memory. Specifically, these are the matrices with the 7 small-

est values of 𝑛 in Table 2, all having fewer than 41,000 rows.

For our experiments, we further tuned the unified memory

implementation and tried different optimizations. We found

that prefetching the intermediate data structures results in

increased efficiency. The results comparing our implementa-

tion with the unified memory implementation (prefetching

enabled) are shown in Figure 5. As in the previous figure, the

execution times are broken down by time spent on symbolic

and numeric factorization phases respectively. We see that

our out-of-core GPU implementation is 1.06-2.22 times more

efficient than optimized unified memory implementation. A

closer analysis shows for matrices with a relatively higher

density, i.e., WI and MI, unified memory implementation is

quite competitive. On the other hand, for R15 and OT2 which

have the lowest density, the unified memory overheads are

larger. This matches our expectation that as there are fewer

computations, the effect of page faults would be larger.

We further created a version of unified memory imple-

mentation without any prefetching – this version is limited

to symbolic factorization. We compared the execution times

of the symbolic factorization phase of our out-of-core GPU

implementation with the unified memory-based implementa-

tions in Figure 6. As indicated in the figure, without prefetch-

ing, unified memory implementation performs worse. Their
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Figure 4. Normalized end-to-end execution times (times for symbolic and numerical phases separated) for out-of-core GPU

implementation and the modified GLU3.0 baseline.

Figure 5. Normalized end-to-end execution times (times for symbolic and numerical phases separated) for out-of-core GPU

implementation and a unified-memory GPU baseline

Figure 6. Normalized symbolic execution phase times for our out-of-core GPU implementation, unified memory implementa-

tions with and without prefetching.

relative performance gets worse for matrices with lower

density, like R15 and OT2.

Further elaboration on the performance differences be-

tween the three versions is shown in Table 3. The main

performance drawback of on-demand paging in the unified

memory implementation is the overhead of GPU page faults.

As shown in the table, a significant amount of time for uni-

fied memory versions is spent servicing page faults, whereas
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Table 3. Comparison of the numbers of GPU page fault

groups and the percentages of time to service GPU page

faults without and with prefetching. wp denotes with
prefetching and wo p denotes without prefetching.

matrix # GPU faults wo p faults wp pc. wo p(%) pc. wp(%) pc. ooc(%)
OT2 16734 4638 78.37 56.60 0.06

R15 17322 4392 86.21 65.46 0.15

BB 19753 5798 46.98 26.94 0.09

MI 12803 4377 36.15 21.61 0.10

GO 13670 3848 78.19 57.39 0.33

OT1 16884 4717 69.58 45.18 0.06

WI 24977 8569 33.11 19.54 0.01

Figure 7. Execution times of our dynamic parallelism assign-

ment implementation and original symbolic factorization

implementation.

the out-of-core GPU implementation spends a very small

amount of time on datamovement. Referring back to Figure 6,

we also observe that for matrices with significant computa-

tion overheads, such as MI and WI (which happen to be the

more dense matrices), the percentages of the time spent on

servicing GPU page faults are smaller, and correspondingly,

the benefits of our implementation are also smaller.

4.4 Evaluation of Optimizations
Dynamic Parallelism Assignment: We further demonstrate

the effectiveness and limitation of dynamic parallelism as-

signment. We compare our dynamic parallelism assignment

implementation with the native out-of-core implementation

for symbolic factorization on two large matrices. These ma-

trices are chosen because they are large and the numbers of

iterations are large. This comparison is shown in Figure 7.

We observed that the dynamic implementation achieves up

to 10% better performance than the naive implementation.

We also noticed that performance improvement is limited by

the implementation. During some steps in symbolic factor-

ization, the parallelism degree is determined by the number

of frontiers. Thus, when the numbers of frontiers are signifi-

cantly large, the performance improvement would be limited

for these steps.

Memory Optimization for Numeric Factorization: We next

demonstrate the effectiveness of our optimizations to in-

crease parallelism for numerical factorization. These benefits

are noticed only for very large matrices, with sizes beyond

Table 4. Specifications of large matrices and the maximal

number of parallel thread blocks for original version

matrix Order nnz max #blocks
hugetrace-00020 16,002,413 47,997,626 124

delaunay_n24 16,777,216 100,663,202 119

hugebubbles-00000 18,318,143 54,940,162 109

hugebubbles-00010 19,458,087 58,359,528 102

Figure 8. Normalized numeric factorization times of our

binary search implementation and original implementation.

the ones we have used for other experiments so far. Specif-

ically, these matrices are shown in Table 4 – for these, 𝑛

is larger than
𝐿

𝑇𝐵_𝑚𝑎𝑥×𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑎𝑡𝑎 𝑡𝑦𝑝𝑒) . Since these matrices

happen not to be LU-factorizable (they are not full rank). For

our experiments, we replaced their 0 diagonal elements with

a non-zero number (1000) to make them factorizable.

Table 4 also shows the maximal number of parallel thread

blocks for these matrices. Because the maximal number of

thread blocks of our GPU is 160, the original numeric factor-

ization implementation cannot exploit the full parallelism

on our GPU
2
. We next compared the execution times of our

binary search implementation with the original implementa-

tion in Figure 8. As can be seen from the figure, our binary

search implementation achieves speedups of 2.88-3.33 since

the number of parallel columns is increased.

5 Related Work
In this section, we discuss related efforts on accelerating LU

factorization and certain relevant out-of-core implementa-

tions proposed in the context of graph processing and linear

algebra.

Accelerating LU Factorization: Motivated by the success

of supernodal method in accelerating Cholesky factoriza-

tion for symmetric positive definite matrices (SPD), supern-

odal LU method was proposed for unsymmetric matrices

[9, 10, 27]. Along these lines, Demmel et al. [9] introduced
five types of unsymmetric supernodes, and more specifi-

cally, to exploit the cache more efficiently, they proposed

supernode-panel updates and two-dimensional data parti-

tioning for SuperLU. They also further proposed a multi-

threaded version, SuperLU_MT[10] and a distributed version,

SuperLU_DIST [27], to exploit the intra-node and internode

parallelism, respectively. Attracted by the enormous paral-

lelism potentials of the GPUs, Gaihre et al. proposed GSOFA,
2
In this experiment, the number of thread blocks for the binary search

implementation is fixed to be 160.

297



End-to-End LU Factorization of Large Matrices on GPUs PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

which was the first work on accelerating the symbolic factor-

ization on GPUs [11]. While their implementation can deal

with distributed environments, they are limited to just de-

termining the number of fill-ins on the GPUs. Davis et al.[8],
noticed that, for many sparse matrices, such as those from

circuit simulation, it is hard to form supernodes or dense

parts. Thus, they adopted Block Triangular Form based on

Gilbert Peierls (G/P) left-looking algorithm [15]. Chen et al.
parallelized the KLU algorithm[8] on multi-core architecture

by exploiting the column-level parallelism [4, 5]. Chen et
al. further observed that not every matrix is suitable for a

parallel algorithm and proposed a predictive method to de-

cide whether a matrix should use a parallel or a sequential

algorithm [3]. He et al. proposed GLU implementation to

accelerate LU factorization for sparse matrices based on a hy-

brid right-looking LU factorization algorithm [19]. However,

the hybrid right-looking introduces a new type of data depen-

dency, which is called double-U dependency. Furthermore,

GLU uses a fixed GPU thread allocation strategy, which lim-

its parallelism. To solve these issues, Peng et al. introduced
a relaxed but much more efficient data dependency detec-

tion algorithm and developed three different modes of GPU

kernel which adapt to different stages in LU factorization

[32]. However, these works all deploy the symbolic execution

phase on a CPU.

Out-of-Core GPU Implementations: Recently, many re-

search works on out-of-core GPU implementation were pro-

posed focusing on sparse linear algebra and graph compu-

tations. Among them, most research efforts focus on the

case where the input graph is too large to fit in GPU device

memory, which is unlike the challenge for LU where inter-

mediate data size is the likely bottleneck. Generally, there

are two major approaches to support GPU out-of-core imple-

mentations: partitioning-based and unified memory-based.

In the partitioning-based approach, one first partition the

input data to chunks such that each chunk can reside in

GPU memory, and processes one chunk at a time [18, 22, 39].

To reduce the data transfer overhead which can dominate

the time, Sengupta et al. [39] proposed to detect and skip

partitions that are not needed or are inactive. Han et al. [18]
further improve the approach, with the adoption of X-Stream

style graph processing and renaming techniques to reduce

the cost of explicit GPU memory management. Recently, Sa-

bet et al. [35] proposed efficient GPU-accelerated subgraph

generation techniques to further reduce the data transfer

overhead. Besides, they adopt asynchronous execution to

reduce the need for subgraph generations and reloading.

Another general approach is to adopt the unified memory

[17, 31] feature. This feature provides a managed memory

space where CPUs and GPUs can observe a single address

space with a coherent memory image. With this approach,

over-subscription of GPU’s memory and an on-demand data

migration through page faults is supported. Lately, this has

become a popular approach [1, 2, 12, 25, 26, 40], though our

work has demonstrated that explicit data management can

result in better performance.

6 Conclusions
LU factorization for large sparse matrices is an important sci-

entific computing kernel, though none of the previous work

provided a full GPU-based solution. To achieve this goal, we

addressed a number of issues: We proposed an out-of-core

implementation for the symbolic factorization phase that

deals with the memory limits of the GPU, we have presented

a dynamic parallelism-based scheduling procedure on the

GPU, and to further improve the performance of the numeric

factorization, we proposed to switch to sparse data formats

when the matrices are very large. Our evaluation has shown

that our solution can support large matrices on GPUs obtain-

ing several fold speedups over an efficient solution modified

from GLU3.0. Further, our out-of-core GPU implementation

for symbolic factorization also outperforms unified memory

implementations, especially leading to significantly better

performance for very sparse matrices. We have also shown

significant performance improvements from our optimiza-

tions on the numeric factorization phase.
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