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Abstract

This paper develops new tools to quantify uncertainty in optimal decision making
and to gain insight into which variables one should collect information about given the
potential cost of measuring a large number of variables. We investigate simultaneous
inference to determine if a group of variables is relevant for estimating an optimal
decision rule in a high-dimensional semiparametric framework. The unknown link
function permits flexible modeling of the interactions between the treatment and
the covariates, but leads to nonconvex estimation in high dimension and imposes
significant challenges for inference. We first establish that a local restricted strong
convexity condition holds with high probability and that any feasible local sparse
solution of the estimation problem can achieve the near-oracle estimation error bound.

We further rigorously verify that a wild bootstrap procedure based on a debiased
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version of the local solution can provide asymptotically honest uniform inference for
the effect of a group of variables on optimal decision making. The advantage of honest
inference is that it does not require the initial estimator to achieve perfect model
selection and does not require the zero and nonzero effects to be well-separated. We
also propose an efficient algorithm for estimation. Our simulations suggest satisfactory

performance. An example from a diabetes study illustrates the real application.

Keywords: confidence interval; inference; kernel smoothing; multiplier bootstrap; high-

dimensional data; optimal treatment regime; precision medicine.

1 Introduction

Precision medicine is an innovative practice for disease treatment that takes into account
individual variability in genes, environment, and lifestyle for each patient. Substantial
efforts have recently been devoted to studying how to estimate the optimal personalized
treatment regime given the individual-level information, which aims to yield the best ex-
pected outcome if the treatment regime is followed by each individual in the population.
Several successful approaches have been developed for this estimation problem, including
Q-learning and A-learning based methods [Watkins and Dayan, 1992, Robins et al., 2000,
Murphy, 2003, Moodie and Richardson, 2010, Qian and Murphy, 2011], and classification-
based methods [Zhang et al., 2012, Zhao et al., 2012, 2015, Wang et al., 2018, Qi et al,,
2018], among others. We refer to Chakraborty and Moodie [2013] and Kosorok and Moodie
[2016] for a general introduction to this area and other relevant references.

Inference or uncertainty quantification is important in practice. This paper studies the

following inference problem for optimal personalized decision making: suppose we have



a large number of covariates (e.g., hundreds of genes), how will we determine if a given
subset of covariates (e.g., genes associated with a given biological pathway) is relevant for
making the optimal treatment recommendation? Scientifically, this knowledge would
enable the doctors and researchers to identify critical characteristics (e.g., gender, age, gene
pathways) that are influential for the optimal decision. It also helps gain insight into what
information is worth collecting to be more cost effective, given the possibility of measuring a
large number of variables (genetic, clinic, etc).

In the last few years, important progress has been made in inference with optimal
decision rules. Laber et al. [2014] developed a novel locally consistent adaptive confidence
interval for the Q-learning approach. Chakraborty et al. [2013] proposed a practically
convenient adaptive m-out-of-n bootstrap method for inference for Q-learning. Song et al.
[2015] studied penalized Q-learning. Jeng et al. [2018] developed Lasso-based debiased
procedure for A-learning. Different but related, Chakraborty et al. [2014] and Luedtke and
van der Laan [2016], Zhu et al. [2019] developed confidence intervals for another quantity
of interest: the value function. However, existing work mostly deals with the classical
asymptotic setting of fixed p and large n, where p is the number of covariates and n is the
sample size, and have not addressed the challenge of inference with high-dimensional
variables. Moreover, the aforementioned work often assumes that the interaction between
the covariates and the treatment has a known functional form.

Motivated by the overarching goal of precision medicine to incorporate genetic informa-
tion (e.g, measurements on thousands of genes) in the decision making process, this paper
investigates inference about the effect of a group of variables on the optimal decision rulein
the high-dimensional setting. The existing frameworks are known to face challenges for the

purpose of inference in high dimension. The Q-learning approach is prone to model-



misspecification. Robust model-free procedures that directly estimate the Bayes rule (e.g.,
Zhang et al. [2012]) have a nonstandard convergence rate, see for example, the recent anal-
ysis in Wang et al. [2018] on the cubic-root convergence rate. On the other hand, the
theory of Hinge-loss based O-learning [Zhao et al., 2012] has been focused on the general-
ization error bound. Inference for the Bayes rule based on the nonsmooth surrogate loss is
very challenging in high dimension. We alleviate the above difficulty by adopting a flexi-ble
semiparametric model-assisted approach for optimal decision estimation and inference. The
semiparametric structure permits nonparametric main effects and nonlinear interac-tion
effect between the covariates and treatment via an unknown smooth link function. This
semiparametric framework incorporates many existing models as special cases.

When the interaction effects are nonlinear, the parameter indexing the optimal decision
rule does not necessarily correspond to the solution of a convex problem. For inference, we
first propose and study a preliminary estimator based on a high-dimensional penalized
profile estimation equation. This estimator is motivated by earlier work on classical single-
index models (e.g., Powell et al. [1989], Duan and Li [1991], Ichimura [1993], Zhu and Xue
[2006], Carroll et al. [1997], Xia et al. [1999], Yu and Ruppert [2002], Wang et al. [2010], Ma
and Zhu [2013], Ma and He [2016], among others). Several paper recently studied estimation
for high-dimensional single-index models (e.g., Radchenko [2015], Neykov et al. [2016], Yang
et al. [2017], Lin et al. [2019], among others) but focused on statistical properties of the
global solution which may not be numerically achieved due to the nonconvex nature of the
problem. Adopting tools from modern empirical process and random matrix theory, we
establish that a local restricted strong convexity condition holds with high probability in
high dimension and that any local sparse solution of the penalized estimation equation can

achieve desirable estimation accuracy. Moreover, we propose a new algorithm for efficient



computation in high dimension.

Our research also makes new contributions to statistical inference in high-dimensional
semiparametric models. Recent work on inference has been mostly limited to linear re-
gression or generalized linear regression, see Zhang and Zhang [2014], Van de Geer et al.
[2014], Javanmard and Montanari [2014], Belloni et al. [2015], Cai et al. [2017], Ning et al.
[2017], Zhang and Cheng [2017], Zhu and Bradic [2018], Shi et al. [2020], among others.
High-dimensional inference in the semiparametric setting with estimated nonparametric
components is a substantially harder problem and has been little studied. We have a par-
ticularly challenging setting where the parameter of interest and nonparametric component
are bundled together, that is, the nuisance functions depend on the parameter of interest
[Ding and Nan, 2011]. So far, statistical inference for single-index model has mostly been
limited to the lower-dimensional setting (e.g., Liang et al. [2010]), Gueuning and Claeskens
[2016]).

Our approach is inspired by the de-biasing (or de-sparsifying) idea proposed in Zhang
and Zhang [2014] and Van de Geer et al. [2014], which intuitively can be thought of in-
verting the Karush-Kuhn-Tucker conditions [Van de Geer et al., 2014]. We generalize this
idea to the semiparametric setting and prove that valid honest uniform inference can be
obtained based on a debiased version of a local solution. Specifically, we derive simultane-
ous confidence intervals for inference on a group of variables while allowing the number of
covariates to exceed the sample size. The confidence intervals enjoy the honest property in

the following sense

sup sup P B maxje ojj ¢ (1 )= o(1);
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where o = (01;:::;0p)" is the population parameter indexing the optimal treatment
regime, ;& denote debiased estimators that will be introduced later, G denotes the group of
variables of interest, jj jjo denotes the lp norm of a vector, and s is a positive integer
denoting the sparsity size. The significance of the honest property is that the coverage
probability is asymptotically valid uniformly over a class of s-sparse models. An immediate
implication is that it relaxes the assumption on signal strength and does not require the

zero and nonzero effects to be well-separated (so-called i, condition). In particular,
this procedure does not require the initial estimator to achieve perfect model selection. It
avoids the problems associated with the nonuniformity of the limiting theory for penalized
estimators, see discussions in Li [1989], P6tscher [2009], Van de Geer et al. [2014], McKeague
and Qian [2015], among others. It is also worth noting that the number of variables in G can
be either small or large. For example, one may be interested in assessing how a group of genes
corresponding to a particular biological pathway, the size of which can be comparable with or
even larger than the sample size, affect optimal decision making. The critical value c; is
obtained using a wild bootstrap procedure, which automatically accounts for the
dependence of the coordinates for testing component-wise hypotheses and leads to more
accurate finite-sample performance.

The remainder of the paper is organized as follows. Section 2 introduces the new
methodology. Section 3 studies the statistical properties. Section 4 provides the details on
computation and reports numerical results from Monte Carlo studies. Section 5 illustrates
the new methods on a real data example from a diabetes study. Section 6 discusses some
extensions. The regularity conditions, several useful technical lemmas and all the proofs

are given in the supplementary material.



2 Methodology

2.1 A Semiparametric Framework

For notational simplicity, we will focus on the binary decision setting. Let A 2 A = f0; 1g
denote a binary treatment and x 2 X denote a p-dimensional vector of baseline covariates.
Let Y denote the outcome of interest. Without loss of generality, we assume a larger value of
the outcome is preferred. The observed data consist of f(x;; A;; Y;) :i = 1; ;ng. We are
interested in the setting where p n.

A treatment regime is an individualized decision rule that can be represented as a func-
tion d(x) : X | A. The optimal treatment regime is defined as the decision rule which,
if followed by the whole population, will achieve the largest average outcome. Formally, it
is defined using the potential outcome framework in causal inference [Neyman, 1990,
Rubin, 1978]. Let Y (a) be the potential outcome had the subject been assigned to treat-
ment a 2 f0; 1g. Given a treatment regime d(x), the corresponding potential outcome is Y
(d) = Y (1)d(x)+Y (0)(1 d(x)). The optimal treatment regime is defined as d°Pt(x) = arg
maxq EfY (d)g. It is now well known that d°Pt(x) = arg maxa,a E(Y jx; A = a) [Qian and
Murphy, 2011].

This paper considers a flexible semiparametric framework for optimal treatment regime

estimation and inference in the high-dimensional setting. Specifically, we assume
Yi=g(xi)+ (A 1=2)fo(x{ o) + ;; i=1::5n; (1)

where ¢ = (01;02; ;0p)", 8(Xi) is the unknown main effect, and fo() is an unknown function

that describes the interaction between the treatment and covariates, and the ran-



dom error ; satisfies E(;jx;) = 0, i = 1;:::;n. For identification purpose, we assume that
there exists a relevant covariate which has a continuous density given the other covariates
[Ichimura, 1993]. Such an identification condition is required even in the lower-dimensional
setting when the true model is known. Without loss of generality, we assume that the first
covariate x; satisfies this condition and normalize its coefficient g1 such that g1 = 1, see
Remark (c) in Section S2 of the online supplementary material for more discussions on the
identifiability condition. We denote Bg = f = (1; ;)" : 1 = 1g as the candidate set for o.
Under model (1), the optimal treatment regime is d°Pt(x) = | fo(x; o) > 0 T where I()
denotes the indicator function. Note that the class of index rules are popular in

practice due to its interpretability.

Existing work on inference for optimal treatment regime is mostly based on a parametric
generative model, which is prone to model misspecification. The semiparametric structure
alleviates this difficulty. In particular, it allows for possible nonlinear interaction effects
between the covariates and treatment. It also circumvents the curse of dimensionality
associated with a fully nonparametric model.

Our goal is to estimate o and make inference on its components in the high-dimensional
setting. In the special case fo(u) = u, which is popularly used in practice, the problem
can be formulated as a high-dimensional convex estimation problem. However, when fq is
nonlinear, it generally leads to a high-dimensional nonconvex problem. Both estimation

and inference need to overcome new challenges.

2.2 Profiled Semiparametric Estimation

We start with introducing a penalized profiled semiparametric estimation equation for

estimating the parameter indexing the optimal treatment regime. We consider data from



a random experiment, that is, P(A; = 0) = P(A; = 1) = 1=2,i = 1;:::;n. Extension to
data from observational studies is discussed in Section 6. Inspired by an observation made

for the linear model (Tian et al. [2014]), we observe
2(2A;  1)Yi= fo(x; o) + 2(2A; 1)i + g(x): (2)

Let \éi = 2(2A; 1)Y; be the modified response, and let e= 2(2A; 1); + g(x;) be the

modified error. We have

Ef¥ejxig = fo(x{o): (3)

In the ideal situation where the link function fo is known, we have o = argmin EY;
fo(X; o) 2. It is noteworthy that for a nonlinear function fy, the objective function is
usually nonconvex in . Ichimura [1993] carefully studied the properties of the global
minimizer for a semiparametric nonlinear least-squares approach in the classical finite-
dimensional setting.
To estimate o in the high-dimensional setting with an known fy, we consider a penal-ized
profiled semiparametric estimation equation. In the ideal situation where fo is known a

prior, o satisfies the following unbiased estimating equation
EY; o fo(xi0)folX; o)xi = 0; (4)

where fy() denotes the derivative of fo(). We will replace the unknown fo and f, by their

respective profiled nonparametric estimator, and consider an appropriately penalized version

of the estimated score function to handle the high-dimensional covariates.



We summarize the main steps of estimation as follows. Define G(tj) = EfY &' = tg.
Note that G(tjo) = fo(t). However, when = o, G(tj) usually has a functional form different
from fo. Ichimura [1993] showed that €S} fo(—)(i—gﬁ(,— o T E(xijx; ) T for

close to o. Consider the Nadaraya-Watson kernel estimator for G(tj):

n

Btj) = Wailt;)Ys; © (5)
i=1
where Kn(z) = h K(z=h), and W,i(t;) = » %\erte G(tj) = ,,G(ti¥and

W(l)(t;h) = . Whi(&). Then the kernel estimator for the derivative G*)(tj) is

X n
&V = w(g )y e (6)

i=1

Write G(xTj) = EfY jx€g. To estimate G(x™ P apd GU(xTjP we employ the following

leave-one-out estimators

X n X n
Gx[ = Wailxi Vs e @Y= w, @Y e @)
i=1;i=] i=1;i=j
K - ) )
where Wnij(XT;) = p k jh'(\x:(xz< il,: and W(l)n(i)j(T;J) = L Waidt; )th‘. Slm—TllarIy, we

= j k J

estimate E(xjxT o)bby E(x;jx") E . i=1,i=; Wa (x; ; )xi: Denote x; =
J
(xi:1; xlT 1)7. Motivated by the semiparaemtric efficient score derived in Liang et al. [2010],
we consider the following profiled semiparametric estimating function
X n
Sh(;GREP= nt Y, e OKTHEVEj)x; 1 B(xi; 1ix7)I: (8)

i=1
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In the high-dimensional setting, the estimating equation S, () = 0 is ill-posed when p
n. Let = (1R::;,P = (1B7,)T be alolution in By that solves the following penalized

semiparametric profiled estimating equation

Sa(; GREP+ = 0; (9)

of 1= (2;:::;5)" and @j 1jj: denoting the subdifferential of jj 1jji, thatis; = sign(;) if
j = 0,and ; 2 [ 1;1] otherwise, j = 2;:::;p. In (9), G and E are evalufted aP the
corresponding in the estimating equations, hence here they stand for G(x; j) and E(x;jx; ),
tJ%spEctively. Noli.’e thatT(9) may have multiple solutions. The theory we develop in Section
3.1 provides a near-optimal error bound for any sparse local solution of the estimating
equation. The satisfactory performance of the proposed profiled estimator is demonstrated

in the numerical simulations in Section 4.2.

2.3 Inference on the Optimal Decision Rule

To quantify the importance of the covariates on optimal decision making, we will construct
confidence intervals for the individual components of o = (1;,' ;)" via debiasing a local
solution to the semiparametric estimating equation (9). This generalizes the work of debi-
ased confidence intervals for high-dimensional linear regression in Zhang and Zhang [2014]
and Van de Geer et al. [2014] to the semiparametric setting where the initial estimator is an
estimating equation solution and an estimated infinite-dimensional functional is present.
The theory for semiparametric inference in high dimension is highly nontrivial and is care-

fully studied in Section 3. We further investigate a wild bootstrap procedure for testing a

11



general group hypothesis, which aims to achieve accurate finite-sample performance.

Let b= (1;7PT denote a solution satisfying (9). In the high-dimensional linear
regression setting, the main idea of debiased estimator is to invert the Karush—Kuhn-Tucker
(KKT) condition of the lasso. Inspired by this idea, we consider the following debiased

estimator of o, 1:
6= b s (;GRER D (10)

where the (p 1) (p 1) matrix ks an approximation to the inverse of rS, (; G,bE P, Phe
derivative matrix of S,(; G; E)b wWith respect to ; evaluated at = . T® construct the
approximate inverse , webpropose a nodewise Dantzig estimator. Specifically, given the

initial estimator andba positive number , for j = 2; ;p, define

X n
d;(;B = argminjjvjjy s.t. n 1 G(1) (xBj)’ (kP b 0. v)xh L (11) i=1

V2RP 2 ’
where jjjji denotes the infinity norm of a vector, x; 5 x; E()Zf?jxi ),b.]?j denotes the jth entry
of the vector x;, x;.b; d@notes the (p 1)-subvector of b; that excludes the 1°t entry,
and the ki, ; denotes the (p  2)-subvector of )b that excludes the 1%t and j" entries.
Furthermore, for j = 2; ;p, we define

T

pG) = diG)p; oL diG) ol 2T (12);G)=n*
] X

) b o GOk 50 (13)
i=1 :

G 266G b (14)
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where for a vector u = (uy; ;up)’, given 1 i j p, (u)i; returns the subvector (u;; ;u;)T,
and for any i > j, (u);;; returns the empty vector. For notational simplicity, denote d; =
di(;), ¥ = ; (B, andj,- = 2(b). The dpproximadte inverse of rS,(; G; E) is then
constractedoas

B (;;k;,): b

The validity of & an approximation to the inverse of rS,(; G; E)bisbgh/en inLemma
2 of Section 3.2. Section 3 will also present the statistical properties of the debiased estimator

1= (2; ;p)& This €hen leals to the following asymptotic 100(1 )% confidence interval for

0j»
1=2 122 ©
je 1(1 =2) jj=h| it é(l =2) jj:h| ’ (15)

where j = 2; ;p, () is the quantile function of the standard normal distribution, and

;; deRotes the (j 1)t diagonal entry of (%, With

n

N X 2 ©
f bt b Yr_{ e H(xTHEIET})2xP bx. b :bT b (16)

i=1

Corollary 1 in Section 3 justifies the asymptotic uniform validity of this marginal confidence
interval.

Next, we consider the following more general simultaneous testing problem

Ho.c 10j = Oforallj 2 G versus Hi,g 1 oj = O for some j 2 G; (17)
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size n. Such a hypothesis naturally arises in the high-dimensional setting. For example,
researchers may want to test whether a gene pathway, consisting of multiple genes for the
same biological functions, is important for optimal treatment regime recommendation. For
this purpose, we propose an effective bootstrap procedure. Although the asymptotic normal
distribution of the debiased estimator (see Theorem 2) allows for construction of confidence
intervals for individual coefficients (or fixed-dimensional subvector of coefficients), applying it
to make inference for groups of variables when the group size diverges (potentially larger than
n) is not straightforward. Moreover, confidence intervals based on the asymptotic
distribution have been observed to sometimes lead to undercoverage for nonzero coeffi-
cients in finite samples. The bootstrap procedure we study automatically accounts for the
dependence structure of the variables in the group and provides more accurate critical value.
When deriving the asymptotic property of the debiased estimator (in the proof of The-
orem 2), it is observed that the asymptotic property of pﬂ( 1 o 1) is determined by
the leading term p—n1bsn(0; G; E). This suggests that we approximate the distribution of
P n(€® o), j = 2;:::;p, by the distribution of the following multiplier bootstrap

statistic
P
i % 2, riYE G’(XiTJb(-:bl)(b(Tj)xiT bUl'O b;, b (18)

where ry; ;r, are i.i.d. standard normal random variables, independent of the data. Let ¢,
be the upper -quantile of the distribution of max;,c j;j conditional on the data, which can

be easily simulated by generating multiple independent copies of the random weights. We

reject the null hypothesis at level if maxj2cjjj > ¢; . The aesymptotic

14



validity of the bootstrap procedure is formally established in Section 3. Its performance is

demonstrated in the numerical simulations in Section 4.2.

3 Statistical Properties

3.1 Theory for Estimation

Making inference about the optimal treatment regime requires an adequate initial estimator
for 0. To obtain such an initial estimator in the high-dimensional semiparametric frame-
work, a significant challenge is that the corresponding estimation problem is not necessarily
convex. To tackle this, we first establish in Lemma 1 below that the estimated (p 1)-
dimensional gradient S,(; @ Ii?) in (8) possesses an important local restricted strong con-
vexity property with high probability. Theorem 1 then shows that all local sparse solutions
within a small neighborhood of 5 enjoy a near-optimal error rate under mild conditions. In
the sequel, we use a__b to denote max(a; b), and a” b to denote min(a; b). Let s = jjojjobe the

sparsity size of o, the population parameter indexing the optimal treatment regime.

Lemma 1. (local restricted strong convexity property) Assume conditions (A1)—(A5) in
Section S2 of the online supplementary material are satisfied. If do®'o8P-"1 b < 1 for

n
some constant do > 0, then there exist universal positive constants cg, ¢c1, ¢c; and r 1, which do

not depend on n, p and o, such that

p
ShGGE) PP s (0GRER 1 o 1 ol oji?2  cith®j  ojj;; 8 2B

1 exp( c;logp);

for all n sufficiently large, where B = f 2 Bg : jj oii2 r;jjjjo ksgand k> 1is a

15



positive constant.

Remark 1. Lemma 1 characterizes the local geometry of the profiled score function. For
high-dimensional regression with convex loss function such as L; penalized linear regres-
sion, restricted strong convexity plays an important role on the theory of the regularized
estimator [Negahban et al., 2012]. Local restricted strong convexity condition were inves-
tigated in Loh and Wainwright [2015] and Mei et al. [2018] for some specific nonconvex
loss functions. Those results, however, do not apply to our setting due to the estimated
infinite-dimensional parameter.

Theorem 1 below presents non-asymptotic high-probability error bounds for any local
sparse solution Bhat satisfies the penalized profiled estimation equation (9).
Theorem 1. Assume conditions (A1)—(A5) in Section S2 of the online supplementary
material are satisfied. Suppose = d;h? for some constant d; > 0, and dos'°g(p-”)1:5 h don
=6 for some constant do > 0. Then there exist universal positive constants ¢, and cnl such that

for any solution in B, we hayg

.. .. 6D p 24
Np ol S0 JJ oJJ1 S1C—0
C
with probability at least 1  exp( cylogp), for all n sufficiently large.
Remark 2. Theorem 1 shows that under some mild regularity conditions, local solutions of
the profiled estimation equation (9) enjoy desirable estimation error rates, same as Lasso
does for high-dimensional linear regression. For the purpose of inference, the initial esti-
mator is not require to achieve perfect variable selection. The debiased estimator, however,

can achieve the n 172 rate for each individual coefficient, as we will show in Section 3.2.

Carefully going through the proof of the theorem also reveals that the above error bounds

16



hold uniformly for all o such that jjojjo s.

Remark 3. Based on Theorem 1, Lemmas A5-A6 in the online supplement establish the
uniform convergence rates for the nonparametric estimator G(xiTj) and G(lb(ij)‘ which
are of independent interest. Under the assumptions of Theorem 1, we show that there

exist universal positive constants ¢ and c; such that

P max sup G(STJ) G(xTj) coh? exp[ cilog(p_ n)j;
2B
1lin i i
P maxsup &) (xTj) GM(xTj) coh exp[ cilog(p_ n)l: 28
1lin

3.2 Theory for Inference

We first introduce some additional notation. Let»s = x; E(X;jx;'0), and let x; e ; denote

the (p 1)-subvector of ¥ that excludes its 15t entry. Let i e e’

= E [G™)(xT0jo)]?X;; 1X;, 1 -Assumethe(p  1)(p 1) matrix
is positive definite and write its inverse
L, o=y unp). Forj = 2;:::;p, let
G 1: (i 1) 2 R(P 2P 2) pe the submatrix of
withits (j  1)" row and (j 1) column removed; similarly
& 1. 1) 2 RP ! dehotes the (j 1)t column of
with its (] 1)t entry removed. Note that bbb
( 1); (j 1) is positive definite. Define do; = (
GG ot
G 1:6 1, Sj = Jidojjo, 8 = mMaxyps; and g =
G 1506 1) do;
Gowa u= (g o) b= 2
Lemma 2 below establishes useful properties of the approximate inverse of rS, (; G; E),

defined in Section 2.3.

Lemma 2. Assume the conditions of Theorem 1 are satisfied. Let = d h for some positive
constant d, > 0. If @ dg and do*'°8®"-""" h don 16 for some constant do > O,

n

17



then there exist some universal positive constants d,, co and c; such that results (1)-(3)
below hold uniformly in j = 2;:::;p, with probability at least 1 exp( c;logp) for all n
sufficiently large:

(1) i®  dojiz *“and jid; b dojis
(2) Jo? bjzj co Ps;, and jsz b, ’j co P sp;
(3)ip il cos;, and jij it cos;

J.GSJ .
7

where , > 0 is the smallest eigenvalue of

Lemma 2 requires § = maxyj, S; to be of order O(h ). For high-dimensional gener-

alized linear models (Theorem 3.1, Van de Geer et al. [2014]), the corresponding sparsity

P___ N .
constraint is & = o( n=logp). Our constrain is somewhat stricter due to the need to
estimate the infinite-dimensional nuisance parameter. Building on Lemma 2, we prove the

statistical property of the debiased estimator § defined in (10).

Theorem 2. Assume the conditions of Lemma 2 are satisfied. Let n,, = sh3gn + gh
Iogpp. Assume o, = o(1) and slog(p _ n) donh® for some constant do > 0. Then for all

n sufficiently large,

with

n

W = n 1=2ejT 1 e (xTojo)xi; gi-1

P zro;anjj Con;p  exp( ci1logp);

where ¢o, c;1 are universal positive constants, and e; ; denotes the (p  1)-dimensional
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vector with the (j 1)t entry being one and all the other entries equal to zero.

Remark 4. Theorem 2 suggests that if we consider a lower-dimensional linear combi-
nation of coefficients To. 1, where is a (p 1)-dimensional nonzero vector of con-stants,
then T( 1 o 1)%has the asymptotic distribution N(0;TT) with = E [661)(xT 0jo)1%x;; 1X;,
1 - The asymptotic cévarigice matrix resembles that in the literature on profiled estimation
for index models in lower dimension, see Liang et al. [2010], Ma and He [2016], among other.
The assumption n,, = 0o(1) is a sufficient condition for the remaining term of the linear
approximation of n p_oj € to be uniformly negligible. It still

allows p to grow at an exponential rate of n.

Remark 5. The proof Theorem 2 is given in the online supplement. To build the theory,

we show that

pn(el 0; 1)=pnT_§°n(o}G;E)+ p”('p 1 by)( b o 1)

p
nS.;GPEP b S (0;G;E)  Ji(B o 1)

,Anl + An2+ An3;

where J; = n 1Pi":l[G(l)()ﬂl})]@xi;blxi;b{ is the leading term in the approximation to

rSn(o; G; E). In the proof, we carefully justify that: (1) The (j  1)*" component
of Ap1 can be approximated by Wj in the theorem, for 2 j p, (2) P(jjAn2jj1 Con;p)
exp( cilogp), and (3) P(jjAn3jj1 con;p) exp( cilogp), for some pos-itive constants co
and c¢;. Furthermore, to provide a deeper insight into the extension into the
semiparametric setting, we consider the Gateaux functional derivative of the es-timating

function with respect to the infinite-dimensional nuisance parameters. Consider
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the functional M (z;; G; E)e= IY G(xTj)GM(xTj)[x 1 E(x 1jx7)]; wherez =
(A; X; \é) denotes a vector of random observations of the data. The Gateaux deriva-
tive of M(z;; G; E) at G in the direction [G— G] is defined as

EM(z;;G+ (G _ G);E) M(z;;G;E)
1t

It is easy to see that this Gateaux derivative at G is zero when evaluated at = .
Similarly, the Gateaux derivative with respect to E vanishes at the true value o. This
orthogonality behavior suggests the insensitivity of the estimating function to the infinite-
dimensional nuisance parameters.

The following corollary establishes uniform validity of the marginal confidence intervals

(15) introduced in Section 2.3.

Corollary 1. Under the conditions of Theorem 2,

sup max sup Pon(; e o) B (1 =2) (1 )= o(1);
02Bo:jjojjos 2j2(0;1) ji
where jt? denotes the (j 1)t diagonal entry of () Blefined in Section 2.3, and 1() is the

quantile function of N(0; 1).

Finally, Theorem 3 below establishes the validity of the bootstrap procedure intro-
duced in Section 2.3 for testing the group hypothesis (17). Given a group of variables

G f2;:::;pg, the wild bootstrap test statistic is defined as IOn max;ac jjj, where ; ,
ntt nonfYe GRxT )R Tj)xT lij,balz)g r1P ; r, are standard normal ran-dom variables
that are independent of the data. Denote r = fry; ;r,g, and let w = fwy; ; w,g denote the

random sample w; = (A;; xi; Yi). Given 0< < 1, recalfthat the
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bootstrap critical value for a level- test is defined as

n b o
c, =inf t2R:P nmaxj;j tfwig_;" 1 : (19)
j26

Theorem 3. Assume the conditions of Theorem 2 are satisfied. If n;pglog'p_z o(1), h

= b
do S'°g“’——“)n1 > for some constant do > 0, and ghlog’p = o(1), then

sup sup P p—nmaxjje 0 ¢ (G) (1 )= o(1):

Lo . 1
02Bo:jjojjos 2(0;1) i2G6

Theorem 3 ensures that the multiplier bootstrap procedure is valid for the simultaneous
testing problem (17). It is also honest in the sense of being valid uniformly over s-sparse
models of the form (1). It does not require the nonzero components of o to be well-
separated from zero. In particular, the multiple bootstrap procedure does not require the
local solution of the profiled estimation to achieve perfect variable selection, which is usually

unrealistic in practice.

4 Monte Carlo Studies

4.1 Algorithm for Estimation

To solve the penalized high-dimensional profiled estimating equation for the initial estima-
tor ,bwe extend the composite gradient algorithm [Nesterov, 2007, Agarwal et al., 2012] for
high-dimensional M-estimator without nuisance parameters. A summary of the proposed
algorithm is given in Algorithm 1 in Section S10.1 of the supplementary material.

Specifically, given a current estimator * = (1;(*;)7)T at step t, we update the esti-
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mate by

n (0]
= argmin Ui 424 [Sa(S G BN SO+ i i s (20)
12R p 1 2
ji adia

t+1

where , is the step size, is a positive constant such that jjo. 1jjs . An appealing practical
property of the algorithm is that the update in step (20) can be done efficiently by the
following formula:

1
1 o Tt T Sal5 G (212)
1 1 u

where the function T( ;) = sgn( )J max(j j J.;O) o is the soft-threshold
operator. Then to ensure the constraint jj 1jj1 , we employ the projection method
introduced in Duchi et al. [2008], which is described in Algorithm 2 in Section S10.1 of the
online supplement.

In implementation, we choose the kernel function K () as the distribution function of
the standard normal distribution. The bandwidth is set to be h = 0:9n *®*minfstd(x!);
IQR(x[ )=1:34g, as motivated by Silverman [1986], where “std” denotes the standard
deviation, and “IQR” denotes the interquartile range. For the step-size parameter, inspired
by Agarwal et al. [2012], we employ an expanding series for ,, which ensures that the
stepsize diminishes during the update process. Given a set of candidate tuning parameters
frg and the corresponding estimators k,l?A/e employ 5-fold cross-validation to select the
optimal tuning parameter by minimizing MSE() = n ! inzlf\ﬁ (E"(xiTjt))gz.b

To obtain the debiased estimator ,€the nodewise Dantzig estimator d;(; ) bn (11)is

computed via linear programming, see details in Section S10.2 of the supplementary
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material.

4.2 Monte Carlo Results

We generate random data from the model Y = (xT)?+(A ,)fo(xTo) + , where

N (0; 1), A Bernoulli(0:5), and x follows a p-dimensional multivariate normal distribution
with mean zero and identity covariance matrix, = (0:5;0:5; 0:5; 0:5;0; ;0)", 0= (1; 1;
0:5;0:4; 0:3;0; ;0)7, and fo(u) = 20 f[1 + exp( u)] * 0:58. We consider n = 300; 500
and p = 200; 800; 2000 in the Monte Carlo experiment.

We first investigate the finite-sample performance of the penalized profiled semipara-
metric estimator in Section 2.2. Table 1 reports the average |;- and |,-estimation errors, the
average number of false negatives (nonzero components incorrectly identified as zero) and
false positives (zero components incorrectly identified as nonzero), with their standard errors
in the parentheses, based on 500 simulation runs. Results in Table 1 demonstrate

satisfactory performance of the profiled estimator for both the scenarios p< n and p> n.

Table 1: Performance of the penalized profile least-squares estimator

n p I, error I, error False Negative False Positive
200 0.85(0.02) 0.31 (0.00) 0.01 (0.01) 10.95 (0.32)

300 800 1.10(0.03) 0.37 (0.00) 0.07 (0.01) 19.05 (1.13)
2000 1.32 (0.03) 0.40 (0.00) 0.09 (0.01) 31.25 (1.57)

200 0.58 (0.01) 0.22 (0.00) 0.00 (0.00) 9.30 (0.30)

500 800 0.79 (0.02) 0.27 (0.00) 0.00 (0.00) 17.39 (0.66)
2000 0.94 (0.02) 0.31(0.00) 0.01 (0.00) 25.60 (1.18)

Next we investigate the wild bootstrap procedure introduced in Section 2.3 for test-

ing the group hypothesis (17).

groups: G; =

f6;7;8;9g, Gy =

f5;6;7;8;9g, G3 =
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f4;6;7;8;9g, G4 =

We consider the following six different choices for the

f4;5;6;7;8;9g,



Gs = 3;6;7;8;9g and Gg = f2;6;7;8;9g. Note that G; consists of only zero entries in o,
while all the other groups include at least one non-zero elements. Table 2 summarizes the
average Type | errors and powers for each scenario, based on 1000 Bootstrap samples and
500 simulation runs.

Table 2: Performance of the bootstrap procedure in Section 2.3 for simultaneous testing.

n 0 Type | error Power
Gl G2 G3 G4 G5 G6
200 5.6% 96.4% 96.2% 97.8% 98.6% 100%
300 800 5.4% 94.6% 97.6% 99.0% 99.6% 100%
2000 3.2% 92.4% 96.8% 98.4% 99.0% 100%
200 4.4% 100% 100% 100% 100% 100%
500 800 5.0% 99.6% 99.6% 100% 99.2% 100%
2000 4.6% 98.8% 98.6% 99.0% 99.2% 100%

Table 2 indicates that type | errors are reasonable controlled for all scenarios. Power
performance generally depends on the number and magnitudes of the nonzero components.
The hypothesis corresponding to G, represents a more challenging situation where the only
non-zero element is -0:3, close to 0. The average powers for this case for different values of p
are still over 90%.

Note that for inference, we need to estimate the approximate inverse of rS, P) which
involves an additional tuning parameter . We observe that the inference procedure is not
overly sensitive to its choice and fix it at the value = 25h to save computational time.
Alternatively, it can also be selected via cross-validation similarly as what has been done for
selection. We provide additional simulation results in Section S10.3 of the online
supplement, including investigation on the choice of and comparing with alternative

procedures for estimating the optimal value function.
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5 A Real Data Example

We illustrate the application on a clinical data set introduced by Charbonnel et al. [2005].
This is a randomized, double-blind, parallel treatment arm, phase |1l clinical trial to com-
pare the efficacy and safety of pioglitazone versus gliclazide on metabolic control in naive
patients with Type 2 diabetes mellitus. This data set we consider contains information on
clinical characteristics for 813 individuals with Type 2 diabetes. The patients were ran-
domized into two treatment arms: pioglitazone (treatment 0) and gliclazide (treatment 1).
Their glycosylated haemoglobin A;. (HbA;.) and fasting plasma glucose (FPG) levels were
recorded every four weeks, up to week 52.

The primary efficacy endpoint is the change of HbA;. from baseline to the last available
post-treatment value. We consider the main effects of 22 baseline covariates and their two-
way interactions in the model. The dimension of the model is over 250. In the analysis, we
standardize the covariates to have mean zero and sample variance one.

We consider testing the significance of six different groups of variables. Table 3 sum-
marizes these six different groups and their respective p-values, based on the bootstrap
procedure in Section 2.3. The estimated coefficients are reported in Section S10.3 of the

supplementary.

Table 3: Real data analysis: evaluation of the significance of different groups of variables

Group Variables p value
1 HbA1, creatinine, BMI, waist circumference, HomaSs 0:003
5 all variables in Group 1, all their two-way interactions, 0:011
and their interactions with fasting insulin '
3 HbA,., Homas < 0:001
4 BMI, creatinine, waist circumference, 0:242
5 LDL-C, total cholesterol, age, weight 0:494
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Based on the scientific literature and suggestions from our clinical collaborators, fasting
insulin is important for estimating the optimal treatment regime. We normalize its coef-
ficient as 1 in our model. The first group includes the main effects of five characteristics,
which are the baseline average levels for HbA;., creatinine, BMI, waist circumference and
homeostatic model assessment insulin sensativity (HomaS). The variables in this group
are those identified by diabetes experts to be potentially important for optimal treatment
regime estimation. The bootstrap procedures suggests a significant p-value (0.003) for this
group, which indicates that at one variable in this group is influential for making an optimal
personalized decision in the choice of the two treatments. Group 2 augments Group 1 by
including all the two-way interaction of these six characteristics (including fasting insulin),
hence includes 20 variables in total. The estimated p value is 0.011. Group 3 and Group
4 are subgroups of Group 1. The third group only includes two main effects: baseline
HbA;. and Homas, while the fourth group includes the remaining three main effects. The
estimated p values suggest that the significant characteristics are among those in Group 3
rather than Group 4. Group 5 consists of four variables: the baseline average levels for the
low-density lipoprotein cholesterol (LDL-C), total cholesterol, age and weight. This group
of variables is of interest because Glucose and lipid metabolism are linked to each other in
many ways [Parhofer, 2015]. Age and weight are also always taken into account for optimal
treatment regime estimation. Our test suggests that Group 5 does not appear to be

influential in optimal treatment recommendation.
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6 Discussions

We propose a flexible semi-parametric approach for making honest simultaneous inference
about the importance of a group of variables on optimal treatment regime estimation. We
develop new statistical theory to overcome the challenges of nonconvexity, high dimension-
ality and infinite-dimensional nonparametric components.

In this paper, we focus on a randomized trial. For observation studies, let (x) =

P (A = 1jx) be the propensity score. Observing that Ef[A  (x)]g(x)g = 0, we have
A[A (a)lYi = 4[A0 (xi)lg(xi) + A[A (a)I(Ai 1=2)fo(x{o) + 4[A  (xi)li:
Let ¥ = 4[A;  (xi)]Yi, e=; 4[A (xi)1[i + g(xi)], then we have

EYe = 4[Ai  (xi))[(Ai  1=2)fo(x{o):

Denote G(tj) = E(Y BT = t) = 2Ef[A (x)](2A 1)fo(xT o)jxT = tg, GU(tj) =
dﬁtG(tj), and define G(§), G'Y)(Bj) similarly as in Section 2.2. Assume (x) = P (A = 1jx) can

be modeled as (x;), where is a finite-dimensional parameter. Let be an b
estimate of , such as the one based on the regularized logistic regression. Define the pro-
filed semiparametric estimating function S,(; G;lE;§  n ! Pizlfﬂ[Ai (xi;)]Y: b
d?(xiTj)gG(lt{ij)in; 1 B(x;. 1jx' )]: We then estimate o through the following
penalized semiparametric profiled estimating equation Sn(;kG,bE;k) + b= 0: Promising
numerical performance of this estimator is reported in Section S10.3 of the supplementary.
Our approach can still be applied to investigate the theory but is it more complex due to

the additional nuisance parameter. We will explore the complete theory for the above
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estimator in the future work. Alternative approaches that can potentially be extended to
our setting include Nie and Wager [2020], Kiinzel et al. [2018], among ohers.

Our approach for high-dimensional inference generalizes the “inverting KK T condition"
technique in Van de Geer et al. [2014]. An alternative approach, which is more suitable
if one is interested in some targeted lower-dimensional parameter is based on the idea of
orthogonalization, see for example Belloni et al. [2015], Ning et al. [2017], Chernozhukov et
al. [2018]. In contrast, our approach is able to achieve debiasing for the p-dimensional
coefficient vector simultaneously. The main idea of the orthogonalization approach is to
construct a lower-dimensional estimating equation which is locally insensitive to the nui-
sance parameters. The construction of such a lower-dimensional moment condition is non-
trivial for high-dimensional semiparametric setting, particularly for index model, where the

challenge of bundled parameter arises.
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