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Abstract

This paper develops new tools to quantify uncertainty in optimal decision making

and to gain insight into which variables one should collect information about given the

potential cost of measuring a large number of variables. We investigate simultaneous

inference to determine if a group of variables is relevant for estimating an optimal

decision rule in a high-dimensional semiparametric framework. The unknown link

function permits flexible modeling of the interactions between the treatment and

the covariates, but leads to nonconvex estimation in high dimension and imposes

significant challenges for inference. We first establish that a local restricted strong

convexity condition holds with high probability and that any feasible local sparse

solution of the estimation problem can achieve the near-oracle estimation error bound.

We further rigorously verify that a wild bootstrap procedure based on a debiased
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version of the local solution can provide asymptotically honest uniform inference for

the effect of a group of variables on optimal decision making. The advantage of honest

inference is that it does not require the initial estimator to achieve perfect model

selection and does not require the zero and nonzero effects to be well-separated. We

also propose an efficient algorithm for estimation. Our simulations suggest satisfactory

performance. An example from a diabetes study illustrates the real application.

Keywords: confidence interval; inference; kernel smoothing; multiplier bootstrap; high-

dimensional data; optimal treatment regime; precision medicine.

1 Introduction

Precision medicine is an innovative practice for disease treatment that takes into account

individual variability in genes, environment, and lifestyle for each patient. Substantial

efforts have recently been devoted to studying how to estimate the optimal personalized

treatment regime given the individual-level information, which aims to yield the best ex-

pected outcome if the treatment regime is followed by each individual in the population.

Several successful approaches have been developed for this estimation problem, including

Q-learning and A-learning based methods [Watkins and Dayan, 1992, Robins et al., 2000,

Murphy, 2003, Moodie and Richardson, 2010, Qian and Murphy, 2011], and classification-

based methods [Zhang et al., 2012, Zhao et al., 2012, 2015, Wang et al., 2018, Qi et al.,

2018], among others. We refer to Chakraborty and Moodie [2013] and Kosorok and Moodie

[2016] for a general introduction to this area and other relevant references.

Inference or uncertainty quantification is important in practice. This paper studies the

following inference problem for optimal personalized decision making: suppose we have
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a large number of covariates (e.g., hundreds of genes), how will we determine if a given

subset of covariates (e.g., genes associated with a given biological pathway) is relevant for

making the optimal treatment recommendation? Scientifically, this knowledge would

enable the doctors and researchers to identify critical characteristics (e.g., gender, age, gene

pathways) that are influential for the optimal decision. It also helps gain insight into what

information is worth collecting to be more cost effective, given the possibility of measuring a

large number of variables (genetic, clinic, etc).

In the last few years, important progress has been made in inference with optimal

decision rules. Laber et al. [2014] developed a novel locally consistent adaptive confidence

interval for the Q-learning approach. Chakraborty et al. [2013] proposed a practically

convenient adaptive m-out-of-n bootstrap method for inference for Q-learning. Song et al.

[2015] studied penalized Q-learning. Jeng et al. [2018] developed Lasso-based debiased

procedure for A-learning. Different but related, Chakraborty et al. [2014] and Luedtke and

van der Laan [2016], Zhu et al. [2019] developed confidence intervals for another quantity

of interest: the value function. However, existing work mostly deals with the classical

asymptotic setting of fixed p and large n, where p is the number of covariates and n is the

sample size, and have not addressed the challenge of inference with high-dimensional

variables. Moreover, the aforementioned work often assumes that the interaction between

the covariates and the treatment has a known functional form.

Motivated by the overarching goal of precision medicine to incorporate genetic informa-

tion (e.g, measurements on thousands of genes) in the decision making process, this paper

investigates inference about the effect of a group of variables on the optimal decision rule in

the high-dimensional setting. The existing frameworks are known to face challenges for the

purpose of inference in high dimension. The Q-learning approach is prone to model-
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misspecification. Robust model-free procedures that directly estimate the Bayes rule (e.g.,

Zhang et al. [2012]) have a nonstandard convergence rate, see for example, the recent anal-

ysis in Wang et al. [2018] on the cubic-root convergence rate. On the other hand, the

theory of Hinge-loss based O-learning [Zhao et al., 2012] has been focused on the general-

ization error bound. Inference for the Bayes rule based on the nonsmooth surrogate loss is

very challenging in high dimension. We alleviate the above difficulty by adopting a flexi-ble

semiparametric model-assisted approach for optimal decision estimation and inference. The

semiparametric structure permits nonparametric main effects and nonlinear interac-tion

effect between the covariates and treatment via an unknown smooth link function. This

semiparametric framework incorporates many existing models as special cases.

When the interaction effects are nonlinear, the parameter indexing the optimal decision

rule does not necessarily correspond to the solution of a convex problem. For inference, we

first propose and study a preliminary estimator based on a high-dimensional penalized

profile estimation equation. This estimator is motivated by earlier work on classical single-

index models (e.g., Powell et al. [1989], Duan and Li  [1991], Ichimura [1993], Zhu and Xue

[2006], Carroll et al. [1997], Xia et al. [1999], Yu  and Ruppert [2002], Wang et al. [2010], Ma

and Zhu [2013], Ma and He [2016], among others). Several paper recently studied estimation

for high-dimensional single-index models (e.g., Radchenko [2015], Neykov et al. [2016], Yang

et al. [2017], Lin et al. [2019], among others) but focused on statistical properties of the

global solution which may not be numerically achieved due to the nonconvex nature of the

problem. Adopting tools from modern empirical process and random matrix theory, we

establish that a local restricted strong convexity condition holds with high probability in

high dimension and that any local sparse solution of the penalized estimation equation can

achieve desirable estimation accuracy. Moreover, we propose a new algorithm for efficient
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computation in high dimension.

Our research also makes new contributions to statistical inference in high-dimensional

semiparametric models. Recent work on inference has been mostly limited to linear re-

gression or generalized linear regression, see Zhang and Zhang [2014], Van de Geer et al.

[2014], Javanmard and Montanari [2014], Belloni et al. [2015], Cai et al. [2017], Ning et al.

[2017], Zhang and Cheng [2017], Zhu and Bradic [2018], Shi et al. [2020], among others.

High-dimensional inference in the semiparametric setting with estimated nonparametric

components is a substantially harder problem and has been little studied. We have a par-

ticularly challenging setting where the parameter of interest and nonparametric component

are bundled together, that is, the nuisance functions depend on the parameter of interest

[Ding and Nan, 2011]. So far, statistical inference for single-index model has mostly been

limited to the lower-dimensional setting (e.g., Liang et al. [2010]), Gueuning and Claeskens

[2016]).

Our approach is inspired by the de-biasing (or de-sparsifying) idea proposed in Zhang

and Zhang [2014] and Van de Geer et al. [2014], which intuitively can be thought of in-

verting the Karush-Kuhn-Tucker conditions [Van de Geer et al., 2014]. We generalize this

idea to the semiparametric setting and prove that valid honest uniform inference can be

obtained based on a debiased version of a local solution. Specifically, we derive simultane-

ous confidence intervals for inference on a group of variables while allowing the number of

covariates to exceed the sample size. The confidence intervals enjoy the honest property in

the following sense

 
sup sup P n max jj 0j j  c      (1 ) =  o(1);

0 :jj0 jj0 s 2(0;1)
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where 0 =  (01; : : : ; 0p)T is the population parameter indexing the optimal treatment

regime, j ’s denote debiased estimators that will be introduced later, G denotes the group of

variables of interest, jj  jj0 denotes the l0 norm of a vector, and s is a positive integer

denoting the sparsity size. The significance of the honest property is that the coverage

probability is asymptotically valid uniformly over a class of s-sparse models. An immediate

implication is that it relaxes the assumption on signal strength and does not require the

zero and nonzero effects to be well-separated (so-called min condition). In particular,

this procedure does not require the initial estimator to achieve perfect model selection. It

avoids the problems associated with the nonuniformity of the limiting theory for penalized

estimators, see discussions in Li  [1989], Pötscher [2009], Van de Geer et al. [2014], McKeague

and Qian [2015], among others. It is also worth noting that the number of variables in G can

be either small or large. For example, one may be interested in assessing how a group of genes

corresponding to a particular biological pathway, the size of which can be comparable with or

even larger than the sample size, affect optimal decision making. The critical value c1  is

obtained using a wild bootstrap procedure, which automatically accounts for the

dependence of the coordinates for testing component-wise hypotheses and leads to more

accurate finite-sample performance.

The remainder of the paper is organized as follows. Section 2 introduces the new

methodology. Section 3 studies the statistical properties. Section 4 provides the details on

computation and reports numerical results from Monte Carlo studies. Section 5 illustrates

the new methods on a real data example from a diabetes study. Section 6 discusses some

extensions. The regularity conditions, several useful technical lemmas and all the proofs

are given in the supplementary material.
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2 Methodology

2.1 A  Semiparametric Framework

For notational simplicity, we will focus on the binary decision setting. Let A  2  A  =  f0; 1g

denote a binary treatment and x  2  X  denote a p-dimensional vector of baseline covariates.

Let Y denote the outcome of interest. Without loss of generality, we assume a larger value of

the outcome is preferred. The observed data consist of f(x i ; A i ; Y i )  : i  =  1;  ; ng. We are

interested in the setting where p  n.

A  treatment regime is an individualized decision rule that can be represented as a func-

tion d(x)  : X  !  A .  The optimal treatment regime is defined as the decision rule which,

if followed by the whole population, will achieve the largest average outcome. Formally, it

is defined using the potential outcome framework in causal inference [Neyman, 1990,

Rubin, 1978]. Let Y (a) be the potential outcome had the subject been assigned to treat-

ment a 2  f0; 1g. Given a treatment regime d(x), the corresponding potential outcome is Y

(d) =  Y (1)d(x) + Y (0)(1 d(x)). The optimal treatment regime is defined as dopt(x) =  arg

maxd E fY  (d)g. It is now well known that dopt(x) =  arg maxa2A E(Y jx; A =  a) [Qian and

Murphy, 2011].

This paper considers a flexible semiparametric framework for optimal treatment regime

estimation and inference in the high-dimensional setting. Specifically, we assume

Yi =  g (x i )  +  (A i  1=2)f0 (xi  0) +  i ; i  =  1; : : : ; n; (1)

where 0 =  (01; 02;  ; 0p)T , g (x i )  is the unknown main effect, and f0 () is an unknown function

that describes the interaction between the treatment and covariates, and the ran-
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dom error i  satisfies E( i jx i )  =  0, i  =  1; : : : ; n. For identification purpose, we assume that

there exists a relevant covariate which has a continuous density given the other covariates

[Ichimura, 1993]. Such an identification condition is required even in the lower-dimensional

setting when the true model is known. Without loss of generality, we assume that the first

covariate x1 satisfies this condition and normalize its coefficient 01 such that 01 =  1, see

Remark (c) in Section S2 of the online supplementary material for more discussions on the

identifiability condition. We denote B0 =  f  =  (1;  ; p)T : 1 =  1g as the candidate set for 0.

Under model (1), the optimal treatment regime is dopt(x) =  I  f 0 ( x i  0) >  0 , where I()

denotes the indicator function. Note that the class of index rules are popular in

practice due to its interpretability.

Existing work on inference for optimal treatment regime is mostly based on a parametric

generative model, which is prone to model misspecification. The semiparametric structure

alleviates this difficulty. In particular, it allows for possible nonlinear interaction effects

between the covariates and treatment. It also circumvents the curse of dimensionality

associated with a fully nonparametric model.

Our goal is to estimate 0 and make inference on its components in the high-dimensional

setting. In the special case f0 (u) =  u, which is popularly used in practice, the problem

can be formulated as a high-dimensional convex estimation problem. However, when f0  is

nonlinear, it generally leads to a high-dimensional nonconvex problem. Both estimation

and inference need to overcome new challenges.

2.2 Profiled Semiparametric Estimation

We start with introducing a penalized profiled semiparametric estimation equation for

estimating the parameter indexing the optimal treatment regime. We consider data from
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a random experiment, that is, P (A i  =  0) =  P (A i  =  1) =  1=2, i  =  1; : : : ; n. Extension to

data from observational studies is discussed in Section 6. Inspired by an observation made

for the linear model (Tian et al. [2014]), we observe

2(2Ai 1)Yi =  f 0 (x i  0) +  2(2Ai 1)i +  g (xi ): (2)

Let Yi =  2(2Ai 1)Yi be the modified response, and let e =  2(2Ai 1)i +  g (x i )
 
be the

modified error. We have

EfY i jx i g  =  f 0 (x i  0): (3)

In the ideal situation where the link function f0  is known, we have 0 =  arg min EYi

f 0 (x i  0) 2. It is noteworthy that for a nonlinear function f0 , the objective function is

usually nonconvex in . Ichimura [1993] carefully studied the properties of the global

minimizer for a semiparametric nonlinear least-squares approach in the classical finite-

dimensional setting.

To  estimate 0 in the high-dimensional setting with an known f0 , we consider a penal-ized

profiled semiparametric estimation equation. In the ideal situation where f0  is known a

prior, 0 satisfies the following unbiased estimating equation

EYi  f 0 ( x i  0 ) f0 (x i  0 )x i =  0; (4)

where f0 () denotes the derivative of f0 (). We will replace the unknown f0  and f0  by their

respective profiled nonparametric estimator, and consider an appropriately penalized version

of the estimated score function to handle the high-dimensional covariates.
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We summarize the main steps of estimation as follows. Define G(tj) =  E f Y  jx T   =  tg.

Note that G(tj0) =  f0 (t). However, when  =  0, G(tj) usually has a functional form different

from f0 . Ichimura [1993] showed that @ G(x j)  f 0 ( x i  )  x i  E ( x i j x i  )  T  for

close to 0. Consider the Nadaraya-Watson kernel estimator for G(tj):

G(tj) =  
X

W n i ( t ; )Y i ; (5)
i = 1

where Kh (z )  =  h 1 K (z=h), and Wni(t; ) =  P
j

K h ( t  x
 

)  
) : Write G(1) (tj) =  dt G(tj) and

W (1)(t; ) =  dt Wni(t; ). Then the kernel estimator for the derivative G(1) (tj) is

G(1) (tj) =  
X

W ( 1 ) ( t ; )Y i : (6)
i = 1

Write G ( x T  j) =  E f Y  jx T  g. To  estimate G ( x T  j) and G ( 1 ) (x T  j), we employ the following

leave-one-out estimators

G ( x j  j) =  
X  

W n i j (x j  ; )Yi; G( 1 ) (x T  j) =  
X  

Wnij  ( x j  ; )Yi; (7)
i = 1 ; i = j                                                                                                    i = 1 ; i = j

where Wn i j (x T  ; ) =  P  
K

j  K  
j
( x T   x T  ) ; and W (1) (xT  ; ) =  dt Wnij (t; )

t=x j  

. Sim-ilarly, we

estimate E ( x j x T  
0) by E ( x j j x T  ) =         i = 1 ; i = j  W n i (x j  ; )x i :  Denote x i      =

(xi;1 ; xi;  1 )T . Motivated by the semiparaemtric efficient score derived in Liang et al. [2010],

we consider the following profiled semiparametric estimating function

S n ( ; G; E)  =   n 1 
X

Y i  G ( x T  j)G( 1 ) (xT  j)[xi;  1 E (x i ;  1 jxT  )]: (8)
i = 1
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In the high-dimensional setting, the estimating equation S n ( )  =  0 is ill-posed when p

n. Let  =  (1; : : : ; p)T =  (1; T
1)T be a solution in B0 that solves the following penalized

semiparametric profiled estimating equation

S n ( ; G; E)  +   =  0; (9)

where  >  0 is a tuning parameter,  =  (2; : : : ; p)T 2  @jj 1jj1 with jj 1jj1 denoting the l1 norm

of  1 =  (2; : : : ; p)T and @jj 1jj1 denoting the subdifferential of jj 1jj1, that is j  =  sign(j ) if

j  =  0, and j  2  [ 1; 1] otherwise, j  =  2; : : : ; p. In (9), G  and E  are evaluated at the

corresponding  in the estimating equations, hence here they stand for G ( x i  j) and E ( x i j x i  ),

respectively. Note that (9) may have multiple solutions. The theory we develop in Section

3.1 provides a near-optimal error bound for any sparse local solution of the estimating

equation. The satisfactory performance of the proposed profiled estimator is demonstrated

in the numerical simulations in Section 4.2.

2.3 Inference on the Optimal Decision Rule

To quantify the importance of the covariates on optimal decision making, we will construct

confidence intervals for the individual components of 0 =  (1; 0; 1 )T via debiasing a local

solution to the semiparametric estimating equation (9). This generalizes the work of debi-

ased confidence intervals for high-dimensional linear regression in Zhang and Zhang [2014]

and Van de Geer et al. [2014] to the semiparametric setting where the initial estimator is an

estimating equation solution and an estimated infinite-dimensional functional is present.

The theory for semiparametric inference in high dimension is highly nontrivial and is care-

fully studied in Section 3. We further investigate a wild bootstrap procedure for testing a
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general group hypothesis, which aims to achieve accurate finite-sample performance.

Let  =  (1; T
1)T     denote a solution satisfying (9). In the high-dimensional linear

regression setting, the main idea of debiased estimator is to invert the Karush–Kuhn–Tucker

( K K T )  condition of the lasso. Inspired by this idea, we consider the following debiased

estimator of 0; 1:

 1 =   1 
T  Sn (; G; E); (10)

where the (p 1)  (p 1) matrix  is an approximation to the inverse of r S n ( ; G ; E ) ,  the

derivative matrix of S n ( ; G; E)  with respect to  1 evaluated at  =  . To  construct the

approximate inverse , we propose a nodewise Dantzig estimator. Specifically, given the

initial estimator  and a positive number , for j  =  2;  ; p, define

dj (; ) =  arg min jjvjj1 s.t. n 1 
X

G ( 1 ) ( x T  j)2 (xbi;j x T
 j v )x i ;  j  ; (11) i = 1

where jj jj1  denotes the infinity norm of a vector, x i  =  x i   E ( x i j x i  ), xbi; j  denotes the j th entry

of the vector x i ,  x i ;  1 denotes the (p 1)-subvector of x i  that excludes the 1st entry,

and the x i ;  j  denotes the (p   2)-subvector of x i  that excludes the 1st and j th entries.

Furthermore, for j  =  2;  ; p, we define

j (; ) =  
 
     

 
dj (; )1:(j  2); 1;  

 
dj (; )( j  1):(p 2)

T 
;                       (12) j  (; ) =  n 1

X
G ( 1 ) ( x T  j)2 xbi; j xi ;  1 j (; );                                    (13)

i = 1

j (; ) =  j  
2 (; )j (; ); (14)
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where for a vector u  =  (u1;  ; up)T , given 1  i   j   p, (u) i : j  returns the subvector (ui;  ; uj )T ,

and for any i  >  j ,  (u) i : j  returns the empty vector. For notational simplicity, denote dj =

dj (; ), b2 =  j  (; ), and j  =  j (; ). The approximate inverse of r S n ( ; G ; E )  is then

constructed as

 =  (2; :::; p):

The validity of  as an approximation to the inverse of r S n ( ; G ; E )  is given in Lemma

2 of Section 3.2. Section 3 will also present the statistical properties of the debiased estimator

1 =  (2;  ; p)T . This then leads to the following asymptotic 100(1   )% confidence interval for

0j ,

n  
j  

 1(1 =2)
 

j j =n1=2; j +   1(1 =2)
 

j j =n1=2 
o

; (15)

where j  =  2;  ; p,  1 () is the quantile function of the standard normal distribution, and

j j  denotes the ( j  1)th diagonal entry of (), with

() ,  T  
n 1 X

Y i  G ( x T  j)2 [G(1) (xT j)]2 xi; 1 x i ;  1

o
: (16)

i = 1

Corollary 1 in Section 3 justifies the asymptotic uniform validity of this marginal confidence

interval.

Next, we consider the following more general simultaneous testing problem

H0;G : 0j  =  0 for all j  2  G versus H1;G : 0j  =  0 for some j  2  G; (17)
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where G is a prespecified subset of f2; : : : ; pg. The size of G may depend on the sample

size n. Such a hypothesis naturally arises in the high-dimensional setting. For example,

researchers may want to test whether a gene pathway, consisting of multiple genes for the

same biological functions, is important for optimal treatment regime recommendation. For

this purpose, we propose an effective bootstrap procedure. Although the asymptotic normal

distribution of the debiased estimator (see Theorem 2) allows for construction of confidence

intervals for individual coefficients (or fixed-dimensional subvector of coefficients), applying it

to make inference for groups of variables when the group size diverges (potentially larger than

n) is not straightforward. Moreover, confidence intervals based on the asymptotic

distribution have been observed to sometimes lead to undercoverage for nonzero coeffi-

cients in finite samples. The bootstrap procedure we study automatically accounts for the

dependence structure of the variables in the group and provides more accurate critical value.

When deriving the asymptotic property of the debiased estimator (in the proof of The-

orem 2), it is observed that the asymptotic property of 
p

n (  1      0; 1) is determined by

the leading term nT Sn (0 ; G; E). This suggests that we approximate the distribution of

n(j    0j ), j  =  2; : : : ; p, by the distribution of the following multiplier bootstrap

statistic

j ,  n  

P
i = 1  ri Yi  G ( x T  j)G( 1 ) (xT  j )x T

 1 j ; (18)

where r1;  ; rn are i.i.d. standard normal random variables, independent of the data. Let c1

be the upper -quantile of the distribution of maxj2G jj  j conditional on the data, which can

be easily simulated by generating multiple independent copies of the random weights. We

reject the null hypothesis at level  if maxj2G jj j >  c1 . The asymptotic
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validity of the bootstrap procedure is formally established in Section 3. Its performance is

demonstrated in the numerical simulations in Section 4.2.

3 Statistical Properties

3.1 Theory for Estimation

Making inference about the optimal treatment regime requires an adequate initial estimator

for 0. To  obtain such an initial estimator in the high-dimensional semiparametric frame-

work, a significant challenge is that the corresponding estimation problem is not necessarily

convex. To  tackle this, we first establish in Lemma 1 below that the estimated (p   1)-

dimensional gradient S n ( ; G; E)  in (8) possesses an important local restricted strong con-

vexity property with high probability. Theorem 1 then shows that all local sparse solutions

within a small neighborhood of 0 enjoy a near-optimal error rate under mild conditions. In

the sequel, we use a _ b to denote max(a; b), and a ^ b to denote min(a; b). Let s =  jj0jj0 be the

sparsity size of 0, the population parameter indexing the optimal treatment regime.

Lemma 1. (local restricted strong convexity property) Assume conditions (A1)–(A5) in
Section S2 of the online supplementary material are satisfied. If d0

s log(p_n) 1=5  h <  1 for

some constant d0 >  0, then there exist universal positive constants c0, c1, c2 and r   1, which do

not depend on n, p and 0, such that

P
S n ( ; G; E)  Sn (0 ; G; E);  1 0; 1

 
 c0jj 0jj2 c1h2jj 0jj2; 8  2  B

 1 exp( c2 log p);

for all n sufficiently large, where B  =  f  2  B0 : jj 0jj2  r; jjjj0  ksg and k >  1 is a
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positive constant.

Remark 1. Lemma 1 characterizes the local geometry of the profiled score function. For

high-dimensional regression with convex loss function such as L 1  penalized linear regres-

sion, restricted strong convexity plays an important role on the theory of the regularized

estimator [Negahban et al., 2012]. Local restricted strong convexity condition were inves-

tigated in Loh and Wainwright [2015] and Mei et al. [2018] for some specific nonconvex

loss functions. Those results, however, do not apply to our setting due to the estimated

infinite-dimensional parameter.

Theorem 1 below presents non-asymptotic high-probability error bounds for any local

sparse solution  that satisfies the penalized profiled estimation equation (9).

Theorem 1. Assume conditions (A1)–(A5) in Section S2 of the online supplementary
material are satisfied. Suppose  =  d1h2 for some constant d1 >  0, and d0

s log(p_n) 1=5  h  d0n
1=6 for some constant d0 >  0. Then there exist universal positive constants c0 and c1 such that

for any solution  in B, we have

jj 0jj2  
6 p

s;  0 jj 0jj1  
24

s; 0

with probability at least 1 exp( c1 log p), for all n sufficiently large.

Remark 2. Theorem 1 shows that under some mild regularity conditions, local solutions of

the profiled estimation equation (9) enjoy desirable estimation error rates, same as Lasso

does for high-dimensional linear regression. For the purpose of inference, the initial esti-

mator is not require to achieve perfect variable selection. The debiased estimator, however,

can achieve the n 1=2 rate for each individual coefficient, as we will show in Section 3.2.

Carefully going through the proof of the theorem also reveals that the above error bounds
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hold uniformly for all 0 such that jj0jj0  s.

Remark 3. Based on Theorem 1, Lemmas A5–A6 in the online supplement establish the

uniform convergence rates for the nonparametric estimator G ( x T  j) and G ( 1 ) (x T  j), which

are of independent interest. Under the assumptions of Theorem 1, we show that there

exist universal positive constants c0 and c1 such that

P
 
max sup G(xT j) G ( x T  j)

 
 c0h2

 
 exp[ c1 log(p _  n)];

2 B

P max sup G ( 1 ) (x T  j) G( 1 ) (x T  j)  c0h  exp[ c1 log(p _  n)]: 2 B

3.2 Theory for Inference

We first introduce some additional notation. Let x i  =  x i  E ( x i j x i  0), and let x i ;  1 denote

the (p 1)-subvector of x i  that excludes its 1st entry. Let

 =  E  [G( 1 ) (xT  
0j0)]2xi; 1 x i ;  1     . Assume the (p 1) (p 1) matrix

 is positive definite and write its inverse
 1 ,   =  (2; :::; p). For j  =  2; : : : ; p, let

 ( j  1); ( j  1) 2  R( p  2)(p 2) be the submatrix of

 with its ( j    1)th row and ( j    1)th column removed; similarly

 ( j  1);(j  1) 2  Rp  1 denotes the ( j  1)th column of

 with its ( j  1)th entry removed. Note that

 ( j  1); ( j  1) is positive definite. Define d0j =  (

 ( j  1); ( j  1) ) 1

 ( j  1);(j  1), sj  =  jjd0j jj0, se =  max2jp sj  and 0j  =

( j  1);(j  1) d0j

 ( j  1);(j  1) =  ( ( j  1);(j  1) ) 1, j  =  2; : : : ; p.

Lemma 2 below establishes useful properties of the approximate inverse of r S n ( ; G ; E ) ,

defined in Section 2.3.

Lemma 2. Assume the conditions of Theorem 1 are satisfied. Let  =  d h for some positive
constant d2 >  0. If se  d0 and d0

s log(p_n) 1=5  h  d0n 1=6 for some constant d0 >  0,
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2jp
 

then there exist some universal positive constants d2, c0 and c1 such that results (1)-(3)

below hold uniformly in j  =  2; : : : ; p, with probability at least 1   exp( c1 log p) for all n

sufficiently large:

(1) jjdj d0j jj2  
8 s j  , and jjdj d0j jj1  

16sj  ;
(2) j0j b2j  c0 sj , and j0j

2 b 2j  c0 sj ;

(3) jjj j jj2  c0
psj , and jjj      j jj1  c0sj ;

where 2 >  0 is the smallest eigenvalue of
.

Lemma 2 requires s~ =  max2jp sj  to be of order O(h 1). For high-dimensional gener-

alized linear models (Theorem 3.1, Van de Geer et al. [2014]), the corresponding sparsity

constraint is s~ =  o (
p

n=
 
log

 
p). Our constrain is somewhat stricter due to the need to

estimate the infinite-dimensional nuisance parameter. Building on Lemma 2, we prove the

statistical property of the debiased estimator  1 defined in (10).

Theorem 2. Assume the conditions of Lemma 2 are satisfied. Let n;p =  sh3 p
n +  seh

log p. Assume n;p =  o(1) and s log(p _  n)  d0nh5 for some constant d0 >  0. Then for all

n sufficiently large,

p
n

 
j  0j

 
=  Wj +  j ; j  =  2; : : : ; p;

with

Wj =  n 1=2eT 
1 

X
e G ( 1 ) (x T  

0 j0 )xi; 1; i = 1

P max jj j  c0n;p       exp( c1 log p);

where c0, c1 are universal positive constants, and ej  1 denotes the (p   1)-dimensional
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vector with the ( j  1)th entry being one and all the other entries equal to zero.

Remark 4. Theorem 2 suggests that if we consider a lower-dimensional linear combi-

nation of coefficients T  
0; 1, where  is a (p   1)-dimensional nonzero vector of con-stants,

then T  (  1 0; 1) has the asymptotic distribution N (0; T T  )  with  =  E  [e G( 1 ) (x T  
0j0)]2xi; 1 x i ;

1     . The asymptotic covariance matrix resembles that in the literature on profiled estimation

for index models in lower dimension, see Liang et al. [2010], Ma and He [2016], among other.

The assumption n;p =  o(1) is a sufficient condition for the remaining term of the linear

approximation of n j  0j       to be uniformly negligible. It still

allows p to grow at an exponential rate of n.

Remark 5. The proof Theorem 2 is given in the online supplement. To  build the theory,

we show that

p
n (  1 0; 1) =

p
n T  Sn (0 ; G; E) +  

p
n ( I p  1 

T  J 1 ) (  1 0; 1)
p

n T  [Sn (; G; E) Sn (0 ; G; E) J 1 (  1 0; 1)]

, A n 1  +  A n 2  +  An 3 ;

where J 1  =  n 1 P
i = 1 [ G ( 1 ) ( x T  j)]2 xi;  1 x i ;  1 is the leading term in the approximation to

rS n ( 0 ; G ; E ) .  In the proof, we carefully justify that: (1) The ( j    1)th component

of A n 1  can be approximated by Wj in the theorem, for 2  j   p, (2) P (j jAn 2 j j1   c0n;p)

exp( c1 log p), and (3) P (j jAn 3 j j1   c0n;p)  exp( c1 log p), for some pos-itive constants c0

and c1. Furthermore, to provide a deeper insight into the extension into the

semiparametric setting, we consider the Gateaux functional derivative of the es-timating

function with respect to the infinite-dimensional nuisance parameters. Consider
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the functional M (z; ; G; E ) =  [Y   G ( x T  j)G( 1 ) (xT  j)[x 1   E ( x  1 jxT  )]; where z =

(A; X ; Y ) denotes a vector of random observations of the data. The Gateaux deriva-

tive of M (z; ; G; E ) at G  in the direction [G G] is defined as

EM (z; ; G +  (G G) ; E )  M (z; ; G; E )
! 0 :

It is easy to see that this Gateaux derivative at G  is zero when evaluated at  =  0.

Similarly, the Gateaux derivative with respect to E  vanishes at the true value 0. This

orthogonality behavior suggests the insensitivity of the estimating function to the infinite-

dimensional nuisance parameters.

The following corollary establishes uniform validity of the marginal confidence intervals

(15) introduced in Section 2.3.

Corollary 1. Under the conditions of Theorem 2,

sup max sup P
p

n ( j  0j )
 1=2 

  1(1 =2)
 

(1 ) =  o(1);
0 2B0 :jj0 jj0 s                 2(0;1)

where j j  denotes the ( j    1)th diagonal entry of () defined in Section 2.3, and  1 () is the

quantile function of N (0; 1).

Finally, Theorem 3 below establishes the validity of the bootstrap procedure intro-

duced in Section 2.3 for testing the group hypothesis (17). Given a group of variables

G  f2; : : : ; pg, the wild bootstrap test statistic is defined as 
p

n maxj 2G jj  j, where j  ,

n 1
i = 1  r i fY i    G ( x T  j)gG(1) (xT  j )x T

 1 j , and r1;  ; rn are standard normal ran-dom variables

that are independent of the data. Denote r  =  fr1 ;  ; rng, and let w =  fw1;  ; wng denote the

random sample wi =  (Ai ; xi ; Yi ). Given 0 <   <  1, recall that the
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bootstrap critical value for a level- test is defined as

n o
c1  =  inf t 2  R  : P n max jj j  t fwi gi = 1  1  : (19)

Theorem 3. Assume the conditions of Theorem 2 are satisfied. If n;p
p

log
 
p =  o(1), h

d0 
s log(p_n) 1=5 for some constant d0 >  0, and seh log2 p =  o(1), then

 
sup sup P n max jj 0j j  c (G) (1 ) =  o(1):

0 2B0 :jj0 jj0 s 2(0;1)

Theorem 3 ensures that the multiplier bootstrap procedure is valid for the simultaneous

testing problem (17). It is also honest in the sense of being valid uniformly over s-sparse

models of the form (1). It does not require the nonzero components of 0 to be well-

separated from zero. In particular, the multiple bootstrap procedure does not require the

local solution of the profiled estimation to achieve perfect variable selection, which is usually

unrealistic in practice.

4 Monte Carlo Studies

4.1 Algorithm for Estimation

To solve the penalized high-dimensional profiled estimating equation for the initial estima-

tor , we extend the composite gradient algorithm [Nesterov, 2007, Agarwal et al., 2012] for

high-dimensional M-estimator without nuisance parameters. A  summary of the proposed

algorithm is given in Algorithm 1 in Section S10.1 of the supplementary material.

Specifically, given a current estimator t =  (1; (t 
1 )T )T  at step t, we update the esti-
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t+1 =  arg min jj 1 

t 
1jj2 +  [Sn (t ; G; E)]T (  1 

t 
1) +  jj 1jj1     ; (20)

1 2 R
jj     1 jj1

where u is the step size,  is a positive constant such that jj0; 1jj1  . An appealing practical

property of the algorithm is that the update in step (20) can be done efficiently by the

following formula:

t+1  =  Ts
t   

1 
Sn (t ; G; E); ; (21)

u

where the function T ( ; ) = sgn( )  max(j j   ; 0) is the soft-threshold
j =2;;p

operator. Then to ensure the constraint jj 1jj1  , we employ the projection method

introduced in Duchi et al. [2008], which is described in Algorithm 2 in Section S10.1 of the

online supplement.

In implementation, we choose the kernel function K ( )  as the distribution function of

the standard normal distribution. The bandwidth is set to be h =  0:9n 1=6 minfstd(xT );

IQR(x i  )=1:34g, as motivated by Silverman [1986], where “std” denotes the standard

deviation, and “IQR” denotes the interquartile range. For the step-size parameter, inspired

by Agarwal et al. [2012], we employ an expanding series for u, which ensures that the

stepsize diminishes during the update process. Given a set of candidate tuning parameters

fk g and the corresponding estimators k  , we employ 5-fold cross-validation to select the

optimal tuning parameter  by minimizing MSE() =  n 1
i = 1 fY i  G ( x T  j)g2.

To  obtain the debiased estimator , the nodewise Dantzig estimator dj (; ) in (11) is

computed via linear programming, see details in Section S10.2 of the supplementary
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material.

4.2 Monte Carlo Results

We generate random data from the model Y =  ( x T  )2 +  (A    2 )f0 (xT  
0) +  , where

N (0; 1), A   Bernoulli(0:5), and x  follows a p-dimensional multivariate normal distribution

with mean zero and identity covariance matrix,  =  (0:5; 0:5;  0:5;  0:5; 0;  ; 0)T , 0 =  (1;  1;

0:5; 0:4;  0:3; 0;  ; 0)T , and f0 (u) =  20  f[1 +  exp( u)] 1   0:5g. We consider n =  300; 500

and p =  200; 800; 2000 in the Monte Carlo experiment.

We first investigate the finite-sample performance of the penalized profiled semipara-

metric estimator in Section 2.2. Table 1 reports the average l1- and l2-estimation errors, the

average number of false negatives (nonzero components incorrectly identified as zero) and

false positives (zero components incorrectly identified as nonzero), with their standard errors

in the parentheses, based on 500 simulation runs. Results in Table 1 demonstrate

satisfactory performance of the profiled estimator for both the scenarios p <  n and p >  n.

Table 1: Performance of the penalized profile least-squares estimator

n  p l1 error
200      0.85 (0.02)

300      800      1.10 (0.03)
2000     1.32 (0.03)
200 0.58 (0.01)

500 800 0.79 (0.02)
2000 0.94 (0.02)

l2 error
0.31 (0.00)
0.37 (0.00)
0.40 (0.00)
0.22 (0.00)
0.27 (0.00)
0.31(0.00)

False Negative
0.01 (0.01)
0.07 (0.01)
0.09 (0.01)
0.00 (0.00)
0.00 (0.00)
0.01 (0.00)

False Positive
10.95 (0.32)
19.05 (1.13)
31.25 (1.57)
9.30 (0.30)

17.39 (0.66)
25.60 (1.18)

Next we investigate the wild bootstrap procedure introduced in Section 2.3 for test-

ing the group hypothesis (17). We consider the following six different choices for the

groups: G1 =  f6; 7; 8; 9g, G2 =  f5; 6; 7; 8; 9g, G3 =  f4; 6; 7; 8; 9g, G4 =  f4; 5; 6; 7; 8; 9g,
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G5 =  f3; 6; 7; 8; 9g and G6 =  f2; 6; 7; 8; 9g. Note that G1 consists of only zero entries in 0,

while all the other groups include at least one non-zero elements. Table 2 summarizes the

average Type I  errors and powers for each scenario, based on 1000 Bootstrap samples and

500 simulation runs.

Table 2: Performance of the bootstrap procedure in Section 2.3 for simultaneous testing.

n p

200
300 800

2000
200

500  800
2000

Type I  error
G1

5.6%
5.4%
3.2%
4.4%
5.0%
4.6%

Power
G2 G3 G4

96.4%     96.2%     97.8%
94.6%     97.6%     99.0%
92.4%     96.8%     98.4%
100%      100%      100%
99.6%     99.6%      100%
98.8%     98.6%     99.0%

G5                 G6

98.6%     100%
99.6%     100%
99.0%     100%
100%      100%
99.2%     100%
99.2%     100%

Table 2 indicates that type I  errors are reasonable controlled for all scenarios. Power

performance generally depends on the number and magnitudes of the nonzero components.

The hypothesis corresponding to G2 represents a more challenging situation where the only

non-zero element is -0:3, close to 0. The average powers for this case for different values of p

are still over 90%.

Note that for inference, we need to estimate the approximate inverse of r S n ( )  which

involves an additional tuning parameter . We observe that the inference procedure is not

overly sensitive to its choice and fix it at the value  =  25h to save computational time.

Alternatively, it can also be selected via cross-validation similarly as what has been done for

selection. We provide additional simulation results in Section S10.3 of the online

supplement, including investigation on the choice of  and comparing with alternative

procedures for estimating the optimal value function.
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5 A  Real Data Example

We illustrate the application on a clinical data set introduced by Charbonnel et al. [2005].

This is a randomized, double-blind, parallel treatment arm, phase I I I  clinical trial to com-

pare the efficacy and safety of pioglitazone versus gliclazide on metabolic control in naive

patients with Type 2 diabetes mellitus. This data set we consider contains information on

clinical characteristics for 813 individuals with Type 2 diabetes. The patients were ran-

domized into two treatment arms: pioglitazone (treatment 0) and gliclazide (treatment 1).

Their glycosylated haemoglobin A1c (HbA1c) and fasting plasma glucose ( F P G )  levels were

recorded every four weeks, up to week 52.

The primary efficacy endpoint is the change of HbA1c from baseline to the last available

post-treatment value. We consider the main effects of 22 baseline covariates and their two-

way interactions in the model. The dimension of the model is over 250. In the analysis, we

standardize the covariates to have mean zero and sample variance one.

We consider testing the significance of six different groups of variables. Table 3 sum-

marizes these six different groups and their respective p-values, based on the bootstrap

procedure in Section 2.3. The estimated coefficients are reported in Section S10.3 of the

supplementary.

Table 3: Real data analysis: evaluation of the significance of different groups of variables

Group
1

2

3
4
5

Variables
HbA1c, creatinine, BMI, waist circumference, HomaS

all variables in Group 1, all their two-way interactions,
and their interactions with fasting insulin

HbA1c, HomaS
BMI, creatinine, waist circumference,
LDL-C ,  total cholesterol, age, weight

p value
0:003

0:011

<  0:001
0:242
0:494
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Based on the scientific literature and suggestions from our clinical collaborators, fasting

insulin is important for estimating the optimal treatment regime. We normalize its coef-

ficient as 1 in our model. The first group includes the main effects of five characteristics,

which are the baseline average levels for HbA1c, creatinine, BMI, waist circumference and

homeostatic model assessment insulin sensativity (HomaS). The variables in this group

are those identified by diabetes experts to be potentially important for optimal treatment

regime estimation. The bootstrap procedures suggests a significant p-value (0.003) for this

group, which indicates that at one variable in this group is influential for making an optimal

personalized decision in the choice of the two treatments. Group 2 augments Group 1 by

including all the two-way interaction of these six characteristics (including fasting insulin),

hence includes 20 variables in total. The estimated p value is 0.011. Group 3 and Group

4 are subgroups of Group 1. The third group only includes two main effects: baseline

HbA1c and HomaS, while the fourth group includes the remaining three main effects. The

estimated p values suggest that the significant characteristics are among those in Group 3

rather than Group 4. Group 5 consists of four variables: the baseline average levels for the

low-density lipoprotein cholesterol (LDL-C) ,  total cholesterol, age and weight. This group

of variables is of interest because Glucose and lipid metabolism are linked to each other in

many ways [Parhofer, 2015]. Age and weight are also always taken into account for optimal

treatment regime estimation. Our test suggests that Group 5 does not appear to be

influential in optimal treatment recommendation.
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6 Discussions

We propose a flexible semi-parametric approach for making honest simultaneous inference

about the importance of a group of variables on optimal treatment regime estimation. We

develop new statistical theory to overcome the challenges of nonconvexity, high dimension-

ality and infinite-dimensional nonparametric components.

In this paper, we focus on a randomized trial. For observation studies, let ( x )  =

P (A  =  1jx) be the propensity score. Observing that E f [ A  (x)]g (x)g =  0, we have

4[Ai (x i )]Yi  =  4[Ai (x i ) ]g (x i )  +  4[Ai (x i ) ] (A i  1=2)f0 (xi  0) +  4[Ai (x i )] i :

Let Yi =  4[Ai (xi )]Yi , e =  4[Ai (xi )][ i  +  g(xi )], then we have

EYi  =  4[Ai (x i ) ] (A i  1=2)f0 (xi  0):

Denote G(tj) =  E(Y jx T   =  t) =  2Ef [A  (x)](2A 1)f0 (xT  
0 )jxT   =  tg, G(1) (tj) =

dt G(tj), and define G(tj), G(1) (tj) similarly as in Section 2.2. Assume ( x )  =  P (A  =  1jx) can

be modeled as (x; ), where  is a finite-dimensional parameter. Let  be an

estimate of , such as the one based on the regularized logistic regression. Define the pro-

filed semiparametric estimating function Sn (; G; E; )  =   n 1 P
i = 1 f 4 [ A i    (xi ; )]Yi

G ( x T  j)gG(1) (xT  j)[xi;  1 E (x i ;  1 jxT  )]: We then estimate 0 through the following

penalized semiparametric profiled estimating equation Sn (; G; E; )  +   =  0: Promising

numerical performance of this estimator is reported in Section S10.3 of the supplementary.

Our approach can still be applied to investigate the theory but is it more complex due to

the additional nuisance parameter. We will explore the complete theory for the above
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estimator in the future work. Alternative approaches that can potentially be extended to

our setting include Nie and Wager [2020], Künzel et al. [2018], among ohers.

Our approach for high-dimensional inference generalizes the “inverting K K T  condition"

technique in Van de Geer et al. [2014]. An alternative approach, which is more suitable

if one is interested in some targeted lower-dimensional parameter is based on the idea of

orthogonalization, see for example Belloni et al. [2015], Ning et al. [2017], Chernozhukov et

al. [2018]. In contrast, our approach is able to achieve debiasing for the p-dimensional

coefficient vector simultaneously. The main idea of the orthogonalization approach is to

construct a lower-dimensional estimating equation which is locally insensitive to the nui-

sance parameters. The construction of such a lower-dimensional moment condition is non-

trivial for high-dimensional semiparametric setting, particularly for index model, where the

challenge of bundled parameter arises.
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