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Abstract. Image processing problems in general, and in particular in the field of single-particle cryo-electron
microscopy, often require considering images up to their rotations and translations. Such problems
were tackled successfully when considering images up to rotations only, using quantities which are
invariant to the action of rotations on images. Extending these methods to cases where translations
are involved is more complicated. Here we present a computationally feasible and theoretically
sound approximate invariant to the action of rotations and translations on images. It allows one
to approximately reduce image processing problems to similar problems over the sphere, a compact
domain acted on by the group of three-dimensional rotations, a compact group. We show that
this invariant is induced by a family of mappings deforming, and thereby compactifying, the group
structure of rotations and translations of the plane, i.e., the group of rigid motions, into the group
of three-dimensional rotations. Furthermore, we demonstrate its viability in two image processing
tasks: multireference alignment and classification. To our knowledge, this is the first instance of a
quantity that is either exactly or approximately invariant to rotations and translations of images
that both rests on a sound theoretical foundation and is applicable in practice.
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1. Introduction. In image processing applications, there is often a need to consider images
up to rotation, up to translation, or up to both. Two examples of this are found in multi-
reference alignment (MRA) and image classification problems. In one of its more well-studied
forms, the aim in MRA is to estimate an image up to rotation from a dataset of noisy rotated
copies of it [3, 4, 17, 19]. In classification problems of the type we consider in this paper, the
aim is to estimate the similarity up to rotation between every pair of images in a noisy dataset.
In both cases, rather than using rotations, the problems can be considered over translations
or both rotations and translations.

Rotations and translations of the plane form a group, SE(2), usually referred to as rigid
motions or the special Euclidean group. This group is noncompact with an algebraic structure
of a semidirect product of the translation and rotation groups. The group structure enables
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1042 TAMIR BENDORY, IDO HADI, AND NIR SHARON

one to formalize the notion of considering an image up to rotation, translation, or both in
group-theoretic terms. In particular, an orbit of an image consists of all shifted and rotated
copies of the image. Thus, the group action induces an equivalence relation on any set of
images where the orbits act as the equivalence classes. Therefore, we are often required to
consider only the orbits' representatives.

Using this group-theoretic formalism, an MRA problem amounts to estimating an orbit,
or more accurately a representative of an orbit, from noisy samples of members of that orbit.
Classification problems amount to estimating the minimal distance between orbits from noisy
samples of members of these orbits. Formalizing these problems in this way enables well-
developed concepts from group theory to be brought to bear on them. In particular, it leads
to a wider applicability of what we refer to here as the invariants approach to orbit-related
problems. Central to this approach are quantities that are invariant to the action of a group on
an image. Formally, these invariants are operators on images that are constant on every orbit.
It is trivial to find such invariant operators. For example, every operator that is constant
on images is also invariant to any action by any group on it. However, combining insights
from group theory and harmonic analysis on groups, a wide variety of nontrivial invariants
were derived which not only are constant on every orbit, but also uniquely determine an orbit
[12, 6, 14, 17, 3, 4, 19]. These invariants can be thought of as injective functions on the set of
orbits of a group action and therefore essentially characterize the set of orbits of the action of
a group on an image.

Using these invariants yielded a computationally inexpensive solution to the MRA [17]
and classification [30] problems with respect to the rotation group. In both cases, an SO(2)-
invariant was evaluated on every image in the dataset, resulting in an SO(2)-invariant rep-
resentation of every image in the dataset. In [17], the MRA problem was handled by using
these representations to estimate the SO(2)-invariant representation of the underlying image,
and then inverted to yield an estimate of the image itself, up to rotation. In [30], the classifi-
cation problem was tackled by taking the distance between pairs of images to be the distance
between their SO(2)-invariant representations.

In both [17] and [30], as well as in our work, the motivating real-world application is single-
particle reconstruction in cryogenic electron microscopy (cryo-EM). In cryo-EM, the goal is
to reconstruct the three-dimensional (3D) structure of biological macromolecules from images
generated by an electron microscope. While [17] and [30] handled MRA and classification,
respectively, up to rotation only, in cryo-EM, as in other applications, there is often a need to
consider images up to both rotations and translations [5]. In particular, the images used to esti-
mate the 3D structure can be considered up to rotations and translations. One would therefore
like to generalize the approach of [17] and [30] by using an orbit-characterizing SE(2)-invariant.

Unfortunately, applying the invariant approach to MRA and classification up to both
rotation and translations is considerably harder. Deriving computationally feasible orbit-
characterizing invariants for the rigid motions group SE(2) is hard, since this group is hard
to analyze algebraically for two reasons. First, it is noncompact and harmonic analysis over
noncompact groups is considerably more complicated than over compact groups, such as
SO(n), the rotation group of Rn. Second, as a semidirect product it has a rather complicated
algebraic structure. Thus, so far as we know, no computationally feasible orbit-characterizing
invariants with sound theory behind them are known for SE(2).D
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Since working over compact groups is simpler, both theoretically and in practice, we seek
to compactify orbit-related problems over the rigid motions group. Specifically, we wished to
approximately reduce orbit-related image processing problems over SE(2) to similar problems
over compact groups. This approach has worked in the past. A heuristically derived approx-
imate SE(2)-invariant was applied by Kondor [15] to an image classification problem. The
invariant was computed by projecting images from the plane onto the sphere and computing
an SO(3)-invariant on the sphere. Similarly, in [18] a synchronization problem over SE(2)
itself, a problem where the objective was to estimate elements of SE(2), was approximately
reduced to a problem over the compact group SO(3) (for more information on synchronization,
see [7, 20, 22]).

Here we extend the theoretical approach of [18] to derive and theoretically justify the use of
the approximate invariant used by [15]. We show the projection used by [15] is induced by con-
traction maps, a family of mappings from SE(2) to SO(3) that rigorously formalize the notion
of continuously deforming one group into another. We then prove this projection maps an or-
bit of the action of SE(2) on images to approximately the same orbit of the action of SO(3) on
the space of functions on the sphere. We then apply our approximate SE(2)-invariant to MRA
and classification problems over SE(2) and show they provide viable solutions on simulated
data, thus demonstrating its potential. Our MATLAB code to reproduce all numerical exper-
iments is available at https://github.com/idohadi/CompactificationImageProcessing. To our
knowedge, we provide here the first instance of a quantity that is either exactly or approx-
imately SE(2)-invariant on images that both rests on a sound theoretical foundation and is
computable in practice.

1.1. Structure of the paper. We begin in section 2 by constructing a projection of com-
pactly supported functions on the plane onto functions on the sphere and use it to define
an approximate SE(2) invariant. After deriving the theory, we discuss in section 3 several
computational aspects of projecting discrete images onto the sphere and of calculating their
spherical bispectrum. In particular, we demonstrate numerically that our approximate SE(2)
invariant is deserved to be named so. In the rest of the paper, we apply our approximate
SE(2) invariant to two problems of interest. First, in section 4, we flesh out a modified invari-
ants approach to MRA using our approximate SE(2) invariant. We perform several numerical
experiments demonstrating our approach is viable. Second, in section 5 we discuss image clas-
sification up to rotation and translation. We use our approximate SE(2) invariant to derive
an approximately SE(2)-invariant measure of the distance between images. We then demon-
strate by numerical experiments that our approach is able to identify similar images up to
rotations and translations and can do so even for large translation sizes. For both MRA and
classification, we show that our approach outperforms methods that take only rotations into
account.

2. Compactifiaction of functions on the plane: Theoretical aspects. Given a function
on the plane, we wish to define a function on the sphere which preserves, in some sense, two
key properties of the original function. First, the original function needs to be recoverable
from its spherical counterpart. Second, the group action of SE(2) on the original function
needs to be reflected, in some sense, in the group action of SO(3) on its spherical counter-
part.D
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In this section, we construct a mapping between functions on the plane and functions on
the sphere which has these two properties. Center to this construction is a special family of
maps, called contraction maps, between the Lie algebras of SE(2) and SO(3). Because the
subgroup structure of a Lie group is recapitulated in its Lie algebra, contraction maps provide
a sense in which one can continuously deform one Lie group into another [8]. We use these
maps to construct and study the properties of the mapping described above.

Subsection 2.1 introduces the notation used throughout the paper. In particular, we
introduce explicitly the group-theoretic formalization of considering images up to rotations,
translations, or both. subsection 2.2 introduces contraction maps in general and the family
of contraction maps between SE(2) and SO(3) we use in particular. In subsection 2.3, we use
this family of contraction maps to induce a map between functions on the plane and functions
on the sphere. We also provide an explicit formula for this map and prove that the original
function on the plane can be recovered from its spherical counterpart. In subsection 2.4, we
study the manner in which the group action on the sphere is related to the original group
action on the plane. In particular, we show that a member of the orbit of the original image
is mapped to a neighborhood of the orbit of its spherical counterpart. This neighborhood
gets at most exponentially larger with the size of the translational part of the element of
SE(2) acting on the original function. In the final section, subsection 2.5, we introduce the
spherical bispectrum of a function on the sphere, an invariant to the action of SO(3) that
uniquely determines functions on the sphere, up to an action of SO(3). Taken together, we
show that when it is evaluated on images projected onto the sphere, the spherical bispectrum
is an approximate SE(2) invariant.

2.1. Notation. Throughout the paper, lowercase letters are scalars, lowercase boldface
letters are column vectors, and uppercase boldface letters are matrices. The standard Euclid-

ean norm is \| \cdot \| = \| \cdot \| 2, where \| x\| 2 =
\sqrt{} \sum n

j=1 | xj | 
2 for x = (x1, x2, . . . , xn)

\top in Rn or in

Cn. The open r-ball in R2 is Br :=
\bigl\{ 
x \in R2

\bigm| \bigm| \| x\| < r
\bigr\} 
. The closed r-ball is denoted by

Br :=
\bigl\{ 
x \in R2

\bigm| \bigm| \| x\| \leq r
\bigr\} 
. Finally, \partial Br :=

\bigl\{ 
\| x\| \in R2

\bigm| \bigm| \| x\| = r
\bigr\} 
.

The elementwise complex conjugate of an n\times m matrix M is denoted by M\ast . Thus, for
example, x\ast = (x\ast 1, x

\ast 
2, . . . , x

\ast 
n)

\top for every x \in Cn. The transpose of an n \times m matrix M is
denoted by M\top and its adjoint is denoted by M\dagger . Note that M\dagger = (M\ast )\top .

The sphere is the unit 2-sphere, S2 :=
\bigl\{ 
x \in R3

\bigm| \bigm| \| x\| = 1
\bigr\} 
. The north pole of the sphere is

denoted by n := (0, 0, 1)\top . The dS2 (x1,x2) = arccos
\bigl( 
s\top 2 s1

\bigr) 
is the great-circle distance metric

on the sphere. SO(3) acts on a function on the sphere f : S2 \rightarrow C by R \bullet f(s) = f
\bigl( 
R\top s

\bigr) 
.

SO(2) is the group of rotations of R2 and SO(3) is the group of rotations of R3 or equiv-
alently of S2. The group of rigid motions, also referred to here as the group of rotations and
translations of the plane, is denoted by SE(2) = R2 o SO(2). If g = (x, R) \in SE(2), we refer
to x as the translational part of g and to R as the rotational part.

As we mentioned in the introduction, rotations and translations of the plane form a group,
enabling one to formalize the notion of considering an image up to rotation, translation, or
both in group-theoretic terms. If G is a (multiplicative) group, we say it acts on a set X if
every g \in G induces a map X \rightarrow X denoted by x \mapsto \rightarrow g\bullet x such that g1 \bullet (g2 \bullet x) = (g1g2)\bullet x for
all g1, g2 \in G and x \in X. An orbit of the action of G on X is the set G\bullet x = \{ g \bullet x | g \in G\} of
all elements ofX that can be reached by applying G to x. It is easy to prove that G\bullet x1 = G\bullet x2D
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COMPACTIFICATION IN IMAGE PROCESSING 1045

for x1, x2 \in X if and only if x1 = g \bullet x2 for some g \in G. Therefore, the action of a group on
a set induces an equivalence relation on the set with the orbits functioning as the equivalence
classes. Considering an image up to rotation, translation, or both amounts to considering it as
a representative of its orbit with respect to the action of the rotation group, the translation,
group, or the translation and rotation group, respectively, on the space of images.

In order to formalize the latter statement, we model images, as is conventional, as com-
pactly supported, square-integrable real-valued functions on the plane and denote by L2

c

\bigl( 
R2
\bigr) 

the space of such functions. The rotation group of the plane SO(2) acts on L2
c

\bigl( 
R2
\bigr) 
by

f \mapsto \rightarrow R \bullet f , where R \bullet f(x) = f
\bigl( 
R\top x

\bigr) 
. The (additive) translation group of the plane R2

acts on L2
c

\bigl( 
R2
\bigr) 
by f \mapsto \rightarrow b \bullet f , where b \bullet f(x) = f (x - b). The group of translations and

rotations of the plane SE(2), usually referred to as the group of rigid motions of the plane or
the special Euclidean group of the plane, has a more complicated algebraic structure. It is
the semidirect product of the translation group and the rotation group, SE(2) = R2 o SO(2),
and so its group operation is (b1, R1)(b2, R2) = (b1+R1b2, R1R2). This group acts on R2 by
(b, R) \bullet x = Rx+ b and on Cc

\bigl( 
R2
\bigr) 
by f \mapsto \rightarrow (b, R) \bullet f , where (b, R) \bullet f(x) = f

\bigl( 
(b, R) - 1x

\bigr) 
.

The inverse of (b, R) \in SE(2) can readily be shown to be (b, R) - 1 =
\bigl( 
 - R\top b, R\top \bigr) .

2.2. Contraction maps. A popular construction in physics obtains a Lie algebra as the
limit of a sequence of Lie algebras. This construction was first made rigorous in a landmark
paper [11]. Dooley [8] gave a coordinate-free formulation of this construction using contraction
maps. This section follows his approach.

Consider a semisimple compact Lie group G and its Lie algebra g with Lie brackets [\cdot , \cdot ].
Let G0 \leq G be a continuous subgroup of G and denote its Lie algebra by g0. Since G0 \leq G,
Lie correspondence ensures that g0 is a Lie subalgebra of g. If g = g0 \oplus V , where

[g0, V ] = \{ [g0, v] | g0 \in g0, v \in V \} \subset V,

define for every \lambda > 0 the contraction map of G with respect to G0:

\Psi \lambda : V oG0 \rightarrow G such that (v, g0) \mapsto \rightarrow expG

\Bigl( v
\lambda 

\Bigr) 
g0.

As noted in [8], treated as distinct groups, both V oG0 and G have g as the underlying vector
space of their Lie algebra. Yet, one can obtain the Lie brackets of V o G0 by transforming
the Lie brackets of G using \Psi \lambda and taking the limit \lambda \rightarrow \infty . In this sense, the family of the
contraction maps \{ \Psi \lambda | \lambda > 0\} enables one to continuously deform one Lie algebra to produce
another in the limit.

In our case, G = SO(3) and G0 = SO(2), where so(3) is the space of skew-symmetric
3\times 3 real matrices equipped with the commutator as the Lie bracket, that is, the space of real
3\times 3 matrices satisfying S\top =  - S\top with the Lie bracket [S1, S2] = S1S2  - S2S1. Therefore,
as a vector space so(3) = Span \{ Si,j | 1 \leq i < j \leq 3\} , where Si,j is a real skew-symmetric
3\times 3 matrix with 1 and  - 1 at the (i, j) and (j, i) elements, respectively, and zero otherwise.
Denoting S1 = S1,2, S2 = S1,3, and S3 = S2,3, one can easily show that

[S1, S2] =  - S3, [S2, S3] =  - S1, and [S1, S3] = S2.D
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Thus, g0 = so(2) \sim = Span \{ S1\} and V \sim = Span \{ S2, S3\} \sim = R2. Therefore, the contraction map
of SO(3) with respect to SO(2) is

(2.1) \Psi \lambda : SE(2) \rightarrow SO(3) such that (x, R) \mapsto \rightarrow exp\mathrm{S}\mathrm{O}(3)

\Bigl( x
\lambda 

\Bigr) 
R.

Crucially for what follows, this contraction map is smooth, because the exponential map and
the group operation map SO(3)\times SO(3) \rightarrow SO(3) are all smooth.

In [18], the contraction map (2.1) was used to reduce a synchronization problem over
SE(n) to a synchronization problem over SO(n). In particular, [18, Prop. 3.4] shows that
(2.1) can be treated as an approximate group homomorphism. While their result holds for a
general category of groups, we state it here for SO(3).

Theorem 2.1. Let gj = (xj , Rj) \in SE(2) (j = 1, 2). Then \Psi \lambda (g
 - 1) = \Psi \lambda (g)

 - 1 for all
g \in SE(2) and if also \| x1\| + \| x2\| \leq 0.59\lambda , then for all g1, g2 \in SE(2)

(2.2) \| \Psi \lambda (g1g2) - \Psi \lambda (g1)\Psi \lambda (g2)\| F \leq C

\lambda 2
, as \lambda \rightarrow \infty ,

while C is a constant independent of \lambda , but dependent on g1 and g2. Here \| \cdot \| F is the Frobenius
norm and the codomain of \Psi \lambda is explicitly the 3\times 3 real orthogonal matrices with determinant 1.

In the following sections, we extend this result to functions on homogeneous spaces of SE(2)
and SO(3). In our extension, Theorem 2.9, the dependence on \lambda is no longer asymptotic and
it is no longer required that \| x1\| + \| x2\| \leq 0.59\lambda .

2.3. A mapping between functions on the plane and functions on the sphere. In
this section, we prove that the contraction map (2.1) between SE(2) and SO(3) induces an
invertible mapping between function spaces on homogeneous spaces of these groups. A ho-
mogeneous space is a space a group acts on transitively, i.e., where every two elements in
the space are related by the action of an element of the group. Every homogeneous space H
of a some group G is H \sim = G/G0 for some subgroup G0 \leq G (see, e.g., [10, Chap. II(4)]).
In particular, R2 \sim = SE(2)/SO(2) and S2 \sim = SO(3)/SO(2). Denote their quotient maps by
\eta \mathrm{S}\mathrm{E}(2) : SE(2) \rightarrow R2 and \eta \mathrm{S}\mathrm{O}(3) : SO(3) \rightarrow S2, respectively. It is important to note that
in the latter case, we identify SO(2) with the subgroup of SO(3) preserving the north pole
n = (0, 0, 1)\top . Therefore, we write \eta \mathrm{S}\mathrm{E}(2)(x, R) = x and \eta \mathrm{S}\mathrm{O}(3)(R) = Rn.

Using this notation, we prove the existence of a projection of compactly supported func-
tions on the plane onto functions on the sphere, or more informally, a projection of images
from the plane onto the sphere. This projection is shown to be induced by the contraction
map (2.1). Stated formally, we prove the following.

Theorem 2.2. Fix \lambda > 0. If f : R2 \rightarrow R is a smooth function compactly supported within
B\lambda \pi =

\bigl\{ 
x \in R2

\bigm| \bigm| \| x\| < \lambda \pi 
\bigr\} 
, then the following hold:

\bullet Existence. There is a smooth function \kappa \lambda f : S2 \rightarrow R satisfying

(2.3) \kappa \lambda f \circ \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda = f \circ \eta \mathrm{S}\mathrm{E}(2)

or, equivalently, that the diagram in Figure 1 commutes.
\bullet Uniqueness. This \kappa \lambda f is the only smooth function on the sphere satisfying (2.3).D
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R2 o SO(2) SO(3)

R2 S2

R

\eta \mathrm{S}\mathrm{E}(2)

\Psi \lambda 

\eta \mathrm{S}\mathrm{O}(3)

f

\kappa \lambda f

Figure 1. Diagram of Theorem \bftwo .\bftwo . There are two equivalent paths from SE(2) to R. The blue path
passes through a function on the plane. We complete the green path by proving the existence of \kappa \lambda f (dashed).

Throughout the paper, we refer to \kappa \lambda f as the projection of f onto the sphere and to \lambda as the
scaling parameter of the projection.

Figure 1 can be taken as a visual demonstration of Theorem 2.2. In it, we see two
equivalent paths from SE(2) to R. The blue path passes through the quotient map and a
given function f : R2 \rightarrow R. In Theorem 2.2, we prove the existence and uniqueness of the
green path, the one passing through SO(3) and S2. Most of this latter path is already given
to us. We use the properties of the contraction map \Psi \lambda and the quotient map SO(2) \rightarrow S2

to complete the green path.

Remark 2.3. In this paper, smooth functions are C\infty functions and all smooth manifolds
are also C\infty . Theorem 2.2 and several other results in this paper are proved only for smooth
functions. While this limits their generality, it is in fact consistent with our primary motiva-
tion. In cryo-EM, the potential density maps are all smooth. Therefore, restricting ourselves
to smooth functions allows us to leverage the well-developed and well-known theory of smooth
manifolds, while still ensuring the results retain their potential applicability.

Our proof of Theorem 2.2 relies on several lemmas. We state the lemmas here and leave
their proofs to Appendix A. The first lemma provides an important property of the quo-
tient map \eta \mathrm{S}\mathrm{E}(2) and of \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda . Recall that a function f : M \rightarrow N between smooth
manifolds M and N is a smooth submersion if it is a smooth function with surjective dif-
ferential at every point in its domain; that is, dpf : TpM \rightarrow Tf(P )N is surjective for every
p \in M , where TpM and Tf(p)N are the tangent spaces of M and N at p and f(p), respec-
tively.

Lemma 2.4. The maps \eta \mathrm{S}\mathrm{E}(2) and \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda are smooth submersions.

Since \eta \mathrm{S}\mathrm{O}(3)(R) = Rn, the mapping \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda satisfies

(2.4) \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda (x, R) = exp\mathrm{S}\mathrm{O}(3)(x)Rn = exp\mathrm{S}\mathrm{O}(3)(x)n,

where the last transition follows from our identification of SO(2) \leq SO(3) with the subgroup
of rotations preserving n. Overall, it follows that \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda (x, R) depends only on x and can
be treated as a function mapping the plane onto the sphere. Figure 2 visually demonstrates
how this mapping works, whereas Lemma 2.5 formally characterize its fibers, the preimage of
singletons.D
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Figure 2. The mapping \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda can be seen as mapping lines through the origin of the plane (magenta)
onto great circles through the north pole on the sphere (magenta). Consequently, the origin and the red, dashed
circles are mapped to the north pole and the blue, dotted circles are mapped to the south pole.

Lemma 2.5. Fix \lambda > 0. Let s \in S2 \setminus \{ \pm n\} . Denote \widetilde x = (\phi cos \theta , \phi sin \theta )\top , where (\theta , \phi ) are
the spherical coordinates of s. The fibers of \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda are

\bigl( 
\eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda 

\bigr)  - 1
(n) = \{ (x, R) \in SE(2) | \| x\| = 2n\lambda \pi for n \in N \cup \{ 0\} , R \in SO(2)\} ,

(2.5)

\bigl( 
\eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda 

\bigr)  - 1
( - n) = \{ (x, R) \in SE(2) | \| x\| = (2n+ 1)\lambda \pi for n \in N \cup \{ 0\} , R \in SO(2)\} ,

(2.6)

\bigl( 
\eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda 

\bigr)  - 1
(s) = \{ (x, R) \in SE(2) | x = (2n\pi + 1)\lambda \widetilde x for n \in Z, R \in SO(2)\} .

(2.7)

The final lemma enables us to lift a smooth, compactly supported function on the plane
onto SE(2) while respecting the fibers of \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda .

Lemma 2.6. Let f : R2 \rightarrow R be a smooth function. If f is compactly supported within B\lambda \pi ,
then there is a unique smooth function \widetilde f : SE(2) \rightarrow R which satisfies the following conditions:

(i) \widetilde f is constant on fibers of \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda .

(ii) f \circ \eta \mathrm{S}\mathrm{E}(2) = \widetilde f on B\lambda \pi \times SO(2).

We begin by proving the existence of the projection.

Proof of Existence in Theorem 2.2. Let \widetilde f be the extension of f described in Lemma 2.6.
By Lemma 2.6(i), it is constant on fibers of \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda . Because \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda is a smooth

submersion by Lemma 2.4, there is \widetilde F : S2 \rightarrow R satisfying \widetilde f = \widetilde F \circ \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda (see Theorem

4.30 in [16]). By Lemma 2.6(ii), it follows that \widetilde F \circ \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda = f \circ \eta \mathrm{S}\mathrm{E}(2). We therefore take

\kappa \lambda f := \widetilde F .D
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The projection we constructed in the existence proof of Theorem 2.2 has an explicit,
easy-to-compute formula.

Proposition 2.7. If f : R2 \rightarrow R is a smooth compactly supported function supported within
B\lambda \pi , then

(2.8) \kappa \lambda f(\theta , \phi ) = f(\lambda \theta cos\phi , \lambda \theta sin\phi ).

Formula (2.8) is virtually identical to the one used by Kondor [15]. While Kondor chose
it based on a heuristic, we here showed that it is derived from the contraction map (2.1),
a more fundamental mapping between SE(2) and SO(3) that relates their underlying group
structure.

The proof of Proposition 2.7 relies on the following lemma, which provides an explicit
formula for \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda . It is proved in Appendix A.

Lemma 2.8. \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda (x, R) = ( \bfx \top 

\| \bfx \| sin(
\| \bfx \| 
\lambda ), cos(\| \bfx \| \lambda ))\top for all (x, R) \in SE(2).

Proof of Proposition 2.7. Let s \in S2 \setminus \{  - n\} with spherical coordinate representation
(\theta , \phi ). Let (x, R) \in SE(2) be a vector satisfying \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda (x, R) = s. By Lemma 2.5,
we can choose x \in B\lambda \pi . By Lemma 2.8,

(2.9) s =

\biggl( 
x\top 

\| x\| 
sin

\biggl( 
\| x\| 
\lambda 

\biggr) 
, cos

\biggl( 
\| x\| 
\lambda 

\biggr) \biggr) \top 

if and only if \theta = \| \bfx \| 
\lambda and \phi is the angle of x in polar coordinates. Now, for every R \in SO(2)

we have

f (\lambda \theta cos\phi , \lambda \theta sin\phi ) = f (\| x\| cos\phi , \| x\| sin\phi ) by (2.9)

= f (x)

= f \circ \eta \mathrm{S}\mathrm{E}(2)(x, R)

= \kappa \lambda f \circ \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda (x, R) by Theorem 2.2

= \kappa \lambda f(s) = \kappa \lambda f(\theta , \phi ).

We use the explicit formula in Proposition 2.7 to prove uniqueness in Theorem 2.2.

Proof of Uniqueness in Theorem 2.2. Note that the only property of \kappa \lambda f we used in
the proof of Proposition 2.7 is the fact it satisfies (2.3). Therefore, if g1, g2 : S2 \rightarrow R satisfy
(2.3), they are identical on S2 \setminus \{  - n\} . Finally, it is easy to see that on  - n both g1 and g2
must equal zero, since the support of f does not intersect the fiber of  - n (2.6). We conclude
g1 = g2, and therefore there is exactly one function on the sphere satisfying (2.3).

2.4. The group action approximation theorem. As shown above, the contraction map
(2.1) is a mapping between groups which induces a mapping between function spaces these
groups act on. Therefore, it makes sense to try to capture the way the action of SE(2) on
its corresponding function space is approximated by the action of SO(3) on its corresponding
function space by how well the mapping between function spaces commutes with the group
action.D

ow
nl

oa
de

d 
05

/3
1/

23
 to

 1
09

.1
86

.2
8.

23
9 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1050 TAMIR BENDORY, IDO HADI, AND NIR SHARON

Theorem 2.1 of [18] does exactly that for the approximation of SE(2) by SO(3). We model
our approach similarly to theirs and prove that

\kappa \lambda ((x, R) \bullet f) \approx \Psi \lambda ((x, R)) \bullet \kappa \lambda f for all x \in R2.

The following theorem makes this idea precise.

Theorem 2.9. Let \widetilde \lambda \geq \lambda \geq 1, let (b, R) \in SE(2), and let f : R2 \rightarrow R be a smooth function
compactly supported within B\lambda \pi . Then,

(i) if (b, R) is a purely rotational element of SE(2), i.e., b = 0, then

(2.10) \kappa \widetilde \lambda ((b, R) \bullet f) = \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f ;
(ii) assume (b, R) is such that (b, R) \bullet f is supported within B\lambda \pi and \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f is

supported within \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \widetilde \lambda (B\lambda \pi ). Then

(2.11)
\bigm\| \bigm\| \kappa \widetilde \lambda ((b, R) \bullet f) - \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f\bigm\| \bigm\| 2 \leq 4L\pi e\| \bfb \| +\lambda \pi \widetilde \lambda 2

\biggl( 
1 - cos

\biggl( 
\lambda \pi \widetilde \lambda 
\biggr) \biggr) 1/2

,

where L is the Lipschitz constant of \kappa \widetilde \lambda f in the sense defined in (2.20).

Remark 2.10. It is worth emphasizing that the bound in (2.11) depends on the function
being projected through L, the Lipschitz constant of its projection onto the sphere.

Remark 2.11. We note an apparent difference between Theorem 2.9 and Theorem 2.1.
In (2.2) of Theorem 2.1 from [18], the bound behaves as O

\bigl( 
1
\lambda 2

\bigr) 
when the scaling parameter

satisfies \lambda \rightarrow \infty . In (2.11) of Theorem 2.9, when we hold \lambda fixed and take \widetilde \lambda \rightarrow \infty , it appears at
first glance that the bound behaves as O( 1\widetilde \lambda 3

). However, we expect that the Lipschitz constant

L of the projection \kappa \widetilde \lambda f is O(\widetilde \lambda ), and thus the bound behaves as O(\widetilde \lambda 2). To see why, note that
our projection maps two fixed points on the plane to two points on the sphere, as demonstrated
visually in Figure 2. Therefore, if we fix two points on the plane, the distance between the value
of their corresponding points on the sphere does not depend on \widetilde \lambda . However, as \widetilde \lambda increases, the
spherical cap to which the support of f is mapped grows smaller and specifically the maximal
distance between any two points in it grow smaller by O( 1\widetilde \lambda ). Thus, the Lipschitz constant

of \kappa \widetilde \lambda f should scale asymptotically like L\lambda O(\widetilde \lambda ), where L\lambda is the Lipschitz constant of \kappa \lambda f .

Overall, we expect the entire bound to be O( 1\widetilde \lambda 2
) as \widetilde \lambda \rightarrow \infty for fixed \lambda , as in Theorem 2.1.

Our proof of Theorem 2.9 begins with a lemma providing a sense in which the matrix
exponential approximately preserves the matrix group multiplication map.

Lemma 2.12. If X and Y are real n\times n matrices and \lambda \geq 1, then

(2.12)

\bigm\| \bigm\| \bigm\| \bigm\| exp\biggl( X

\lambda 
+

Y

\lambda 

\biggr) 
 - exp

\biggl( 
X

\lambda 

\biggr) 
exp

\biggl( 
Y

\lambda 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \leq C

\lambda 2
,

where

(2.13) C := 2e\| X\| +\| Y \|  - e\| X\|  - e\| Y \|  - \| X\|  - \| Y \| .D
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We particularize Lemma 2.12 to our contraction map between SE(2) and SO(3).

Corollary 2.13. Let \widetilde \lambda \geq 1. If (x1, R1), (x2, R1) \in SE(2), then

(2.14)
\bigm\| \bigm\| \Psi \widetilde \lambda ((x1, R1)(x2, R2)) - \Psi \widetilde \lambda (x1, R1)\Psi \widetilde \lambda (x2, R2)

\bigm\| \bigm\| \leq C (\| x1\| , \| x2\| )\widetilde \lambda 2
,

where

(2.15) C (r1, r2) := 2er1+r2  - er1  - er2  - r1  - r2.

Proof. Throughout this proof we assume that exp = exp\mathrm{S}\mathrm{O}(3). Since we identify R2 \sim =
Span \{ S1, S2\} (see subsection 2.2) and the matrix exponential commutes with conjunction,
for every R \in SO(2) and x \in R2 we have

(2.16) exp(R\top x) = \=R\top exp(x) \=R with \=R :=

\biggl[ 
R 0
0 1

\biggr] 
.

Now, denote the left-hand side of (2.14) by M . From (2.1) and the definition of \=R in
(2.16), it follows that

\Psi \widetilde \lambda ((x1, R1)(x2, R2)) = \Psi \widetilde \lambda (x1 +R1x2, R1R2) = exp

\biggl( 
x1 +R1x2\widetilde \lambda 

\biggr) 
\=R1

\=R2

and

\Psi \widetilde \lambda (x1, R1)\Psi \widetilde \lambda (x2, R2) = exp

\biggl( 
x1\widetilde \lambda 
\biggr) 

\=R1 exp

\biggl( 
x2\widetilde \lambda 
\biggr) 

\=R2.

Since the matrix 2-norm is rotation-invariant, it follows from the computations above that

M =

\bigm\| \bigm\| \bigm\| \bigm\| exp\biggl( x1 +R1x2\widetilde \lambda 
\biggr) 
 - exp

\biggl( 
x1\widetilde \lambda 
\biggr) 

\=R1 exp

\biggl( 
x2\widetilde \lambda 
\biggr) 

\=R\top 
1

\bigm\| \bigm\| \bigm\| \bigm\| .
From (2.16), it now follows that

M =

\bigm\| \bigm\| \bigm\| \bigm\| exp\biggl( x1 +R1x2\widetilde \lambda 
\biggr) 
 - exp

\biggl( 
x1\widetilde \lambda 
\biggr) 
exp

\biggl( 
R1x2\widetilde \lambda 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| .
Taking X = x1, Y = x2, it follows from Lemma 2.12 that M \leq C\widetilde \lambda 2

with

C = 2e\| \bfx 1\| +\| R1\bfx 2\|  - e\| \bfx 1\|  - e\| R1\bfx 2\|  - \| x1\|  - \| R1x2\| 
= 2e\| \bfx 1\| +\| \bfx 2\|  - e\| \bfx 1\|  - e\| \bfx 2\|  - \| x1\|  - \| x2\| .

Corollary 2.13 is an analogue of Theorem 2.1 of [18]. It differs from it in three key respects.
First, the requirement that the translational parts satisfy an inequality constraint is dropped.
Second, the dependence on the scaling parameters \lambda and \widetilde \lambda is no longer asymptotic. Third,
the dependence of the bound on the elements of SE(2) is explicit.

Before proving Theorem 2.9, we introduce another auxiliary lemmas, which we prove in
Appendix A.D
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Lemma 2.14. dS2(x,y) \leq 
\surd 
\pi \| x - y\| .

We are now ready to prove our main result, Theorem 2.9.

Proof of Theorem 2.9. Recall that \eta \mathrm{S}\mathrm{O}(3)(R) = Rn. Denote

(2.17)

K2 :=
\bigm\| \bigm\| \kappa \widetilde \lambda ((b, R) \bullet f) - \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f\bigm\| \bigm\| 22

=

\int 
S2

\bigm| \bigm| \kappa \widetilde \lambda ((b, R) \bullet f) (x) - \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f(x)\bigm| \bigm| 2 dS2(x).

Fix x \in S2 and let b1 \in B\widetilde \lambda \pi such that \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \widetilde \lambda (b1, I) = x. We focus on two terms we
subtract from one another in the integrand of (2.17). Unraveling the definitions, it follows
that the first term satisfies

\kappa \widetilde \lambda ((b, R) \bullet f) (x) = (b, R) \bullet f(b1)

= f
\Bigl( 
(b, R) - 1 b1

\Bigr) 
= f \circ \eta \mathrm{S}\mathrm{E}(2)

\Bigl( 
(b, R) - 1 (b1, I)

\Bigr) 
= \kappa \widetilde \lambda f \circ \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \widetilde \lambda 

\Bigl( 
(b, R) - 1 (b1, I)

\Bigr) 
= \kappa \widetilde \lambda f

\Bigl( 
\Psi \widetilde \lambda 
\Bigl( 
(b, R) - 1 (b1, I)

\Bigr) 
n
\Bigr) 
.(2.18)

Similarly, the second term satisfies

\Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f(x) = \kappa \widetilde \lambda f((exp(b)R)\top exp(b1)n)

= \kappa \widetilde \lambda f(\Psi \widetilde \lambda ((b, R)) - 1 exp(b1)n)

= \kappa \widetilde \lambda f
\Bigl( 
\Psi \widetilde \lambda 
\Bigl( 
(b, R) - 1

\Bigr) 
\Psi \widetilde \lambda ((b1, I)n)

\Bigr) 
,(2.19)

where the last transition follows from the first half of Theorem 2.1, which does not require any
restrictions on \lambda . Now, note that (b, R) = (0, R)(b, I) and that \Psi \widetilde \lambda (b, R) = \Psi \widetilde \lambda (0, R)\Psi \widetilde \lambda (b, I).
Therefore, substituting b = 0 into (2.18) and (2.19) shows that the left-hand side of both
equations are equal if (b, R) is a purely rotational element of SE(2). Thus, the integrand in
(2.17) is zero on S2, which proves (2.10).

In order to prove (2.11), let \alpha = \Psi \widetilde \lambda ((b, R) - 1(b1, I)) and \beta = \Psi \widetilde \lambda ((b, R) - 1)\Psi \widetilde \lambda (b1, I).
Since \kappa \widetilde \lambda f is a smooth function with a compact domain S2, it is Lipschitz in the sense that
there is L \geq 0 satisfying

(2.20)
\bigm| \bigm| \kappa \widetilde \lambda f(x) - \kappa \widetilde \lambda f(y)\bigm| \bigm| \leq LdS2(x,y) for all x,y \in S2,

where dS2(x,y) = arccos(y\top x) is the standard metric on the sphere (great-circle distance).D
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Therefore,

(2.21)

| \kappa \widetilde \lambda ((b, R) \bullet f) (x) - \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f(x)| 
=
\bigm| \bigm| \kappa \widetilde \lambda f(\alpha n) - \kappa \widetilde \lambda f(\beta n)\bigm| \bigm| By (2.18) and (2.19)

\leq LdS2(\alpha n, \beta n) By (2.20)

\leq L
\surd 
\pi \| \alpha n - \beta n\| By Lemma 2.14

\leq L
\surd 
\pi \| \alpha  - \beta \| Since \| n\| = 1

\leq 2L
\surd 
\pi C (\| b\| , \| b1\| )\widetilde \lambda 2

By Corollary 2.13,

where C is defined in (2.15).
From Lemma 2.8, it is easy to show that if we treat \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \widetilde \lambda as a map from R2 to the

sphere, it can be represented in polar coordinates as

\eta \mathrm{S}\mathrm{O}(3) \circ \Psi \widetilde \lambda (r, \phi ) =
\biggl( 
cos\phi sin

\biggl( 
r\widetilde \lambda 
\biggr) 
, sin\phi sin

\biggl( 
r\widetilde \lambda 
\biggr) 
, cos

\biggl( 
r\widetilde \lambda 
\biggr) \biggr) \top 

.

Furthermore, it is obvious that it is a smooth parameterization of S2 \setminus \{  - n\} with a Gram
determinant

detG =
1\widetilde \lambda 2

sin2
\biggl( 
r\widetilde \lambda 
\biggr) 
.

Finally, since by hypothesis (b, R) \bullet f is supported within B\lambda \pi , both \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f and
\kappa \widetilde \lambda ((b, R) \bullet f) are supported within \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \widetilde \lambda (B\lambda \pi ). Overall, we can write (2.17) as

K2 =
1\widetilde \lambda 
\int \lambda \pi 

0

\int 2\pi 

0

\bigm| \bigm| \kappa \widetilde \lambda ((b, R) \bullet f) (y) - \Psi \widetilde \lambda ((b, R)) \bullet \kappa \widetilde \lambda f(y)\bigm| \bigm| 2 sin\biggl( r\widetilde \lambda 
\biggr) 
d\phi dr,

where y = \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \widetilde \lambda (\phi , r). From (2.21) we obtain

K2 \leq 
\biggl( 
2L

\surd 
\pi \widetilde \lambda 2

\biggr) 2
1\widetilde \lambda 
\int \lambda \pi 

0

\int 2\pi 

0
C (\| b\| , r)2 sin

\biggl( 
r\widetilde \lambda 
\biggr) 
d\phi dr

=

\biggl( 
2L

\surd 
\pi \widetilde \lambda 2

\biggr) 2
2\pi \widetilde \lambda 
\int \lambda \pi 

0
C (\| b\| , r)2 sin

\biggl( 
r\widetilde \lambda 
\biggr) 
dr.

It is clear that C in (2.15) satisfies

0 \leq C (\| b\| , r) \leq 2e\| \bfb \| +r \leq 2e\| \bfb \| +\lambda \pi 
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for 0 \leq r \leq \lambda \pi . It follows that

K2 \leq 
\biggl( 
2L

\surd 
\pi \widetilde \lambda 2

\biggr) 2
2\pi \widetilde \lambda \cdot 2e2(\| \bfb \| +\lambda \pi ) \cdot 

\int \lambda \pi 

0
sin

\biggl( 
r\widetilde \lambda 
\biggr) 
dr

=

\biggl( 
2L

\surd 
\pi \widetilde \lambda 2

\biggr) 2

\cdot 2\pi \cdot 2e2(\| \bfb \| +\lambda \pi ) \cdot 
\biggl( 
 - cos

\biggl( 
r\widetilde \lambda 
\biggr) \biggr) \bigm| \bigm| \bigm| \bigm| \lambda \pi 

0

=

\biggl( 
2L

\surd 
\pi \widetilde \lambda 2

\biggr) 2

\cdot 2\pi \cdot 2e2(\| \bfb \| +\lambda \pi ) \cdot 
\biggl( 
1 - cos

\biggl( 
\lambda \pi \widetilde \lambda 
\biggr) \biggr) 

.

Taking the square root of both sides, we obtain

K \leq 4L\pi e\| \bfb \| +\lambda \pi \widetilde \lambda 2

\biggl( 
1 - cos

\biggl( 
\lambda \pi \widetilde \lambda 
\biggr) \biggr) 1/2

.

2.5. The spherical bispectrum as an SO(3)-invariant representation of functions on the
sphere. Theorem 2.9 suggests an approximately SE(2)-invariant representation for functions
on the plane: project the function onto the sphere and then compute an orbit-characterizing
SO(3)-invariant representation of the projected function. To that end, we present the spherical
bispectrum, an orbit-characterizing SO(3)-invariant representation of functions on the sphere.
The theory of the spherical bispectrum was largely developed by [12, 13, 14]. These works
heavily relied on tools from harmonic analysis over groups. Here we merely draw on their
results and do not revisit their theoretical underpinnings. Additionally, when needed, we
drew material on spherical harmonics from [2, Chap. 2].

Let L2
\bigl( 
S2
\bigr) 
be the Hilbert space of all square-integrable complex-valued spherical functions

equipped with the inner product

(2.22) \langle f, g\rangle S2 =

\int 
S2

f(x)g(x)\ast dS2(x).

It induces a norm \| f\| S2 =
\sqrt{} 
\langle f, f\rangle . Here dS2 is the standard volume element on S2. L2

\bigl( 
S2
\bigr) 

is the direct sum of the spaces of spherical harmonics of arbitrary degree. To make this
statement more precise, let \scrH \ell be the space of spherical harmonics of degree \ell \in Z; that is,

(2.23) \scrH \ell = Span
\bigl\{ 
Y\ell ,m : S2 \rightarrow C

\bigm| \bigm| m =  - \ell , - \ell + 1, . . . , \ell 
\bigr\} 
,

where the spherical harmonic function of degree \ell and order m are given by

(2.24) Y\ell ,m(\theta , \phi ) =

\sqrt{} 
2\ell + 1

4\pi 

(\ell  - m)!

(\ell +m)!
P\ell ,m(cos \theta )eim\phi .

Here, P\ell ,m(x) is the associated Legendre function of degree \ell and order m. The collection of
all spherical harmonic functions is an orthonormal basis of L2

\bigl( 
S2
\bigr) 
. Also, R \bullet \scrH \ell \subseteq \scrH \ell for all

R \in SO(3) and \ell .
Fix f \in L2

\bigl( 
S2
\bigr) 
. Since spherical harmonics (2.24) are orthonormal with respect to inner

product (2.22), we can expand f in terms of (2.24) by taking as coefficients f\ell ,m = \langle f, Y\ell ,m\rangle S2 .D
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We say f has bandlimit L if f\ell ,m = 0 for all \ell > L. Combining the results of [12] and [14],
the spherical bispectrum of f is the set of all numbers

(2.25) bf [\ell 1, \ell 2, \ell ] =

\ell \sum 
m= - \ell 

\ell 1\sum 
m1= - \ell 1

C\ell ,m
\ell 1,m1,\ell 2,m - m1

f\ell ,mf\ast 
\ell 1,m1

f\ast 
\ell 2,m - m1

,

where \ell 1 and \ell 2 are nonnegative integers and | \ell 1  - \ell 2| \leq \ell \leq \ell 1+\ell 2. The numbers C\ell ,m
\ell 1,m1,\ell 2,m2

are the Clebsch--Gordan coefficients. These are real numbers related to the underlying group
structure of SO(3). We detail a numerical algorithm for their calculation in subsection 3.2.

The spherical bispectrum (2.25) is intimately related to the triple correlation function of
f , which is defined by

Tf (R1, R2) =

\int 
\mathrm{S}\mathrm{O}(2)

f(x)\ast f(R1x)f(R2x)d\mu (x),

where d\mu is the Haar measure on SO(2). Kakarala and Mao [14, Thm. 4.1(a)] proved that
calculating (2.25) is equivalent to calculating the Fourier transform on the group SO(3)\times SO(3)
of the triple correlation of f . Furthermore, the Fourier transform of a triple correlation of
a bandlimited real-valued spherical function was shown in [13] to uniquely determine this
function up to a rotation, provided it is nonzero, that is, if for every 0 \leq \ell \leq L there is
 - \ell \leq m \leq \ell such that f\ell ,m \not = 0, bg = bf if and only if g = R \bullet f for some R \in SO(3). Thus,
the spherical bispectrum (2.25) determines the orbit of a real-valued a function of bandlimit
L with nonzero projection onto \scrH \ell for all 0 \leq \ell \leq L.

The specific form of the bispectrum we use in (2.25) is owed to Kondor [15], but is easily
derivable from [14, eq. (24)]. Furthermore, Kakarala and Mao [14, Thm. 4.1(b)] showed that
for every (\ell 1, \ell 2, \ell ) we have bf [\ell 1, \ell 2, \ell ] = \zeta bf [\ell 2, \ell 1, \ell ] for some \zeta \in C independent of f . Thus,
it is sufficient to compute (2.25) for \ell 2 \leq \ell 1. Also, it is obvious that if max \{ \ell 1, \ell 2, \ell \} > L,
then (2.25) is zero for functions of bandlimit L.

Overall, given a real-valued function f \in L2
\bigl( 
S2
\bigr) 
of bandlimit L which has a nonzero

projection over \scrH \ell for all 0 \leq \ell \leq L, we can represent it up to rotation by its spherical
bispectrum (2.25) over all triplets (\ell 1, \ell 2, \ell ) satisfying

(2.26) 0 \leq \ell 1 \leq L, 0 \leq \ell 2 \leq \ell 1, \ell 1  - \ell 2 \leq \ell \leq min \{ L, \ell 1 + \ell 2\} .

This representation uniquely determines f up to rotation; that is, it characterizes the orbit
SO(3) \bullet f .

3. Compactifiaction of functions on the plane: Computational aspects. We developed
the theory in section 2 for functions on the plane. Here we detail several computational
aspects that arise when working with discrete samples of such functions. In subsection 3.1,
we explain how we use discrete samples of a function on the plane to estimate the spherical
harmonics coefficients of the projection of this function onto the sphere. In subsection 3.2,
we explain how the spherical bispectrum (2.25) is evaluated for bandlimited functions on
the sphere. Most importantly, we present a method, introduced by [21], for the evaluation
of the Clebsch--Gordan coefficients. We demonstrate the accuracy of this method. We showD
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numerically that the spherical bispectrum also echoes the results of Theorem 2.9. In particular,
for sufficiently small translation sizes, the spherical bispectrum of an image and its translation
are approximately the same.

3.1. Projecting an image onto the sphere. Let f : R2 \rightarrow R be a function compactly
supported within [ - \zeta , \zeta ]2, where \zeta = cos \pi 

4 = sin \pi 
4 . This implies it is compactly supported

within B\pi . Let G = \{ (xi, yj)\} n - 1
i=0,j=0 (n > 1) be a regular equidistant grid on [ - \zeta , \zeta ]2:

(3.1) xi =  - \zeta +
2\zeta 

n - 1
i, i = 0, 1, . . . , n - 1, and yj =  - \zeta +

2\zeta 

n - 1
j, j = 0, 1, . . . , n - 1.

Let I be a real n\times n matrix with Ii,j = f(xi, yj). Given a fixed \lambda \geq 1, our objective is to use
the discrete data available to us to approximate the spherical harmonics coefficients of \kappa \lambda f
under the assumption that it has a bandlimit L.

Since the spherical harmonics (2.24) are orthonormal, our task amounts to approximating
the integral

(3.2) \langle \kappa \lambda f, Y\ell ,m\rangle =
\int 
S2

\kappa \lambda f(x)Y\ell ,m(x)\ast dS2(x).

Integrals of this form can be approximated well using spherical designs. A spherical t-design
is set of spherical points \scrS t = \{ x1,x2, . . . ,xNt\} satisfying\int 

S2

Y\ell ,m(x)dS2(x) =
1

Nt

Nt\sum 
n=1

Y\ell ,m(xn), 0 \leq \ell \leq t.

Since we assume \kappa \lambda f has a bandlimit L and since Y\ell 1,m1 \cdot Y \ast 
\ell 2,m2

\in \scrH \ell 1+\ell 2 [2], we approximate
(3.2) using a spherical 2L-design, thus

(3.3) f\ell ,m \approx 1

N

N\sum 
n=1

\kappa \lambda f(\theta n, \phi n)Y\ell ,m(\theta n, \phi n)
\ast ,

where (\theta n, \phi n) is xn in spherical coordinates. This can be written in matrix form. Let
Y = Y(L,\scrS 2L) be the complex matrix with rows index by 1, . . . , Nt and columns indexed by
(\ell ,m) defined by

(3.4) Yn,(\ell ,m) = Y\ell ,m(\theta n, \phi n).

Our estimate of the spherical harmonics coefficients of f is then 1
Nt

Y\dagger v, where v are the
values of \kappa \lambda f on the spherical design \scrS 2L.

Remark 3.1. Approximating (3.2) by evaluating (3.3) on a spherical 2L-design might be
numerically unstable, especially for large bandlimits L. In order to deal with that, using a
K-design with K > 2L is advisable, at least when L is large.

In order to calculate (3.3), one needs a spherical design and the value of \kappa \lambda f on it.
Tables of spherical designs were obtained from [26, 25]. The values of \kappa \lambda f on these pointsD
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are estimated by employing (2.8) and interpolation. At the heart of (2.8) is a mapping
(\theta , \phi ) \mapsto \rightarrow (\lambda \theta cos\phi , \lambda \theta sin\phi ) from the sphere to the plane. This mapping can easily be shown
to be invertible as mapping from S2 \setminus 

\bigl\{ 
(0, 0, - 1)\top 

\bigr\} 
onto B\lambda \pi . We map the spherical design

points onto the plane and isolate those that fall inside [ - \zeta , \zeta ]2. We then interpolate the known
values of f on the grid G onto these spherical design points. By (2.8), the values of f on any
other spherical design point is necessarily zero.

Three points are important to note here. First, relying on interpolation complicates the
handling of noisy data, since it introduces correlations in the noise. We deal with that in detail
in subsection 4.1. Second, evaluating spherical harmonics is computationally costly. Thus,
when calculating Y in (3.4), it is advisable to exploit the fact the values of \kappa \lambda f are assumed
to be zero on spherical design points that are projected to outside of [ - \zeta , \zeta ]2. We therefore
remove said points from the spherical design before calculating (3.4). For brevity, we will
still refer to this subset of the original spherical design as \scrS 2L. Third, if the image includes
additive noise, one would want to consider how the projection affects it. In Appendix C, we
discuss that for the noise model we use throughout the paper. In particular, we empirically
demonstrate that additive white noise in the image approximately results in an additive white
noise in the estimated spherical harmonics coefficients.

3.2. Calculating the spherical bispectrum. The procedure described in subsection 3.1
uses discrete samples of a function on the plane to approximate the spherical harmonics
coefficients up to bandlimit L of its projection onto the sphere. Our objective now is to use
the spherical harmonics coefficients to calculate its spherical bispectrum, its SO(3)-invariant
representation that we presented in subsection 2.5.

Let f be a bandlimited function on the sphere with spherical harmonics coefficients
\{ f\ell ,m\} L\ell =0 up to bandlimit L. The bispectrum of f is calculated by evaluating (2.25). Since

the Clebsch--Gordan coefficients C\ell ,m
\ell 1,m1,\ell 2,m2

are nonzero only when m1 +m2 = m [23, Chap.

8, eq. (2)], it follows that C\ell ,m
\ell 1,m1,\ell 2,m - m1

is nonzero only when m1 \leq m1 \leq m1 for m1 =
max \{  - \ell 1,m - \ell 2\} and m1 = min \{ \ell 1,m+ \ell 2\} . Thus, (2.25) becomes

(3.5) bf [\ell 1, \ell 2, \ell ] =

\ell \sum 
m= - \ell 

f\ell ,m

m1\sum 
m1=m1

C\ell ,m
\ell 1,m1,\ell 2,m - m1

f\ast 
\ell 1,m1

f\ast 
\ell 2,m - m1

.

This expression is evaluated for all triplets (\ell 1, \ell 2, \ell ) in (2.26) and the resulting values are
saved in a linear array in lexicographical ordering of the triplets. We refer to this array as the
bispectrum vector and denote it by bf .

In order to evaluate (3.5), the Clebsch--Gordan coefficients need to be computed. We
follow the method elaborated in [21] and compute all relevant Clebsch--Gordan coefficients
in advance. For a fixed (\ell 1, \ell 2, \ell ) triplet and a fixed  - \ell \leq m \leq \ell , [21] showed that c =

(C\ell ,m
\ell 1,m1,\ell 2,m - m1

)m1
m1=m1

is a solution of the linear equation Cc = 0. Here, C is the tridiagonal

(n - 1)\times n real matrix, where n = m1  - m1 + 1 and its diagonals are

Ci,i = \ell 1(\ell 1 + 1) + \ell 2(\ell 2 + 1) + 2m1,im2,i  - \ell (\ell + 1),

Ci,i+1 = Ci+1,i =
\sqrt{} 

\ell 1(\ell 1 + 1) - m1,im1,i+1

\sqrt{} 
\ell 2(\ell 2 + 1) - m2,im2,i+1,

D
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where

m1,i = m1 + i - 1 and m2,i = m - m1  - i+ 1.

This equation does not have a unique solution. However, the Clebsch--Gordan coefficients must
have norm of 1 and by convention satisfy C\ell ,m

\ell 1,m1,\ell 2,m - m1
> 0 (see [21, 3]). We therefore find a

solution for this linear equation by choosing C\ell ,m
\ell 1,m1,\ell 2,m - m1

= 1
m1 - m1+1 and determining the

remaining coordinates in the solution vector by backward substitution. The resulting vector
is then normalized to be a unit vector.

We tested how well the results of Theorem 2.9 are echoed in the invariance of the bispec-
trum. To that effect, we generated a random image using the following procedure. First, we
generated a random set of spherical harmonics coefficients of a real-valued function on the
sphere f of bandlimit 14. The coefficients were sampled uniformly from the set of coefficients
satisfying

(3.6)

\ell \sum 
m= - \ell 

| f\ell ,m| 2 = 1

for all 0 \leq \ell \leq 14. Given a square-integrable function f : S2 \rightarrow R, its spherical harmonics
coefficients are

f\ell ,m = \langle f, Y\ell ,m\rangle =
\int 
S2

f(x)Y\ell ,m(x)\ast dS2(x).

Since Y\ell ,m(x)\ast = ( - 1)mY\ell , - m(x) [23] and f is real-valued, it follows that

(3.7) f\ast 
\ell ,m = ( - 1)mf\ell , - m.

Thus, the coefficients were sampled uniformly from those satisfying both (3.6) and (3.7). The
resulting function was back-projected onto a 101 \times 101 regular equidistant grid in [ - \zeta , \zeta ]2

by evaluating (2.8) on all grid points for scaling parameter \lambda = 1. In the resulting images,
the first and last 20 rows and columns of pixels were set to zero and then smoothed using a
Gaussian filter. This was done in order to create an image that has approximately zero in its
margin, with enough room to apply translations to. The resulting image was projected onto
the sphere by estimating its spherical harmonics coefficients up to bandlimit 16 with \lambda = 1.
The final image is produced by back-projecting this spherical function onto the same grid
with \lambda = 1. Hereafter, we refer to these images as random images. Figure 3(a) shows eight
examples of random images generated using this procedure.

For an image generated as described above, we performed three separate experiments.
First, we tested whether its bispectrum is invariant to rotations. The original image was
rotated, the rotated image was projected onto the sphere, and its coefficients up to bandlimit
16 were estimated. Its bispectrum was calculated and compared with the bispectrum of the
projection of the original image onto the sphere. As Figure 4(a) (left) shows, the relative
bispecturm error is negligible and is consistent with the numerical perturbations expected theD
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(a) Random images from subsection 3.2
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(b) Simulated cryo-EM images

Figure 3. (a) Examples of random images produced using the procedure described in subsection 3.2. (b)
Examples of projections in random directions produced using ASPIRE [1].

various approximations we use throughout, e.g., our use of interpolation (see subsection 3.1).
This is in keeping with Theorem 2.9(i).

We next tested whether the bispectrum is invariant to translations. In polar coordinates,
every translation is represented by its magnitude and direction. The image was translated by
translations of increasing size. For each translation size, the image was translated 103 times,
its bispectrum computed and compared with the bispectrum of the original image. The
translation direction was independently, uniformly sampled. Figure 4(a) (middle) shows the
relative bispectrum error averaged over the translation directions, as well as the symmetric
region around the mean where 95 percent of the samples were. In Figure 4(a) (right), we
followed a similar procedure, except the image was also rotated. For every translation size,D
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(a) Random image from subsection 3.2
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(b) Simulated cryo-EM image

Figure 4. The bispectrum is approximately invariant to rotations and translations of
an image. The relative bispectrum error is below 1 percent when the image is only rotated (left) and
scales with the translation size when the image is translated only (middle) or translated and rotated
(right). The blue curve in the middle and right subfigures is the relative bispecturm error averaged over
translation directions and translation directions and rotation angles, respectively. The gray region is a
symmetric empirical 95 percent confidence interval around the mean.

the image was rotated and translated 2 \cdot 103 times. The translation direction and the rotation
angle were independently, uniformly sampled. The results indicate the bispectrum is indeed
approximately invariant to translations. The error clearly scales with the translation size, as
expected from Theorem 2.9(ii). Of particular interest to our future numerical experiments,
the relative error did not exceed 5 percent for translation sizes of 10 pixels (about 10 percent
of the image size) and remained in single digits for even larger translation sizes.

We repeated this experiment with a simulated cryo-EM image. The image was of size 101\times 
101 pixels and was simulated as a tomographic projection of a volume in a uniformly random
direction using the built-in simulation module of the MATLAB package ASPIRE [1]. Examples
of such images appear in Figure 3(b). Changing the images required increasing the bandlimit
in order to accurately represent the projected images on the sphere (see subsection 3.3 for
details). We used a bandlimit of 70. For a such a large bandlimit, calculating the bispectrum is
substantially more time-consuming than for bandlimit 16 we used in the experiment of Figure
4(a). Therefore, in order to keep execution time reasonable, in this experiment we sampledD
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much less translation directions, rotation angles in the translation only, and translation and
rotation experiments (dozens instead of thousands). The results, which appear in Figure 4(b),
are substantially the same as the results obtained for a random image, in that the bispectrum
is approximately invariant to both rotations and translations, provided the translation size is
small enough.

3.3. Choice of scaling parameters and bandlimit. According to Theorem 2.9 two key
parameters, \lambda and \widetilde \lambda , determine how well the orbits of SE(2) are approximated by the orbits of
SO(3). The first, \lambda , affects the embedding of the image in R2, in that it is assumed throughout
that the image is compactly supported within B\lambda \pi . The second, \widetilde \lambda , is the parameter of the
contraction map. As Figure 2 illustrates, for a fixed \lambda , increasing \widetilde \lambda maps B\lambda \pi to a progressively
smaller spherical cap around the north pole of the sphere. This implies that a larger \widetilde \lambda makes
the fine details of the projected image finer still. In order to compensate for this, it is necessary
to use a larger bandlimit when computing the projection, because the bandlimit determines
the resolution of a spherical harmonics expansion.

We demonstrate this phenomenon empirically. We generated a dataset of 50 images and
projected them onto the sphere as described in subsection 3.1, with various choices of scaling
parameter and bandlimit. Recall that it is assumed there that every image is a discrete sample
on a regular grid of a function, and note that this regular grid is within B1. In particular, it
is assumed the function is supported within B\pi . In terms of Theorem 2.9, we fixed \lambda = 1,
as we have in all the numerical experiments throughout the paper, and varied \widetilde \lambda . For every
scaling parameter, the projected images were then projected back onto the grid and the error
relative to the ground truth was calculated. For every pair of bandlimit and scaling parameter,
the results were averaged over all 50 images in the dataset. Figure 5 shows the results for

Cryo-EM images

10 20 30 40 50 60 70

Bandlimit

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ca

lin
g 

pa
ra

m
et

er

10 -2

10 -1

100

Random images

10 20 30 40 50 60 70

Bandlimit

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ca

lin
g 

pa
ra

m
et

er

10 -2

10 -1

100

Figure 5. Trade-off between the scaling parameter and bandlimit. Error of back-projected image
relative to the original image averaged over two sets of 50 images, one with the random images described in
subsection 3.2 and one from a simulation of cryo-EM. As the scaling parameter increases, a larger bandlimit
is required to maintain the same relative error.
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a dataset of random images of the kind we described in subsection 3.2 and for a dataset of
simulated cryo-EM images. As expected, as the scaling parameter increases, a larger bandlimit
is required to maintain a similar relative error.

One has to balance between the need to accurately represent projected images on the
sphere and the time-complexity of the calculation of the bispectrum. As shown in Figure 5,
for bandlimit 50 and 70 with scaling parameter of 1, the mean relative error of recovery for
simulated cryo-EM images is about 13 and 6 percent, respectively. However, despite the
larger than 10 percent error, for most of our classification experiments on simulated cryo-
EM images we used a bandlimit of 50 and achieved decent results (see subsection 5.3). This
difference is important computationally, since the bispectrum vector has about 68000 elements
for bandlimit 50 and about 182000 for bandlimit 70.

In this paper our concern is demonstrating in principle the viability of compactification in
image processing, rather than optimizing it for real-world use. In keeping with this motivation,
we chose the bandlimit and the scaling parameter based on empirical criteria. For every type
of simulated dataset, we sought a bandlimit and scaling parameter pair that fulfilled two
requirements. First, it had a decent relative error recovery rate in experiments like the ones
showed in Figure 5. For MRA, we generally preferred those with less than 10 percent relative
error, but as noted above this could be relaxed for classification. Second, it resulted in an
approximately rotationally and translationally invariant bispectrum in experiments such as
the ones shown in Figure 4.

To a large extent, the need to compromise for the sake of computational efficiency is
the result of our use of spherical harmonics. On the one hand, using spherical harmonics is
convenient. Because of their role in harmonic analysis on the sphere and representation theory
of SO(3), they yield an expression for the bispectrum that can be calculated in practice, as
discussed in subsection 3.2. This is a property other bases of functions on the sphere generally
do not share. On the other hand, while our function is localized around the north pole of the
sphere, spherical harmonics are generally not. Thus, in order to represent the fine details of an
image, we have to take a relatively large bandlimit, resulting in a greater amount of spherical
harmonics coefficients needed to represent an image and a greater inefficiency in calculating
an invariant representation of them. We are currently seeking to address this issue by utilizing
a locally supported basis on the sphere (for example, see [24]).

Finally, we note that in its current form our approach is probably inadvisable for image
processing problems involving images with discontinuities or images with nonzero pixels at
their boundary. Using spherical harmonics to represent the projection of such images onto
the sphere is expected to make the trade-off mentioned above worse, as a larger bandlimit will
be required to account for the discontinuities. A locally supported basis on the sphere might
be useful to address this, if it can be used to represent a local feature of an image with higher
resolution. Thus, it may allow a more accurate local representation of the discontinuities,
without substantially increasing the number of basis elements required to represent the image
as a whole. In [24], a basis capable of such local representations is elaborated upon, and
perhaps their approach can be adapted for this puprose. However, we do not intend to pursue
this direction here or in the future. Our motivation is cryo-EM, where all images can be
assumed to be smooth and our main interest here is in demonstration of the potential of our
approach, rather than its optimization for real-world use.D
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4. Application I: Compactification in multireference alignment over SE(2). We apply
compactifiaction to an MRA problem over SE(2). Let f : R2 \rightarrow R be a smooth function
compactly supported within [ - \zeta , \zeta ]2, where \zeta = cos \pi 

4 = sin \pi 
4 . We refer to f as the ground

truth function. We are given N discrete samples of f of the form

(4.1) Ij = D (gj \bullet f) + \bfitvarepsilon j , j = 1, 2, . . . , N.

Here, gj = (bj , Rj) \in SE(2) is such that gj \bullet f is also compactly supported within [ - \zeta , \zeta ]2.

Furthermore, bj = rj (cos\alpha j , sin\alpha j)
\top where \{ rj\} are independently sampled from a uniform

distribution on [0, T\mathrm{m}\mathrm{a}\mathrm{x}] and \alpha j is likewise sampled from [0, 2\pi ). Also, Rj is a rotation of
the plane by \theta j \in [0, 2\pi ) radians counterclockwise and \{ \theta j\} are independently sampled from
a uniform distribution on [0, 2\pi ). D is a discretization operator sampling a function on
a regular equidistant n \times n grid centered at the origin of R2. Ij and \bfitvarepsilon j are n \times n real
matrices representing the samples of the rotated and translated f on said grid and noise,
respectively. The elements of the noise matrices are Gaussian independent and identically
distributed (i.i.d.), \bfitvarepsilon j,m,k \sim \scrN 

\bigl( 
0, \sigma 2

\bigr) 
. Stated roughly, our objective is to estimate f up to an

SE(2) action, from sampled images (4.1).
Our approach to the problem is a variant of the invariants approach to MRA described in

the introduction. We compactify the samples. By that we mean we project the images onto
the sphere to produce bandlimited functions on the sphere, as detailed in subsection 3.1. The
spherical bispectrum of each projection is calculated as described in subsection 3.2. We use
these to estimate the spherical bispectrum of the projection of f onto the sphere and then use
it to estimate both the projection of f onto the sphere and Df .

In the following sections we flesh out this approach. In subsection 4.1, we explain how we
estimate the spherical bispectrum of the projection of f onto the sphere from samples (4.1).
Then, in subsections 4.2 and 4.3, we explain how this estimate is used to estimate both the
projection of f onto the sphere and Df .

4.1. Spherical bispectrum estimation. We begin by estimating the spherical harmonics
coefficients of the projection of the sampled images onto the sphere and calculating their
corresponding bispectrum vectors, using the methods detailed in section 3. We denote the
estimate of the former by sj and the corresponding bispectrum vector by b\bfs j . An unbiased
estimator of the spherical bispectrum of the projection of f onto the sphere is

(4.2) \widehat b [\ell 1, \ell 2, \ell ] =
1

N

N\sum 
j=1

\Biggl( 
b\bfs j [\ell 1, \ell 2, \ell ] - 

3\sum 
k=1

K\bfs j ,k [\ell 1, \ell 2, \ell ]

\Biggr) 
,

where K1, K2, and K3 are sparse linear transformations acting on sj , considered as a real
vector. The derivation of (4.2) and the full definition of K\bfs j ,1, K\bfs j ,2, and K\bfs j ,3 can be found
in Appendix B. Calculating this estimator requires only a single pass on the data. It can also
be continuously updated when new data becomes available and therefore is memory-efficient.
Its calculation can also be easily parallelized.

4.2. Inversion of the spherical bispectrum. Let b be a bispectrum vector of a function
on the sphere of bandlimit L. Our objective is to find a spherical function of bandlmit LD
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which has bispectrum b. We do that by solving the unconstrained nonlinear least-squares
problem

(4.3) min
g\in L2

L(S
2)
\| bg  - b\| 2 ,

where L2
L

\bigl( 
S2
\bigr) 
is the space of spherical functions of bandlimit L represented by their spherical

harmonics coefficients, and bg for g \in L2
L

\bigl( 
S2
\bigr) 
is its bispectrum vector. In general, (4.3) is

a nonconvex optimization problem. This is a recurring feature of bispectrum inversion by
optimization in various contexts, e.g., [6, 17]. Despite that, in the past this approach has
worked well and yielded very good estimates. It was also found to be stable in the sense that
inverting perturbed bispectrum vectors did not significantly magnify the errors.

We solve (4.3) for our estimator (4.2) of the bispectrum of F ; that is, b = \widehat b. We denote
the solution by \widehat s and refer to it as the estimator of \kappa \lambda f on the sphere, up to 3D rotation.
Though we defined the bispecturm vector as a vector of complex numbers, when solving this
optimization problem we treat it as a vector of real numbers using the embedding of Cn into
R2n. Similarly, we solve for the real numbers \{ Reg\ell ,m\} \cup \{ Img\ell ,m\} , the real and imaginary
parts of the spherical harmonics coefficients of g.

In our implementation, we solve (4.3) using the MATLAB implementation of a trust-
regions algorithm in its built-in lsqnonlin function. This is an iterative algorithm which
requires initialization. In [17], an approach similar to ours was used to estimate an image up
to 2D rotations only. We project this estimate of the underlying image onto the sphere and
use the resulting spherical harmonics coefficients to initialize our the trust-region iteration. In
addition, iterative optimization algorithms often perform better when an explicit derivative
of the objective function is provided. We therefore provide an explicit expression for the
derivative of g \mapsto \rightarrow bg  - \widehat b:

\partial bg[\ell 1, \ell 2, \ell ]

\partial Reg\omega ,s
= E1 + E2 + E3 and

\partial bg[\ell 1, \ell 2, \ell ]

\partial Img\omega ,s
= i (E1 + E2 + E3) ,

where

E1 = \delta \omega ,\ell \delta s,m

\mathrm{m}\mathrm{i}\mathrm{n}\{ \ell 1,s+\ell 2\} \sum 
m1=\mathrm{m}\mathrm{a}\mathrm{x}\{  - \ell 1,s - \ell 2\} 

C\ell ,s
\ell 1,m1,\ell 2,s - m1

g\ast \ell 1,m1
g\ast \ell 2,s - m1

,

E2 = \delta \omega ,\ell 1\delta s,m1

\mathrm{m}\mathrm{i}\mathrm{n}\{ \ell ,s+\ell 2\} \sum 
m=\mathrm{m}\mathrm{a}\mathrm{x}\{  - \ell ,s - \ell 2\} 

C\ell ,m
\ell 1,s,\ell 2,m - sg\ell ,mg\ast \ell 2,s - m1

,

E3 = \delta \omega ,\ell 2\delta s,m2

\mathrm{m}\mathrm{i}\mathrm{n}\{ \ell ,s+\ell 1\} \sum 
m=\mathrm{m}\mathrm{a}\mathrm{x}\{  - \ell ,s - \ell 1\} 

C\ell ,m
\ell 1,m - s,\ell 2,s

g\ell ,mg\ast \ell 1,m - s,

where \delta k,m is the Kronecker delta function defined as \delta k,m = 1 if k = m and otherwise 0. These
expressions show the derivative is sparse, which reduces both memory and computational
requirements.D
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4.3. Alignment of two bandlimited functions on the sphere. Recall the spherical bispec-
trum defines a function on the sphere up to 3D rotation. We wish to use our explicit projection
formula (2.8) to project \widehat s back onto the plane, onto the grid on which the original dataset was
defined. However, \widehat s might not be concentrated around the north pole n = (0, 0, 1)\top , where
said grid is projected to by (2.8).

To solve this problem, we allow ourselves to exploit the fact that in our simulations we
know the ground truth and align \widehat s with the known \kappa \lambda F . This is in keeping with our desire to
demonstrate in principle the utility and viability of compactification in MRA problems, rather
than optimize it for real-world use. We align the two spherical functions by brute force. We
use a deterministic sequence of rotations with ideal uniform distribution in SO(3), that was
developed in [27]. This sequence has the property that \{ Ri\} Mi=1 \subseteq SO(3) is uniformly ""denser""
in SO(3) as M increases.

For each rotation R in this sequence, we rotate \widehat s by R. This is done by rotating a
spherical design. We evaluate the spherical function represented by \widehat s on a spherical t-design
with sufficiently large t. The spherical design points are then rotated by R. The resulting set
of spherical points is also a spherical t-design [26]. We use the values of \widehat s as the values of the
rotated function on the rotated design and estimate its spherical harmonics coefficients. We
then measure the correlation between the resulting spherical function and the known ground
truth spherical function, using the measure

Corr(f, g) =
Re
\sum L

\ell =0

\sum \ell 
m= - \ell f\ell ,mg\ell ,m\sqrt{} \sum L

\ell =0

\sum \ell 
m= - \ell | f\ell ,m| 2

\sqrt{} \sum L
\ell =0

\sum \ell 
m= - \ell | g\ell ,m| 2

.

From among the first M rotations in the sequence, we choose the rotation R that maxi-
mizes the correlation and use it to rotate s so as to align it to \kappa \lambda f . In our experiments, we
found that using the M = 72 \cdot 28 yields good alignment. Once they are aligned, we evaluate
its values on the spherical points corresponding by (2.8) to the grid on the plane. We denote
the resulting image by \widehat I. It is our estimate of the image Df . Since we align \widehat s to the spherical
harmonics coefficients of the ground truth image, \widehat I and Df are already aligned. We measure
the error relative to Df in the Frobenius norm.

4.4. Numerical experiments. We tested our approach on a synthetic dataset of images.
We first generated a ground truth 101 \times 101 image using the procedure described in subsec-
tion 3.2. We generated a dataset of images by sampling rotations, translations, and noise
according to (4.1) with T\mathrm{m}\mathrm{a}\mathrm{x} = 5 and applying them to this image. The noise variance \sigma 2

was chosen to yield SNR of 0.5 and is assumed to be known. We projected these images onto
the sphere with scaling parameter \lambda = 1 and bandlimit 16, estimated the bispectrum of the
image, inverted it, and aligned the resulting function with the projection of the original image
onto the sphere. We then projected the aligned function back onto the 101\times 101 equidistant
grid on the plane and compared it with the original image. This was done for varying sample
sizes, repeated 15 times for each with different noise realization. The estimation error was
measured using the Frobenius norm for all our estimators.

The results are shown in Figures 6(a). We first draw the reader's attention to the bis-
pectrum estimator. It was closer to the bispectrum of the original image as the sample sizeD
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(a) Relative error vs. sample size
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(b) Relative error vs. SNR

Figure 6. Relative error of estimating the bispectrum and the image using a method of [17] which takes
only rotations into account (initial guess) and using our approach (image). The back-projection bound is an
empirical lower bound on the relative error of our image estimator, which results from a loss of information when
projecting an image onto the sphere. All results are averaged over 15 repeats with different noise realization. (a)
SNR = 0.5 and \lambda = 1. The bispectrum estimator comports decently with the expected behavior of an unbiased
estimator. The initial guess was estimated by taking only rotations into account and shows no scaling with
the sample size. The image estimator approaches the back-projection bound. (b) Sample size 104, \lambda = 1. All
estimators perform worse when the SNR is reduced, except the initial guess. It is less sensitive to decreasing
SNR but also does not show much improvement as it is increased and is outperformed by our approach for large
SNRs.

increased. Its slope in a logarithmic scale was  - 0.43, which comports decently with the ex-
pected  - 0.5 slope dictated by the law of large numbers. We also draw the reader's attention
to the behavior of our estimator of the image. It improves with an increase in the sample
size. In contrast, the initial guess in the bispectrum inversion, which is based on an approach
that takes only rotations into account, barely improves as the sample size increases. This is
consistent with the fact it only takes into account rotations.

Finally, we note the behavior of our image estimator near what we refer to as the back-
projection bound. Projecting an image onto the sphere is not lossless. An empirical estimate
of the lost information can be obtained by projecting the ground truth image DF from (4.1)
onto the sphere and then back-projecting it back onto the plane. The back-projected image
error relative to the original image is a lower bound on the achievable relative error in our
estimate of the image. This lower bound, which we call the back-projection bound, came out
in our experiment at about 0.02. This implies that our method is not expected to be able to
estimate the image with less than about 2 percent relative error. Indeed, while our estimator
of the image improves with an increase in the sample size, the improvement is approximately
linear (in a log-log plot) away from the back-projection bound, but stagnates as the error of
the estimator approaches the back-projection bound.

We further tested how our approach responds to varying SNRs. We generated a dataset
of images as described above with a fixed sample size N = 104 and noise realization matching
different SNRs. The noise variance \sigma 2 is always assumed to be known. For every SNR, weD
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performed 15 trials. The results appear in Figure 6(b). All estimators, except the initial
guess estimator, performed markedly worse in lower SNRs. While the initial guess is less
sensitive to decreasing SNR, it also does not show much improvement when it is increased
and is outperformed by our approach when the SNR increases. Combined with the results in
Figure 6(a), it appears our approach may yield a better estimate of the image than the initial
guess estimator for lower SNRs, when provided with a sufficiently large dataset. However,
such a dataset may be prohibitively large. In order to reduce the required sample size, one
might need to refine our approach, perhaps by adding denoising steps prior to projecting the
image onto the sphere.

5. Application II: Compactification in classification invariant to SE(2). We apply com-
pactification to the following classification problem invariant to SE(2). Each sample belongs
to one of m classes, generated from functions f1, . . . , fm : R2 \rightarrow R compactly supported within
B\pi . Our samples are assumed to be of the form

(5.1) Ij = D
\bigl( 
gj \bullet fkj

\bigr) 
+ \bfitvarepsilon j , j = 1, 2, . . . , N, kj \sim p.

Here, D, gj , and \bfitvarepsilon j are as described in (4.1). Also, kj are drawn i.i.d. from a distribution

p = (p1, . . . , pm)\top . Finally, given a dataset of the form (5.1), let L(j) = fkj be the label of
the jth image. Our objective is to identify for every image its K-closest images up to rotation
and translation.

In Zhao and Singer [30], a similar problem was dealt with in the context of cryo-EM.
There a method that takes only rotations into account was used. In our approach and theirs,
every image in a dataset is transformed into a rotation-invariant representation. We describe
a representation similar to theirs in subsection 5.1 using the approximately SE(2)-invariant
representation we developed in sections 2 and 3. A K-nearest neighbors graph is then con-
structed by measuring the distance between the invariant representation of the images, rather
than the images themselves, as detailed in subsection 5.2.

In subsection 5.3, we numerically test how our approach, which takes into account both
rotations and translations, performs compared to an approach that takes only rotations into
account. We show that the similarity graphs match the classification function of the dataset
better when translations are taken into account, even for relatively large maximal translation
size T\mathrm{m}\mathrm{a}\mathrm{x} in (5.1).

5.1. Steerable basis and a rotation-invariant representation of a function. We use the
MATLAB package ASPIRE [1] to estimate the expansion coefficients of gj \bullet Fkj in a truncated
Fourier--Bessel basis [28, 29]. Every member of this basis has the form

uk,q(r, \phi ) = fk,q(r)e
ik\phi ,

where (r, \phi ) are elements of R2 in polar coordinates, fk,q is called the radial part, and \phi \mapsto \rightarrow eik\phi 

is called the angular part. We assume all functions we expand in this basis are bandlimited
in the sense they have a finite expansion. In particular, | k| \leq k\mathrm{m}\mathrm{a}\mathrm{x} and 0 \leq q \leq Qk.D
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A basis with this form is said to be steerable, meaning that it diagonalizes the action of
SO(2). In particular, if R = R(\varphi ) is the rotation of R2 by \varphi counterclockwise and

(5.2) F =
\sum 
k,q

Fk,quk,q,

then

R \bullet F (r, \theta ) = F (r, \theta + \varphi ) =
\sum 
k,q

Fk,qfk,q(r)e
ik(\theta +\varphi ) =

\sum 
k,q

eik\varphi Fk,qfk,q(r)e
ik\theta .

Thus, the expansion of R \bullet F in the Fourier--Bessel basis satisfies (R \bullet F )k,q = eik\varphi Fk,q.
In [30], this property was used to define a rotation-invariant representation of a function

F of the form (5.2),

(5.3) bF [k1, k2, q1, q2, q3] = Fk1,q1Fk2,q2F
\ast 
k1+k2,q3 ,

for all tuples of radial and angular indices (k1, k2, q1, q2, q3) satisfying

(5.4) | k1 + k2| \leq k\mathrm{m}\mathrm{a}\mathrm{x}, 0 \leq q1 \leq Qk1 , 0 \leq q2 \leq Qk2 , and 0 \leq q3 \leq Qk1+k2 .

In keeping with the terminology of [30], we refer to (5.3) as the rotational bispectrum. When
F is a Fourier--Bessel expansion estimated from an image, we refer to (5.3) as the rotational
bispectrum of that image.

We wish to represent every image in our dataset using its rotational bispectrum. Unfor-
tunately, even when k\mathrm{m}\mathrm{a}\mathrm{x} = 5, the number of tuples satisfying (5.4) is extremely large, on
the order of tens of thousands at least, and grows to millions even for modest k\mathrm{m}\mathrm{a}\mathrm{x}. There-
fore, even for modestly sized datasets of images, we cannot store in memory the rotational
bispectrum of all images. On the other hand, the size of the rotational bispectrum suggests
it contains a lot of redundancy. Thus, like in [30], we apply dimensionality reduction to the
collection of rotational bispectra of all images in a dataset.

In particular, let bj denote the rotational bispectrum of the jth image. Let B be a matrix
with N columns, the jth column of which is the rotational bispectrum of Ij in lexicographical
order of the indices (5.4). We apply to B a randomized algorithm, designed to approximate
the best rank m approximation of a large matrix without forming it in memory [9]. We use it
to approximate B by anm\times N dimensional matrix. We refer to the jth column of the resulting
matrix either as the reduced rotational bispectrum of Ij or as its reduced rotation-invariant
representation.

5.2. Constructing a similarity graph from invariant representations. Given a dataset
of images of the form (5.1), assume we represent it either by the reduced rotation-invariant
representation introduced in subsection 5.1 or by the SE(2)-invariant representation intro-
duced in section 3, possibly after going through denoising by a linear filter. Denote by \widetilde Ij the
invariant representation of Ij . We define two invariant distance metric on our dataset by

(5.5) d (Ij1 , Ij2) =
\bigm\| \bigm\| \bigm\| \widetilde Ij1  - \widetilde Ij2\bigm\| \bigm\| \bigm\| 
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When \widetilde Ij1 and \widetilde Ij2 are the reduced rotation-invariant representations of the corresponding
images, we refer to this metric as the rotation-invariant metric. Similarly, when these are our
approximately SE(2)-invariant representations, we refer to it as the SE(2)-invariant metric.

We use an invariant distance metric to find the K-nearest images of every image in our
dataset. Denote by Gj the set of indices of the K images closest to Ij . For every node, we
then measure the proportion of its K neighbors belonging to its class. That is, we calculate

(5.6) sj =
| \{ j1 \in Gj | j1 \not = j, L(j1) = L(j)\} | 

K
.

We refer to (5.6) as the node score of the K-nearest neighbors graph we construct using the
metric (5.5). We consider its distribution as a measure of the quality of the classification.
The classification is considered better the more concentrated the distribution of node score is
close to 1.

5.3. Numerical experiments. We tested our approach numerically as follows. We first
generated seven class representatives using the procedure described in subsection 3.2. We
generated a dataset of 5 \cdot 103 101 \times 101 images following (5.1) with m = 7 and p1 = p2 =
\cdot \cdot \cdot = pm = 1

7 . We then generated two 50-nearest neighbors graphs, one using the rotation-
invariant metric described in subsection 5.1 and another using our SE(2)-invariant metric.
For each graph we measured the node score (5.6) of every node. We performed this procedure
for maximal translation sizes T\mathrm{m}\mathrm{a}\mathrm{x} = 0, 2.5, 5, 7.5, 10. The labels, the rotation angle, the
translation directions, and the translation sizes of the images in our dataset were sampled in
advanced; the latter was sampled uniformly from [0, 1] and then rescaled by multiplying it
by the appropriate T\mathrm{m}\mathrm{a}\mathrm{x}. For every T\mathrm{m}\mathrm{a}\mathrm{x}, we repeated this experiment 10 times, each with
different noise realization, all with SNR = 1. The noise variance \sigma 2 is always assumed to be
known. For every T\mathrm{m}\mathrm{a}\mathrm{x}, we averaged the node score over the 10 noise realizations and plotted
the histogram of the average.

Figures 7(a) shows the histogram of the average node score for varying maximum transla-
tion sizes T\mathrm{m}\mathrm{a}\mathrm{x}, when using a rotation-invariant metric and our SE(2)-invariant metric. The
more the histogram is concentrated close to 1, the better the distribution of node score is.
Both metrics yield similar results in the absence of translations. However, our metric is far less
sensitive to the translation size and even yields excellent node score distribution for T\mathrm{m}\mathrm{a}\mathrm{x} = 10.

We repeated this experiment with simulated cryo-EM projections of the type shown in
Figures 3(b). Each class representative was generated using the built-in simulation module
of the MATLAB package ASPIRE [1]. In accordance with the results of subsection 3.3, a
bandlimit of 50 was chosen. Because of the computational load of using such a large bandlimit,
the experiment was done with a single noise realization. For comparison, we present the node
score obtained by the algorithm of [30], which takes only rotations into account. Specifically,
we used an optimized implementation of it which is included in ASPIRE [1], which also includes
a denoising stage via steerable PCA [28]. As the results in Figures 7(b) indicate, classification
using our approximate invariant was more accurate for simulated cryo-EM images.

Finally, we repeated this experiment once on a dataset that resembles more the kind of
datasets encountered in cryo-EM applications. We used a dataset of 104 images of size 101\times 
101. The maximal translation size was set to 10 pixels, there were 100 class representatives,D
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Distribution of Mean Node Score
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(a) Random images from subsection 3.2
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(b) Simulated cryo-EM images

Figure 7. Node score for rotationally invariant and approximately rotationally and translation-
ally invariant metrics. A histogram of the node score for maximal translation sizes T\mathrm{m}\mathrm{a}\mathrm{x} = 0, 2.5, 5, 7.5, 10 on
a dataset generated from seven class representatives. For (a), the node score is averaged over 10 different noise
realizations. The data in (b) is based on a single noise realization. Both metrics yield similar results in the
absence of translations. Taking into account translations significantly reduces the sensitivity of the distribution
of node score to translations.
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0 0.2 0.4 0.6 0.8 1

Node score
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Distribution of Node Score

Rotation only
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Figure 8. Node score for rotationally invariant and approximately rotationally and transla-
tionally invariant metrics on a dataset of simulated cryo-EM images containing a hundred class
representatives. A histogram of the node score for maximal translation size 10 on a dataset generated from a
hundred class representatives. Taking into account translations yielded a median node score of 1, whereas using
a rotations-only invariant yielded a median node score of 0.22.

rather than 7, and the bandlimit used in our algorithm was 70. We again compared the
distribution of node score achieved by our approach with that obtained by the same optimized
implementation of the algorithm of [30] in ASPIRE [1]. The results are shown in Figure 8. Our
algorithm clearly had a better distribution of node score. Consistent with that, our approach
yielded a median node score of 1, compared with 0.22 using the rotations-only invariant.

Appendix A. Proofs for section 2. The various lemmas were not stated in the main text
in the order in which they're proved. In particular, the proofs make it clear that Lemmas 2.4
and 2.5 depend on Lemma 2.8. We altered the order in the main text to improve the exposition.

Proof of Lemma 2.8. Recall the identity (2.4). Since so(3) is a Lie subalgebra of gl(3),
one can write for every x \in R2,

(A.1) exp\mathrm{S}\mathrm{O}(3)(x) =
\infty \sum 
n=0

1

n!
Xn, where X =

\biggl[ 
02\times 2 x
 - x\top 0

\biggr] 
.

From this point, the proof relies primarily on the Taylor series of sine and cosine. Note that

Xn =

\biggl( 
x
0

\biggr) 
and X2n = X

\biggl( 
x
0

\biggr) 
=  - \| x\| 2 n.

Therefore,

X2nn = ( - 1)n \| x\| 2n n and X2n+1n =
\Bigl( 
 - \| x\| 2

\Bigr) n
Xn = ( - 1)n \| x\| 2n

\biggl( 
x
0

\biggr) 
.

This implies the z-coordinate of (A.1) is

(A.2)

\infty \sum 
n=0

( - 1)n \| x\| 2n

(2n)!
= cos \| x\| ,

D
ow

nl
oa

de
d 

05
/3

1/
23

 to
 1

09
.1

86
.2

8.
23

9 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1072 TAMIR BENDORY, IDO HADI, AND NIR SHARON

and the x- and y-coordinates are of the form

(A.3) x

\infty \sum 
n=0

( - 1)n \| x\| 2n

(2n+ 1)!
=

x

\| x\| 

\infty \sum 
n=0

( - 1)n \| x\| 2n+1

(2n+ 1)!
=

x

\| x\| 
sin \| x\| ,

where x is the x-coordinate or the y-coordinate of x, respectively. To conclude the proof,
substitute x with x/\lambda in (A.2) and (A.3).

Proof of Lemmas 2.4 and 2.5. \eta \mathrm{S}\mathrm{E}(2) is a surjective map and it is an orbit map of 02 of
the group action of SE(2) on R2; that is, \eta \mathrm{S}\mathrm{E}(2)(x, R) = (x, R) \bullet 02. It is therefore a smooth
submersion (cf. [16, Prop. 7.26, p. 83] and [16, Thm. 4.14, p. 166]). In order to prove
\eta \mathrm{S}\mathrm{O}(3)\circ \Psi \lambda is a smooth submersion, define P (\zeta , \theta , \phi ) = (\zeta cos \theta , \zeta sin \theta ,R(\phi ))\top as a mapping P :
R3 \rightarrow SE(2), where R(\phi ) is a rotation of the plane by \phi radians counterclockwise. Also define
the standard spherical coordinates transformation S(\varphi , \delta ) = (cos\varphi sin \delta , sin\varphi sin \delta , cos \delta )\top as
a mapping S : R2 \rightarrow S2. P and S are surjective local diffeomorphisms.

By Lemma 2.8,

\eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda \circ P (\zeta , \theta , \phi ) =

\biggl( 
cos \theta sin

\biggl( 
\zeta 

\lambda 

\biggr) 
, sin \theta sin

\biggl( 
\zeta 

\lambda 

\biggr) 
, cos

\biggl( 
\zeta 

\lambda 

\biggr) \biggr) \top 
.

Since S is a local diffeomorphism about S2, it is locally invertible around every point of S2.
This implies

(A.4) S - 1 \circ \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda \circ P (\zeta , \theta , \phi ) =

\biggl( 
\theta ,

\zeta 

\lambda 

\biggr) \top 
.

Thus, S - 1 \circ \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda \circ P (\zeta , \theta , \phi ) is locally defined and locally linear, implying \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda 

is a smooth submersion. Finally, (A.4), the properties of the spherical coordinates and polar
coordinates easily yield the characterization of the fibers of \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda in (2.5), (2.6), and
(2.7).

Proof of Lemma 2.6. Since f is a smooth function on a homogeneous space of SE(2), we
can lift it to a function on SE(2) that is constant on left cosets of SO(2). Thus, without loss
of generality, assume f : SE(2) \rightarrow R. Now note that the fibers of \eta \mathrm{S}\mathrm{O}(3) \circ \Psi \lambda of forms (2.5)
and (2.7) intersect B\lambda \pi \times SO(2) only once and that the fiber of the form (2.6) only intersects
\partial B\lambda \pi \times SO(2). Define \widetilde f on fibers of the form (2.5) and (2.7) to be the value of f on their
intersection with B\lambda \pi \times SO(2) and zero on fibers (2.6).

The uniqueness of \widetilde f is immediate from our construction. It remains to prove \widetilde f is smooth.
Let B(n) := (B\lambda \pi n \setminus \{ 0\} ) \setminus B\lambda \pi (n - 1). Define a map p : B\lambda \pi \setminus \{ 0\} \rightarrow B(n) as p(\zeta , \theta ) =

(\zeta + \lambda \pi (n - 1), \theta ). This is obviously a (local) diffeomorphism. Note that for (x, R) \in B(n) \times 
SO(2) \subset SE(2) we have \widetilde f(x, R) = f\circ p - 1(x). Since both f and p are smooth, it follows that \widetilde f is
smooth in a neighborhood of x. It remains to prove \widetilde f is smooth for all (x, R) \in \partial B\lambda \pi n\times SO(2).
Since f is compactly supported in B\lambda \pi , it follows that it is identically zero in a neighborhood
V of x. Therefore, making V smaller if necessary, we conclude that \widetilde f is identically zero on
V \times SO(2) and so it is smooth there as well.D
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Proof of Lemma 2.14. Recall the identity 2 sin2
\bigl( 
x
2

\bigr) 
= 1 - cosx and the inequality sinx \geq 

2
\pi x for all x \in [0, \pi /2]. Combining them it follows that

(A.5) 2(1 - cosx) = 4 sin2
\Bigl( x
2

\Bigr) 
\geq 4 \cdot 

\biggl( 
2

\pi 
x

\biggr) 2

=
16

\pi 2
x2 \geq x2

\pi 
.

Now, let x,y \in S2 and denote \theta = dS2(x,y). Thus

\| x - y\| 2 = \| x\| 2 + \| y\| 2  - 2y\top x

= 2(1 - cos \theta ) Because x, y \in S2

\geq \theta 2

\pi 
From (A.5).

The result easily follows.

Proof of Lemma 2.12. Let A and B be real n \times n matrices. From the definition of the
exponential map on matrix groups we obtain

T := exp(A+B) - exp(A) exp(B) =
\infty \sum 
n=0

(A+B)n

n!
 - 

\Biggl( \infty \sum 
n=0

An

n!

\Biggr) \Biggl( \infty \sum 
n=0

Bn

n!

\Biggr) 

=

\infty \sum 
n=0

(A+B)n

n!
 - 

\infty \sum 
k=0

\infty \sum 
m=0

AkBm

k!m!

=

\infty \sum 
n=2

(A+B)n

n!
 - 

\infty \sum 
k=1

\infty \sum 
m=1

AkBm

k!m!

=

\infty \sum 
n=2

(A+B)n

n!
 - 

\Biggl( \infty \sum 
k=1

Ak

k!

\Biggr) \Biggl( \infty \sum 
m=1

Bm

m!

\Biggr) 
,

and so

\| T\| \leq 
\infty \sum 
n=2

(\| A\| + \| B\| )n

n!
+

\Biggl( \infty \sum 
k=1

\| A\| k

k!

\Biggr) \Biggl( \infty \sum 
m=1

\| B\| m

m!

\Biggr) 
.

Substituting A = X
\lambda and B = Y

\lambda and using the fact \lambda \geq 1,\bigm\| \bigm\| \bigm\| \bigm\| exp\biggl( X

\lambda 
+

Y

\lambda 

\biggr) 
 - exp

\biggl( 
X

\lambda 

\biggr) 
exp

\biggl( 
Y

\lambda 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 1

\lambda 2

\infty \sum 
n=2

(\| X\| + \| Y \| )n

n!
+

1

\lambda 2

\Biggl( \infty \sum 
k=1

\| X\| k

k!

\Biggr) \Biggl( \infty \sum 
m=1

\| X\| m

m!

\Biggr) 

=
1

\lambda 2

\Bigl( 
e\| X\| +\| Y \|  - \| X\|  - \| Y \|  - 1 +

\Bigl( 
e\| X\|  - 1

\Bigr) \Bigl( 
e\| Y \|  - 1

\Bigr) \Bigr) 
=

1

\lambda 2

\Bigl( 
2e\| X\| +\| Y \|  - e\| X\|  - e\| Y \|  - \| X\|  - \| Y \| 

\Bigr) 
.
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Appendix B. Debiasing the spherical bispectrum estimator. Given a sample of N
images as in (4.1) and their projections \{ sj\} Nj=1 onto the sphere, our objective is to derive

an unbiased estimator \widehat b of the bispectrum of f . We begin by establishing some notation,
making the derivation easier. Denote by P = P (L,\scrS t, \lambda ) the interpolation operator used
when projecting an image onto the space of functions on the sphere of bandlimit L. This is a
linear operator. Also, recall the definition of Y = Y (L,\scrS t) in (3.4).

Taking into account (4.1), the spherical harmonics coefficients we estimate for the jth
image are of the form

(B.1) sj = UJj +U\varepsilon j , where U = Y\dagger P is a complex matrix, Jj = D (gj \bullet f)

and sj is the concatenation of all spherical harmonics coefficients of the projection onto the
sphere of Ij arranged in lexicographical order. Note that due to the indexing convention we
used for Y, U has rows indexed by (\ell ,m). Since P operates on images of n \times n pixels, the
columns are indexed by 1, . . . , n2.

In order to obtain an unbiased estimator, we need to calculate the expected value of
b\bfs j [\ell 1, \ell 2, \ell ]. As we noted in subsection 3.1, our use of interpolation when projecting an image
onto the sphere introduces correlations in the noise. In order to deal with them, we first
observe that the spherical bispectrum (2.25) is multilinear as a function of f\ell , f

\ast 
\ell 1
, and f\ast \ell 2 ,

where fk = (fk, - k, fk, - k+1, . . . , fk,k)
\top . In particular, for a fixed (\ell 1, \ell 2, \ell ) triplet satisfying

(2.26), we can write b\bfs j [\ell 1, \ell 2, \ell ] = B[s\ast j , s
\ast 
j , sj ] for some multilinear transformation B. This

enables us to write

(B.2)

E
\bigl[ 
b\bfs j [\ell 1, \ell 2, \ell ]

\bigr] 
= E

\bigl[ 
B
\bigl[ 
s\ast j , s

\ast 
j , sj
\bigr] \bigr] 

= E [B [(UJj)
\ast , (UJj)

\ast ,UJj ]] + E [B [(U\bfitvarepsilon j)
\ast , (U\bfitvarepsilon j)

\ast ,UJj ]]

+ E [B [(U\bfitvarepsilon j)
\ast , (UJj)

\ast ,U\bfitvarepsilon j ]] + E [B [(UJj)
\ast , (U\bfitvarepsilon j)

\ast ,U\bfitvarepsilon j ]]

+ E [B [(U\bfitvarepsilon j)
\ast , (UJj)

\ast ,UJj ]] + E [B [(UJj)
\ast , (U\bfitvarepsilon j)

\ast ,UJj ]]

+ E [B [(UJj)
\ast , (UJj)

\ast ,U\bfitvarepsilon j ]] + E [B [(U\bfitvarepsilon j)
\ast , (U\bfitvarepsilon j)

\ast ,U\bfitvarepsilon j ]] .

Consider the form of B (see (2.25)) and elements in the sum on the right-hand side of (B.2)
that depend on either exactly one or exactly three U\bfitvarepsilon j (the last four terms in the sum). Since
every element of \bfitvarepsilon j is Gaussian i.i.d. with zero mean, we have

E [\bfitvarepsilon j,i1,i2 ] = E [\bfitvarepsilon j,i1,i2\bfitvarepsilon j,i3,i4\bfitvarepsilon j,i5,i6 ] = 0.

Therefore, said elements in the sum in (B.2) are zero and we obtain the following:

(B.3)
E
\bigl[ 
b\bfs j [\ell 1, \ell 2, \ell ]

\bigr] 
= E [B [(UJj)

\ast , (UJj)
\ast ,UJj ]] + E [B [(U\bfitvarepsilon j)

\ast , (U\bfitvarepsilon j)
\ast ,UJj ]]

+ E [B [(U\bfitvarepsilon j)
\ast , (UJj)

\ast ,U\bfitvarepsilon j ]] + E [B [(UJj)
\ast , (U\bfitvarepsilon j)

\ast ,U\bfitvarepsilon j ]] .

Now, denote the elements on the right-hand side of (B.3) by K0 = K\bfs j ,0 [\ell 1, \ell 2, \ell ], K1 =
K\bfs j ,1 [\ell 1, \ell 2, \ell ], K2 = K\bfs j ,2 [\ell 1, \ell 2, \ell ], and K3 = K\bfs j ,3 [\ell 1, \ell 2, \ell ] by order of their appearance. K0

does not depend on the noise. It depends only on UJj the projection onto the sphere of Jj ,D
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a discretization of the rotated and translated f , the ground truth function. We assume the
translation is small enough that UJj is approximately \kappa \lambda f rotated on the sphere. Thus,

(B.4) K0 \approx b\kappa \lambda f [\ell 1, \ell 2, \ell ] .

In order to handle K1, note that by (2.25) it has the form

(B.5) K\bfs j ,1 =

\ell \sum 
m= - \ell 

\ell 1\sum 
m1= - \ell 1

C\ell ,m
\ell 1,m1,\ell 2,m - m1

f\ell ,mE
\Bigl[ 
(U\bfitvarepsilon j)

\ast 
\ell 1,m1

(U\bfitvarepsilon j)
\ast 
\ell 2,m - m1

\Bigr] 
.

Using the fact \bfitvarepsilon j,k,m \sim \scrN (0, \sigma 2) i.i.d., we get

E
\Bigl[ 
(U\bfitvarepsilon j)

\ast 
\ell 1,m1

(U\bfitvarepsilon j)
\ast 
\ell 2,m - m1

\Bigr] 
= E

\left[  \left(  \sum 
\bfk 1

U\ast 
(\ell 1,m1),\bfk 1

\bfitvarepsilon j,\bfk 1

\right)  \left(  \sum 
\bfk 2

U\ast 
(\ell 2,m - m1),\bfk 2

\bfitvarepsilon j,\bfk 2

\right)  \right]  
=
\sum 
\bfk 1

\sum 
\bfk 2

U\ast 
(\ell 1,m1),\bfk 1

U\ast 
(\ell 2,m - m1),\bfk 2

E [\bfitvarepsilon j,\bfk 1\bfitvarepsilon j,\bfk 2 ]

=
\sum 
\bfk 1

\sum 
\bfk 2

U\ast 
(\ell 1,m1),\bfk 1

U\ast 
(\ell 2,m - m1),\bfk 2

\cdot \sigma 2\delta \bfk 1,\bfk 2

= \sigma 2
\sum 
\bfk 2

U\ast 
(\ell 1,m1),\bfk 

U\ast 
(\ell 2,m - m1),\bfk 

= \sigma 2
\Bigl( 
UU\top 

\Bigr) \ast 
(\ell 1,m1),(\ell 2,m - m1)

.

Substituting that into (B.5), it follows that

(B.6) K1 = \sigma 2
\ell \sum 

m= - \ell 

sj,(\ell ,m)

\mathrm{m}\mathrm{i}\mathrm{n}\{ \ell 1,m+\ell 2\} \sum 
m1=\mathrm{m}\mathrm{a}\mathrm{x}\{  - \ell 1,m - \ell \} 

C\ell ,m
\ell 1,m1,\ell 2,m - m1

\Bigl( 
UU\top 

\Bigr) \ast 
(\ell 1,m1),(\ell 2,m - m1)

.

Using a similar approach and remembering that the Clebsch--Gordan coefficients are nonzero
only if m1 +m2 = m, one can show that

K2 = \sigma 2
\ell 2\sum 

m2= - \ell 2

s\ast j,(\ell 2,m2)

\mathrm{m}\mathrm{i}\mathrm{n}\{ \ell ,m+\ell 2\} \sum 
m=\mathrm{m}\mathrm{a}\mathrm{x}\{  - \ell ,m1 - \ell 1\} 

C\ell ,m
\ell 1,m - m2,\ell 2,m2

\Bigl( 
UU\dagger 

\Bigr) 
(\ell ,m),(\ell 1,m1)

,(B.7)

K3 = \sigma 2
\ell 1\sum 

m1= - \ell 1

s\ast j,(\ell 1,m1)

\mathrm{m}\mathrm{i}\mathrm{n}\{ \ell ,m+\ell 2\} \sum 
m=\mathrm{m}\mathrm{a}\mathrm{x}\{  - \ell ,m1 - \ell 1\} 

C\ell ,m
\ell 1,m1,\ell 2,m - m1

\Bigl( 
UU\dagger 

\Bigr) 
(\ell ,m),(\ell 2,m1)

.(B.8)

Combining (B.3) and (B.4) and using the explicit expressions of K1, K2, and K3 in (B.6),
(B.7), and (B.8), we obtain an unbiased estimator of \widehat b [\ell 1, \ell 2, \ell ]:

\widehat b [\ell 1, \ell 2, \ell ] =
1

N

N\sum 
j=1

\Biggl( 
b\bfs j [\ell 1, \ell 2, \ell ] - 

3\sum 
k=1

K\bfs j ,k [\ell 1, \ell 2, \ell ]

\Biggr) 
.
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When implementing this estimator, it is important to note that K\bfs j ,k is a linear trans-
formation, when applied to the realized version of sj . It is also sparse. Implementing it as
such enables one to easily implement this estimator as a simple matrix multiplication and can
considerably speed up its calculation.

Appendix C. Noise statistics of projected images. We wished to study the effects of the
projection onto the sphere on noise. Specifically, given an image with additive white noise,
Y = I + \bfitvarepsilon , we expect the spherical harmonics coefficients to have additive noise, because the
projection onto the sphere is linear. We sought to test empirically whether the noise on the
sphere can still be regarded as white noise.

To that end, we generated 104 white noise images of size 101 \times 101. Specifically, each
pixel was Gaussian i.i.d. with zero mean and variance 1. The power spectrum of every image
was calculated and averaged over the corresponding pixels. We then projected every image
onto the sphere as described in subsection 3.1, estimating the spherical harmonics coefficients
of the projection up to bandlimit 50. Then, we calculated the normalized power spectrum of
every projected image and averaged them. Note that the normalized power spectrum P of a
function f on the sphere for the \ell th frequency is given by

(C.1) P [f ]\ell =
1

2\ell + 1

\ell \sum 
m= - \ell 

| f\ell ,m| 2 .

The results of this experiment are shown in Figure 9. The average power spectrum of
the original images and the normalized power spectrum on the sphere behaved as expected
from the power spectra of white noise. In both cases, the power spectrum was approximately
constant over all frequencies.

Power Spectrum of White Noise

2000 4000 6000 8000 10000
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ow
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Image

0 10 20 30 40 50
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 S
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Projection

Figure 9. Left: the power spectrum of a white noise image, averaged over 104 noise realizations. The
frequencies are ordered lexicographically. Right: the power spectrum (C.1) of the corresponding projection of
the image up to bandlimit 50, averaged over the same 104 noise realizations projected onto the sphere.
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