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Multiscale transforms have become a key ingredient in many data processing tasks. With technological
development we observe a growing demand for methods to cope with nonlinear data structures such
as manifold values. In this paper we propose a multiscale approach for analyzing manifold-valued data
using a pyramid transform. The transform uses a unique class of downsampling operators that enable a
noninterpolating subdivision schemes as upsampling operators. We describe this construction in detail
and present its analytical properties, including stability and coefficient decay. Next, we numerically
demonstrate the results and show the application of our method to denoising and anomaly detection.
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1. Introduction

Many modern applications use manifold values as a primary tool to model data, e.g., Rahman et al.
(2005); Lunga et al. (2014); Frank & Ourmazd (2016). Manifolds express a global nonlinear structure
with constrained, high-dimensional elements. The employment of manifolds as data models raises
the demand for computational methods to address fundamental tasks, like integration, interpolation
and regression, which become challenging under the manifold setting, see, e.g., Blanes & Casas
(2017); Barbaresco & Gay-Balmaz (2020); Iserles et al. (2000); Zeilmann et al. (2020). We focus on
constructing a multiscale representation for manifold values using a fast pyramid transform.

Multiscale transforms are standard tools in signal and image processing that enable a hierarchical
analysis of an object mathematically. Customarily, the first scale in the transform corresponds to a coarse
representation, and as scales increase, so do the levels of approximation (Mallat, 1999). The pyramid
transform uses a refinement or upsampling operator together with a corresponding subsampling operator
for the construction of a fast multiscale representation of signals (Donoho, 1992; Wallner, 2020). The
simplicity of this powerful method opened the door for many applications. Naturally, recent years found
generalizations of multiscale representations for manifold values as well as manifold-valued pyramid
transforms (Storath & Weinmann, 2020). Contrary to the classical, linear settings, where upsampling
operators are often linear and global, e.g., polynomial interpolation, refinement operators to manifolds
values are mostly nonlinear and local operators. One such class of operators arises in subdivision
schemes.

Subdivision schemes are powerful yet computationally efficient tools for producing smooth objects
from discrete sets of points. These schemes are defined by repeatedly applying a subdivision operator
that refines discrete sets. The subdivision refinements, which serve as upsampling operators, give
rise to a natural connection between multiscale representations and subdivision schemes (Daubechies,
1992, Chapter 6). In recent years subdivision operators were adapted to manifold data and nonlinear
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2 W. MATTAR AND N. SHARON

geometries by various methods, and so have been their induced multiscale transforms, see Wallner
(2020) for an overview.

Multiscale transforms, based upon subdivision operators, commonly use interpolating subdivision
schemes, i.e., operations that preserve the coarse objects through refinements. This standard facilitates
the calculation of the missing detail coefficients at all scales. Particularly, coefficients associated with
the interpolating values are systematically zeroed, and do not have to be saved or processed in the
following analysis levels. Therefore, this property of interpolating multiscale transforms makes the crux
of many state-of-the-art algorithms, including data compression, see, e.g., Lv et al. (2018). On the
other hand, the notion of noninterpolating pyramid transforms did not receive equal attention despite
the popularly used noninterpolating subdivision schemes. A classic example of a widespread family
of noninterpolating subdivision operators is the well-known B-spline, see De Boor (1978); Lane &
Riesenfeld (1980).

The main challenge behind constructing a noninterpolating pyramid transform revolves around the
question of calculating the multiscale details. In particular, given a noninterpolating subdivision scheme,
the corresponding subsampling operators involve applying infinitely-supported real-valued sequences.
Therefore, care must be taken when realizing and implementing these operators. In this paper, we
introduce a novel family of pyramid transforms suitable for noninterpolating subdivision schemes. Our
multiscale transforms decompose manifold-valued sequences in a similar pyramidical fashion to the
interpolating ones. Specifically, the noninterpolating transforms’ construction relies on the recently
introduced decimation operators, see Dyn & Zhuang (2020), which are employed as subsampling
operators. From the interpolating point of view, the decimation operation coincides with the simple
downsampling operation, taking all even-indexed elements.

Our contribution in this paper also covers the computability of the linear decimation operators
and the linear operators’ adaptation to cope with manifold data. In particular, it is not possible to
implement decimation operators since they involve infinitely supported sequences. Therefore, we
approximate these operators with affine averages of finite elements, which successfully lead to the
desired mathematical results. We also derive an analytic condition for decimation operators termed
‘decimation-safety’, and show that all our operators over manifold data satisfy the condition. We prove
that multiscale transforms associated with decimation-safe operators, together with their corresponding
inverses, enjoy coefficient decay and stability properties. The outcomes are an essential feature of
the multiscale transform of manifold data, and can significantly contribute to various applications and
scientific questions.

We conclude the paper with several numerical demonstrations of both the theoretical results we
obtained and applications of data processing. Specifically, we provide examples of the use of our
method for denoising and anomaly detection on synthetically generated manifold data. All figures and
examples were generated using a code package that complements the paper and is available online for
reproducibility.

2. Preliminaries

2.1 Linear univariate subdivision schemes

In the functional setting a linear binary subdivision scheme S operates on a real-valued bi-infinite
sequence c = {

ck ∈ R | k ∈ Z
}
. Applying the subdivision scheme on c yields a sequence S(c), which is

associated with the values over the refined grid 2−1
Z. This process is repeated infinitely and results in

values defined on the dyadic rationals, which form a dense set over the real line. If the generated values
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PYRAMID TRANSFORM OF MANIFOLD DATA 3

of the repeated process for any sequence c converge uniformly at the dyadic points to the values of a
continuous function, we term the subdivision scheme convergent and treat the function as its limit, see,
e.g., Dyn (2002a). We denote a linear, binary refinement rule of a univariate subdivision scheme S with
a finitely supported mask α by

Sα(c)k =
∑
i∈Z

αk−2ici, k ∈ Z. (1)

Depending on the parity of the index k, the refinement rule (1) can be split into two rules. Namely,

Sα(c)2k =
∑
i∈Z

α2ick−i and Sα(c)2k+1 =
∑
i∈Z

α2i+1ck−i, k ∈ Z. (2)

For more details we encourage the reader to see Dyn (2002b). Moreover, the scheme (1) can be written
as the convolution Sα(c) = α ∗ (c ↑ 2), where

(c ↑ 2)k =
{
ck/2, k is even,

0, otherwise,
k ∈ Z,

is the upsampled sequence c.
A subdivision scheme is termed interpolating if Sα(c)2k = ck for all k ∈ Z. Equivalently, Sα(c) =

c ↑ 2 over the even indices. A necessary condition for the convergence of a subdivision scheme with the
refinement rule (1), see e.g., Dyn (1992), is∑

i∈Z
α2i =

∑
i∈Z

α2i+1 = 1. (3)

Henceforth, we assume that any subdivision operator mentioned is of convergent subdivision schemes.
Moreover, we refer to the masks that satisfy (3) as shift invariant. The reason being is that applying a
subdivision scheme with shift invariant mask on a shifted data points results with precisely the shifted
original outcome. Note that an invariant rule (2) is a weighted average that can be interpreted as the
center of mass of elements ck−i, with the components of α as their weights. This interpretation is
fundamental for the adaptation of linear subdivision schemes to manifold data, as we present next.

2.2 The Riemannian analogue of a linear subdivision scheme

Subdivision schemes with shift invariant masks were adapted to manifold-valued data via different
methods and approaches, see e.g., Rahman et al. (2005); Wallner & Dyn (2005); Grohs (2010a); Dyn &
Sharon (2017b). One natural extension of a linear subdivision scheme (1) to manifold-valued data can
be done with the help of the Riemannian structure. Let M be a Riemannian manifold equipped with
Riemannian metric, which we denote by 〈·, ·〉. The Riemannian geodesic distance ρ(·, ·) : M2 → R

+ is

ρ(x, y) = inf
Γ

∫ b

a
|Γ̇ (t)| dt, (4)

where Γ : [a, b] → M is a curve connecting points Γ (a) = x and Γ (b) = y, and | · |2 = 〈·, ·〉.
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4 W. MATTAR AND N. SHARON

The linear subdivision scheme (1) associated with an invariant mask (3) can be characterized as the
unique solution of the optimization problem

Sα(c)k = argmin
x∈R

∑
i∈Z

αk−2i‖x − ci‖2, k ∈ Z, (5)

where ‖ · ‖ denotes the standard Euclidean norm. This is an alternative formulation for (1) as the
Euclidean center of mass.

For an M-valued sequence c we transfer the optimization problem (5) to M by replacing the
Euclidean distance with the Riemannian geodesic distance (4). We denote by Tα the Riemannian
analogue of the linear subdivision scheme Sα; given a mask α we define the adapted subdivision
scheme as

Tα(c)k = arg min
x∈M

∑
i∈Z

αk−2iρ(x, ci)
2, k ∈ Z. (6)

When the solution of (6) exists uniquely, we term the solution as the Riemannian center of mass (Grove
& Karcher, 1973). It is also termed Karcher mean for matrices and Frèchet mean in more general metric
spaces, see Karcher (2014).

The global well-definedness of (6) when αk ≥ 0 is studied in Kobayashi & Nomizu (1963).
Moreover, in the framework where M has a nonpositive sectional curvature, if the mask α is shift
invariant, then a globally unique solution for problem (6) can be found, see e.g., Karcher (1977);
Hardering (2015); Sander (2016). Recent studies of manifolds with positive sectional curvature show
necessary conditions for uniqueness on the spread of points with respect to the injectivity radius of M
(Dyer et al., 2016; Hüning & Wallner, 2020). We focus our attention onM-valued sequences c that are
admissible in the sense that Tα(c) is uniquely defined for any shift invariant mask α, i.e., problems (6)
have unique solutions.

We interpret many alternative methods for adapting subdivision operators to manifolds as finite
approximations for the Riemannian center of mass (6). This includes, for example, the exp-log methods
(Rahman et al., 2005; Grohs & Wallner, 2012), repeated binary averaging (Wallner & Dyn, 2005; Dyn
& Sharon, 2017a) and inductive means (Dyn & Sharon, 2017b).

2.3 Interpolating linear multiscale transform

The notion of pyramid transforms is to represent a high-resolution sequence of data points as a pyramid
consisting of a coarse approximation in addition to the multiscale layers, each corresponding to a
different scale, see, e.g., Grohs (2010b); Dyn & Zhuang (2020). In this section we briefly review an
interpolating multiscale transform, see, e.g., Donoho (1992); Harten (1996).

With the help of an interpolating subdivision scheme Sα a high resolution real-valued sequence
c(1) associated with the values over the grid 2−1

Z can be decomposed into a coarse (low resolution)
sequence c(0) over the integers, together with a sequence of detail coefficients d(1) over the grid 2−1

Z

by letting

c(0) = c(1) ↓ 2 and d(1) = c(1) − Sαc
(0), (7)
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PYRAMID TRANSFORM OF MANIFOLD DATA 5

Fig. 1. The pyramid transform. On the left, the analysis (8), on the right, the synthesis (9).

where ↓ 2 is the downsampling operator given by (c ↓ 2)k = c2k for all k ∈ Z. In the same manner of
decomposition (7), given a real-valued sequence c(J), J ∈ N associated with the values over the fine grid
2−J

Z, it can be recursively decomposed by

c(�−1) = c(�) ↓ 2, d(�) = c(�) − Sαc
(�−1), � = 1, 2, . . . , J. (8)

The process (8) yields a pyramid of sequences
{
c(0); d(1), . . . , d(J)}, where c(0) is the coarse

approximation coefficients given over the integers, and d(�), � = 1, 2, . . . , J are the detail coefficients at
level �, given over the values of the grids 2−�

Z. We obtain synthesis by the following iterations,

c(�) = Sαc
(�−1) + d(�), � = 1, 2, . . . , J, (9)

which is the inverse transform of (8). At index k ∈ Z the detail coefficient d(�)
k measures the agreement

between c(�)
k and (Sαc

(�−1))k. In particular, since Sα is interpolating, we have that d(�)
2k = 0 for all k ∈ Z,

that is,

[
(I − Sα ↓ 2)c(�)

] ↓ 2 = 0, � = 1, 2, . . . , J, (10)

where I is the identity operator in the functional setting. Therefore, property (10) allows us to omit
‘half’ of the detail coefficients of each layer as we represent real-valued sequences—a natural benefit
for data compression. The diagrams of Fig. 1 demonstrate the interpolating multiscale transforms like
(8) and its inverse.
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6 W. MATTAR AND N. SHARON

In fact, the interpolating multiscale transform (8) is a special case of the family of transforms
presented in Donoho (1992). In particular, the operators Sα and ↓ 2 play the roles of upscaling and
downscaling filters, respectively.

2.4 Noninterpolating linear multiscale transform

The difficulty in using noninterpolating upscaling operators Sα in multiscale like (8) is that the sequence
Sα(c) does not preserve the elements c. In such case, the details must include more than just the
difference between the original sequence c and refined downsampled sequence Sα(c ↓ 2).

The extension of multiscale transforms from interpolating subdivision operators to a wider class of
subdivision operators involves even-reversible operators. Each of these operators helps recover, after
one iteration of refinement, data points associated with even indices. In other words, given a subdivision
operator Sα , we seek for an operator D such that

[
(I − SαD)c

] ↓ 2 = 0 (11)

holds for any real-valued sequence c. Indeed, condition (11) is the analogue of condition (10).
Specifically, ↓ 2 is replaced with the operator D.

Let γ be a sequence such that
∑

i∈Z γi = 1. Then, for any real-valued sequence c we define the
decimation operator Dγ associated with the sequence γ to be

Dγ (c)k =
∑
i∈Z

γk−ic2i, k ∈ Z. (12)

Indeed, decimation operators are downscaling operators in the sense that applying them to a
sequence of data results in fewer data. Note that γ can have infinite support. Thus, calculating
(12) usually involves truncation errors. The rule (12) can be expressed as the unique solution of an
optimization problem as similar to (5), where αk−2i and ci are replaced with γk−i and c2i, respectively.
Moreover, it can also be expressed in terms of the convolutional equation,

Dγ (c) = γ ∗ (c ↓ 2).

Note that in the interpolation case, Dδ agrees with ↓ 2 where δ is the Kronecker delta sequence, δ0 = 1
and δi = 0 for i �= 0.

The unique solution of (11), see Dyn & Zhuang (2020), is the decimation operator Dγ where γ is
found via the convolutional equation

γ ∗ (α ↓ 2) = δ. (13)

Using Wiener’s Lemma (Gröchenig, 2010), if α ↓ 2 is compactly supported, then such γ with
infinite support exists. In this case we say that Dγ is the even-inverse of Sα . Furthermore, γ decays
geometrically, as shown in Strohmer (2002). More precisely,

|γk| ≤ Cλ|k|, k ∈ Z, (14)
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PYRAMID TRANSFORM OF MANIFOLD DATA 7

for constants C > 0 and 0 < λ < 1. This bound on the decay rate is essential for the computation
of the decimation operation Dγ , as we will see in the next section. We proceed with two examples of
subdivision schemes that generate B-spline curves. First, we invoke the general formula of their compact
masks. The mask α[m] of the B-spline subdivision operator of order m ∈ N is given by

α
[m]
k−
m/2� = 2−m

(
m + 1

k

)
, k = 0, 1, . . . ,m + 1.

For more details see Dyn (1992).

Example 2.1 (The quadratic B-spline). Consider the mask α[2] = [α−1,α0,α1,α2] = 1
4 [1, 3, 3, 1],

then the downsampled mask is α ↓ 2 = 1
4 [3, 1] and the solution of the corresponding convolutional

equation (13) is

γk =

⎧⎪⎨⎪⎩
4

3

(
− 1

3

)k

, k = 0, 1, 2, . . . ,

0, otherwise.

This subdivision scheme is also known as the corner-cutting scheme.

Example 2.2 (The cubic B-spline). The next scheme generates cubic B-splines and its mask is given
as α[3] = [α−2,α−1,α0,α1,α2] = 1

8 [1, 4, 6, 4, 1], then the downsampled mask is α ↓ 2 = 1
8 [1, 6, 1] and

the solution of the corresponding convolutional equation (13) is[
. . . , γ−3, γ−2, γ−1, γ0, γ1, γ2, γ3 . . .

]
= [

. . . ,−0.0071, 0.0416,−0.2426, 1.4142,−0.2426, 0.0416,−0.0071 . . .
]
.

Note that in Examples 2.1 and 2.2 γ , is infinitely and bi-infinitely supported, respectively.
We are finally in a position to present the noninterpolating linear multiscale transform. Given a

noninterpolating subdivision scheme Sα with its corresponding even-inverse decimation operator Dγ ,

and a sequence c(J) associated with the values over the fine grid 2−J
Z, we consider the following

noninterpolating multiscale transform,

c(�−1) = Dγ c
(�), d(�) = c(�) − Sαc

(�−1), � = 1, 2, . . . , J. (15)

Iterating (15) yields a pyramid of data
{
c(0); d(1), . . . , d(J)} as similar to the interpolating transform (8).

We obtain synthesis again by (9).
It turns out that the multiscale transform (15) enjoys two main properties, which are decay of the

detail coefficients and stability of the inverse transform. Here we invoke both results citing Dyn &
Zhuang (2020), but first, we define the operator Δ on a sequence c to be Δc = supk∈Z |ck+1 − ck|, and
call decimation sequences γ that sum to 1 as shift invariant. Furthermore, we recall that the ∞-norm of
a real-valued sequence v = {

vk | k ∈ Z
}
is defined by ‖v‖∞ = supk∈Z |vk|.

Theorem 2.3 Let c(J) be a real-valued sequence and denote by
{
c(0); d(1), . . . , d(J)} its multiscale

transform generated by (15). The linear subdivision scheme is Sα and Dγ is its corresponding
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8 W. MATTAR AND N. SHARON

decimation operator defined using a shift invariant sequence γ . We further assume that Kγ =
2

∑
i∈Z |γi||i| < ∞. Then,

‖d(�)‖∞ ≤ Kα,γ Δc(�), � = 1, 2, . . . , J, (16)

with Kα,γ = Kγ ‖α‖1 + Kα‖γ ‖1 where Kα = ∑
i∈Z |αi||i|.

Theorem 2.4 Let
{
c(0); d(1), . . . , d(J)} and

{̃
c(0); d̃

(1)
, . . . , d̃

(J)
}
be two pyramids of sequences. Then,

there exists L ≥ 0 such that

‖c(J) − c̃(J)‖∞ ≤ L

(
‖c(0) − c̃(0)‖∞ +

J∑
i=1

‖d(i) − d̃
(i)‖∞

)
,

where c(J) and c̃(J) are reconstructed from their respective data pyramids via (9).

3. Approximated linear decimation

The multiscale transform (15) involves applying γ , which is infinite. In this section we develop
transforms with finitely supported coefficients, which are essential in practice. We derive the decay
rates of the new multiscale schemes, and compare them with the decay rate of the original multiscale
transform.

3.1 Truncation of the decimation coefficients

We approximate the operation Dγ as defined in (12) by a proper truncation of γ . Given a truncation
parameter ε > 0, we define

γ̃k(ε) =
{

γk, |γk| > ε,

0, elsewhere.
(17)

The bound (14) implies that the support of γ̃ (ε), which we denote by Ωε, is finite for any ε. For
simplicity, since we assume ε is fixed, we omit the parameter from the sequence γ̃ .

The next theorem provides an upper bound for detail coefficients that are generated by (15), but with
Dγ̃ as its decimation operator. Namely, given a real-valued sequence c(J), J ∈ N, we consider

c(�−1) = Dγ̃ c
(�), d(�) = c(�) − Sαc

(�−1), � = 1, 2, . . . , J. (18)

Theorem 3.1 Let c(J) be a real-valued sequence and denote by
{
c(0); d(1), . . . , d(J)} its multiscale

transform generated by (18). The subdivision scheme Sα is noninterpolating andDγ̃ is its corresponding
decimation operator (12) with the truncated mask γ̃ of (17) where γ solves (13). Then,

‖d(�)‖∞ ≤ Kα ,̃γ Δc(�) + η‖α‖1‖c(�)‖∞, � = 1, 2, . . . , J, (19)

where Kα ,̃γ = Kγ̃ ‖α‖1 + MKα with η = ∑
i/∈Ωε

|γi|, M = ∑
i |γ̃i| and Kγ̃ = 2

∑
i |γ̃i||i|.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drab095/6469200 by TEL AVIV U
N

IVER
SITY user on 31 M

ay 2022



PYRAMID TRANSFORM OF MANIFOLD DATA 9

Proof. First, we calculate a general term in d(�). For k ∈ Z we have

d(�)
k = c(�)

k −
∑
i

αk−2i

(
c(�−1))

i =
∑
i

αk−2i

(
c(�)
k − c(�−1)

i

) =
∑
i

αk−2i

(
c(�)
k −

∑
n

γ̃i−nc
(�)
2n

)

=
∑
i

αk−2i

( ∑
n

γi−nc
(�)
k −

∑
n

i−n∈Ωε

γi−nc
(�)
2n

)

=
∑
i

αk−2i

( ∑
n

i−n∈Ωε

γi−n

(
c(�)
k − c(�)

2n

) +
∑
n

i−n/∈Ωε

γi−nc
(�)
k

)
.

Consequently,

‖d(�)‖∞ ≤
∑
i

|αk−2i|
( ∑

n
i−n∈Ωε

|γi−n| · |c(�)
k − c(�)

2n | +
∑
n

i−n/∈Ωε

|γi−n| · |c(�)
k |

)

≤
∑
i

|αk−2i|
( ∑

n
i−n∈Ωε

|γi−n| · |2n − k| · Δc(�) + η|c(�)
k |

)

≤
∑
i

|αk−2i|
( ∑

n
i−n∈Ωε

|γi−n| · (|2n − 2i| + |k − 2i|) · Δc(�) + η‖c(�)‖∞
)

≤
∑
i

|αk−2i|
((

Kγ̃ + M|k − 2i|) · Δc(�) + η‖c(�)‖∞
)

≤ (
Kγ̃ ‖α‖1 + MKα

)
Δc(�) + η‖α‖1‖c(�)‖∞.

�
The term η‖α‖1‖c(�)‖∞ in Theorem 3.1 is a direct result of the truncation (17). In particular,

comparing with Theorem 2.3, ε → 0+ implies that Ωε → Z, γ̃ → γ , η → 0,Kγ̃ → Kγ ,M → ‖γ ‖1,
and thus Kα ,̃γ → Kα,γ . Consequently, by substituting the terms in (19), we obtain the exact bound as it

appears in Theorem 2.3. More on the term η‖α‖1‖c(�)‖∞, see Section 6.1.

3.2 Normalization of the truncated coefficients

Motivated by the case of manifold-valued data and following constructions of manifold-valued
subdivision schemes, we require the truncated mask γ̃ to be shift invariant.

Definition 3.2 Given a finitely supported mask γ̃ as in (17), we define ζ to be the following
normalized mask,

ζk = γ̃k∑
i∈Ωε

γ̃i
, k ∈ Z. (20)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drab095/6469200 by TEL AVIV U
N

IVER
SITY user on 31 M

ay 2022



10 W. MATTAR AND N. SHARON

As it turns out the normalized truncated sequence ζ of Definition 3.2 directly affects the decay rate
of the detail coefficients. Let Sα be a subdivision scheme, and let Dζ be its corresponding even-inverse
decimation operator associated with the normalized truncated mask ζ as defined in (20). Then, we define
the multiscale transform,

c(�−1) = Dζ c
(�), d(�) = c(�) − Sαc

(�−1), � = 1, 2, . . . , J. (21)

The following theorem shows that the sup norms of the detail coefficients generated by (21) are
proportional to Δc(�).

Theorem 3.3 Let c(J) be a real-valued sequence and denote by
{
c(0); d(1), . . . , d(J)} its multiscale

transform generated by (21). The subdivision scheme is Sα and Dζ is its corresponding decimation
operator with the normalized mask ζ of (20) where γ solves (13). Then,

‖d(�)‖∞ ≤ Kα,ζ Δc(�), � = 1, 2, . . . , J, (22)

where Kα,ζ = Kζ ‖α‖1 + MKα withM = ∑
i∈Ωε

|ζi| and Kζ = 2
∑

i∈Ωε
|ζi||i|.

Proof. First, we calculate a general term in d(�). For k ∈ Z we have

d(�)
k = c(�)

k −
∑
i

αk−2ic
(�−1)
i =

∑
i

αk−2i

(
c(�)
k − c(�−1)

i

) =
∑
i

αk−2i

(
c(�)
k −

∑
n

ζi−nc
(�)
2n

)

=
∑
i

αk−2i

(∑
n

ζi−nc
(�)
k −

∑
n

ζi−nc
(�)
2n

)
=

∑
i

αk−2i

( ∑
n

ζi−n

(
c(�)
k − c(�)

2n

))
.

Consequently, similar arguments used in the proof of Theorem 3.1 yield to

‖d(�)‖∞ ≤
∑
i

|αk−2i|
(
Kζ + M · |k − 2i|

)
Δc(�)

≤ (
Kζ ‖α‖1 + MKα

) · Δc(�) = Kα,ζ Δc(�),

as required. �
To realize the importance of the normalization, we estimate the magnitude of the term Δc(�) in (22)

with respect to the level �. This is achieved by assuming a prior on the sequence c(J), as the following
lemma suggests.

Lemma 3.4 Let f : R → R be a differentiable, bounded real-valued function. Denote by c(J), J ∈ N the
function’s samples over the grid 2−J

Z, that is, c(J) = f |2−JZ, and let Dζ be a decimation operator (12)
associated with the shift invariant sequence ζ . Then,

Δc(�) ≤ ‖ζ‖J1 · ‖f ′‖∞ · (2‖ζ‖1)−�, � = 0, 1, . . . , J, (23)

where ‖f ′‖∞ = supx∈R |f ′(x)| and the sequences c(�) are generated iteratively by (21).
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PYRAMID TRANSFORM OF MANIFOLD DATA 11

Proof. Since f is differentiable and bounded, then by the mean value theorem, for all k ∈ Z and a
fixed J ∈ N, there exists xk in the open segment, which connects the parametrizations of c(J)

k and c(J)
k+1,

such that

|c(J)
k+1 − c(J)

k | = 2−J |f ′(xk)|,

and by applying the supremum over all k ∈ Z we obtain Δc(J) ≤ 2−J‖f ′‖∞. Now, observe that for any
real-valued sequence c, we have

Δ(c ↓ 2) ≤ sup
k∈Z

|c2k+2 − c2k| ≤ 2 · sup
k∈Z

|ck+1 − ck| = 2Δc,

and since the convolution commutes with Δ, we get

Δc(�−1) = Δ
(
ζ ∗ (c(�) ↓ 2)

)
≤ ‖ζ‖1 · Δ(c(�) ↓ 2) ≤ 2‖ζ‖1 · Δc(�). (24)

Iterating the latter inequality starting with � gives

Δc(�) ≤ 2‖ζ‖1 · Δc(�+1) ≤ (2‖ζ‖1)2 · Δc(�+2) ≤ · · · ≤ (2‖ζ‖1)J−� · Δc(J),

which is equivalent to (23), for any � = 0, 1, . . . , J. �
Theorem 3.3 and Lemma 3.4 illustrate the significance of the normalization (20). Specifically, if

c(J) is sampled from a differentiable function, then the detail coefficients generated by the multiscale
transform (21) are bounded by a geometrically decreasing bound, as the following corollary states.

Corollary 3.5 If c(J) are sampled from a differentiable function f : R → R over the grid 2−J
Z, then

the detail coefficients generated by (21) satisfy

‖d(�)‖∞ ≤ Kα,ζ ‖ζ‖J1‖f ′‖∞ · (2‖ζ‖1)−�, � = 1, 2, . . . , J. (25)

The upper bound in (25) decays geometrically with factor 1/(2‖ζ‖1) < 1/2, with respect to the level �.

A direct result from Corollary 3.5 suggests that the detail coefficients corresponding to the highest
scale can be as small as we desire. In particular, for any σ > 0, one can find a sufficiently large J0 ∈ N

such that ‖d(J)‖∞ ≤ σ for all J > J0. A direct calculation for the minimal J0 yields

J0 = ⌊
log2

(‖f ′‖∞ · Kα,ζ /σ
)⌋ + 1, (26)

in contrary to the transform (18) where such J0 is not guaranteed. Note that according to (26), when
‖f ′‖∞ is large, for example, if f is rapidly changing, we need a denser grid to achieve small enough
details, that is ‖d(J)‖∞ ≤ σ .
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12 W. MATTAR AND N. SHARON

4. Noninterpolating transform for manifold-valued data

Interpolating multiscale transforms have been studied in various nonlinear settings (Grohs & Wallner,
2009, 2012; Kaur & Singh, 2017; Lv et al., 2018). In this section, we aim to adapt the noninterpolating
multiscale transform (21) to manifold-valued data.

4.1 The Riemannian analogue of a linear decimation operator

Let ζ be a normalized finitely supported mask (20), and let M be a Riemannian manifold. We extend
the decimation operator (12) to M with the help of its Riemannian geodesic distance (4), similar to the
extension of the subdivision schemes, as done in Section 2.2.

For any M-valued sequence c, we define

Yζ (c)k = arg min
x∈M

∑
i∈Z

ζk−iρ(x, c2i)
2, k ∈ Z. (27)

Namely, Yζ (c)k is interpreted as the Riemannian center of mass of the elements c2i with the
corresponding weights ζk−i. Moreover, it is the Riemannian analogue of the linear decimation operator
Dζ . Results in Hardering (2015) provide conditions for the global existence of a minimizer in (27). We
formulate one such result in the following lemma.

Lemma 4.1 Let ζ ∈ R
m be a shift invariant mask, and let c = {

c1, c2, . . . , cm
}
be a set of M-valued

points, satisfying ρ(c1, ck) ≤ r for some r > 0 and for all k = 1, 2, . . . ,m. Then, the objective function
h : M → R defined as,

h(x) =
m∑
i=1

ζiρ(x, ci)
2 (28)

has at least one minimum. Moreover, there exists a constant R ≤ 6m‖ζ‖∞ such that all minima of (28)
lie inside a compact ball centred around c1 with radius rR. If r is small enough, with respect to the
curvature ofM, then (28) has a unique solution.

Henceforth, we require anyM-valued admissible sequences to obey the strong conditions of Lemma
(4.1) for any shift invariant mask of our decimation operator Yζ , that is, the Riemannian center of mass
exists and unique. Moreover, we say that the decimation operator Yζ of (27) is the even-inverse of the
subdivision scheme Tα of (6) if its linear version Dζ , associated with the normalized mask ζ of (20),
where γ solves (13), is the even-inverse of the linear scheme Sα . We illustrate the process of adaptation
of the decimation operator to manifold values in the diagram of Fig. 2.

4.2 The noninterpolating multiscale transform for manifold data

Now that we have the adapted subdivision operator Tα and its corresponding decimation operator
Yζ being defined, we proceed by adjusting the linear pyramid transform (21) to manifold values. A
first difference between the manifold and linear versions of the transform lies in the coefficients. For
a manifold-valued transform the sequence c(�) at level � is a M-valued sequence, while the detail
coefficients d(�) are elements in the tangent bundle TM = ⋃

p∈M {p} × TpM associated with M.
Recall that in a Riemannian manifold M, the exponential mapping expp maps a vector v in the

tangent space TpM to the end point of a geodesic of length ‖v‖, which emanates from p ∈ M with
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PYRAMID TRANSFORM OF MANIFOLD DATA 13

Fig. 2. The upper and lower rows represent linear and nonlinear operators, respectively. The process of finding the even-inverse
of the manifold-valued subdivision scheme Tα is done indirectly by going through the linear operators and adapting the resulting
decimation operator.

initial tangent vector v. Inversely, logp is the inverse map of expp that takes anM-valued element q and
returns a vector in the tangent space TpM. Following similar notations used in Grohs &Wallner (2009),
we denote both maps by

logp(q) = q � p and expp(v) = p ⊕ v. (29)

We have thus defined the analogues � and ⊕ of the ‘ − ’ and ‘ + ’ operations, respectively.
For any point p ∈ M we use the following notation � : M2 → TpM and ⊕ : M × TpM → M.

Then, the compatibility condition is

(p ⊕ v) � p = v, (30)

for all v ∈ TpM within the injectivity radius of M. That being, so we are now capable of introducing
our noninterpolating multiscale transform for manifold-valued data. Let M be a Riemannian manifold,
and let c(J), J ∈ N be M-valued sequence associated with the values over the grid 2−J

Z. Given a
noninterpolating subdivision scheme Tα with its corresponding decimation operator Yζ , we define the
noninterpolating multiscale transform

c(�−1) = Yζ c
(�), d(�) = c(�) � Tαc

(�−1), � = 1, 2, . . . , J, (31)

where the operation � is the log map (29) associated withM.
Indeed, the transform (31) is the nonlinear analogue of (21). The process (31) yields a pyramid

of sequences
{
c(0); d(1), . . . , d(J)}, where c(0) are the coarse approximation coefficients given over the

integers, and d(�), � = 1, 2, . . . , J are the detail coefficients at level � given over the values of the grids
2−�

Z, respectively. By the construction of (31), we verify that c(0) is an M-valued sequence and the
elements of d(�) lie in TM for all � = 1, 2, . . . , J. Then, we obtain synthesis by the iterations,

c(�) = Tαc
(�−1) ⊕ d(�), � = 1, 2, . . . , J. (32)

The synthesis (32) is the analogue of (9), and it is the inverse transform of (31).

5. Coefficients decay and reconstruction stability

A vital feature of any multiscale transform is the rate at which the detail coefficients become small
and, therefore, from a certain point, negligible. This feature is also the basis of various thresholding
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14 W. MATTAR AND N. SHARON

techniques for compression, smoothness analysis and denoising, as we will see in Section 6. This section
shows that, under stability of subdivision schemes, the detail coefficients are bounded, and the inverse
transform is stable.

5.1 Displacement safe operators

We proceed with a series of useful definitions. First, for admissible M-valued sequences c and m, we
denote the following. Let

ΔM(c) = sup
k∈Z

ρ(ck+1, ck) and μ(c,m) = sup
k∈Z

ρ(ck,mk),

be the supremum distance between consecutive elements in c and the corresponding elements of the
sequences c and m, respectively. We continue with the definition of displacement-safe subdivision
schemes, as introduced in Dyn & Sharon (2017b). This condition means that the refinement operator
generates points in a controlled fashion regarding the data points’ distances. In linear schemes, for
example, this condition is automatically satisfied.

Definition 5.1 We say that the subdivision operator T is displacement-safe if there exists ET ≥ 0
such that μ(c, T (c) ↓ 2) ≤ ET ΔM(c) for any M-valued sequence c.

Displacement safety plays a significant role for the convergence analysis of noninterpolating
subdivision schemes over manifolds (Dyn & Sharon, 2017b; Hüning & Wallner, 2020). Next, we
introduce a new condition analogous to Definition 5.1, but for decimation operators.

Definition 5.2 We say that the decimation operator Y is decimation-safe if there exists FY ≥ 0 such
that μ(Yc, c ↓ 2) ≤ FYΔM(c) for any M-valued sequence c.

To simplify the terminologies, we say that the pair
(
Tα ,Yζ

)
is safe if simultaneously both the

operator Tα is displacement-safe and Yζ is its corresponding decimation-safe decimation operator. With
the definitions being stated, we note that the linear pyramid transforms (18) and (21) involve safe pairs
of subdivision and decimation operators, as we state and prove in the following lemma.

Lemma 5.3 In the Euclidean case the linear pair
(
Sα ,Dζ

)
is safe.

Proof. The proof that Sα is displacement safe appears in Dyn & Sharon (2017b), we proceed with
proving that linear decimation operators are decimation-safe. For any real-valued sequence c and index
k ∈ Z, we have

|(Dζ c)k − (c ↓ 2)k| = ∣∣∑
i∈Z

ζk−ic2i − c2k
∣∣ = ∣∣ ∑

i∈Z
ζk−ic2i −

∑
i∈Z

ζk−ic2k
∣∣

= ∣∣∑
i∈Z

ζk−i

(
c2i − c2k

)∣∣ ≤ 2
∑
i∈Z

|ζk−i| · |k − i| · Δc.

Now, applying supk∈Z on both sides gives

‖Dζ c − c ↓ 2‖∞ ≤ FDΔc,

with FD = supk∈Z 2
∑

i∈Z |ζk−i| · |k − i| < ∞ since ζ has a compact support. �
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PYRAMID TRANSFORM OF MANIFOLD DATA 15

Note that in the case where Tα is interpolating, the corresponding decimation operator Yζ is simply
the downsampling operator ↓ 2, see e.g., Grohs & Wallner (2009); Grohs (2010b). Thus, the pair(
Tα ,Yζ

)
is safe. In particular, ET = FY = 0. Otherwise, Lemma 4.1 guarantees that the pair

(
Tα ,Yζ

)
is safe, as the following proposition suggests.

Proposition 5.4 Let Tα be a noninterpolating subdivision scheme over M, the pair
(
Tα ,Yζ

)
is safe

for any truncation parameter ε involved in determining the shift invariant mask ζ .

Proof. Here we only prove that Yζ is decimation safe, see Definition 5.2, the proof that Tα is
displacement safe is similar. Let c be an admissibleM-valued sequence, satisfying

H = sup|i−j|≤|Ωε | ρ(ci, cj)

ΔM(c)
< ∞,

where Ωε is the compact support of ζ , as in (17). We express c as a countable union of pairwise
overlapping sets Ξk, k ∈ Z, where Ξk consists of all the elements of c involved in calculating Yζ (c)k,
see (27). Indeed, Ξk contains |Ωε|-many elements including c2k. Lemma 4.1 guarantees

ρ(Yζ (c)k, c2k) ≤ 6|Ωε|‖ζ‖∞ · rk,

where rk = maxcj∈Ξk
ρ(c2k, cj). By the definition of H we have rk ≤ HΔM(c), k ∈ Z. Thus, applying

supk∈Z yields μ(Yζ c, c ↓ 2) ≤ FYΔM(c), as required, with FY = 6|Ωε|‖ζ‖∞H. �
In the same manner of using Lemma 4.1 to prove Proposition 5.4, the former guarantees that for any

admissible M-valued sequence c, we have

ΔM(Tαc) ≤ QΔM(c) (33)

for some Q > 0. Estimate (33) is used in the proof of Proposition 5.6 in the next section. Later on, in
the proof of Lemma 5.8, we will observe the analogue of (33), but for decimation operators.

5.2 Decay of detail coefficients

We proceed with defining a stable subdivision rule.

Definition 5.5 We say that the subdivision operator T is stable if there exists ST ≥ 0 such that
μ(T c, T m) ≤ ST μ(c,m) for all M-valued sequences c and m.

Stable subdivision schemes have been studied in Grohs (2010b). The next proposition helps in
proving the following theorem, which is the analogue to Theorem 3.3.

Proposition 5.6 For any admissible sequence c, we have

μ
(
c, Tα(c ↓ 2)

) ≤ (1 + 2ET + Q)ΔM(c),

where the constants ET and Q are from Definition 5.1 and (33), respectively.
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16 W. MATTAR AND N. SHARON

Proof. Recall that μ
(
c, Tα(c ↓ 2)

) = supk∈Z ρ
(
ck, Tα(c ↓ 2)k

)
. If k = 2j is even, then by the

displacement-safe inequality, see Definition 5.1, we have

ρ
(
c2j, Tα(c ↓ 2)2j

) = ρ
(
(c ↓ 2)j, Tα(c ↓ 2)2j

) ≤ ET ΔM(c ↓ 2) ≤ 2ET ΔM(c).

Otherwise, we have

ρ
(
c2j+1, Tα(c ↓ 2)2j+1

) ≤ ρ(c2j+1, c2j) + ρ(c2j, Tα(c ↓ 2)2j) + ρ(Tα(c ↓ 2)2j, Tα(c ↓ 2)2j+1)

≤ (1 + 2ET + Q)ΔM(c),

as required. �
Theorem 5.7 Let Tα be a stable subdivision scheme, then there exists K ≥ 0 such that the detail
coefficients generated by (31) satisfy

‖d(�)‖∞ ≤ KΔM(c(�)), � = 1, 2, . . . , J, (34)

where ‖d(�)‖∞ = supk∈Z ‖d(�)
k ‖.

Proof. First, observe that ‖d(�)‖∞ = ‖c(�) � Tαc
(�−1)‖∞ = μ(c(�), Tαc

(�−1)). Since the pair
(
Tα ,Yζ

)
is safe, see Proposition 5.4, then by the triangle inequality, we have

μ(c(�), Tαc
(�−1)) ≤ μ

(
c(�), Tα(c(�) ↓ 2)

) + μ
(
Tα(c(�) ↓ 2), TαYζ c

(�)
)

≤ (1 + 2ET + Q)ΔM(c(�)) + ST μ
(
c(�) ↓ 2,Yζ c

(�)
)

≤ (1 + 2ET + Q + ST FY )ΔM(c(�)),

as required where K = 1 + 2ET + Q + ST FY . �
To proceed, we estimate the magnitude of ΔM(c(�)) in (34) by assuming a prior on the admissible

data points c(J). Recall that if Γ is an M-valued regular differentiable curve, then ∇Γ (x) denotes the
intrinsic gradient of Γ at point x ∈ M, i.e., the velocity vector of Γ at point x ∈ M lying in TxM
(do Carmo, 1992). The following lemma is the analogue to Lemma 3.4.

Lemma 5.8 Let Γ be a regular differentiable curve overM. Denote by c(J), J ∈ N the curve’s samples
over the arc-length parametrization grid 2−J

Z, that is, c(J) = Γ |2−JZ, and let Yζ be a decimation
operator associated with the shift invariant mask ζ . Then, there exists P > 1, depending on ζ and the
curvature ofM, such that

ΔM(c(�)) ≤ PJ‖∇Γ ‖∞ · (2P)−�, � = 0, 1, . . . , J, (35)

where ‖∇Γ ‖∞ = sups ‖∇Γ (s)‖ and the sequences c(�) are generated recursively by (31).

Proof. First, since Yζ is decimation safe, see Proposition 5.4, then for � = 1, 2, . . . , J and k ∈ Z,

ρ
(
(Yζ c

(�))k+1, (Yζ c
(�))k

) ≤ ρ
(
(Yζ c

(�))k+1, c2k+2

) + ρ
(
c2k+2, c2k

) + ρ
(
c2k, (Yζ c

(�))k
)
.
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PYRAMID TRANSFORM OF MANIFOLD DATA 17

Applying supk∈Z yields to

ΔM(Yζ c
(�)) ≤ 2FYΔM(c(�)) + 2ΔM(c(�)) = 2P · ΔM(c(�)),

where P = 1 + FY . In other words, ΔM(c(�−1)) ≤ 2P · ΔM(c(�)). Iteratively, we get

ΔM(c(�)) ≤ (2P)J−�ΔM(c(J)), � = 0, 1, . . . , J.

Now, since the sequence c(J) is sampled from a regular differentiable curve Γ over the arc-length
parametrization grid 2−J

Z, we immediately have ΔM(c(J)) ≤ ‖∇Γ ‖∞2−J . In total, inequality (35)
follows. �

Inequality (35) is the analogue to the estimate in (23). The next corollary is the analogue of
Corollary 3.5, it shows that if c(J) is sampled from a differentiable curve over the manifold, then the
detail coefficients generated by (31) are bounded by a geometrically decreasing bound with factor
1/(2P) < 1/2.

Corollary 5.9 Let c(J) denote the samples of a regular differentiable curve Γ over M on the
equispaced arc-length parameterized grid 2−J

Z, where ‖∇Γ ‖∞ assumed to be finite. Let Tα be stable
subdivision scheme, then the detail coefficients generated by (31) satisfy

‖d(�)‖∞ ≤ KPJ‖∇Γ ‖∞ · (2P)−�, � = 1, 2, . . . , J, (36)

with the same values of K in (34) and P in (35). The upper bound in (36) decays geometrically with
factor 1/(2P) < 1/2, with respect to the level �.

In inequality (36), if � = J then ‖d(J)‖∞ ≤ K‖∇Γ ‖∞ · 2−J . Thus, Corollary 5.9 guarantees that for
any σ > 0 there exists some J0 ∈ N such that ‖d(J)‖∞ ≤ σ for all J > J0. The minimal J0 is similar in
its form to (26).

5.3 Stability of inverse transform

In this section we discuss the stability of the inverse multiscale transform (32). As a first conclusion we
show that the stability of the subdivision operator Tα , as presented in Definition 5.5, induces a stability
result for the inverse transform.

Theorem 5.10 Let
{
c(0); d(1), . . . , d(J)} and

{̃
c(0); d̃

(1)
, . . . , d̃

(J)}
be two pyramids of sequences. Let

Tα be stable with constant ST , as in Definition 5.5. Then, the synthesis sequences c(J) and c̃(J), which
are reconstructed from the above two data pyramids via (32), satisfy

μ(c(J), c̃(J)) ≤ L

(
μ(c(0), c̃(0)) +

J∑
i=1

‖d(i)‖∞ + ‖̃d(i)‖∞
)
, (37)

with L = 1 if ST ≤ 1 and L = SJT otherwise.

Proof. Recall that for any point p ∈ M, by (30) we have that ρ(p ⊕ v, p) = ‖v‖ with the Euclidean
norm and for all v ∈ TpM within the injectivity radius of M. In other words, the projection of vector v
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18 W. MATTAR AND N. SHARON

that lies in the tangent space of base point p has a length of ‖v‖∞. Now, observe that

μ(c(J), c̃(J)) = μ(c(J), Tαc
(J−1)) + μ(Tαc

(J−1), Tα̃c
(J−1)) + μ(Tα̃c

(J−1), c̃(J))

≤ ‖d(J)‖∞ + ST μ(c(J−1), c̃(J−1)) + ‖̃d(J)‖∞.

Iterating the latter triangle inequality for the middle term gives

μ(c(J), c̃(J)) ≤ ‖d(J)‖∞ + ‖d(J−1)‖∞ + S2T μ(c(J−2), c̃(J−2)) + ‖̃d(J−1)‖∞ + ‖̃d(J)‖∞,

which inductively yields to

μ(c(J), c̃(J)) ≤
J∑

i=1

‖d(i)‖∞ + SJT μ(c(0), c̃(0)) +
J∑

i=1

‖̃d(i)‖∞.

The required is thus obtained with L = 1 if ST ≤ 1 and L = SJT otherwise. �
Note that if the two pyramids in Theorem 5.10 were generated by (31) to represent samples of two

differentiable curves Γ and Γ̃ , respectively. Then, by making use of Corollary 5.9, the sum term in (37)
can be bounded in terms of the constants K, P, ‖∇Γ ‖∞ and ‖∇Γ̃ ‖∞, which depend on the geometry
of M.

A special case, where stability in the spirit of Theorem 2.4 can be obtained intrinsically, is when the
curvature of the manifold is bounded. Next, we present such a result, assuming M is complete, open
manifold with non-negative sectional curvature. For that we recall two classical theorems: the first and
second Rauch comparison theorems (the second is actually due to Berger), tailored to our settings and
notation. For more details see Gromoll & Walschap (2009, Chapter 3) and the references therein.

We use the following notation. Denote by pk ∈ M two points, k = 1, 2, and vk ∈ TpkM their vectors
in the tangent spaces such that ‖v1‖ = ‖v2‖, and the value is smaller than the injectivity radius of M.
Let G(p1, p2) be the geodesic line connecting p1 and p2, and PGp2(v1) ∈ Tp2M be the parallel transport
of v1 along G(p1, p2) to Tp2M. Then, the first Rauch theorem suggests that

ρ
(
p2 ⊕ v2, p2 ⊕ PGp2(v1)

) ≤ ‖v2 − PGp2(v1)‖. (38)

Moreover, the second Rauch theorem implies that

ρ
(
p1 ⊕ v1, p2 ⊕ PGp2(v1)

) ≤ ρ(p1, p2). (39)

We are ready for the stability conclusion.

Theorem 5.11 LetM be a complete, open manifold with non-negative sectional curvature. Denote by{
c(0); d(1), . . . , d(J)} and

{̃
c(0); d̃

(1)
, . . . , d̃

(J)}
two pyramids of sequences such that ‖d(�)

k ‖ = ‖̃d(�)
k ‖ and

with values smaller than the injectivity radius of M, for all � = 1, . . . , J and k ∈ Z. Also, assume that
μ(c(0), c̃(0)) is sufficiently small so geodesics exist between all pairs c(�)

k , c̃(�)
k for all � = 1, . . . , J and

k ∈ Z, as reconstructed from the above two data pyramids via (32). Assume Tα is stable with constant

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drab095/6469200 by TEL AVIV U
N

IVER
SITY user on 31 M

ay 2022



PYRAMID TRANSFORM OF MANIFOLD DATA 19

ST , as in Definition 5.5. Then, the synthesis sequences c(J) and c̃(J) satisfy

μ(c(J), c̃(J)) ≤ L

(
μ(c(0), c̃(0)) +

J∑
i=1

‖̂d(i) − d̃
(i)‖∞

)
, (40)

where d̂(i)
k = PG(Tα c̃(i−1))k

(d(i)
k ), with L = 1 if ST ≤ 1 and L = SJT otherwise.

Proof. Observe that

μ(c(J), c̃(J)) ≤ μ
(
c(J), Tα̃c

(J−1) ⊕ d̂
(J)) + μ

(
Tα̃c

(J−1) ⊕ d̂
(J)
, c̃(J))

= μ
(
Tαc

(J−1) ⊕ d(J), Tα̃c
(J−1) ⊕ d̂

(J)) + μ
(
Tα̃c

(J−1) ⊕ d̂
(J)
, Tα̃c

(J−1) ⊕ d̃
(J))

≤ μ(Tαc
(J−1), Tα̃c

(J−1)) + ‖̂d(J) − d̃
(J)‖∞

≤ ST μ(c(J−1), c̃(J−1)) + ‖̂d(J) − d̃
(J)‖∞.

For the first inequality we use the triangle inequality, for the second we use (39) and (38). Lastly, we
apply the stability of the subdivision scheme. Iterating the latter yields the required bound. �

We present two brief comments on Theorem 5.11. First, bounding the sectional curvature from
below with a positive number clearly does not change the conclusion. Still, if the lower bound is
negative, such as in hyperbolic manifolds, estimations (38)–(39) do not hold, and more delicate
argument is needed. Secondly, we allow the details to differ only by their mutual angle and not
magnitude. We may remove this obstacle using a more technical calculation which we omit here for
compactness.

Remark 5.12 Following the methodology of Grohs & Wallner (2012), together with our estimation
(35), an analogue of (40) can be achieved based on proximity to the linear counterparts of our operators.
This result is more of asymptotic flavor and it carries less information about the constant L. Nevertheless,
it holds for more general class of manifolds.

The stability results support the concept of using the inverse transform (32) for different numerical
tasks, as we will see in the next section.

6. Numerical examples

In this section we focus on demonstrating our pyramid transform numerically. We begin with an
illustration of the bounds from Theorem 3.1 and Theorem 3.3, emphasizing the importance of mask
normalization. Then, we show the application of our multiscale transforms over manifold data to the
tasks of denoising and anomaly detection. All MATLAB scripts that include the examples of this
section are available online at https://github.com/WaelMattar/Manifold-Multiscale-Representations for
reproducibility.

6.1 Comparing the novel linear decimation operators

In Section 3 we present new methods for truncating the sequence γ to obtain a finite mask. Comparing
Theorem 3.1 and Theorem 3.3, and in particular, their upper bounds on the norms of the generated detail
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20 W. MATTAR AND N. SHARON

Fig. 3. Truncating the decimation operator: the detail coefficients norm as a function of the level �, plotted on a logarithmic scale
for different truncation parameters. On the left, ε = 10−2. On the right, ε = 10−5. In both figures the red dashed lines correspond
to Dγ̃ of the truncated mask (17), and the blue lines correspond to Dζ of the truncated, shift invariant mask (20). Note how the
blue graphs are bounded by geometrically decaying bounds, as guaranteed by Corollary 3.5. In contrast, the red dashed lines are
bounded below by values of the same order as the truncation parameter ε, as implied by Theorem 3.1.

coefficients, shows a significant additional factor in (19). This section examines the numerical nature
of this difference, and how accurate the description of the detail coefficients’ decay according to the
theoretical bound is.

Our example is conducted in the functional setting, where we consider the samples of the smooth
periodic function f (x) = sin(3x). We choose Sα to be the linear cubic subdivision scheme, as appears
in Example 2.2 and sample f over the interval [0, 2π] at 10 × 210 equispaced points, that is, to obtain
c(J) with J = 10. The samples are treated as a periodic sequence, so it represents a bi-infinite sequence.
Then, we decompose the samples via the linear multiscale transforms (18) and (21), which depend on
the truncated mask (17) and shift invariant mask (20), respectively.

The maximum norms of the generated details are depicted in Fig. 3 as a function of the level
� = 1, . . . , 10, for two different truncation parameters ε = 10−2 and ε = 10−5. The results show
behavior that agrees with the upper bounds of Theorem 3.1 and Theorem 3.3. In particular, the details,
as generated by (18), are bounded by a value of order ε, due to the additional term in (19), which does not
decay with respect to �. On the other hand, the detail coefficients generated by (21) decay geometrically,
as expected, see Corollary (3.5).

6.2 Denoising of sphere-valued curve

We turn to manifold-valued data and consider the unit sphere S2 in R
3 as the manifold of this section.

The following example serves as a proof of concept for the application of pyramid transform for curves
over manifolds. Specifically, we address the problem of estimating a curve from its noisy samples. To
this purpose, we follow the conventional algorithm of reconstructing the object from its thresholded
multiscale coefficients. For the data model denote by Γk, k ∈ Z the equidistant samples of a curve Γ

over the sphere, and by

Υk = Γk ⊕ χk, (41)
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Fig. 4. The curve Γ of (42) over the unit sphere with its multiscale transform (31). On the left, 10×25 equispaced samples of the

flower-like curve. On the right the Euclidean norms of the detail coefficients d(�)
k for � = 1, . . . , 5, generated by applying (31). As

the scale increases the maximal norm of each layer decays geometrically as guaranteed by Corollary 5.9. Note that every second
element of each layer is smaller. This phenomenon is explained by condition (11) and reflects the approximation character of our
decimation operator. Therefore, smaller values of the truncation parameter ε yield to smaller norms of detail coefficients.

the noisy samples, where χk ∼ N (μ,Σ) are i.i.d. normally distributed random variables with zero mean
and covariance matrix Σ = σ 2I. The noise terms χk are in the respective tangent spaces TΓk

M, which
are isomorphic to R2. Note that small noise levels guarantee χk to be within the injectivity radius of the
exponential map ⊕ associated to point Γk. We, therefore, assume that the realizations of the noise terms
are sufficiently small.

In the current test case we take Γ to be a flower-like periodic smooth S
2-valued curve defined via

spherical coordinates as,

Γ (θ) = (
sin(ϕ(θ)) cos(θ), sin(ϕ(θ)) sin(θ), cos(ϕ(θ))

)
, ϕ(θ) = π

16
cos(Nθ) + π

6
, θ ∈ [0, 2π ].

(42)

Here, N ∈ N determines the number of the flower’s leaves. We set N = 5 as shown in Fig. 4a.
Let Tα be the Riemannian analogue of the cubic spline subdivision scheme adapted to S

2 as
described in Section 2.2. Denote by Yζ its approximated decimation operator with the shift invariant

mask ζ , as given in (31). In this example we pick ε = 10−5, which induces that ζ consists of 13 nonzero
elements. We note that S2 is a two-dimensional topological manifold with positive sectional curvature,
thus, optimization problems like (6) and (27) may have infinite solutions, e.g., when averaging two
antipodal points. However, for close enough points on S

2, the center of mass exists uniquely, see Dyer
et al. (2016); Hüning & Wallner (2020). We follow a Riemannian gradient descent method (Krakowski
et al., 2007) to calculate the Riemannian center of mass on S2. Figure 4 demonstrates Γ of (42) alongside
its corresponding pyramidical representation via our multiscale transform (31), which manifests the
detail coefficients decay.
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Fig. 5. Noisy samples and its multiscale representation. On the left the noisy points Υ of (41). On the right the Euclidean norms
of the detail coefficients.

We now synthetically generate noisy samples according to the model (41), with σ ≈ 1/80. Figure 5
shows the noisy data alongside their corresponding pyramidical representation via our multiscale
transform (31). As we can see, the multiscale representation of the noisy sequence Υ does not enjoy
the property of detail coefficients decay.

To estimate Γ from its noisy samples Υk we follow Donoho (1995), where it is shown that
thresholding of the details of the pyramid transform yields a nearly optimal estimation. In other words,
we go over each layer of multiscale coefficients corresponding to the noisy curve, see Fig. 5b, and set
to zero all detail coefficients with norm below a fixed threshold, 0.14 in our case. This process yields to
a sparser pyramid representation, which forms an estimation of the ground truth Γ . The approximant is
synthesized iteratively by (32).

Figure 6 demonstrates the denoised curve alongside its multiscale representation. Indeed, the detail
coefficients of the denoised curve are bounded by a geometrically decreasing sequence, which indicates
the smoothness of the resulted curve.

To sum our multiscale transform, (31) makes a useful tool for denoising curves over manifolds. The
denoising’s performance in this example is reflected by the resemblance between the ground truth and
the denoised curves.

6.3 Anomaly detection of SPD(3)-valued curve

Our multiscale transform (31) involves the application of two local operators. This feature makes the
transform a beneficial tool for detecting and analyzing local behavior in manifold-valued curves. This
section focuses on representing curves over the cone of 3 × 3 symmetric positive matrices, which we
denote by SPD(3). In particular, we show the application of our pyramid analysis to the problem of
anomaly detection. Namely, we aim to automatically detect rapid local changes in a time series of
matrices by inspecting its multiscale representation.

We consider a smooth periodic SPD(3)-valued curve given explicitly via trigonometric deforma-
tions. Then, we apply a scaling factor to the eigenvalues of all the matrices that fall in the middle third
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Fig. 6. Denoised curve and its multiscale representation. On the left estimation of Γ (42). On the right the Euclidean norms of
the detail coefficients. The decay of detail coefficients indicate the smoothness of the denoised curve.

Fig. 7. SPD(3)-valued curves. On the top 41 ellipsoids that represent smooth SPD(3)-valued curve. On the bottom the modified
41 ellipsoids now represent the piecewise-smooth curve, with two jump discontinuities in the middle.

of the curve to provide anomaly. This application gives rise to a piecewise smooth SPD(3)-valued
curve with two jump discontinuities. We depict the two curves, both the smooth original one and the
distributed piecewise smooth, in Fig. 7. Each curve is represented by a series of centered ellipsoids,
where every ellipsoid has its main axes determined by the eigenvectors of the corresponding matrix and
their lengths by the associated eigenvalues.

We set the test by taking Tα to be the corner-cutting (quadratic B-spline) subdivision scheme,
as presented in Example 2.1, adapted to SPD(3) as described in Section 2.2. Denote by Yζ its

approximated decimation operator with the truncation parameter ε = 10−4, implying a shift invariant
mask ζ with nine nonzeros. The Riemannian center of mass over SPD(3) is globally unique due to
the manifold’s nonpositive sectional curvature. To calculate it we follow the gradient descent method in
Iannazzo et al. (2019).

Next, we decompose both curves of Fig. 7 by the multiscale transform (31) and investigate the
norms of the detail coefficients. The norms of the detail coefficients, which lie in the linear space
of all symmetric matrices of order 3, are presented in Fig. 8. As it turns out, the detail coefficients
corresponding to the smooth curve are represented by a geometrically decreasing sequence, as
guaranteed by Corollary 5.9. However, in the vicinities of the anomaly points, the detail coefficients
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Fig. 8. Frobenius norms of the detail coefficients of the two SPD(3) curves in Fig. 7. On the left detail coefficients norms
corresponding to Fig. 7a. On the right detail coefficients norms corresponding to Fig. 7b. The decay rate, which decreases with
each layer in (a), implies the curve’s smoothness. Moreover, note how the theoretical condition (11) is illustrated in (a) as every
second detail is proportional to the truncation parameter ε. On the other hand, the two local peaks in (b) indicate radical changes
in the respective curve and reveal the abnormalities.

generated by our multiscale transform (31) have relatively large norms. Namely, the large detail
coefficients are correlated with the parametric locations around the jump discontinuities. Therefore,
the multiscale transform (31) makes a useful tool for detecting such anomalies.

Remark 6.1 We numerically estimated the constant P of (35) corresponding to this section’s manifold
settings. The results appear in Table A1 and Table A2 in Appendix A where we present the minimal
possible P. This value decreases monotonically to 1 as the scale of sampling, J, increases. This
phenomenon implies that the decimation operation Yζ behaves like the simple downsampling operation
for close enough M-valued data points.
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A. Numerical evaluation of the decaying factor

Lemma 5.8 introduces a decaying rate of the norms of the details. Here, we provide several numerical
evaluations of the decaying factor P of (35), as observed in the examples of Sections 6.2 and 6.3.
Indeed, there exists a constant P > 1 such that (35) holds for sequences c sampled equidistantly
from a differentiable curve over arc-length parametrization. In particular, as seen through the proof
of Lemma 5.8, the minimal possible value of P can be evaluated by

Pmin = ΔM(Yζ c)

2ΔM(c)
,

where Yζ is the decimation operator used in the multiscale transform 31. Under the settings of
Sections 6.2 and 6.3 we calculate Pmin for different ΔM(c) values. The results are shown in Table A1
and Table A2.

The main feature of Table A1 and Table A2 is that, in both manifold settings, the constant Pmin
decreases monotonically to 1 as ΔM(c) decreases. This fact indicates a similar behavior between Yζ

and the downsampling operation ↓ 2, when the distance between data points reduces, as stated in
Remark 6.1.
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Table A1 The constant Pmin against different values of ΔM(c). The second row demonstrates Pmin
corresponding to samples of the curve Γ in (42) over the sphere S2, with the respective ΔM(c) value.
The operator Yζ is the adapted even-inverse of the cubic B-spline with truncation parameter ε = 10−5,
as in Section 6.2

ΔM(c) 0.2667 0.1639 0.0859 0.0433 0.0217 0.0108 0.0054 0.0027

S
2 1.4021 1.0368 1.0205 1.0086 1.0038 1.0003 1.0001 1.0000

Table A2 The constant Pmin against different values of ΔM(c). The second row demonstrates Pmin
corresponding to samples of the curve shown in Fig. 7a over the manifold SPD(3), with the respective
ΔM(c) value. The operator Yζ is the adapted even-inverse of the quadratic B-spline with truncation

parameter ε = 10−4, as in Section 6.3

ΔM(c) 0.6837 0.3542 0.1813 0.0912 0.0457 0.0228 0.0114 0.0057

SPD(3) 1.2661 1.0613 1.0176 1.0053 1.0014 1.0004 1.0000 1.0000
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