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Data redundancy is ubiquitous in the inputs and intermediate results of Deep Neural Networks (DNN). It

offers many significant opportunities for improving DNN performance and efficiency and has been explored

in a large body of work. These studies have scattered in many venues across several years. The targets they

focus on range from images to videos and texts, and the techniques they use to detect and exploit data re-

dundancy also vary in many aspects. There is not yet a systematic examination and summary of the many

efforts, making it difficult for researchers to get a comprehensive view of the prior work, the state of the art,

differences and shared principles, and the areas and directions yet to explore. This article tries to fill the void.

It surveys hundreds of recent papers on the topic, introduces a novel taxonomy to put the various techniques

into a single categorization framework, offers a comprehensive description of the main methods used for

exploiting data redundancy in improving multiple kinds of DNNs on data, and points out a set of research

opportunities for future exploration.
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1 INTRODUCTION

Deep learning, primarily powered by Deep Neural Networks (DNN), has repeatedly demon-
strated its success and tremendous potential in revolutionizing the development of Artificial Intel-
ligence and its applications in various domains. At a high level, DNN has two pillars: algorithm
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and data. DNN models embody the algorithm, and data is represented by DNN inputs and inter-
mediate results (or called activation maps). Both algorithm and data are essential for the quality of
a DNN, determining its accuracy, speed, size, energy efficiency, robustness, and so on.
For DNNs, redundancy exists in both models and data. As many studies have shown, reducing

some DNN layers or parameters or precision often leaves the model accuracy intact. The obser-
vation has prompted a large body of research in DNN compression, which tries to find effective
ways to reduce the size of a DNN model and achieve more compact models or/and faster speeds.
Many of the efforts resort to model pruning and quantization, while some compress models in
the frequency domains [153] or optimize attentions in Transformer models [32, 113, 147]. We call
those efforts model redundancy exploitations. Several recent survey papers [9, 28, 31, 51, 61, 76]

have provided comprehensive overviews on the topic.
Data redundancy exploitation is no less critical for DNN and has received much and increas-

ing attention in recent several years as well. Many studies have noticed similar patches within
an image, activation maps, or between adjacent video frames. Other studies have confirmed that
some words in a sentence carry no significant meaning for the sentence. These observations have
prompted many recent efforts in creating methods for detecting and leveraging the redundancy
of various dimensions in all kinds of data. Hundreds of papers have been published, scattering in
many venues over several years. But unlike model redundancy, there is not yet a systematic exami-
nation and summary of the many efforts, making it difficult for researchers to get a comprehensive
view of the prior work, to learn about state of the art, to understand the differences and common
principles among the many published studies, or to find out the areas and directions yet to explore.
To the best of our knowledge, this paper offers the first one-stop resource for people interested

in learning about studies on data redundancy for DNN. It provides a holistic view of the various
techniques and their connections, offers insights on the limitations of state of the art, and potential
directions and opportunities for the future to explore. The paper introduces the first known tax-
onomy on DNN data redundancy exploitation, putting the various topics’ various techniques into
a single categorization framework. It offers a comprehensive description of the main techniques
used for detecting and exploiting data redundancy in improving multiple kinds of DNNs, from
CNNs to RNNs, Transformers, and so on. It presents numerous data redundancy opportunities
in images, videos, and texts and how existing studies tap into them with various techniques at a
spectrum of granularities and scopes. It discusses the commonalities among the techniques, their
differences, limitations, and promising research directions worth future explorations.
We organize the rest of the paper as follows. Section 2 provides a formal definition of data

redundancy and defines the scope of this survey. Section 3 presents a taxonomy of studies on DNN
data redundancy. Sections 4–6 describe the practical techniques that prior work has developed in
detecting and exploiting data redundancy for DNNs respectively on images, videos, and text data.
Section 7 discusses the limitations of existing explorations and points out several future directions.
Section 8 concludes the survey with a summary.

2 TERMINOLOGY AND SCOPE OF DISCUSSION

We start this section with clarifications of several terms essential for the rest of the paper, then
define the scope of this survey, and explain the relations with several relevant concepts to our
focus.

2.1 Terminology

Activation Map. In the traditional terminology, an activation map (or called feature map) is the
activations of filters applied to the input of a DNN, also to the output of the previous layer. For
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the visual representation of an image or a single image frame in a video with RGB channels, it
is a 3D tensor with Heiдht ×Width × Channel ; for a video clip, it is a 4D tensor with Heiдht ×
Width×Channel×Depth, theDepth is the number of frames. For ease of explanation, in this article,
we extend the term activation map to include the inputs to a DNN (the values of the input layer
neurons).
Hidden State. For text representation, before input to the first layer of the model, the text

is transformed into word vectors representation via a word embedding (the collective name for
a set of language modeling and feature learning techniques in natural language processing

(NLP) where words or phrases from the vocabulary are mapped to vectors of real numbers [43]).
Multiplied with weights, the output activations of a layer are called a hidden state (which is also
called encoder state). It is represented as a 2D tensor with sequence length × dimensionality of word
embedding.
Redundancy.According to the dictionary [117], redundancy is the state of being not or no longer

needed or valuable. It is hence a concept relative to a particular purpose. In the context of DNN,
being useful usually refers to contributing to the quality of the DNN outputs, which is often mea-
sured by a certain kind of accuracy metric. Data redundancy in DNN is hence defined as the data
that is not or no longer useful for the quality of the outputs of DNN. Data redundancy exploita-
tion for DNN refers to techniques that try to avoid data redundancy while keeping DNN outputs
meeting the needs.

2.2 Scope

Data redundancy in DNN manifests in different kinds of forms. Regardless of the concrete struc-
ture, data redundancy in DNN must fall into one of the following three categories: (1) Repeated
information: Some part of the data conveys the identical (or similar) information as some other
parts do. (2) Irrelevant information: The information conveyed by some part of the data is ir-
relevant to the targeted outputs of the DNN. (3) Over-detailed information: The information is
conveyed in an unnecessarily detailed manner (e.g., image resolution). So any technique that tries
to make a DNN avoid spending time and computations on any of the three types of information
can be regarded as a technique for data redundancy exploitation. However, this general definition
would blur the boundary between DNN algorithm, model, and data-centered optimizations. Some
model optimizations (e.g., channel pruning [66, 70, 71, 101, 110, 148, 164, 170]) are fundamentally
driven by data redundancy (e.g., redundancy across channels). There are already surveys, partic-
ularly on model optimizations, but this survey focuses on data redundancy exploitation beyond
model optimizations. These techniques help DNN avoid data redundancy in its computations to
efficiently execute DNN in inference or training or eliminate noise to boost DNN accuracy.
There is a body of work on considering data redundancy in the hardware design of DNN accel-

erators, such as cache buffer designs for data reuse in 2D CNNs [68, 82, 89, 111, 114, 128, 150] and
3D CNNs [19, 44, 67, 132, 149, 151, 152], or integrating activation pruning into the hardware ar-
chitecture designs [123, 129]. The techniques reduce the number of computations and bring speed
and energy benefits. In this survey, we mainly focus our discussion on software-based techniques
for exploiting data redundancy.

2.3 Relations with Relevant Concepts

Several concepts are closely related to data redundancy exploitation.We next describe the relations
with these concepts to further clarify our scope.

Model Redundancy. Another aspect of redundancy in DNNs is model redundancy, referring
to the redundancy within the parameters and architecture of a DNN. Model compression [1, 9, 25,
28, 31, 51, 61, 76, 90], including knowledge distillation [69, 146], parameter pruning, and weight
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quantization, are popular approaches to exploit model redundancy. This article focuses on data
redundancy of DNN, which refers to the redundancy within the input data of each DNN layer
(usually in the form of multi-dimensional tensors).

Data Preprocessing and Augmentation. Before data are fed into a DNNmodel, they often go
through a preprocessing process. For training, that process is sometimes part of dataset augmen-
tation [33, 136], increasing data variance to increase the models’ generality. In computer vision,
example operations include rotating, inverting, equalizing, color changes, brightness adjustment,
and so on. The samples created by the transformations naturally carry some redundancy with the
original data. For instance, with images inverted, two images contain the same set of pixel values,
despite that the positions of individual image patches differ in the images. Such redundancy is
implicitly considered when a technique exploits redundancy in input data. This survey exploits
data redundancy and leaves data augmentation out of the scope.
Feature Extraction and Data Embedding. Feature extraction is a term in machine learning,

referring to techniques that select or derive some features from a set of data that are regarded as
most relevant to a specific machine learning task. Therefore, theoretically speaking, feature extrac-
tion can be viewed as a kind of exploitation of data redundancy as it reduces the raw data to an
often smaller set of features. In a similar vein, data embeddings that map raw data to vectors in a
space smaller than the original data space could also be regarded as a kind of reduction of data re-
dundancy. Studies on these topics are usually considered as a separate research area named feature
extraction and representation. They are typically not designed explicitly to exploit data redundancy,
even though they may sometimes show such effects. We leave discussions on these studies out of
the main focus of this paper.
Dataset Selection. In the learning phase of DNN, training data selection [45, 47, 163] is a process

that tries to select the training data appropriate for the learner to achieve the learning task. To a
certain degree, it may also remove some redundancy in the dataset (e.g., some data items in an
over-sampled population). In this survey, we do not focus our discussion on this direction but on
how data redundancy is addressed during the execution of the model (after the training dataset is
selected or during inference).

3 TAXONOMY

Many studies detect or leverage data redundancy in DNN from several angles. A taxonomy that
puts all the investigations into one categorization framework is essential for a holistic view of
their differences, tradeoffs, and shared principles. The taxonomy also offers a comprehensive view
at the various dimensions of DNN data redundancy elimination, which can potentially guide the
design of new redundancy elimination techniques.
Figure 1 presents a taxonomy we built after surveying hundreds of papers on DNN data redun-

dancy exploitation. As far as we know, this is the first taxonomy on this topic. It shows the six most
essential dimensions in DNN data redundancy exploitation. Data redundancy exploitation is usu-
ally the combination of one or more items in each dimension. We explain each of the dimensions
next.

3.1 Granularity

This dimension refers to the unit of the data examined for data redundancy, which we will call
data unit in the following discussions. There are five granularities listed below in increasing order
in size.

• Bit: At this granularity, every bit in a value is the unit for examination. Data quantiza-
tion and precision relaxation to the shorter representation of a value are commonly seen
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Fig. 1. Taxonomy of data redundancy exploitation in DNN.

strategies exploiting bit-level redundancy. Besides, bit representation can also be used di-
rectly for pattern-based bucketing. In RNSNet [128], for instance, an input value is trans-
formed into its n-bits binary format and gets represented with a residue number system

(RNS). The multiplications in neural networks are simplified to only addition and memory
lookup, allowing memory-friendly operations.
• Neuron: The unit at this granularity is the value of a single neuron. An image is a pixel
value at one channel or the value carried by a neuron in a DNN.
• Tile/Patch: The values carried by a set of neurons, which correspond to a part of an activa-
tion map. It could be, for instance, a bounding box or region of interest (RoI): or channel
in an image; in the case of text, it could be one or multiple sub-word embeddings.
• Activation Map: The values in an entire activation map.
• Batch or Sequence: A set of activation maps that the DNN carries at a layer, either at once
or in order. The activation maps within the set can be either related or unrelated to each
other. For example, sequential sentence input in a paragraph to a DNN can be correlated,
while in a randomly shuffled set of training images, image activation maps are generally
unrelated.

In general, the larger the granularity is, the less redundancy there is, but at the same time, the ra-
tio between the benefits from removing a redundancy and the overhead in finding the redundancy
is larger1: Avoiding processing a whole batch of images saves more time than avoiding processing
a neuron, but the chances of finding two identical batches are generally smaller than finding two
identical neurons. On the other hand, the removals of different granularities of redundancy are
not exclusive; one optimization could exploit redundancies at multiple granularities.

3.2 Scope of Consideration

This dimension is about the scope in which different data units are compared to identify similar
units and hence redundancy. This dimension is related to the previous extent, granularity, but

1Bit level is special, limited by the number of bits in one value, which is usually up to 32.
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differ: For a given data unit, such as a patch of activationmap, the comparisons for similar units can
still vary (e.g., within one activationmap, across activationmaps in a batch, or batches). Specifically,
the scopes considered in prior studies fall into one or more of the following.

• Single Value: Redundancy within a single representation of a value—the corresponding
granularity is a bit.
• Single Channel Activation Map: In the case of an image, it refers to redundancy within
a single channel activation map; in the case of text, it relates to redundancy within a single
hidden state. The corresponding granularity can be either neuron or tile/patch.
• Multiple Channels of Activation Map: This is for visual data (image and video) only.
Redundancy across multiple channels of an activation map between neurons, patches/tiles,
or single-channel activation maps.
• Temporal Sequence of Activation Maps: In the case of video, it refers to redundancy
across a single video clip representation (4D tensor) between neurons, patches/tiles, single-
channel activation maps, or activation maps. In the case of sequential text sequence input, it
refers to redundancy across hidden states of the same sentence label (token type id), between
neurons, sub-word embeddings, or single-sequence hidden states.
• Within a Batch: Inputs to a DNN are often provided in a batch each time. The scope for
data redundancy consideration can be across inputs within a batch.
• Cross Batches: The scope can also cross the boundaries of batches of inputs.
• Cross Layers: All the earlier scopes typically assume that the comparisons are about acti-
vation maps at the same layer of a Neural Network. Some studies even expand the scope to
activation maps on different layers of a Neural Network [38, 119].

In general, a large scope subsumes a smaller scope: Redundancy discoverable in a smaller scope
must be discoverable in a larger scope. But on the other hand, checking values in a larger scope
also entails more overhead and complexity.

3.3 Types of Data Redundancy

Data redundancy exploitation techniques can also be categorized based on what types of data
redundancy they exploit. As earlier sections have mentioned, there are mainly three types of data
redundancy. We list them here for the completeness of the discussion on the taxonomy.

• Repeated Information: Similarity or duplication between data units. When the same op-
erations operate on either identical or similar data units (e.g., multiplications on the same
values, convolutions on similar image tiles), the results could be indistinguishable; the com-
putations are redundant.
• Irrelevant Information: Unnecessary data units; if they are removed, will not harm the
DNN computation results.
• Over-detailed Information: High-precision representation is not always necessary. For
example, high-resolution images can be replaced with their low-resolution approximation
in some application scenarios without causing the DNN to lose accuracy. Activation maps
with lower precision sometimes give the same results for a DNN. A video with more frames
than needed is another example. A sub-word vector with a higher-dimension representation
(e.g., 1 × 512 versus 1 × 256 for a single word representation) or a higher precision value
representation is also an example.

The types of data redundancy define how redundancy appears. These different types of redun-
dancy are complementary to each other; they require different ways to detect but at the same
time can be capitalized together. Previous work has each focused on one of the three types of
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redundancy; it remains yet to investigate how to effectively combine the removals of multiple
types of redundancy in one framework. Among the potential challenges, how to minimize the
overhead is one of them.

3.4 Ways to Detect Data Redundancy

The techniques can also be classified based on the ways they detect redundancy:

• Value Similarity-based Grouping: This includes all kinds of similarity-based data group-
ing methods (e.g., various data clustering methods).
• Learning-based Methods: These methods learn data redundancy on some data samples
(often sampled from the training or validation datasets) and apply the knowledge at runtime
execution of the model. An example is the learning-based quantization of activation maps.
• Projection: These techniques project the data representation to another domain space (e.g.,
frequency domain) and infer redundancy in that space.
• Implicit Detection: These techniques assume redundancy exists in a specific scope based
on some prior knowledge about the domain. One of the examples is the techniques that
leverage similarities between neighboring video frames.
• Other Heuristics: Methods that leverage some other domain-specific heuristics, such as
the relative attentions or the average number of zeros appearing at a specific pixel location.

The different ways apply to different domains and scenarios. The first two in the list are general,
the third applies to the domains where projection across certain spaces makes sense, and the fourth
and fifth apply to domains where there is already certain prior knowledge about the redundancy
in the domains.

3.5 Ways to Leverage Redundancy

The different techniques take different ways to leverage data redundancy. They, however, in prin-
ciple fall into the following three main categories.

• Reuse: This approach reuses computation results on some data items for other data items. It
applies to a similar kind of data redundancy. For example, Deep Reuse [116] applies Locality

Sensitive Hashing (LSH) [56], a fast unsupervised clustering scheme, to cluster data into
similarity groups, and then uses the results computed on the cluster centroids as the results
for all data items in the same cluster.
• Skipping: This approach skips computations on some data items. It applies to data redun-
dancy caused by irrelevant data items. For instance, in Perforated CNN [49], the authors
deal with spatial redundancy by masking some pixels in CNN feature maps. It also includes
techniques that select a subset of data representations. Some work does ad-hoc sampling,
while some others make the selection in a more sophisticated way. In PoWER-BERT [58],
for instance, a retention configuration is defined to observe that cosine-similarity between
vectors progressively increases as the layer goes deeper. Based on that setting, they employ
strategies for word-vector selection. The retention configuration is further designed into
learnable hyper-parameters.
• Value Approximation: This approach uses an approximation to generate data representa-
tion. It corresponds to data redundancy caused by over-detailed information. Quantization
and binarization on data items fall into this category. Previous reviews [76, 124, 137] have
provided comprehensive coverage on both research topics, so we do not emphasize them in
the following discussion.

These three ways to leverage redundancy are complementary. Even though only the third in
the list carries “approximation” in the name, all three could cause accuracy loss: Reuse may reuse

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



212:8 J.-A. Chen et al.

results across similar but not identical data, and similarly, skipping may skip the computations of
some similar but not identical data. These ways of leveraging redundancy can be used together.
Some prior studies have already done that. One of them [38], for instance, exploits a layer selector
(“skipping”) and correlation clustering (“reuse”) practice at the same time.

3.6 Types of Data

We can also classify the studies on data redundancy based on the types of data they deal with.
Although there are many kinds of data, most existing studies on data redundancy are on the fol-
lowing three types of data:

• Images. This type of data includes various kinds of images, including those generated from
higher dimension sensors (e.g., those collected through Lidar).
• Videos.This type of data features an extra-temporal dimension than images, which provides
special opportunities for data redundancy exploitation.
• Texts. This type of data consists of texts from various kinds of sources, usually written in
Natural Languages.

There are some other types of data that DNN has been applied to, such as graphs, genes, com-
puter programs, and so on. We will briefly discuss them in Section 7.

3.7 Use of the Taxonomy

As far as we know, this is the first taxonomy on data redundancy exploitation. It was created
based on our survey of hundreds of papers on data redundancy exploitation. The taxonomy can
be used to position work in the big picture, to recognize the possible missing opportunities yet to
explore for a certain kind of data, to guide the designs of future DNNs for efficiency, and to assist
the possible creation of future automatic frameworks that may apply redundancy exploitation for
new Deep Learning tasks.
We categorize a set of representative papers listed in Table 1 using the taxonomy.Wewill discuss

them in more detail in the next several sections. Specifically, we organize the following discussions
based on several layers of the taxonomy. At the highest level, we divide the studies based on the
types of data they handle into three sections, with Section 4 on images, Section 5 on videos, and
Section 6 on texts. We organize the various studies based on a dimension that captures the most
prominent differences among the studies in each area.
In Section 4, we divide studies on image data redundancy based on the types of redundancy

they are dealing with, as the number of works in the three sub-categories (Repeated Information,
Irrelevant Information, andOver-detailed Information) are relatively balanced and offers comprehen-
sive coverage of the differences among the techniques. We point out the discrepancies between
the work in each group in other dimensions (e.g., data representations, redundancy exploitation
techniques) when necessary during the discussion. While many image redundancy exploitation
techniques could potentially be applied to each frame in a video, Section 5 focuses on the meth-
ods specially designed for videos. These efforts extend the work in Section 4 by exploring how
redundancy is leveraged on the patch unit and the temporal dimension. Section 6 discusses how
data redundancy in the text is handled. Most of the work is based on Transformer models. In both
Sections 5 and 6, the primary dimension we use to group the various explorations is how data
redundancy is exploited.

4 LEVERAGE REDUNDANCY IN IMAGE DATA

Image data are generally presented as three-dimensional pixel values (height, width, and channel).
The inherent locality within data values provides opportunities for advanced optimizations. This

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



Survey: Exploiting Data Redundancy for Optimization of Deep Learning 212:9

Table 1. Some Representative Papers on Data Redundancy Exploitation

Data Type Paper Redundancy Type Granularity Scope Detection Exploitation

Image

[116] Repeated Patch/Tile Multiple Channels, Within-Batch, Cross-Batch Similarity Reuse
[55] Irrelevant, Repeated Bit, Neuron Single Value, Cross-Layer Learning, Similarity Value Approximation, Reuse
[119] Repeated Activation Map Cross-Layer Similarity Reuse
[39] Repeated Activation Map Multiple Channels Similarity Reuse
[18] Repeated Activation Map Single Channel Learning Value Approximation, Reuse
[49] Irrelevant Neuron Multiple Channels Implicit Detection, Learning Skipping
[2, 73, 135] Irrelevant Neuron Multiple Channels Heuristic Skipping
[22, 143] Irrelevant Neuron Multiple Channels Learning Skipping
[54] Over-detailed Activation Map Multiple Channel Learning Skipping
[78] Irrelevant Neuron Multiple Channels Heuristic Skipping (Subset Selection)
[98] Irrelevant Neuron Cross-Layer Heuristic Skipping (Subset Selection)
[75] Irrelevant Neuron Multiple Channels, Cross-Layer Learning Skipping (Subset Selection)
[20, 24, 30] Over-detailed Activation Map Multiple Channels Projection Value Approximation
[27] Over-detailed Activation Map Multiple Channels Implicit Detection Skipping (Ad-hoc Sampling)
[52, 100] Irrelevant Patch/Tile Multiple Channels Learning Skipping (Subset Selection)

Video

[84] Irrelevant Activation Map Temporal Sequence Similarity Skipping
[15, 16] Irrelevant Neuron Temporal Sequence Similarity Skipping
[29] Over-detailed Patch/Tile Multiple Channels Learning Value Approximation
[162] Irrelevant Patch/Tile Multiple Channels Implicit Detection Skipping (Subset Selection)
[112] Repeated Patch/Tile Temporal Sequence Implicit Detection Skipping (Subset Selection)
[4, 94, 154, 156, 160] Over-detailed Activation Map Temporal Sequence Learning Skipping (Subset Selection)
[142] Over-detailed Batch or Sequence Temporal Sequence Learning Skipping (Subset Selection)
[167–169] Repeated Activation Map Temporal Sequence Implicit Detection Reuse (Temporal Propagation)
[86, 87] Repeated Activation Map Temporal Sequence Implicit Detection Reuse (Temporal Propagation)
[21] Repeated Activation Map Temporal Sequence Implicit Detection Reuse (Temporal Propagation)
[165] Repeated Activation Map Temporal Sequence Implicit Detection Reuse (Temporal Propagation)

Text

[35, 108] Over-detailed Patch/Tile Activation Map Implicit Detection Skipping (Ad-hoc Sampling)
[58] Irrelevant Patch/Tile Activation Map Learning Skipping (Subset Selection)
[92] Repeated Patch/Tile Activation Map Similarity Reuse
[38] Repeated, Irrelevant Batch or Sequence Temporal Sequence, Cross-Layer Similarity Reuse, Skipping (Subset Selection)

section groups the relevant studies at a high level based on the types of redundancy they mainly
target: repeated information, irrelevant information, and over-detailed information. The discussion of
each kind then divides the techniques to detect and handle data redundancy. Table 2 presents these
works by their applications (tasks) and reported performance for fast reference. The second column
(“Paper”) shows the references to the relevant papers; the third column (“Code”) shows the link
to the source code of the implementation; and the fourth column (“Key Idea”) briefly summarizes
the key idea of each work. The fifth column (“Performance”) summarizes the performance gains
by the data redundant optimization techniques.

4.1 Repeated Information

Due to the common coherence of data values in an image, image data often show a certain degree of
data locality along the spatial dimensions. The most common optimizations take advantage of the
value similarities among pixels. The initial motivation is to minimize the storage space of CNN’s
intermediate activation maps on a resource-constrained platform and reduce the data movements
between CPU and GPU and between processing units and memory. The optimizations also reduce
the number of computations and improve computation speeds.
Table (or cache) lookup [39, 68, 111, 114, 119, 125] and clustering [89, 116] are the most typical

approaches taken to discover and leverage repeated information in images.
To detect similarity among data points, the various techniques differ in the level of pixel

units used for the similarity detection, some at the level of bits [82, 111, 128], some at the level
of pixels [125], patches (or tiles, sub-vectors) [68, 89, 116], or even entire feature maps as a
whole [39, 82, 114, 119]. Some use clustering with predefined distance metrics and thresholds to
identify the similarity between units, while others use hash functions like locality sensitive hash-
ing [116] or bloom filters [82]. RNSnet [128] utilizes a unique bit-handling technique that maps
the binary representation into the Residue Number System (RNS). Each binary representation
is divided by a modulus set; with the values represented by the corresponding modules and re-
minders, the technique efficiently identifies similar values. The method could be regarded as a
kind of hashing function.
After gathering similar data points, each bucket (or cluster) of the data is represented by usually

one or a few data points in the bucket. The determination of such representatives depends on the
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Table 2. Summary of Works on Image Data Redundancy

Application Paper Code Key Idea Performance
image classification [115, 116] N/A Deep Reuse clusters the sub-vectors in

activation maps by similarity and reuses
the cluster centroids’ computation
results

2.41×–3.64× speedup for AlexNet and
2.26×–3.35× for VGG-16 on GPU

[55] N/A Sparsify the activation maps 2.32× speedup on LeNet-5, 1.61× on
MobileNet-v1, 2.12× on Inception-v3,
1.77× on ResNet-18, and 1.94× on
ResNet-34

[119] N/A Use a feature map cache to reuse similar
feature maps’ computation results

Evaluated on AlexNet, GoogLeNet,
VGG-16, VGG-19, ResNet-50, and
ResNet-101, giving 1.06×–1.34×
average speedup

[49] [48] Perforated CNNs applies perforation
masks to skip pixels or patches on
activation maps

AlexNet with 2×–3.6× speedup on
CPU and 2×–4× on GPU; VGG-16
with 2×–4× speedup on CPU and
2×–4× on GPU; NIN [103] with
2.2×–4.2× speedup on CPU and
2.1×–3.5× on GPU

[2] N/A SnaPEA predicts the signs of activation
outputs earlier to skip potential zero
values that appear after the ReLU
activations

28% speedup and 16% energy reduc-
tion with no accuracy loss on CNNs
(AlexNet, GoogleLeNet, SqueezeNet,
VGGNet), without accuracy loss.
2.02×–3.59× speedup and 1.89×–
3.14× energy reduction with 3%
accuracy loss

[73] [72] Skip some neurons’ computation based
on Average Percentage of Zeros (APoZ)

2×–3× fewer parameters with no accu-
racy loss on LeNet and VGG-16

[135] [134] Zero activation predictor (ZAP) to
dynamically predict the zero-valued
outputs in the activation maps

38%–51% MAC reduction on AlexNet,
26.2%–44.5% on VGG-16, and
23.8%–34% on ResNet-18 on GPU
(Nvidia
Titan V)

[22] N/A Layer-by-layer neuron pruning 5.13× speedup on VGG-16 and 3×
speedup on ResNet-50 on GPU (Nvidia
Titan X (Pascal))

[143] N/A A spectral pruning method that
compresses the CNNs by using their
degrees of freedom

32%–55% FLOPs reduction on
ResNet-50

[54] [53] Use feature boosting and suppression
(FBS) to emphasize salient convolutional
channels and skip unimportant ones

5× speedup on VGG-16 and 2×
speedup on ResNet-18

[78] N/A Select neurons by the magnitude of their
average activations

2×–3× training speedup by employing
6×–10× fewer parameters on LeNet,
AlexNet, and VGG-16 on GPU (Nvidia
Titan X (Pascal))

[98] [97] Apply ranking on the neurons of DNNs
based on their contribution to the
inference accuracy

1×–6.7× speedup on LeNet-5,
AlexNet, and KWS [127] on GPU
(Nividia RTX 2080Ti (Turing) and
Jetson Nano)/CPU (x86 and ARM)

[75] [74] Propose to add a sparsity regularization
on neurons that guides the selection of
more informative neurons

ResNet-38 achieves 14% less FLOPs and
0.2% lower top-5 error than DenseNet-
121 on GPU

[30] N/A Propose splitting and overlap-and-add
operations for FFT-based CNNs to
eliminate computation redundancy on
activation maps

VGG-16 with single channel input
achieve over 3× speedup on FPGA
(Xilinx XC6VLX240T)

medical image segmentation
(3D-UNet)

[20] N/A Frequency Domain Compact 3D CNNs
(FDC3D) eliminating redundancy of 3D
convolution filters and feature maps by
converting them into the frequency
domain

2× speedup ratio on 3D-ResNet-18

(Continued)
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Table 2. Continued

Application Paper Code Key Idea Performance
object detection/recognition [52] N/A Use two networks to focus on the region

of interest on the input data
reducing the number of processed
pixels by 70% and the detection time
by over 50% on pedestrian detection
on GPU

[100] [99] The author implements a zoom network
with map attention decision (MAD) unit
that uses a selective vector to decide the
attention on neurons

78.1% mAP and 79.8% mAP compared
to SSD baseline on PASCAL with
76.8% mAP

[39] N/A A software-based memoization
technique that groups CNN’s layer
output into range-based clusters and
performs table lookup for similar
computations

3.5× speedup with YOLOv3-tiny and
22% energy consumption reduction on
CPU (Intel Core i5-7500, 4 cores,
3.40GHz)

image classification & object
detection/recognition

[27] [26] ViP leverages virtual pooling that
applies larger strides in the convolution
layer to reduce computation

VGG-16 with 2.1× (5.23× combined
model compression); Faster-RCNN
with 1.8× on GPU (Nvidia Titan X and
Jetson TX1)

[18] N/A Multi-LayerFeature Federation Network
(MuffNet) splits the activation maps of a
layer into several groups and shares the
group information with other layers
only once

WORK ON small models (under 45
MFLOPs); 0.3% better accuracy than
MobileNet with half of its cost.

image classification & video
action recognition

[24] [23] OctaveConv factorizes the activation
maps into high and low-frequency
groups and performs low-cost
information exchange and update

82.9% top-1 classification accuracy by
ResNet-152 with 22.2 GFLOPs on GPU
(Nvidia V100)

tasks (e.g., image classification, object detection) that the DNN performs. For a relatively simple
image classification task, if the number of buckets is enough to showcase the overall discrepancy
between predicted classes without hurting the training or inference accuracy, the representative
can be simply an average of data values in that bucket. To the extreme, when the dataset contains
a significant proportion of identical data samples, a representative is sometimes set as an arbitrary
data point taken from a bucket. The representative is used in place of the other issues in the bucket
during the CNN inference or training, such that similar computations can be avoided.
Representative work in this category is the Deep Reuse work by Ning and others [115, 116]. As

shown in Figure 2, the approach divides input images or activation maps into sub-vectors during
runtime. Based on their similarities, it clusters them into several buckets through efficient online
LSH-based clustering [56], with each cluster represented by its centroid. Besides handling repeated
information in a 2D scope, Deep Reuse also addresses the redundancy in data batches. Based on
the clustering results, Deep Reuse reduces a convolution to multiplications between a small ma-
trix formed by the clusters centroids and the filter matrix. The results are used to reconstruct
the full activation map through data duplications. Even with the online clustering overhead, the
work shows that the reuse of computation results yields an overall 1.77 − 2× speedup (up to 4.3×
layer-wise) with negligible accuracy loss and without model retraining. The method yields more
speedups when applied to CNN training in an adaptive manner [115].

A fundamental tradeoff facing the methods in this category is the accuracy and the amount of
computation reuse. It is determined by the aggressiveness in similarity-based clustering. For in-
stance, in the Deep Reuse work, the aggressiveness is determined by two hyper-parameters, the
length of a sub-vector in an activation map (granularity), and then the number of LSH hashing
vectors. As the appropriate values of the hyperparameters are data and model dependent, the pre-
vious work [116] employs some offline tuning process to select the values such that the accuracy
is not compromised. One of the directions worth some future explorations is to adapt the cluster-
ing method to data and models. For instance, in Deep Reuse, the hashing vectors are randomly
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Fig. 2. Illustration of sub-vector clustering in Deep Reuse. In a convolution layer, the activation maps of 2D
images are unfolded asx and aremultiplied byweightsW of corresponding filters.With sub-vector clustering,
x is first divided into sub-vectors and labeled with corresponding cluster ids. In the matrix multiplication,
only the representative of each cluster is used. Afterward, the output activation maps are re-constructed
with the representative results of each cluster. Figure adapted from Reference [116].

generated. If they can be learned from data for a given CNN, more aggressive clustering might be
possible without causing accuracy losses.

4.2 Irrelevant Information

4.2.1 Feature Pruning. Image data or intermediate activationmapsmay have unnecessary infor-
mation as well. For example, most well-trained CNNs can still maintain their prediction accuracy
when some pixels in the activation maps are removed. Subsequently, the skipped portion of the
data reduces the amount of computation and thus offers acceleration during inference or training.
We introduce some details about how the optimizations in this line identify these irrelevant values
at different scales and get rid of them while keeping the overall accuracy.
Hu et al. [73] identify many zeros in the activation of CNNs. They quantify the neurons to be

pruned based on the Average Percentage of Zeros (APoZ). APoZ is calculated on a per-layer basis
to measure the probability each fixed position appears to be zero-valued in validation data samples.
With the samemotivation, Akhlaghi et al. [2] and Piyasena et al. [123] propose detecting zero pixels
that may occur after the ReLU activations. It is by identifying the negative activations earlier us-
ing a low-cost approximation scheme since the negative values turn into zeros after going through
the ReLU layers. In particular, Akhlaghi et al. [2] construct SnaPEA with a runtime technique to
speculate on the convolution outputs’ sign before going through negative weights. The aggressive-
ness of the speculation is controlled by thresholding on parameters and the predefined associated
number of MAC operations that can maintain accuracy. The parameters are tuned offline within
the search space. Piyasena et al. [123] augment the CNN implementation with a lightweight ap-
proximation scheme that consists of ApproxConv and ReLupred stages. The two operations work
sequentially to handle the sign prediction on an approximate convolution computation.
A more direct way to remove irrelevant information is to assume the existence of redundancy

based on domain knowledge and prune the data or activation maps at different scales. Figurnov
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Fig. 3. Input-independent perforation masks in PerforatedCNNs. According to the paper, the mass layout is
for the AlexNet Conv2 layer. (a) Uniform perforation mask is N points chosen randomly without replace-
ment from the set Ω. (b)Grid perforation mask is a set of points I = a(1), . . . ,a(Kx ) ×b (1), . . . ,b (Ky) the
values of a(i), b(i) using the pseudorandom integer sequence generation scheme [59]. (c) Pooling structure

mask exploits the structure of the overlaps of pooling operators. Denote by A(x ,y) the number of times
the convolutional layer output is used in the pooling operators. The pooling structure mask is obtained by
picking top-N positions with the highest values of A(x ,y). (d) Impact mask estimates the impact of per-
foration of each position on the CNN loss function and then removes the least important positions. When
activation maps are computed, the coordinates of black pixels are skipped. Figures and description adapted
from Reference [49].

et al. [49] prune the data at pixel and patch level. The proposed mechanism inherits the idea of
the loop perforation technique in code optimization to skip certain spatial positions in images
for CNN classification inference. The selection of pixels to prune is random within a predefined
limited number of points. They exploit four input-independent perforation masks: Uniform mask,
Grid mask, Pooling Structure mask, and Impact mask, as shown in Figure 3. These masks are used to
confine the random point selected into corresponding patterns. Afterward, perforated CNN uses
interpolation to reconstruct the output feature maps. The CNN wights are retrained to adapt to
this optimization as well.
Aside from the pruning technique within the scope of a single activation map, irrelevant in-

formation can be addressed across the channel dimensions by, for instance, removing a set of
outside 2D feature maps. Specifically, Gao et al. [54] apply feature boosting and suppression by
formulating a channel saliency predictor. The predictor serves as an indicator to skip execution
at some feature maps at runtime. Chakraborty et al. [17] show that in a simple handwritten digit
recognition task, directly discarding redundant feature maps randomly before the full connection
does not affect the prediction accuracy much. On the same axis, Singh et al. [140] conduct a com-
prehensive analysis on pruning redundant activation maps in 1D CNN, SoundNet [5], at a per
map level. The pruned feature map selection is based on the following measurements: ANOVA-
based method [120], Entropy-based (DE) method [121], Cosine-similarity (CS) based method, and
a greedy algorithm for selection of feature maps based on KL divergence. Gaikwad et al. [50] ap-
ply the L2 norm to decide feature map importance in pruning feature maps of SqueezeNet [77].
Although the technique is not for image data, the selection criteria are worthy of being noted
under the context of irrelevancy elimination. Furthermore, multiple granularities of redundancy
can be handled at the same time. For example, Yu et al. [161] combine spatial and channel-wise
neuron pruning on activation maps. The criteria of what to be pruned are based on the attention
mechanism. The attention mechanism is trained with targeted dropout, enhancing inference time
robustness without accuracy loss after pruning.
Moreover, the optimizations can be classified by whether the irrelevancy is subject to

the input datasets or not. Namely, they are input-dependent or input-independent. Input-
dependent irrelevant information removal can be achieved by detecting data irrelevancy based on
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Fig. 4. The workflow of R-net andQ-net. Given a down-sampled image as input, the R-net generates an initial
accuracy gain (AG) map indicating the potential zoom-in accuracy gain of different regions (initial state).
The Q-net is applied iteratively on the AGmap to select regions. Once a region is selected, the AGmapwill be
updated to reflect the history of actions. Two parallel pipelines are used for the Q-net, each of which outputs
an action-reward map that corresponds to selecting zoom-in regions with a specific size. The map’s value
indicates the likelihood that the action will increase accuracy at a low cost. Action rewards from all maps
are considered to select the optimal zoom-in region at each iteration. The notation 128 × 15 × 20 : (7, 10)

means 128 convolution kernels with size 15 × 20, and stride of 7/10 in height/width. Each grid cell in the
output maps is given a unique color, and a bounding box of the same color is drawn on the image to denote
the corresponding zoom region size and location. Figure and description adapted from Reference [52].

statistical [54, 73, 140] or learning-based heuristic [2, 161], or estimation of values [123]. On the
contrary, input-independent approaches [17, 49] get rid of those irrelevant values by implicitly as-
suming them to appear randomly with a limit threshold in structural or non-structural manners.

4.2.2 Neuron or Feature Subset Selection. Another granularity used in feature map pruning is
the selection of neurons (or activation). It could be regarded as a feature selection process at the
value granularity. The neurons not chosen can be interpreted as ones being pruned. A subset of
activations is determined based on specific criteria in neuron selection. Lee et al. [98] apply ranking
on the neurons of DNNs based on their contribution to the inference accuracy. Huang et al. [75] add
a sparsity regularization on neurons to force some of them to become zeros and guide the selection
of more informative neurons without further tuning. Besides, Ibrokhimov et al. [78] propose the
technique that selects neurons based on the magnitude of their average activations and keeps only
the exact amount of the most minor activated neurons that work well. They report a reduction in
the total number of operations and corresponding speedups.

4.2.3 Dynamic Region of Interest. In object detection, dynamic zooming in [52, 100] of a partic-
ular region of interest can help reduce computations on irrelevant background information. Gao
et al. [52] present such a technique. They employ zoom-in accuracy gain regression network (R-net)
and zoom-in Q function network (Q-net). The R-net learns the correlation between coarse and fine
detection and predicts the accuracy gain for zooming in to a specific region. The Q-net learns via
reinforcement learning. It sequentially selects the optimal zoom locations and scales them corre-
spondingly by analyzing the new output of R-net and its history. In the inference phase, a down-
sampled image is input to the R-net and predicts the accuracy gain. The gain serves as an indicator
for theQ-net to select the target on regions to concentrate sequentially. The workflow is illustrated
in Figure 4. The mechanism reduces the total pixels in computation by over 50% and reduces the
average detection time by 25% on the Caltech Pedestrian Detection dataset. It also reduces the
pixels by 70% and obtains over 50% detection time reduction on the YFCC100M dataset.
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Fig. 5. Illustration of Octave Conv in the factorization of high and low spatial frequency. (a) Motivation. The
spatial frequency model for vision [11, 40] shows that raw images can be decomposed into a low and a high
spatial frequency part. (b) The output maps of a convolution layer can also be factorized and grouped by
their spatial frequency. (c) The proposed multifrequency feature representation stores the smoothly chang-
ing, low-frequency maps in a low-resolution tensor to reduce spatial redundancy. (d) The proposed Octave
Convolution operates directly on this representation. It updates the information for each group and further
enables information exchange between groups. Figures and descriptions adapted from Reference [24].

4.3 Over-detailed Information

Yet another direction in image data redundancy exploitation is eliminating over-detailed informa-
tion, represented by adaption to variant image resolutions, especially resolution lowering. Chen
et al. [24] propose Octave convolution (OctConv) (Figure 5) to leverage the spatial redundancy
and factorize the activation maps into high and low frequency (resolution) groups to save both
memory and computation cost. The operations at each layer enable the information to be ex-
changed within both groups during computation. It is implemented as a portable plug-and-play
convolution unit and can be applied together with a compressed model or optimization that re-
duces channel-wise redundancy. An OctConv-equipped ResNet-152 can achieve 82.9% top-1 clas-
sification accuracy on ImageNet with 22.2 GFLOPs.

ViP proposed by Chen et al. [27] also targets the spatial redundancy in feature maps. It takes
advantage of virtual pooling, as shown in Figure 6, such that the larger stride is used to ob-
tain a smaller feature map and at the same time save convolution computation. To recover the
output feature map dimension, linear interpolation is applied. ViP delivers 2.1× speedup with
less than 1.5% accuracy degradation in ImageNet classification on VGG16, and 1.8× speedup with
0.025 mAP degradation in PASCAL VOC object detection with Faster-RCNN. ViP also reduces
mobile GPU and CPU energy consumption by up to 55% and 70%, respectively.

5 LEVERAGE DATA REDUNDANCY IN DNN FOR VIDEOS

Existing DNN frameworks for video analysis are built on well-developed CNNs such as VGG [139]
or ResNet [65] and image-based object detection algorithms such as Faster-RCNN [126]. They
treat the video as a continuous input of images. Intuitively, the data redundancy in this line of
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Fig. 6. Illustration of virtual pooling [104]. By using a larger stride, it saves computation in conv layers and, to
recover the output size, it uses linear interpolation which is fast to compute. Figure and description adapted
from Reference [27].

Fig. 7. Illustration of the NoScope framework. NoScope is a system for accelerating neural network analysis
over videos via an inference-optimized model search. Given an input video, target object, and reference neu-
ral network, NoScope automatically searches for and trains a cascade of models–including difference detec-
tors and specialized networks–that can reproduce the binarized outputs of the reference network with high
accuracy–but up to three orders of magnitude faster. Figure and description adapted from Reference [84].

work, especially the duplication along the temporal axis, provides much room for performance
enhancement. DNN frameworks that leverage data redundancy in video data can be categorized
based on how they exploit redundancy. These techniques fall into the three categories listed in our
taxonomy (skipping, reuse, and approximation); this section groups themmore detailed to capture
the more complicated differences among the techniques. Table 3 shows the works with video data
redundancy exploitation by their applications.

5.1 Pruning

A way to avoid recomputing similar values across video frames is through skipping some of
them along the temporal dimension (or the batch dimension in 2D CNN). Kang et al. propose
NoScope [84] to optimize the processing of video querying. As shown in Figure 7, they insert a
difference detector and a specialized model with short-circuit evaluation that allows computation
reduction on almost identical neighboring frames in a video sequence.
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Table 3. Summary of Works on Video Data Redundancy

Application Paper Code Key Idea Performance
surveillance video
processing

[16] [13] CBInfer utilizes change-based
evaluation for CNNs to detect
redundant pixels on video tasks

Evaluated on a self-constructed 5-layer
CNN with input image size 871 × 541,
provides speedup 8.6× over the CUDA
baseline. Energy efficiency 10× higher
(328 GOp/s/W on Nvidia Jetson TX1)

[15] [14]
video object detection [29] N/A AdaScale trains a object detector and a

regressor to dynamically adjust the
optimal detector scale for video frames

Improve the speed by 25%; RFCN +
AdaS 20 fps; SeqNMS [64] + AdaS 16
fps; DFF [168] + AdaS 60 fps on GPU
(Nvidia GTX 1080Ti)

[21] N/A Scale-Time Lattice performs expensive
detection with fewer times and
propagates the results across scale and
time to balance the performance and
accuracy tradeoff

On ImageNet VID, the approach
achieves 79.6% at 20 fps or 79.0% at
62 fps on GPU

[165] [106] A convolutional LSTM to assist Single
Shot Detector (SSD) on refining feature
maps and reuse history information

15 fps with MobileNet-SSD on CPU

video object tracking [112] N/A CaTDeT applies a tracker to assist
refining intermediate feature maps for
better reuse

Constructed Res10a and Res10b as
proposal net, ResNet50 as refinement
net, giving 81.4% and 81.5% mAP with
MAC size 49.3 Gops and 29.3 Gops
respectively on GPU (Nvidia Titan X
(Maxwell))

[162] N/A Kill Two Bird with One Stone aggregates
moving objects as patch-of-interest to
construct a compact patch that skips
duplicate image patchs’ calculation

SSD with 300 × 300 subframe size at
13.7-24.2 fps and 500 × 500 subframe
size at 23.8–25.7 fps on GPU (Nvidia
Titan X)

temporal action
localization

[160] [159] An end-to-end model for temporal
action localization that generates
compact video representations

Requiring 2% or less frames.

[4] [3] Action Search uses LSTMs to predict
next search location from current
frame’s location and the history

Observing an average 17.3% of the
video 30.8% mAP on human activities
recognition

frame selection [156] N/A AdaFrame uses memory-augmented
LSTM to adaptively select relevant
frames for fast prediction

On FCVID [81] and ActivityNet
dataset, achieving the same
performance with only 8.21 and 8.65
frames, respectively.

[94] N/A SCSampler is a lightweight model for
clip sampling that invokes recognition
on only the most salient clips

Improve the state-of-art 3D CNN video
classification models (ResNet3D (R3D),
Mixed Convolutional Network (MC3),
and R(2+1)D [42]) on Sports1M by up
to 7% and reduces the computation
cost by more than 15× on GPU (32
Nvidia P100)

[84] [83] NoScope adopts a difference detector
and short-circuit evaluation on the
model that allows skipping identical
neighboring video frames

YOLOv2 with more than 30 fps and
less than 5% accuracy loss on GPU
(Nvidia P100)

action recognition [154] N/A The authors use gated recurrent units
(GRUs) and policy networks in
reinforcement learning to adjust video
sampling location per time step

79.1% mAP for ActivityNet-v1.3 on
YouTube Birds and 79.77% on YouTube
Cars on GPU (Nvidia Titan X)

streaming activity
recognition &
untrimmed video
activity detection

[142] N/A An active mechanism that prioritizes
frames and makes timely action
prediction

Achieving comparable accuracy on 32
fps and 64 fps CNN video classification
on CNNs

(Continued)
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Table 3. Continued

Application Paper Code Key Idea Performance
video object detection
& video semantic
segmentation

[169] [166] deep feature flow network (DFF)
propagates neighboring frames
information with a flow estimation
algorithm

20.25 fps and 73.1% mAP on
ResNet-101-R-FCN on GPU (Nvidia
K40)

[168] Assemble the appearance information
in consecutive frames

74.0% mAP and 76.3% mAP on
ResNet-50-R-FCN and
ResNet-101-R-FCN respectively on
GPU (Nvidia K40)

[167] A unified framework that includes the
above two techniques

77.8% mAP on ResNet-101-DCN on
GPU (Nvidia K40)

video object detection
& video object
localization

[86, 87] [85] Use LSTMs for temporal information
propagation in order to improve video
detection
accuracy

Evaluated on DeepID-Net [118] with
CRAFT [157] (pretrained
Faster-RCNN), offering 67.82% mAP
and 68.4% mAP on GPU (4 Nvidia
Titan X)

Fig. 8. Processing flow of the change-based convolution algorithm. Custom processing kernels are shown
in blue, processing steps using available libraries are shown in green, variables sharable among layers are
shown in yellow, and variables to be stored per layer are colored orange. The size and data type of the tensor
storing the intermediate results is indicated below each variable name. Figure and description adapted from
Reference [16].

The redundancy across continuous frames can also be addressed at the pixel level. Cavigelli et al.
propose CBinfer [15, 16], a change-based evaluation of CNN for video data recorded with a static
camera, to exploit the spatial-temporal sparsity of pixel changes. As shown in Figure 8, theymodify
each convolution layer to include an additional change detection mechanism and change indexes
extraction before the matrix multiplication. The output is updated with both non-changed output
pixels from the previous frame and changed output pixels calculated at this time. CBinfer achieves
an average speed-up of 8.6× over a cuDNN baseline on a realistic benchmark with a negligible
accuracy loss of less than 0.1% and no network retraining. The resulting energy efficiency is 10×
higher than per-frame evaluation and reaches an equivalent of 328GOp/s/W on the Nvidia Tegra
X1 platform.

5.2 Approximate Representation

Regional re-scaling is a type of approximate representation. Chin et al. propose AdaScale [29]
that exploits the potential benefit bought by adaptive image scaling. They resort to image down-
sampling to realize performance improvement on both accuracy and speedup for video ob-
ject detection. To accomplish this, AdaScale adopts an object detector to generate the optimal
scale labels for images carried out by a learning-based method. The generated optimal scale is
later used to train the scale regressor that dynamically re-scales the image. The visualization
of the effect is shown in Figure 9. When the images are down-sampled, they are supposed to
reduce the number of false positives introduced by overly detail-oriented messages, which in
turn dismiss the redundancy. The image scaling increases the number of true positives by turn-
ing the objects too large to smaller ones for the detector to be more confident. For ImageNet VID
and mini YouTube-BB datasets, AdaScale demonstrates 1.3% and 2.7% mAP improvement with
1.6× and 1.8× speedup respectively. The framework can also work complementary with video
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Fig. 9. AdaScale detection result visualization. Examples where down-sampled images have better detection
results. Blue boxes are the detection results, and the numbers are the confidence. The detector is trained
on a single scale (pixels of the shortest side) of 600. Column (a) and (c) are tested at scale of 600. Col-
umn (b) is tested at scale 240, and column (d) is tested at scale 480. Figures and descriptions adapted from
Reference [29].

Fig. 10. Patch-of-Interest composition. (a) The input image. (b) Detected patches. (c) The patch composition
(left) and sub-frames(right). (d) Detection results on sub-frames. (e) Map back and get the final result on the
original image. Figures and descriptions adapted from Reference [162].

acceleration work [169], of which they experience a speedup gain by 25% and a slight mAP boost
on the ImageNet VID dataset.

5.3 Subset Selection

Subset selection is for obtaining a subgroup of potentially representative video frames or corre-
sponding feature maps. These techniques adopt a variety of dimensions in preference, from the
spatial to the temporal, batch, and streaming.

5.3.1 Selection in the Spatial Dimension.

Patch-of-Interest. Zhang et al. [162] propose Kill Two Birds with One Stone to aggregate patch-of-
interest (usually themoving object within images) for construction of a compact patch composition
for video object detection as shown in Figure 10. In the detection steps, the parts of the spatial di-
mension data patches are eliminated to save unnecessary computation. The set of patch-of-interest
is mapped back by their numbers and location offsets to reconstruct the final result.

Patch Refinement. Mao et al. [112] present CaTDeT (Cascaded Tracking Detector), which ap-
plies a tracker as assistance for refining intermediate feature maps in video object detection. The
illustration of the algorithm is shown in Figure 11. The tracker provides information on the region
of interest based on historical detection. It reduces the operation count by 5.1× to 8.7× with a
slight delay.
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Fig. 11. Illustration of algorithm flow in CaTDeT. Compare the inference-time workflows of the standard
Faster R-CNN model and the refinement network. (a) Standard Faster R-CNN detector: the RPN takes the
featuremaps from the feature extractor. (b) Faster R-CNN detector for the refinement network: the proposals
from the proposal network and the tracker instruct the feature extractor only to compute features on regions
of interest. Regions of interest are a mask of all proposals over the frame. Figures and descriptions adapted
from Reference [112].

5.3.2 Selection in the Temporal Dimension. Korbar et al. propose SCSampler [94], a lightweight
model for clip sampling that can invoke recognition on only the most salient clips. The paper tar-
gets scenarios where the videos are untrimmed and long. They aim to reduce the high inference
cost when every clip is executed on the clip classifier. They apply both visual and audio samplers
and combine their saliency for prediction. The visual sampler proposes a learning-based clip-level
saliency model that provides each clip a saliency score between [0,1]. In particular, the model takes
the input clip features that are fast to compute from the raw clip and have low dimensionality
(lower than that of the classifier) to analyze each clip very efficiently. The clips with top-K saliency
scores are extracted with features by the classifier and aggregated together to form the representa-
tion for prediction. The sampler learning phase labels a saliency score of video with 1 if the action
is contained in that clip; otherwise, it is labeled as 0. The approach elevates the accuracy of an
already state-of-the-art action classifier by 7% and reduces its computational cost by more than
15 times.

On the other hand, subset selection in the temporal dimension of the video can sometimes
help improve task accuracy. This work typically involves the addition of some sophisticated
mechanisms into the DNN. As a result, they often slow down the DNN rather than speed it up.
But their goal is on the accuracy of the outputs rather than speed. A class of the work uses re-
current Neural Networks, such as Long Short Term Memory networks (LSTM), for capturing
long-term dependencies in sequence data. They use them to generate compact video representa-
tions along with CNN activation maps [4, 156, 160]. They mimic the behavior of humans viewing
videos that often consist of a glimpse followed by several refinements. In addition, somework [154]
combines gated recurrent units (GRUs) and policy networks in reinforcement learning to adjust
video sampling location accordingly at each time step.

5.3.3 Selection in the Streaming Scenario. The selection in a streaming scenario is more chal-
lenging. For each selection, the mechanisms need to make decisions on future frames based on
historical records. Su et al. [142] introduce an active mechanism that prioritizes “which feature
to compute when” to make timely action predictions. The core idea is to learn a policy that dy-
namically schedules the sequence of features to compute on selected frames of a given test video.
The selection procedure can be invoked for either batch or streaming dimension. They formulate
the problem with a Markov decision process (MDP) to learn the feature prioritization policy.
The MDP sequentially selects frames with the most promising bag-of-objects or CNN features

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



Survey: Exploiting Data Redundancy for Optimization of Deep Learning 212:21

Fig. 12. Action spaces. Top: In batch, the whole video is divided into sub-volumes, and actions are defined
by the volume and object category to detect. Middle: In streaming, the video is divided into segments by the
buffer at each step, and actions are the object category to detect in the buffer plus a “skip” action. Bottom:
Our method learns a video-specific policy to select a sequence of valuable features to extract dynamically.
Figure and description adapted from Reference [142].

that can improve accuracy when combined with accumulated history results. Figure 12 illustrates
the action spaces explored in the mechanism. On two challenging datasets (Activities of Daily Liv-
ing [122] and UCF-101 [141]), their method provides significantly better accuracy than previous
techniques under given computational budgets on two challenging datasets (Activities of Daily
Living and UCF-101).

5.4 Temporal Propagation

The neighboring frames in a video usually show some inherent continuity. In this type of optimiza-
tion, the intermediate computation results of adjacent video frames such as featuremaps, bounding
boxes, or classification probability and confidence are propagated along the temporal dimension
to reduce the need for re-computation on similar contents. Usually, some key frames are chosen,
and the results are propagated from them to other frames. The optimizations are different in the
representations used in propagation and update. The representations of frame features include Op-
tical Flow, Motion History Image (MHI), and Convolutional LSTMs. To clarify, in Convolutional
LSTMs, frames are represented in normal CNN feature maps, but the corresponding information
is updated via LSTM networks.

5.4.1 Using Optical flow. Zhu et al. [169] propose a deep feature flow network (DFF). In DFF,
neighboring frames are propagated with feature maps via a flow field for partial updates. The up-
dates are obtained by a flow estimation algorithm like SIFT Flow [105] or FlowNet [41]. Figure 13
shows how information is propagatedwithin neighboring frames. Compared to re-computing each
frame through convolution layers, DFF is 10× faster with only a few percent accuracy loss. Sub-
sequently, the team comes up with the flow-guided feature aggregation (FGFA) [168] that as-
sociates and assembles the rich appearance information in consecutive frames to improve feature
representation and accuracy. Afterward, the authors unify the solutions into a common frame-
work [167], and achieve 77.8% mAP score at a speed of 15.22 frame per second for video object
detection.
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Fig. 13. Illustration of temporal propagation in deep feature flow. (a) Video recognition using per-frame net-
work evaluation. (b) The proposed deep feature flow. Figures and descriptions adapted from Reference [169].

Kang et al. [87] leverage motion-guided propagation for minor temporal information refine-
ment across adjacent frames. The assistance of temporal information reduces the potential false
negatives prediction when frames are processed per frame.

5.4.2 Using Motion History Image. Unlike previous approaches that propagate key frames in-
formation at fixed intervals, Chen et al. [21] propose Scale-Time Lattice that selects the key frames
adaptively. The Scale-Time Lattice is a directed acyclic graph as shown in Figure 14. Inside the
graph, the node stands for the bounding box detection result at a particular spatial resolution and
time point; the edge represents an operation that performs temporal propagation or spatial re-
finement. During the execution, given a video input, the framework first applies expensive object
detectors to the key frames selected sparsely and adaptively based on the object motion and scale.
Next, within the lattice, those bounding boxes are propagated to intermediate frames and refined
across scales (from coarse to fine) via cheaper networks. A Propagation Refinement Unit (PRU)

takes the detection results of two consecutive frames as input, propagates them to other frames,
and re-scales them. The authors adopt Motion History Image (MHI) [10] since the motion rep-
resentation computation is relatively cheaper than optical flows. Overall, the proposed method
yields 79.6 mAP at 20 FPS and 79.0 mAP at 62 FPS on ImageNet VID dataset.

5.4.3 Using Convolutional LSTMs. Liu et al. [165] argue that temporal cues can be efficiently
propagated through an LSTM network. The LSTM serves as an augmented structure to assist in
refining temporal context for the generated features of each frame in the video. In the presented
architecture in Figure 15, a hypothesis feature map for each frame is generated by the CNN feature
extractor and then fed into the LSTM to be fused with temporal context from previous frames. The
output for that frame is a temporally-aware refined feature map. The experiment integrates the
convolutional LSTMs with Single Shot Detector (SSD) [109] and provides a quick inference speed
with only 15 FPS on a mobile CPU.

Kang et al. [86] leverage LSTMs instead of bounding box proposal refinement in video ob-
ject recognition. The temporal information is propagated across each proposal tublet to improve
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Fig. 14. The Scale-Time Lattice, where each node represents the detection results at a specific scale and time
point, and each edge represents an operation from one node to another. In particular, the horizontal edges
(in blue color) represent the temporal propagation from one time step to the next, while the vertical edges (in
green color) represent the spatial refinement from low to high resolutions. Given a video, the image-based
detection is only done at sparsely chosen key frames, and the results are propagated along a pre-defined path
to the bottom row. The final results at the bottom cover all the time points. Figure and description adapted
from Reference [21].

Fig. 15. An example illustration of our joint LSTM-SSD model. Multiple Convolutional LSTM layers are in-
serted into the network. Each propagates and refines feature maps at a particular scale. Figure and descrip-
tion adapted from Reference [165].

accuracy. As shown in Figure 16, an encoder-decoder LSTM structure is placed after the Tublet Pro-
posal Network. It generates the output probability of each class label as a prediction result for each
proposal.

5.5 Data Redundancy based Optimizations on 3D CNNs

So far, we have discussed how the performance of 2D CNN is advanced with works that exploit
redundancy, especially at the temporal dimensionwhere contiguous frames involvemuch identical
information. Most of the optimizations are for the performance of video object detection, which
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Fig. 16. The proposed object detection system consists of two main parts. The first is a tubelet proposal
network to generate tubelet proposals efficiently. The tubelet proposal network extracts multi-frame features
within the spatial anchors, predicts the object motion patterns relative to the spatial anchors, and generates
tubelet proposals. The gray box indicates the video clip, and different colors indicate the proposal process of
other spatial anchors. The second part is an encoder-decoder CNN-LSTM network to extract tubelet features
and classify each proposal box into different classes. The tubelet features are first fed into the encoder LSTM
by a forward pass to capture the appearance features of the entire sequence. Then the states are copied
to the decoder LSTM for a backward pass with the tubelet features. The encoder-decoder LSTM processes
the whole clip before outputting class probabilities for each frame. Figure and description reference adapted
from Reference [86].

is rather heavy on computation as the DNN has an additional region proposal phase. Still, some
DNNs enable the analytical capability for videos with either 3D CNN [80, 145] or two-stream
models [88, 138]. Unlike how 2D CNN is operated on video data, 3D CNN can end-to-end training
and inference on videos. It is augmented with capturing semantics along the temporal dimension
using stridden convolution filters.
Redundancy removal on video data for 3D CNN has been less explored at software-based opti-

mizations. Some works [12, 93] propose to analyze the potential redundancy of the underlying
network structures by progressively expanding the operator dimension from a 2D CNN basis.
For example, Feichtenhofer et al. [46] explore the 2D to 3D extension by considering the neces-
sity of parameters or data in multiple dimensions. These include frame rate under fixed duration,
temporal duration, spatial resolution, number of layers per residual stage, number of channels,
and inner channel width in a residual block. These initiatives introduce another angle of viewing
data redundancy on video DNNs. Future works offer prospective clues for advancing redundancy
removal-based algorithms on deep models.
Still, existing works [19, 44, 67, 132, 149, 151, 152] have developed performance optimizations

for 3D CNN that extend the fruitful efforts on the 2D CNN counterparts in hardware-based opti-
mizations. The promising outcomes lie in that computation along the temporal dimensions is only
required on the deltas (value differences) between adjacent video frames. They effectively alleviate
the memory consumption and inference time bottleneck on resource-constraint devices.

6 LEVERAGE DATA REDUNDANCY IN TRANSFORMER OPTIMIZATION FOR TEXT

Text-based redundancy optimization can be applied to Recurrent Neural Networks (RNNs),
the widely used deep learning model for texts before the invention of the Transformer-based
model. Guan et al. [60] propose to leverage context-free grammar (CFG) and a hierarchical
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Table 4. Summary of Works on Text Data Redundancy

Application Paper Code Key Idea Performance

text summarization [108] [107] T-DMCA is a modified multi-head

self-attention structure to reduce the

memory footprint in self-attention layers

possible to learn on sequence length of 12,000 on

GPU (Nvidia P100)

text classification [35] [34] Funnel-Transformer augments the

transformer model with an encoder to

gradually pooled the representation to

reduce the sequence-length of the hidden

states as the layer goes deeper

1.3×–1.5× speedup on GPU/TPU

[58] [57] PoWER-BERT applies extract layers and

learning-based retention configuration to

retain only the key embedding vectors in

the transformer model

4.5× speedup on BERT-base models (6.8× with

ALBERT) on GPU (Nvidia K80)

[38] [36] Exploit LayerSelector (LS) and Correlation

Clustering Feature Selection (CCFS) to select

the essence layers and features for

transformer models

Evaluated on BERT and XLNET. Reduce

forward pass parameters up to 47%. Reduce

feature set to 4% (sequence labeling), <1%

(sequence classification) on GPU (Nvidia Titan

X)

question answering [92] [91] Propose Locality-sensitive Hashing

Attention and Reversible Transformer to

address data redundancy

Attention speed can maintain as low as 0.1–0.5

seconds per step when sequence length per

batch scale from 32 to 32768s (base-line is 0.2–5

seconds per step) on GPU/TPU

compression algorithm to squeeze the repeated contexts in sequence prediction tasks. The op-
timization accelerates RNN inference up to a thousand times and expends the prediction scope
without losing task accuracy. Similar optimization insights can be found in many recent Trans-
former models as well. Aside from reducing model execution time or increasing task-specific ac-
curacy, many data redundancy-based optimizations in Transformer models are initially motivated
by the need to scale up the capacity of the models. Each time, the model can only process a se-
quence limited in length (the number of token representations) for token-level text inputs, subject
to the hardware capability. The problem is especially crucial when it is necessary to process the
representations of a paragraph or an extended sequence at once. As a result, researchers have
systematically identified redundancy within the raw data or intermediate data representations to
scale the model correctly.
Unlike CNN optimizations which leverage data redundancy at input data or intermediate feature

maps between convolution layers, optimizations on Transformers can occur at different stages of
interim data representations. A sequence of text input to the transformer model goes through
several encoding phases, each capturing an extra level of meaning. The stages focus on the initial
sentences or sub-words input, the sub-words embeddings, the hidden states produced by positional
encoding, multi-head attention, or the encoder layer as a whole (multi-head attention and feed-
forward layer together). Data redundancy can exist in each of the phases. Existing studies leverage
the redundancy of various insights.
For the first stage, sub-word segmentation algorithms have been carried out with the motivation

to remove redundancy in text data. Byte-Pair Encoding (BPE) [131] is one such case. For the sec-
ond stage, redundancy may exist in input embeddings. Compression at the vector representation
of word embeddings was introduced long before the wide use of Transformer models [1, 25, 90].
For the remaining stages, there are optimizations that leverage redundancy at intermediate rep-
resentation, “hidden state” (a single sample output of a transformer layer; the unit is the same as
activation map in CNN), of the model in general. Optimizations that leverage data redundancy in
Transformer are classified based on how they exploit redundancy: clustering for reuse, skipping,
and other ad-hoc sampling techniques. Table 4 lists the surveyed work by their applications for
better reference.
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Fig. 17. Locality-sensitive hashing attention in Reformer. LSH Attention shows the hash-bucketing, sorting,
and chunking steps and the resulting causal attentions. (a–d) Attention matrices for these varieties of atten-
tion. Figures adapted from Reference [92].

6.1 Reuse via Clustering

Kitaev and Kaiser et al. propose Reformer [92] with two main contributions in improving the
transformer model: Locality-sensitive Hashing Attention and Reversible Transformer. In particular,
Locality-sensitive Hashing Attention tackles data redundancy with a specific function design. The
function uses an approximation in the scaled dot-product attention in a transformer model. The

scaled dot-product attention is defined as
QKT

√
dk
V , which Q , K , and V are the query, key, and value

matrices, respectively. The authors identify that the computation in the softmax function is dom-
inated by key-query pairs that are in proximity. It indicates the calculation can pay attention to
only a small subset of the closet key-query pairs. As exemplified in Figure 17, locality-sensitive
hashing (LSH) [56] is employed to first cluster the keys and queries into hash buckets. Queries
and keys in each bucket are sorted to form chunks to avoid sparsity in the attention matrix. After-
ward, the scaled dot-product attention is substituted by allowing multiplication only between pairs
in the same hash buckets (or in chunks in the attention matrix). Furthermore, the Locality-sensitive
Hashing Attention introduces amulti-round LSH attention that enables multiple rounds of hashing
to alleviate the problems that similar items may fall into different buckets after hashing. In the
decoder of the transformer model, a masking mechanism is implemented to re-order the position
indices by the same permutations that were previously applied to sort the key and query vectors.

6.2 Skipping

Output representations from attention layers in Transformer models have been recognized as con-
taining much redundant information [113, 147]. They have been addressed through ways of at-
tention head pruning [113, 147]. Recent studies have investigated the criteria for pruning neurons
(activations) in Transformermodels. Specifically, Gupta et al. [63] suggest neurons are to be pruned
when either the importance of that neuron is low or when the same activation multiplies with the
same weights. The neuron importance function [130] is defined on entropy, output-weights norm,
or the input-weights norm.
The hidden state of a sequence of word vectors may contain repetitive information themselves.

Goyal et al. [58] identify that the pair-wise cosine similarity between word vectors in hidden states
increases as layers go progressively deeper (encode by more phases). They propose PoWER-BERT
to exploit the redundancy to reduce the inference time of the BERT model in text classification
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Fig. 18. Illustration of PoWER-BERT. Word-vector selection over the first two encoders. Here, N = 6, l1 = 4

and l2 = 2. The first encoder eliminates twoword-vectorsw2 andw4with least significance scores; the second
encoder further eliminates word-vectorsw1 andw5. Figure and description adapted from Reference [58].

and regression tasks. As illustrated in Figure 18, PoWER-BERT uses an Extract Layer to manage
the retention configuration after the Self-Attention Layer and before the Feed Forward Network

(FFN) in each encoder layer of the Transformer model. The retention configuration can be set
manually or set with parameters from training. The model is trained with a loss function proposed
to obtain the learning-based design. This method avoids the exponential search space in retention
configuration. Furthermore, they employ two kinds of strategies to retain theword representations:
the static and the dynamic strategy. The static strategy keeps the word vectors at the same positions
across all input sequences in the dataset. The dynamic strategy retains the word vectors based on
the attention scoring and a soft-extract layer. In the experiment, they obtain a 4.5× inference
time acceleration over the baseline BERT model with less than 1% accuracy loss. The proposed
technique is also compatible with the compression scheme such as ALBERT [96]. The combination
of both compression methods achieves a 6.8× inference time reduction with less than 1% accuracy
loss.
Dalvi et al. [38] propose an efficient transfer learning method that exploits LayerSelector (LS)

and Correlation Clustering Feature Selection (CCFS) to select the essence layers and features
required during transformer model execution. There are three main steps in the selection: (1) Lay-
erSelector (LS) uses the layer-classifier to select the lowest layer that maintains oracle performance.
(2) Correlation Clustering filters out redundant neurons given the hidden state’s output of the pre-
vious layer. (3) Feature Selection (FS) selects a minimal set of neurons required to reach optimum
performance on the given task.
For the first step, the authors analyze task-specific layer-level redundancy by training linear

probing classifiers [7, 133] on each layer li as layer-classifier. They use the layer-classifier to se-
lect the lowest layer that maintains oracle performance (maintaining 99% performance). In LS, a
concentration of all layers until the chosen layer is used.
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Fig. 19. Illustration of Pooling in Funnel-Transformer. The encoder on the left consists of several blocks of
consecutive Transformer layers. Within each block, the sequence length of the hidden states always remains
the same. But when going from a lower-level block to a higher-level block, the size of the hidden sequence is
reduced by performing a particular type of pooling along the sequence dimension. The right part showcases
the up-sampling to re-construct the arrangement of the original length. Figure and description adapted from
Reference [35].

For the following two steps, the CCFS exploits data redundancy by a combination of clustering
and subset selection:

• Correlation Clustering (CC) [6]: For every length-N sequence vector representation, the
product-moment correlation between each of the two features is calculated. This gives a
N -by-N matrix corr (x ,y) representing the correlation between f x and f y. The correlation
value ranges from −1 to 1, which provides a relative scale to compare any two neurons. The
distance metric cdist (x ,y) between these two features is defined by 1− |corr (x ,y) |. A hyper-
parameter ct defines the maximum distance between any two features to be considered as a
cluster.
• Feature Selection (FS): It identifies a minimal set of neurons that match the oracle perfor-
mance. The Linguistic Correlation Analysis [37] ranks the neurons concerning a downstream
task.

Overall, the work finds out that up to 85% and 95% neurons are redundant in BERT and XL-
Net [158], respectively. In the experiment, the proposed method accelerates sequence labeling
tasks by 2.8× and 6.2× on BERT and XLNet, respectively. While for sequence classification tasks,
the average speedups are 1.1× and 2.8× correspondingly.

6.3 Other Sampling

Humans implicitly use prior linguistic knowledge to merge nearby tokens or words in paragraphs.
This, in turn, forms more extensive semantic phrases or units to understand sentences or para-
graphs in a general form. Inspired by that, Dai et al. [35] have proposed Funnel-Transformer. As
shown in Figure 19, the Funnel-Transformer is equipped with an additional encoder to gradually
pool the representation to reduce the sequence length of the hidden states as the layer goes deeper.
The sub-modules have an extra residual connection and layer normalization operation in the Self-
Attention Layer and the Feed Forward Network (FFN) of the Transformer model. The decoder
is applied to reconstruct the full-sequence of representation when the token-level outputs are re-
quired, such as pretraining.
To achieve the generation of Wikipedia-styled summarization over multi-documents, Liu

et al. [108] introduce a compressive scheme for long text sequences. The Transformer Decoder
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Fig. 20. Transformer Decoder with Memory-Compressed Attention(T-DMCA). Every attention layer takes
a sequence of tokens as input and produces a sequence of similar length as the output. Left: Original self-
attention as used in the transformer decoder.Middle:Memory-compressed attention, which reduces the num-
ber of keys/values. Right: Local attention, which splits the sequence into individual smaller sub-sequences.
The sub-sequences are then merged to get the final output sequence. Figure and reference adapted from
Reference [108].

with Memory-Compressed Attention(T-DMCA) is a modified multi-head self-attention struc-
ture to reduce the memory footprint via limiting the dot product between the query and key of a
Self-Attention Layer. The mechanism consists of the Memory-Compressed Attention and the Local
Attention as shown in Figure 20. The Memory-Compressed Attention reduces the number of keys
and values by using a stridden convolution (for sampling). The Local Attention divides a sequence
of tokens into blocks of similar length of tokens (they use 256 tokens) to allow constant atten-
tion memory cost per block regardless of sequence length. After feeding the sub-sequence to their
correspondingMulti-head Attention to capture local information, the method merges the results to
get the final output sequence. For both Local and Memory-Compressed Attention, masking is cast
to prevent the queries from attending to future keys and values. Finally, the design enables the
model to process 3×-longer sequences than the default model.

7 FUTURE RESEARCH DIRECTIONS

Themany previous studies have clearly shown the significant benefits of exploitation of data redun-
dancy in Deep Learning. In creating the summary of the many explorations from various aspects,
we have recognized the broad coverage of the existing innovations, but at the same, observed some
open problems and several research directions worth pursuing in the future.
(i) Principled understanding of the relations between data redundancy exploitation

and accuracy. Data redundancy exploitation could cause changes in the output of a DNN be-
cause the removed data are often not guaranteed to be redundant. In most cases, it faces the risks
of degrading the accuracy, but in some cases, as mentioned earlier [29, 94, 142], it may also improve
the accuracy for its noise removal effects. There is a lack of principled understanding of how data
redundancy elimination affects model accuracy. The accuracy of a DNN model can be affected by
existing variance related to data. Dataset itself may already contain bias over DNN models [144].
Data preprocessing, such as data augmentation [33, 136], makes the discussion even more compli-
cated. Previous work has either resorted to empirical tuning to reach a satisfying point or used
some heuristic methods to rate the salience of some data. An open question is how to achieve a
principled understanding of the impact and transform the knowledge into principled data redun-
dancy exploitation techniques. Some rigorous studies may help.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



212:30 J.-A. Chen et al.

(ii) Enhancing interpretability. Related to the first direction, the second direction that may
be worth exploring is interpretability, which refers to both the interpretability of neuron represen-
tation and the interpretability of DNN in general. Utilizing evidence in data redundancy has led to
some initial success in improving the interpretability of CNN’s feature representation, contributing
to the CNN model pruning processes. For example, Li et al. [102] propose a kernel sparsity and

entropy indicator (KSE) to quantify the importance of each pixel in the activation map to provide
feature-agonistic guidance in weight compression. Identifications of data redundancy also benefit
the interpretation of the importance of each word in text processing. For example, Dalvi et al. [37]
present Linguistic Correlation Analysis and Cross-model Correlation Analysis to recognize the rel-
ative importance of a neuron in a Transformer model. Their method offers an ablation view on
the saliency of words in the paragraphs to guide future representation development. These several
studies show some promise in exploring data redundancy for the interpretability of deep learning.
As interpretability is important for connecting Deep Learning with domain understanding, more
efforts are worthwhile to develop further.
(iii) Other data types and models. A large portion of the prior work on data redundancy is

about image and video data. There is still some room left for more explorations on these data types.
An example is learning from point cloud [62] where data redundancy has not yet been explored.
But in comparison to images and videos, redundancy in text data is much less explored, as Trans-
former is more recently developed than the more mature models used in images and videos. More
explorations are especially in demand to better understand data redundancy in texts. Moreover,
besides the three types of data, there are other types of data on which DNN is also playing an im-
portant role. These data include graphs, scientific simulation results, genes, computer programs,
and so on. Correspondingly, the special properties of these data have prompted the development of
some new DNN models, such as Graph Convolutional Networks (GCN) [155]. The differences
in data properties, DNN models, and learning tasks suggest that some research could be fruitful in
understanding and exploiting data redundancy in these areas.
(iv) Relations among optimizations and systematic solutions. One of the questions that

has not received much attention is the relations among the many kinds of optimizations on data re-
dundancy elimination, as well as their relations with model optimizations. On images, for instance,
as Section 4 and Table 1 show, there are manyways to exploit data redundancy from various angles.
Can these optimizations be used together? Is it worth doing that? Would there be some conflicts
besides that they may all affect the model accuracy? How to use them together in the best way?
More ambitiously, is it possible to build up frameworks that automatically apply one or more kinds
of data redundancy exploitation techniques on a given dataset and learning task? How about the
interplay with model optimizations? Answers to these questions may significantly advance the
current understanding of data redundancy exploitation and tap into the potential better.
(v) Synergy with DNN accelerator designs. Yet another direction worth looking into is the

synergy between the many data redundancy exploitation techniques and DNN hardware designs.
In modern application-specific integrated circuit (ASIC) design, dataflow analysis [8, 79, 95]
has been recognized as a crucial consideration. Some work on edge devices has tried to address
memory capacity issues by exploiting data redundancy (e.g., through data compression) [44, 67, 68,
114, 128, 132, 149, 151, 152]. But in general, there is no systematic understanding of the relations of
the many data redundancy exploitation techniques and the designs of DNN hardware accelerators.
On the one hand, do those techniques stay profitable when DNN runs on hardware accelerators?
On the other hand, can hardware accelerator designs gain some efficiency benefits by adopting
some of the ideas in those techniques? Answers to these questions could lead to the novel synergy
between the two strands of efforts.
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8 CONCLUSION

Machine learning is based on two pillars, models and data. As an essential part of deep learning,
data plays an important role. Making the best use of data determines the quality, speed, efficiency,
and interpretability of machine learning. This survey summarizes the efforts in the research com-
munity in detecting and leveraging data redundancy in a variety of dimensions, introduces the
first known taxonomy to categorize the existing techniques, and points out a set of directions yet
to explore. As the landscape of machine learning evolves continuously at an unprecedented speed,
we hope that this survey can provide a one-stop resource for researchers to attain a quick un-
derstanding of state-of-the-art and open issues, and hence benefit the industry practitioners and
research community in selecting existing solutions for solving a problem at hand or creating new
solutions to advance this critical field further.

REFERENCES

[1] Anish Acharya, Rahul Goel, Angeliki Metallinou, and Inderjit Dhillon. 2019. Online embedding compression for text

classification using low rank matrix factorization. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33. 6196–6203.

[2] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K. Gupta, and Hadi Esmaeilzadeh. 2018. SnaPEA:

Predictive early activation for reducing computation in deep convolutional neural networks. In Proceedings of the

45th ACM/IEEE Annual International Symposium on Computer Architecture (ISCA’18). 662–673.

[3] Humam Alwassel. 2017. GitHub. Action Search: Spotting Targets in Videos and Its Application to Temporal Action

Localization. https://github.com/HumamAlwassel/action-search.

[4] HumamAlwassel, FabianCabaHeilbron, and BernardGhanem. 2018. Action search: Spotting actions in videos and its

application to temporal action localization. In Proceedings of the European Conference on Computer Vision (ECCV’18).

251–266.

[5] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. 2016. SoundNet: Learning sound representations from unlabeled

video. In Advances in Neural Information Processing Systems. 892–900.

[6] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation clustering. Machine Learning 56, 1–3 (2004), 89–

113.

[7] Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. 2017. What do neural machine trans-

lationmodels learn about morphology? In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, Canada, 861–872.

[8] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider, and Torsten Hoefler. 2019. Stateful

dataflow multigraphs: A data-centric model for performance portability on heterogeneous architectures. In Proceed-

ings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–14.

[9] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. 2020. What is the state of neural

network pruning? Proceedings of Machine Learning and Systems 2 (2020), 129–146.

[10] Aaron F. Bobick and James W. Davis. 2001. The recognition of human movement using temporal templates. IEEE

Transactions on Pattern Analysis and Machine Intelligence 23, 3 (2001), 257–267.

[11] FergusW. Campbell and JohnG. Robson. 1968. Application of Fourier analysis to the visibility of gratings. The Journal

of Physiology 197, 3 (1968), 551.

[12] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? A new model and the kinetics dataset. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’17). 6299–6308.

[13] Lukas Cavigelli. 2017. Papers with Code. CBinfer: Change-Based Inference for Convolutional Neural Networks on

Video Data. https://paperswithcode.com/paper/cbinfer-change-based-inference-for.

[14] Lukas Cavigelli. 2018. Papers with Code. CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional Net-

work Inference on Video Streams. https://paperswithcode.com/paper/cbinfer-exploiting-frame-to-frame-locality.

[15] Lukas Cavigelli and Luca Benini. 2019. CBinfer: Exploiting frame-to-frame locality for faster convolutional network

inference on video streams. IEEE Transactions on Circuits and Systems for Video Technology 30, 5 (2019), 1451–1465.

[16] Lukas Cavigelli, Philippe Degen, and Luca Benini. 2017. CBinfer: Change-based inference for convolutional neural

networks on video data. In Proceedings of the 11th International Conference on Distributed Smart Cameras (Stanford,

CA, USA) (ICDSC’17). Association for Computing Machinery, New York, NY, USA, 1–8.

[17] Sinjan Chakraborty, Sayantan Paul, Ram Sarkar, and Mita Nasipuri. 2019. Feature map reduction in CNN for hand-

written digit recognition. In Recent Developments in Machine Learning and Data Analytics. Springer, 143–148.

[18] Hesen Chen, Ming Lin, Xiuyu Sun, Qian Qi, Hao Li, and Rong Jin. 2019. MuffNet: Multi-layer feature federation for

mobile deep learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 0–0.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



212:32 J.-A. Chen et al.

[19] Huixiang Chen, Mingcong Song, Jiechen Zhao, Yuting Dai, and Tao Li. 2019. 3D-based video recognition acceleration

by leveraging temporal locality. In Proceedings of the 46th ACM/IEEE Annual International Symposium on Computer

Architecture (ISCA’19). 79–90.

[20] Hanting Chen, Yunhe Wang, Han Shu, Yehui Tang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu.

2020. Frequency domain compact 3D convolutional neural networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR’20). 1641–1650.

[21] Kai Chen, Jiaqi Wang, Shuo Yang, Xingcheng Zhang, Yuanjun Xiong, Chen Change Loy, and Dahua Lin. 2018. Opti-

mizing video object detection via a scale-time lattice. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR’18). 7814–7823.

[22] Weijie Chen, Yuan Zhang, Di Xie, and Shiliang Pu. 2019. A layer decomposition-recomposition framework for neu-

ron pruning towards accurate lightweight networks. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33. 3355–3362.

[23] Yunpeng Chen. 2019. Papers with Code. Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Net-

works with Octave Convolution. https://paperswithcode.com/paper/drop-an-octave-reducing-spatial-redundancy-

in.

[24] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yannis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Jiashi

Feng. 2019. Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’19). 3435–3444.

[25] Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, and Zhi Jin. 2016. Compressing neural language models by sparse word

representations. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). Association for Computational Linguistics, Berlin, Germany, 226–235.

[26] Zhuo Chen. 2020. Papers with Code. ViP: Virtual Pooling for Accelerating CNN-based Image Classification and

Object Detection. https://paperswithcode.com/paper/vip-virtual-pooling-for-accelerating-cnn.

[27] Zhuo Chen, Jiyuan Zhang, Ruizhou Ding, and Diana Marculescu. 2020. ViP: Virtual pooling for accelerating CNN-

based image classification and object detection. In The IEEE Winter Conference on Applications of Computer Vision.

1180–1189.

[28] YuCheng, DuoWang, Pan Zhou, and Tao Zhang. 2018.Model compression and acceleration for deep neural networks:

The principles, progress, and challenges. IEEE Signal Processing Magazine 35, 1 (2018), 126–136.

[29] Ting-WuChin, Ruizhou Ding, and DianaMarculescu. 2019. AdaScale: Towards real-time video object detection using

adaptive scaling. In Proceedings of Machine Learning and Systems 2019. 431–441.

[30] Kamran Chitsaz, Mohsen Hajabdollahi, Nader Karimi, Shadrokh Samavi, and Shahram Shirani. 2020. Acceleration

of convolutional neural network using FFT-based split convolutions. arXiv preprint arXiv:2003.12621 (2020).

[31] Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani. 2020. A comprehensive survey

on model compression and acceleration. Artificial Intelligence Review (2020), 1–43.

[32] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What does BERT look at? An

analysis of BERT’s attention. In BlackBoxNLP@ACL.

[33] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. 2019. AutoAugment: Learning aug-

mentation strategies from data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR’19). 113–123.

[34] Zihang Dai. 2020. GitHub. Funnel-Transformer. https://github.com/laiguokun/Funnel-Transformer.

[35] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. 2020. Funnel-transformer: Filtering out sequential redundancy

for efficient language processing. In Advances in Neural Information Processing Systems.

[36] Fahim Dalvi. 2020. Papers with Code. Analyzing Redundancy in Pretrained Transformer Models. https://

paperswithcode.com/paper/exploiting-redundancy-in-pre-trained-language.

[37] FahimDalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass. 2019.What is one grain

of sand in the desert? Analyzing individual neurons in deep NLP models. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 33. 6309–6317.

[38] Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. 2020. Analyzing redundancy in pretrained trans-

formermodels. In Proceedings of the 2020 Conference on EmpiricalMethods in Natural Language Processing (EMNLP’20).

4908–4926.

[39] Rafael Fão de Moura, Paulo C. Santos, João Paulo C. de Lima, Marco A. Z. Alves, Antonio C. S. Beck, and Luigi Carro.

2019. Skipping CNN convolutions through efficient memoization. In International Conference on Embedded Computer

Systems. Springer, 65–76.

[40] Russell L. De Valois and Karen K. De Valois. 1980. Spatial vision. Annual Review of Psychology 31, 1 (1980), 309–341.

[41] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. 2015. FlowNet: Learning optical flow with convolutional networks.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’15). 2758–2766.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



Survey: Exploiting Data Redundancy for Optimization of Deep Learning 212:33

[42] Heng Wang Du Tran, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. 2017. A closer look at spa-

tiotemporal convolutions for action recognition. 2018 IEEE. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR’17). 6450–6459.

[43] Word Embedding. 2020. Retrieved from https://en.wikipedia.org/wiki/Word_embedding.

[44] Hongxiang Fan, Xinyu Niu, Qiang Liu, and Wayne Luk. 2017. F-C3D: FPGA-based 3-dimensional convolutional

neural network. In 2017 27th International Conference on Field Programmable Logic and Applications (FPL’17). IEEE,

1–4.

[45] Yang Fan, Fei Tian, TaoQin, Jiang Bian, and Tie-Yan Liu. 2017. Neural data filter for boot-strapping stochastic gradient

descent. In Proceedings of the 5th International Conference on Learning Representations (ICLR’17).

[46] Christoph Feichtenhofer. 2020. X3D: Expanding architectures for efficient video recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’20).

[47] Shuo Feng, Huiyu Zhou, and Hongbiao Dong. 2019. Using deep neural network with small dataset to predict material

defects. Materials & Design 162 (2019), 300–310.

[48] Michael Figurnov. 2016. GitHub. perforated-cnn-matconvnet. https://github.com/mfigurnov/perforated-cnn-

matconvnet.

[49] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P. Vetrov, and Pushmeet Kohli. 2016. PerforatedCNNs: Acceleration

through elimination of redundant convolutions. In Advances in Neural Information Processing Systems. 947–955.

[50] Akash Sunil Gaikwad andMohamed El-Sharkawy. 2019. Pruning the convolution neural network (SqueezeNet) based

on L 2 normalization of activation maps. In 2019 IEEE 9th Annual Computing and Communication Workshop and

Conference (CCWC’19). IEEE, 0392–0396.

[51] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan Sajjad, Preslav Nakov, Deming Chen,

and Marianne Winslett. 2021. Compressing large-scale transformer-based models: A case study on BERT. Transac-

tions of the Association for Computational Linguistics 9 (2021), 1061–1080.

[52] Mingfei Gao, Ruichi Yu, Ang Li, Vlad I. Morariu, and Larry S. Davis. 2018. Dynamic zoom-in network for fast object

detection in large images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR’18). 6926–6935.

[53] Xitong Gao. 2019. Papers with Code. Dynamic Channel Pruning: Feature Boosting and Suppression. https://

paperswithcode.com/paper/dynamic-channel-pruning-feature-boosting-and.

[54] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert D. Mullins, and Cheng-Zhong Xu. 2019. Dynamic channel pruning:

Feature boosting and suppression. In Proceedings of the 7th International Conference on Learning Representations

(ICLR’19).

[55] Georgios Georgiadis. 2019. Accelerating convolutional neural networks via activation map compression. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19). 7085–7095.

[56] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity search in high dimensions via hashing. In Pro-

ceedings of the 25th International Conference on Very Large Data Bases (VLDB’99). Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 518–529.

[57] Saurabh Goyal. 2020. Papers with Code. PoWER-BERT: Accelerating BERT Inference via Progressive Word-vector

Elimination. https://paperswithcode.com/paper/power-bert-accelerating-bert-inference-for.

[58] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabharwal, and Ashish

Verma. 2020. PoWER-BERT: Accelerating BERT inference via progressive word-vector elimination. In Proceedings of

the International Conference on Machine Learning, Vol. 119. 3690–3699.

[59] Benjamin Graham. 2014. Fractional max-pooling. CoRR abs/1412.6071 (2014).

[60] Hui Guan, Umang Chaudhary, Yuanchao Xu, Lin Ning, Lijun Zhang, and Xipeng Shen. 2021. Recurrent neural net-

works meet context-free grammar: Two birds with one stone. In 2021 IEEE International Conference on Data Mining

(ICDM’21). 1078–1083.

[61] Yunhui Guo. 2018. A survey on methods and theories of quantized neural networks. CoRR abs/1808.04752 (2018).

[62] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. 2020. Deep learning for 3D

point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).

[63] Manish Gupta, Vasudeva Varma, Sonam Damani, and Kedhar Nath Narahari. 2020. Compression of deep learning

models for NLP. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

3507–3508.

[64] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad Babaeizadeh, Honghui Shi, Jianan Li,

Shuicheng Yan, and Thomas S. Huang. 2016. Seq-NMS for video object detection. CoRR abs/1602.08465 (2016).

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’16). 770–778.

[66] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating very deep neural networks. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’17). 1389–1397.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



212:34 J.-A. Chen et al.

[67] Kartik Hegde, Rohit Agrawal, Yulun Yao, and Christopher W. Fletcher. 2018. Morph: Flexible acceleration for 3D

CNN-based video understanding. In Proceedings of the 51tst Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO’18). 933–946.

[68] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christopher Fletcher. 2018. UCNN:

Exploiting computational reuse in deep neural networks via weight repetition. In Proceedings of the 45th ACM/IEEE

Annual International Symposium on Computer Architecture (ISCA’18). 674–687.

[69] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014. Distilling the knowledge in a neural network. In Advances in

Neural Information Processing Systems Deep Learning Workshop.

[70] Zejiang Hou and Sun-Yuan Kung. 2020. A feature-map discriminant perspective for pruning deep neural networks.

CoRR abs/2005.13796 (2020).

[71] Zejiang Hou and Sun-Yuan Kung. 2020. Efficient image super resolution via channel discriminative deep neural

network pruning. In ICASSP 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’20).

IEEE, 3647–3651.

[72] Hengyuan Hu. 2016. Papers with Code. Network Trimming: A Data-Driven Neuron Pruning Approach Towards Ef-

ficient Deep Architectures. https://paperswithcode.com/paper/network-trimming-a-data-driven-neuron-pruning.

[73] HengyuanHu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016. Network trimming: A data-driven neuron pruning

approach towards efficient deep architectures. CoRR abs/1607.03250 (2016).

[74] Zehao Huang. 2018. Papers with Code. Data-Driven Sparse Structure Selection for Deep Neural Networks. https:

//paperswithcode.com/paper/data-driven-sparse-structure-selection-for.

[75] Zehao Huang and Naiyan Wang. 2018. Data-driven sparse structure selection for deep neural networks. In Proceed-

ings of the European Conference on Computer Vision (ECCV’18). 304–320.

[76] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized neural net-

works: Training neural networks with low precision weights and activations. The Journal of Machine Learning Re-

search 18, 1 (2017), 6869–6898.

[77] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt Keutzer. 2016.

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. CoRR abs/1602.07360 (2016).

[78] Bunyodbek Ibrokhimov, Cheonghwan Hur, and Sanggil Kang. 2020. Effective node selection technique towards

sparse learning. Applied Intelligence (2020).

[79] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler. 2021. Data movement is all you need:

A case study on optimizing transformers. In Proceedings of Machine Learning and Systems, Vol. 3. 711–732.

[80] S. Ji, W. Xu, M. Yang, and K. Yu. 2013. 3D convolutional neural networks for human action recognition. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 35, 1 (2013), 221–231.

[81] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-Fu Chang. 2017. Exploiting feature and class rela-

tionships in video categorization with regularized deep neural networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence 40, 2 (2017), 352–364.

[82] Xun Jiao, Vahideh Akhlaghi, Yu Jiang, and Rajesh K. Gupta. 2018. Energy-efficient neural networks using ap-

proximate computation reuse. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,

1223–1228.

[83] Daniel Kang. 2017. GitHub. NoScope. https://github.com/stanford-futuredata/noscope.

[84] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017. NoScope: Optimizing neural net-

work queries over video at scale. Proc. VLDB Endow. 10, 11 (Aug. 2017), 1586–1597.

[85] Kai Kang. 2017. GitHub. TPN: Tubelet Proposal Network. https://github.com/myfavouritekk/TPN.

[86] Kai Kang, Hongsheng Li, TongXiao,Wanli Ouyang, Junjie Yan, Xihui Liu, andXiaogangWang. 2017. Object detection

in videos with tubelet proposal networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR’17) (Jul. 2017).

[87] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui Wang,

Xiaogang Wang, et al. 2018. T-CNN: Tubelets with convolutional neural networks for object detection from videos.

IEEE Transactions on Circuits and Systems for Video Technology 28, 10 (Oct. 2018), 2896–2907.

[88] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. 2014. Large-

scale video classification with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR’14).

[89] Sangyeob Kim, Juhyoung Lee, Sanghoon Kang, Jinsu Lee, and Hoi-Jun Yoo. 2020. A power-efficient CNN accelerator

with similar feature skipping for face recognition in mobile devices. IEEE Transactions on Circuits and Systems I:

Regular Papers 67, 4 (2020), 1181–1193.

[90] Yeachan Kim, Kang-Min Kim, and SangKeun Lee. 2020. Adaptive compression of word embeddings. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics. 3950–3959.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



Survey: Exploiting Data Redundancy for Optimization of Deep Learning 212:35

[91] Nikita Kitaev. 2020. Papers with Code. Reformer: The Efficient Transformer. https://paperswithcode.com/paper/

reformer-the-efficient-transformer-1.

[92] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient transformer. In Proceedings of the

8th International Conference on Learning Representations (ICLR’20).

[93] Okan Kopuklu, Neslihan Kose, Ahmet Gunduz, and Gerhard Rigoll. 2019. Resource efficient 3D convolutional neural

networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.

[94] Bruno Korbar, Du Tran, and Lorenzo Torresani. 2019. SCSampler: Sampling salient clips from video for efficient

action recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’19). 6232–6242.

[95] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna.

2019. Understanding reuse, performance, and hardware cost of DNN dataflow: A data-centric approach. In Proceed-

ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (Columbus, OH, USA)

(MICRO’52). Association for Computing Machinery, New York, NY, USA, 754–768.

[96] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT:

A lite BERT for self-supervised learning of language representations. In Proceedings of the 8th International Conference

on Learning Representations (ICLR’20).

[97] Seulki Lee. 2020. GitHub. [RTAS 2020] SubFlow: A Dynamic Induced-Subgraph Strategy Toward Real-Time DNN

Inference and Training. https://github.com/learning1234embed/SubFlow.

[98] Seulki Lee and Shahriar Nirjon. 2020. SubFlow: A dynamic induced-subgraph strategy toward real-time DNN infer-

ence and training. In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’20). IEEE,

15–29.

[99] Hongyang Li. 2019. GitHub. Zoom-out-and-in Network for Region Proposal and Object Detection. https://github.

com/hli2020/zoom_network.

[100] Hongyang Li, Yu Liu, Wanli Ouyang, and Xiaogang Wang. 2019. Zoom out-and-in network with map attention

decision for region proposal and object detection. International Journal of Computer Vision 127, 3 (2019), 225–238.

[101] Hang Li, Chen Ma, Wei Xu, and Xue Liu. 2020. Feature statistics guided efficient filter pruning. In Proceedings of the

Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. International Joint Conferences on

Artificial Intelligence Organization, 2619–2625. https://doi.org/10.24963/ijcai.2020/363 Main track.

[102] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu, Feiyue Huang, and Ron-

grong Ji. 2019. Exploiting kernel sparsity and entropy for interpretable CNN compression. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19). 2800–2809.

[103] Min Lin, Qiang Chen, and Shuicheng Yan. 2014. Network in network. In Proceedings of the 2nd International Confer-

ence on Learning Representations (ICLR’14).

[104] LinkViz. 2020. Retrieved from https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-

keras-and-cats5cc01b214e59.

[105] Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T. Freeman. 2008. Sift flow: Dense correspondence

across different scenes. In Proceedings of the European Conference on Computer Vision (ECCV’08). 28–42.

[106] Mason Liu. 2017. Papers with Code. Mobile Video Object Detection with Temporally-Aware Feature Maps. https:

//paperswithcode.com/paper/mobile-video-object-detection-with-temporally.

[107] Peter J. Liu. 2018. Papers with Code. GeneratingWikipedia by Summarizing Long Sequences. https://paperswithcode.

com/paper/generating-wikipedia-by-summarizing-long.

[108] Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. 2018.

GeneratingWikipedia by summarizing long sequences. In Proceedings of the 6th International Conference on Learning

Representations (ICLR’18).

[109] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.

2016. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV’16).

Springer, 21–37.

[110] Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong. 2018. Frequency-domain dynamic pruning for convolu-

tional neural networks. In Advances in Neural Information Processing Systems. 1043–1053.

[111] DongningMa, Xunzhao Yin, Michael Niemier, X. SharonHu, and Xun Jiao. 2020. AxR-NN: Approximate computation

reuse for energy-efficient convolutional neural networks. In Proceedings of the 2020 on Great Lakes Symposium on

VLSI. 363–368.

[112] Huizi Mao, Taeyoung Kong, and Bill Dally. 2019. CaTDet: Cascaded tracked detector for efficient object detection

from video. In Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2,

2019. mlsys.org.

[113] Paul Michel, Omer Levy, and Graham Neubig. 2019. Are sixteen heads really better than one?. In Advances in Neural

Information Processing Systems. 14014–14024.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



212:36 J.-A. Chen et al.

[114] Luca Mocerino, Valerio Tenace, and Andrea Calimera. 2019. Energy-efficient convolutional neural networks via re-

current data reuse. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 848–853.

[115] L. Ning, H. Guan, and X. Shen. 2019. Adaptive deep reuse: Accelerating CNN training on the fly. In 2019 IEEE 35th

International Conference on Data Engineering (ICDE’19). 1538–1549.

[116] Lin Ning and Xipeng Shen. 2019. Deep reuse: Streamline CNN inference on the fly via coarse-grained computation

reuse. In Proceedings of the ACM International Conference on Supercomputing. 438–448.

[117] Definition of Redundancy by Oxford Dictionary. 2020. Retrieved from https://www.lexico.com/en/definition/

redundancy.

[118] Wanli Ouyang, Xiaogang Wang, Xingyu Zeng, Shi Qiu, Ping Luo, Yonglong Tian, Hongsheng Li, Shuo Yang, Zhe

Wang, Chen-Change Loy, and Xiaoou Tang. 2015. DeepID-Net: Deformable deep convolutional neural networks for

object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’15).

2403–2412.

[119] Keunyoung Park and Doo-Hyun Kim. 2019. Accelerating image classification using feature map similarity in convo-

lutional neural networks. Applied Sciences 9, 1 (2019), 108.

[120] W. Penny and R. Henson. 2006. Analysis of variance. Statistical Parametric Mapping: The Analysis of Functional Brain

Images (2006), 166–177.

[121] Fernando Pérez-Cruz. 2009. Estimation of information theoretic measures for continuous random variables. In Ad-

vances in Neural Information Processing Systems. 1257–1264.

[122] Hamed Pirsiavash and Deva Ramanan. 2012. Detecting activities of daily living in first-person camera views. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 2847–2854.

[123] Duvindu Piyasena, Rukshan Wickramasinghe, Debdeep Paul, Siew-Kei Lam, and Meiqing Wu. 2019. Reducing dy-

namic power in streaming CNN hardware accelerators by exploiting computational redundancies. In 2019 29th In-

ternational Conference on Field Programmable Logic and Applications (FPL). IEEE, 354–359.

[124] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. 2020. Binary neural networks:

A survey. Pattern Recognition (2020), 107281.

[125] Mohammad Samragh Razlighi, Mohsen Imani, Farinaz Koushanfar, and Tajana Rosing. 2017. LookNN: Neural net-

work with no multiplication. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE,

1775–1780.

[126] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection

with region proposal networks. In Advances in Neural Information Processing Systems, Vol. 28. Curran Associates,

Inc.

[127] Tara N. Sainath and Carolina Parada. 2015. Convolutional neural networks for small-footprint keyword spotting. In

Sixteenth Annual Conference of the International Speech Communication Association.

[128] Sahand Salamat, Mohsen Imani, Sarangh Gupta, and Tajana Rosing. 2018. RNSnet: In-memory neural network accel-

eration using residue number system. In 2018 IEEE International Conference on Rebooting Computing (ICRC’18). IEEE,

1–12.

[129] Kruttidipta Samal, MarilynWolf, and Saibal Mukhopadhyay. 2020. Attention-based activation pruning to reduce data

movement in real-time AI: A case-study on local motion planning in autonomous vehicles. IEEE Journal on Emerging

and Selected Topics in Circuits and Systems (2020).

[130] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT:

Smaller, faster, cheaper and lighter. In 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing

NeurIPS 2019.

[131] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword

units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Association for Computational Linguistics, Berlin, Germany, 1715–1725.

[132] Junzhong Shen, You Huang, Zelong Wang, Yuran Qiao, Mei Wen, and Chunyuan Zhang. 2018. Towards a uniform

template-based architecture for accelerating 2D and 3D CNNs on FPGA. In Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. 97–106.

[133] Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does string-based neural MT learn source syntax?. In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing. 1526–1534.

[134] Gil Shomron. 2019. GitHub. Thanks for Nothing: Predicting Zero-ValuedActivationswith Lightweight Convolutional

Neural Networks. https://github.com/gilshm/zap.

[135] Gil Shomron, Ron Banner, Moran Shkolnik, and Uri Weiser. 2020. Thanks for nothing: Predicting zero-valued activa-

tions with lightweight convolutional neural networks. In Proceedings of the European Conference on Computer Vision

(ECCV’20). Springer, 234–250.

[136] Connor Shorten and Taghi M. Khoshgoftaar. 2019. A survey on image data augmentation for deep learning. Journal

of Big Data 6, 1 (2019), 1–48.

[137] Taylor Simons and Dah-Jye Lee. 2019. A review of binarized neural networks. Electronics 8, 6 (2019), 661.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



Survey: Exploiting Data Redundancy for Optimization of Deep Learning 212:37

[138] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional networks for action recognition in videos.

In Advances in Neural Information Processing Systems. Curran Associates, Inc., 568–576.

[139] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

In Proceedings of the 3rd International Conference on Learning Representations (ICLR’15).

[140] Arshdeep Singh, Padmanabhan Rajan, and Arnav Bhavsar. 2019. Deep hidden analysis: A statistical framework

to prune feature maps. In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP’19). IEEE, 820–824.

[141] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101: A dataset of 101 human actions classes

from videos in the wild. CoRR abs/1212.0402 (2012).

[142] Yu-Chuan Su and Kristen Grauman. 2016. Leaving some stones unturned: Dynamic feature prioritization for activity

detection in streaming video. In European Conference on Computer Vision. Springer, 783–800.

[143] Taiji Suzuki, Hiroshi Abe, Tomoya Murata, Shingo Horiuchi, Kotaro Ito, Tokuma Wachi, So Hirai, Masatoshi Yuk-

ishima, and Tomoaki Nishimura. 2020. Spectral pruning: Compressing deep neural networks via spectral analysis

and its generalization error. In IJCAI.

[144] Antonio Torralba and Alexei A. Efros. 2011. Unbiased look at dataset bias. In CVPR 2011. IEEE, 1521–1528.

[145] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 2015. Learning spatiotemporal

features with 3D convolutional networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV’15). 4489–4497.

[146] Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, OzlemAslan, ShengjieWang, Rich Caruana, Abdelrahman

Mohamed, Matthai Philipose, and Matt Richardson. 2017. Do deep convolutional nets really need to be deep and

convolutional? In Proceedings of the 5th International Conference on Learning Representations (ICLR’17).

[147] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019. Analyzing multi-head self-attention:

Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, 5797–5808.

[148] Dong Wang, Lei Zhou, Xueni Zhang, Xiao Bai, and Jun Zhou. 2018. Exploring linear relationship in feature map

subspace for ConvNets compression. CoRR abs/1803.05729 (2018).

[149] Hai Wang, Mengjun Shao, Yan Liu, andWei Zhao. 2017. Enhanced efficiency 3D convolution based on optimal FPGA

accelerator. IEEE Access 5 (2017), 6909–6916.

[150] Ying Wang, Shengwen Liang, Huawei Li, and Xiaowei Li. 2019. A none-sparse inference accelerator that distills and

reuses the computation redundancy in CNNs. In Proceedings of the 56th Annual Design Automation Conference 2019.

1–6.

[151] YongchenWang, YingWang, Huawei Li, Cong Shi, and Xiaowei Li. 2019. Systolic cube: A spatial 3D CNN accelerator

architecture for low power video analysis. In Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[152] Ying Wang, Yongchen Wang, Cong Shi, Long Cheng, Huawei Li, and Xiaowei Li. 2020. An edge 3D CNN accelerator

for low power activity recognition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(2020).

[153] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao Xu. 2016. CNNpack: Packing convolutional neural net-

works in the frequency domain. In Advances in Neural Information Processing Systems. 253–261.

[154] WenhaoWu, Dongliang He, Xiao Tan, Shifeng Chen, and ShileiWen. 2019. Multi-agent reinforcement learning based

frame sampling for effective untrimmed video recognition. In Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV’19). 6222–6231.

[155] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu Philip. 2020. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems (2020).

[156] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S. Davis. 2019. AdaFrame: Adaptive frame

selection for fast video recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR’19). 1278–1287.

[157] Bin Yang, Junjie Yan, Zhen Lei, and Stan Z. Li. 2016. Craft objects from images. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR’16). 6043–6051.

[158] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R. Salakhutdinov, and Quoc V. Le. 2019. XLNet: Gener-

alized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems.

5753–5763.

[159] Serena Yeung. 2015. GitHub. End-to-end Learning of Action Detection from Frame Glimpses in Videos. https://github.

com/syyeung/frameglimpses.

[160] Serena Yeung, Olga Russakovsky, GregMori, and Li Fei-Fei. 2016. End-to-end learning of action detection from frame

glimpses in videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’16).

2678–2687.

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.



212:38 J.-A. Chen et al.

[161] Fuxun Yu, Chenchen Liu, Di Wang, Yanzhi Wang, and Xiang Chen. 2020. AntiDote: Attention-based dynamic opti-

mization for neural network runtime efficiency. In 2020 Design, Automation & Test in Europe Conference & Exhibition

(DATE’20). IEEE, 951–956.

[162] Shihao Zhang,Weiyao Lin, Ping Lu,Weihua Li, and Shuo Deng. 2017. Kill two birds with one stone: Boosting both ob-

ject detection accuracy and speed with adaptive patch-of-interest composition. In 2017 IEEE International Conference

on Multimedia & Expo Workshops (ICMEW’17). IEEE, 447–452.

[163] Jian Zheng, Wei Yang, and Xiaohua Li. 2017. Training data reduction in deep neural networks with partial mutual

information based feature selection and correlation matching based active learning. In 2017 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP’17). IEEE, 2362–2366.

[164] Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. 2019. Accelerate CNN via recursive Bayesian pruning. In Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’19). 3306–3315.

[165] Menglong Zhu and Mason Liu. 2018. Mobile video object detection with temporally-aware feature maps. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18). 5686–5695.

[166] Xizhou Zhu. 2017. Papers with Code. Towards High Performance Video Object Detection for Mobiles. https:

//paperswithcode.com/paper/towards-high-performance-video-object.

[167] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. 2018. Towards high performance video object detection. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18). 7210–7218.

[168] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Flow-guided feature aggregation for video

object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’17). 408–417.

[169] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Deep feature flow for video recognition. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’17). 2349–2358.

[170] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, QingyaoWu, Junzhou Huang, and Jinhui Zhu.

2018. Discrimination-aware channel pruning for deep neural networks. In Advances in Neural Information Processing

Systems. 875–886.

Received 3 November 2020; revised 21 February 2022; accepted 7 September 2022

ACM Computing Surveys, Vol. 55, No. 10, Article 212. Publication date: February 2023.


