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Abstract

Deepfakes represent the generation of synthetic/fake images or videos using deep neural networks. As the techniques used 

for the generation of deepfakes are improving, the threats including social media disinformation, defamation, impersona-

tion, and fraud are becoming more prevalent. The existing deepfakes detection models, including those that use convolution 

neural networks, do not generalize well when subjected to multiple deepfakes generation techniques and cross-corpora 

setting. Therefore, there is a need for the development of effective and efficient deepfakes detection methods. To explicitly 

model part-whole hierarchical relationships by using groups of neurons to encode visual entities and learn the relationships 

between real and fake artifacts, we propose a novel deep learning model efficient-capsule network (E-Cap Net) for classifying 

the facial images generated through different deepfakes generative techniques. More specifically, we introduce a low-cost 

max-feature-map (MFM) activation function in each primary capsule of our proposed E-Cap Net. The use of MFM activa-

tion enables our E-Cap Net to become light and robust as it suppresses the low activation neurons in each primary capsule. 

Performance of our approach is evaluated on two standard, largescale and diverse datasets i.e., Diverse Fake Face Dataset 

(DFFD) and FaceForensics++ (FF++), and also on the World Leaders Dataset (WLRD). Moreover, we also performed a 

cross-corpora evaluation to show the generalizability of our method for reliable deepfakes detection. The AUC of 99.99% 

on DFFD, 99.52% on FF++, and 98.31% on WLRD datasets indicate the effectiveness of our method for detecting the 

manipulated facial images generated via different deepfakes techniques.
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1 Introduction

Deepfakes refer to the generation of synthetic images or vid-

eos via deep neural networks. The term deepfake is a mix-

ture of two words, “deep learning” and “fake” [1] and origi-

nated after a Reddit user named “deepfakes”, who swapped 

celebrities’ faces in pornographic videos using deep learning 

techniques [2]. Autoencoders and generative adversarial net-

works (GANs) are the deep learning models that are mostly 

used to generate deepfakes with the aim of creating more 

realistic images or videos [2]. Deep learning models based 

on the autoencoders use the autoencoder–decoder pairing 

structure where autoencoders extract the latent features from 

the face images and decoders are used to reconstruct the 

images [3]. But, in GAN-based deep learning techniques, 

two models (named generative model and discriminative 

model) are trained simultaneously. The generative model 

also known as the generator is used to generate fake images 

whereas the discriminative model known as the discrimina-

tor plays the role of detecting the fake images generated via 

the generator. The objective of a generator (G) is to capture 

the data distribution while the discriminator (D) estimates 

the probability of whether the incoming data is either from 

the training or the sample from G [4]. The availability of a 

variety of deepfakes apps (including ReFace, FaceApp, Face 

Swap Live, DeepFace Lab) has made it easy even for the 

less tech-savvy people to generate the deepfakes. FakeApp 

introduced in 2017 was the first attempt at deepfake crea-

tion. ZAO is another app that can swap the user faces onto 
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movie star bodies and insert them into movies or TV clips 

[3]. Using the StyleGAN approach, the website [5] generates 

synthetic facial images with high-level realism. The com-

mercially available deepfakes applications enable everyone 

to generate fake images and videos, which has increased 

concerns about circulating disinformation on social media, 

defamation, frauds, and hoaxes [2]. Besides the drawbacks, 

deepfakes also have productive and creative benefits includ-

ing video dubbing of films, virtual try-on outfits, and educa-

tion via reanimating the historical characters [1]. However, 

the excessive malicious usages of deepfakes suppress its 

positivity [3]. Therefore, reliable detection of deepfakes is 

very important and necessitates the development of tools 

that can effectively detect deepfakes images.

Deepfakes can be categorized as (1) face swap, (2) entire 

face synthesis, (3) face attribute manipulation, and (4) 

expression swapping [2].

• In face swapping, fake images or videos are created by 

swapping the face of a person with another person in the 

target image or a video retaining the background, expres-

sions, and lighting [2]. The available models to create 

the swapped faces include FaceSwap [6], DeepFakes [7], 

and FaceShifter [8]. This type of manipulation can aid 

the film industry but can also be utilized for the wrong 

reasons such as financial fraud, hoaxes, etc. [3].

• Entire face synthesis includes the generation of realis-

tic non-existing faces with high quality and is generated 

using the GANs. Recently, the StyleGAN approach is 

introduced to generate high-quality synthetic facial 

images that have a high level of realism. Such manipu-

lation can be used for the creation of fake personas to 

spread disinformation on social media [1]. In the future, 

there exists a possibility that restoration methods such 

as GFP-GAN [9] can be used to suppress the appearance 

of forged content in GAN-generated images, thus, may 

make the detector job more difficult.

• In attribute manipulation, some face attributes (i.e., hair 

or skin color, gender, age, etc.) are modified. It is also 

known as face editing or retouching and can be used to 

try glasses, hairstyles, or makeup in a virtual environ-

ment [2].

• Expression swap involves the replacement of one per-

son’s facial expression with another in a video or image. 

An expression swap can be used to impersonate an iden-

tity as it allows one to animate the individual according 

to the attacker’s desires [1].

In the last few years, many researchers introduced the 

methods and approaches that can detect fake facial images 

generated through deepfakes techniques. Marra et al. [10] 

presented an incremental learning model that can discrimi-

nate new GANs generated images without degrading the 

performance of previous ones. The disadvantage of this 

model [10] is that it performs well when various GAN 

models are available in the training phase. OC-FakeDect 

introduced in [11] was a one-class classification model based 

on variational autoencoder (VAE). The model was trained 

only on the real images, whereas tested on both the real and 

fake facial images. This approach [11] is only evaluated on 

FaceForensics++ (FF++) dataset and can be extended for 

images generated via GANs. Yuyang et al. [12] introduced 

a frequency in face forgery network  (F3-Net) that learned 

forgery clues via frequency-aware decomposition (FAD) and 

then extracted unusual frequency statistics among real and 

fake images through local frequency statistics (LFS). FAD 

and LFS features were then gradually fused to a module 

named as MixBlock.  F3-Net was evaluated on a challeng-

ing FF++ dataset and achieved an accuracy of 90% on the 

low-quality images. Most of the existing works focused on 

the detection of some specific manipulation techniques to 

determine the trustworthiness of facial images but failed to 

generalize their models on cross-corpora evaluation. Fur-

thermore, most existing approaches for detecting deepfakes 

images are based on convolution neural networks (CNN) 

models and thus contain the drawbacks such as losing the 

features orientation and spatial information and not being 

equivariant, which means that CNNs cannot detect the 

images from different angles and rotated images if they are 

not trained on such images. Moreover, CNNs are unable 

to handle the Picasso problem (subject image with all the 

right components but not at the correct position) and often 

mislabeled such images.

The human brain analyzes the visual images through 

whole-part hierarchies such that it learns the features of 

the individual component and detects the orientation and 

relationship of the components in the whole subject image. 

To mimic the human brain’s learning, Capsule Networks 

have been proposed that build the whole-part hierarchies 

using the neurons to encode the part and learn the relation-

ship between the parts to detect the entire subject image, 

thus make the network interpretable and transparent. To 

address the aforementioned limitations of CNNs and exist-

ing deepfakes detection methods, we proposed a novel deep 

learning model efficient-capsule network (E-Cap Net) to 

efficiently and reliably detect the synthetic facial images 

generated through different deepfakes generative techniques. 

For shallow and deepfakes oriented synthetic facial images 

detection, the probability of object in the image and the 

orientation representing the parameters such as size, skin 

tone, object (i.e., nose, eyes, lips) orientation, and location 

in an image are important aspects that differentiate the fake 

face image from real one. In contrast to CNNs, our pro-

posed E-Cap Net has the ability to learn these aspects for 

the classification of synthetic facial images. E-Cap Net can 

detect the rotated images taken from different viewpoints 
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and also solves the Picasso problem. In our proposed model, 

we customized a capsule network and embedded a low-cost 

activation function max-feature-map (MFM) in its primary 

capsules. The embedded MFM activation function provides 

the compact representation of the features and enables our 

model to become light and computationally efficient. Moreo-

ver, our proposed model is capable of detecting multiple 

manipulation techniques including face swap, entire face 

synthesis, expression swapping, and face attribute manipu-

lation. We also evaluated our approach for binary and mul-

ticlass classification problems. The major contributions of 

this work are:

1. We propose a robust Efficient-Capsule deep learning 

model containing the low-cost MFM activation function 

for accurate detection of shallow and deepfakes oriented 

synthetic images.

2. Our proposed model detects multiple types of deep-

fakes and is robust against varied deepfakes generation 

algorithms, different illumination conditions, ethnicity, 

age, images captured from different viewpoints, rotated 

images, and the Picasso problem.

3. We performed extensive experimentation on multiple 

datasets (covering multiple types of deepfakes) and also 

showed the efficacy of the proposed model against the 

existing state-of-the-art methods.

4. We also conducted the cross-corpora evaluation to show 

the generalization aptitude of the proposed E-Cap Net 

while detecting the shallow and deepfakes oriented syn-

thetic images.

The remaining paper is organized as follows. In Sect. 2, 

we summarize the related work, while Sect. 3 presents our 

methodology for classifying the facial images either as real 

or fake. Experimental results are reported in Sect. 4. In 

Sect. 5, we provide the discussion. Finally, Sect. 6 presents 

the conclusion.

2  Related work

We reviewed the existing deepfake image detection tech-

niques in Sect. 2.1, while Sect. 2.2 outlines the deepfake 

video detection. We also highlighted the limitations of exist-

ing deepfakes detection methods to present the knowledge 

gap in deepfakes detection.

2.1  Fake images detection

Initially, handcrafted features were commonly used to detect 

the discrepancies and artifacts in the fake images/video’s 

synthesis process [2]. For example, Kim et al. [13] intro-

duced a method that used local speed pattern (LSP) features 

to train the SVM classifier to detect fake and real facial 

images. Similarly, Xiaoqing et al. [14] utilized the universal 

steganalytic features in order to detect the images altered 

by various image processing operations. The extraction of 

meaningful, distinctive, and most appropriate handcrafted 

features is a difficult task as these features are constructed 

by domain experts and demand strong domain knowledge.

With the evolution of CNN, many researchers have 

applied deep learning techniques to extract the salient fea-

tures automatically for image forensics. Bayar et al. [15] 

introduced convolution network architecture that detected 

different image manipulations and copy-editing operations 

without depending on the pre-selected features. In the same 

way, Rahmouni et al. [16] used a convolution network with 

a custom pooling layer to differentiate between the real and 

computer-generated visuals. The increasing use of CNNs 

has significantly enhanced the performance of deepfakes 

creation and detection, where models like autoencoders 

and GANs have made it possible to create photorealistic 

images and videos [17, 18]. In response to such photorealis-

tic manipulated content, efforts have been made to develop 

effective methods to detect face forgery in images/videos 

[2]. Mo et al. [19] presented a CNN-based model that can 

identify progressive growing GAN (PGGAN) generated fake 

images and achieved an accuracy of 99.4% on the image 

size of 256 × 256. The accuracy of this model decreases to 

96%, while reducing the image size to 128 × 128. Tariq et al. 

[20] introduced an ensemble ShallowNet classifier consist-

ing of shallow layers to detect the fake face images created 

via the GAN. This model [20] was evaluated on different 

image sizes and performed well on small image resolution 

i.e., 64 × 64. These GAN detection models [19, 20] show 

good results when tested on images that are homogeneous to 

the training set images. In other words, the generalizability 

of these models is unknown. Nataraj et al. [21] presented a 

model that detected the manipulated images by extracting 

pixel co-occurrence matrices and then passed them to the 

CNN. To show the generalizability of the model [21], cross-

validation was also performed. For this purpose, the cycle-

GAN images dataset (containing 35,302 images) was used to 

train the model, and then the trained model was tested on the 

StarGAN image dataset (containing 19,990 images) and vice 

versa. The lowest accuracy of 93.4% was attained with the 

model trained on the StarGAN image dataset as the classes 

were not uniformly distributed in the StarGAN dataset.

Besides the GAN-generated images dataset, researchers 

have also utilized other available datasets including FF++, 

DeepFake Detection, and Celeb-DF to evaluate their detec-

tion models. Zi et al. [22] presented an attention-based deep-

fake detection network ADDNet-2D for the detection of fake 

images. This model [22] consisted of ADD block followed 

by a 2D CNN network and a classification layer. Perfor-

mance of this model was evaluated on 6 datasets including 
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the DFD, DF-TIMIT (LQ, HQ), FF++ (LQ, HQ), and Wild-

Deepfake. The highest accuracy of 99.82% was achieved on 

the FF++ HQ dataset, whereas achieved the lowest accuracy 

of 76.25% on the WildDeepfake dataset [22]. This model 

[22] is only evaluated on the DeepFakes subset of the FF++ 

dataset. AMTENnet introduced in [23] was a combination 

of AMTEN and CNN for detecting the manipulated facial 

images. AMTEN performed the preprocessing task to high-

light discriminatory manipulated traces in the fake facial 

images. The manipulated traces were extracted by finding 

the difference between an input image and feature maps. 

Performance of this model [23] was evaluated on two data-

sets i.e., Hybrid Fake Face Dataset (HFF) and FF++. This 

work[23] performed the spatial filtering and lossy com-

pression on the HFF dataset and then cross-validated those 

images but did not perform the cross-corpora evaluation 

on different facial manipulation techniques to evaluate the 

generalizability of their model. For the detection of forgery 

in facial images, Li et al. [24] introduced a detector that 

used a face X-ray (grayscale image) to find the discrepan-

cies around the blending regions. The face X-ray detector is 

unable to perform well on the entire synthetic face as it relies 

on the presence of blending [24].

2.2  Fake videos detection

The detection methods used to identify fake images are not 

adequate to expose fake videos due to the frame data deg-

radation and variable temporal characteristics between the 

set of frames [3]. Since digitally manipulated videos have 

temporal and intra-frame inconsistencies among the frames, 

Guera et al. [25] introduced a model that extracted frame 

features of a given video sequence using CNN and then 

passed the features to a long short-term memory (LSTM) 

network for analysis. Finally, a fully connected network 

was used to classify the video either as fake or real. For 

the evaluation of this model [25], 600 videos were gathered 

from different websites. Similarly, Sabir et al. [26] presented 

a pipeline consisting of two steps i.e., preprocessing and 

detection steps. Preprocessing step involved the detection, 

cropping, and alignment of faces in the frames while in the 

detection step, a recurrent convolution model (RCN) was 

used to identify the temporal artifacts between the set of 

frames. Along with the identification of temporal artifacts 

among video frames, researchers have also developed meth-

ods that detect the visual artifacts between the video frames 

to decide whether a given video sequence is manipulated 

or a real one [3]. Yang et al. [27] introduced a method that 

utilized 3D head poses to identify errors in a landmark loca-

tion. Head poses were extracted using 68 facial landmarks. 

Difference between the estimated head poses was treated 

as a feature vector and passed to the SVM classifier for the 

detection of deepfakes. Matern et al. [28] presented a simple 

pipeline to exploit the artifacts that arise from the lack of 

global consistency, imprecise geometry, and illumination 

estimation. Missing reflections, eye color differences, and 

missing details in mouth and eye areas were used to detect 

the manipulated videos. Facial landmarks features were used 

with the logistic regression and neural network. Using this 

pipeline [28], this work detected the deepfakes, face2face 

manipulations, and synthetic faces and achieved the AUC 

values of up to 86.6%. The shortcoming of this pipeline is 

that it requires the images to have some specific prerequisites 

such as visible teeth and open eyes. The overview of the 

related work for fake images and videos detection is pre-

sented in Table 1.

2.3  Limitations of existing models

• Existing approaches are often evaluated on datasets with 

limited manipulation types, for instance, the FF++ data-

set is limited to two fake types: expression and identity 

swap. Similarly, the Celeb-DF dataset only contains the 

identity swap fake images.

• Most existing approaches are based on CNNs and have 

some limitations including viewpoint variance problems 

and not being able to overcome the Picasso problem [29]. 

The reason is the use of Maxpooling layer for conveying 

the information from one layer to another. Therefore, the 

use of Maxpooling results in the loss of pose-aware and 

spatial information, thus hinders them to discover more 

about the image.

• Most of the work on the detection of synthetic facial 

images does not study the generalization capability of 

the models. So largely, existing detection methods fail 

to generalize well on cross-corpora evaluation which 

is an important requirement while developing a syn-

thetic facial image detection considering the availability 

of multiple datasets and other repositories available in 

cyberspace.

3  Proposed method

This section presents the architectural details of our pro-

posed deep learning model E-Cap Net. As an alternative to 

CNNs, Hinton et al. [30] first introduced the Capsule Net-

work which is viewpoint invariant and identifies the whole 

entity via identifying its parts first. Capsule Network builds 

the whole-part hierarchies, represents the subject image 

as parts, and captures the relationships between the parts, 

thus making it more robust to the viewpoint variations of 

the input image. Capsule Network consists of low-level 

(primary) and high-level (output) capsules. The primary 

capsules in the network encode the information about the 

pose, scale, orientation, and other properties of the parts 
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in the subject image while the output capsules contain the 

information about the prediction. The output vector of the 

low-level capsules is routed to the appropriate high-level 

capsule through dynamic routing. The capsules in Capsule 

Network output a vector with the length representing the 

probability of object in the image and the orientation repre-

senting the parameters such as size, object (i.e., nose, eyes, 

lips) orientation, and location in an image. Therefore, unlike 

CNNs, there is no loss of orientation and spatial information 

in Capsule Network, as along with the feature detection, it 

also detects the orientation of features, texture, and color. 

Therefore, keeping in view the benefits of Capsule Network 

over the CNNs, we present a customized Capsule Network 

for the detection of manipulated facial images generated 

through different deepfakes techniques.

3.1  Architecture details

In our proposed E-Cap Net, after resizing the input image, 

the features are extracted from the resized image by utiliz-

ing a pre-trained VGG19 model. The extracted features are 

passed to the primary capsules in the customized Capsule 

Network and the outcome of the primary capsules is then 

passed to the output capsules through dynamic routing. 

Finally, the end results are calculated by computing the mean 

of activations of the output capsules. We customize Cap-

sule Network via embedding the MFM activation function 

in each primary capsule, for the classification of shallow and 

deepfakes oriented facial images. The detailed architecture 

of our proposed model is shown in Fig. 1. The whole pipe-

line includes the input image, custom VGG19 to extract the 

features, Capsule Network, and final output.

3.1.1  Custom VGG19

The size of the input image is set to 300 × 300. The input 

image is passed to the custom VGG19 for extracting the 

features. The VGG19 is pre-trained using the ILSVRC data-

base [31]. VGG19 has a total of 16 convolution layers that 

are used for feature extraction and 3 fully connected lay-

ers used for classification. The feature extraction layers are 

divided into five groups each followed by the max-pooling 

layer. We used the VGG19 to the third max-pooling layer for 

feature extraction with the hypothesis that lower level layers 

can preserve more information about the image. We used 

only the first eight convolutions layers of VGG19 for fea-

ture extraction. The benefit of using the custom pre-trained 

VGG19 network is that it aids in moderating the problem of 

overfitting. The summary of the used custom VGG19 model 

is shown in Table 2.

3.1.2  Efficient‑capsule network

After the feature extraction, the extracted features are fed to 

the Capsule Network for the classification task. Our Capsule 

Network is comprised of primary and output capsules. It has 

Table 1  Overview of related work

References Model/classifier Dataset Limitations

Fake images detection

Mo et al. [19] CNN PGGAN Poor results when reducing the image size

Tariq et al. [20] ShallowNet classifier  CelebA

 PGGAN

Generalizability of model is unknown

Nataraj et al. [21] Co-occurrence matrices + CNN  CycleGAN

 StarGAN

Performance degrades on jpeg compressed images

Zi et al. [22] CNN  DFD

 DF-TIMIT (LQ, HQ)

 FF++ (LQ, HQ)

 WildDeepfake

Poor performance on WildDeepfake dataset

Only consider the DeepFakes subset of FF++ dataset

AMTENnet [23] AMTEN + CNN  HFF

 FF++

Not perform the cross-corpora evaluation on different facial 

manipulation techniques

Face X-ray [24] CNN FF++ Unable to perform well on entire synthetic faces

Fake videos detection

Guera et al. [25] CNN + LSTM Private Not robust against manipulated videos unseen during training

Sabir et al. [26] CNN + RNN FF++ Reported results only for static images

Yang et al. [27] Landmarks + SVM  UADFV

 DARPA MediFor GAN 

image/video chal-

lenge

Performance degraded in case of blurry images

Matern et al. [28] MLP + logreg FF++ Applicable to the images having specific prerequisites e.g., 

open eyes, visible teeth etc.
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ten primary capsules, each having the same architecture. The 

summary of the internal architecture of a primary capsule 

is shown in Table 3. Each primary capsule further has five 

parts. The first two parts of each primary capsule encom-

pass the convolution layer (Conv2d), batch normalization 

layer (BatchNorm2d), Conv2d, and MFM. The third part 

Fig. 1  Detailed architecture of proposed model

Table 2  Summary of custom VGG19

Layer (type) Output shape Param #

Conv2d—1 [− 1, 64, 224, 224] 1792

ReLU—2 [− 1, 64, 224, 224] 0

Conv2d—3 [− 1, 64, 224, 224] 36,928

ReLU—4 [− 1, 64, 224, 224] 0

MaxPool2d—5 [− 1, 64, 112, 112] 0

Conv2d—6 [− 1, 128, 112, 112] 73,856

ReLU—7 [− 1, 128, 112, 112] 0

Conv2d—8 [− 1, 128, 112, 112] 147,584

ReLU—9 [− 1, 128, 112, 112] 0

MaxPool2d—10 [− 1, 128, 56, 56] 0

Conv2d—11 [− 1, 256, 56, 56] 295,168

ReLU—12 [− 1, 256, 56, 56] 0

Conv2d—13 [− 1, 256, 56, 56] 590,080

ReLU—14 [− 1, 256, 56, 56] 0

Conv2d—15 [− 1, 256, 56, 56] 590,080

ReLU—16 [− 1, 256, 56, 56] 0

Conv2d—17 [− 1, 256, 56, 56] 590,080

ReLU—18 [− 1, 256, 56, 56] 0

MaxPool2d—19 [− 1, 256, 28, 28] 0

Table 3  Summary of primary capsule

Layer (type) Output shape Param #

Conv2d—1 [− 1, 128, 224, 224] 295,040

BatchNorm2d—2 [− 1, 128, 224, 224] 256

Conv2d—3 [− 1, 128, 224, 224] 409,728

MFM—4 [− 1, 64, 224, 224] 0

Conv2d—5 [− 1, 32, 224,224] 18,464

BatchNorm2d—6 [− 1, 32, 224,224] 64

Conv2d—7 [− 1, 32, 224,224] 25,632

MFM—8 [− 1, 16, 224,224] 0

StatsNet—9 [− 1, 2, 16] 0

Conv1d—10 [− 1, 8, 8] 88

BatchNorm1d—11 [− 1, 8, 8] 16

Conv1d—12 [− 1, 1, 8] 25

BatchNorm1d—13 [− 1, 1, 8] 2

View—14 [− 1, 8] 0
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comprises statistical pooling while the last two parts include 

the convolution layer (Conv1d) and batch normalization 

layer (BatchNorm1d). For the convolution layers, we set the 

kernel size equal to 3 and stride of 1 except for the convolu-

tion layer after the statistical pooling layer for which we use 

a stride of 2 and kernel size is set to 5. Whereas for the MFM 

activation function, kernel size is set to 5, and a stride of 1 is 

used. MFM represses the activations of the neurons and thus 

enables the model to become robust and light [32], which 

helps to develop a computationally efficient model. Statisti-

cal pooling layer enables the network to extract the statistical 

properties by calculating the mean and standard deviation 

of frame-level features, which further helps in distinguish-

ing the real and manipulated facial images. For statistical 

pooling calculation, we computed the mean and standard 

deviation as follows:

where � denotes the mean, � indicates the standard devia-

tion, m × n represents the filter size and F represents the filter 

array.

There are two output capsules namely fake and real, for 

binary classification, whereas for multiclass classification, 

number of capsules depends on the number of classes avail-

able for classification. The outcomes of the primary cap-

sules are routed to the output capsules via a dynamic routing 

[33]. Dynamic routing computes the agreement between out-

comes of primary capsules and routed the obtained results 

to the appropriate output capsule (real or fake). Then the 

agreement for output capsules (real or fake) is calculated 

and the strength of the agreement determines the certainty 

of the label. The label is more certain if the agreement is 

stronger for an output capsule. The final output probabilities 

are determined based on the activations of neurons within 

output capsules. Finally, the softmax layer is applied to the 

output capsule vector to calculate the predicted label.

3.1.3  MFM activation function

To improve the classification performance and make the 

model computationally efficient, we implemented an acti-

vation function called MFM in each primary capsule of our 

E-Cap Net, instead of the traditional activation function (i.e., 

ReLU, Tanh). MFM is a variant of the Maxout activation 

function and delivers competitive feature maps rather than 

approximating convex activation from various feature maps. 

MFM has a sparse gradient and compact representation, thus 

(1)� =

1

mn

m
∑

i=0

n
∑

j=0

Fij,

(2)� =

√

√

√

√

1

mn − 1

m
∑

i=0

n
∑

j=0

(

Fij − �

)2
,

allowing the model to become lighter. The sparse gradient 

can speed up the model convergence whereas compact repre-

sentation can reduce the data dimensionality. This activation 

function divides the input layer feature map into two neurons 

unit at random and then output the element-wise maximum 

between the two units, which could reduce the non-relevant 

part of the feature map and can eliminate the redundancy in 

feature representation. The structure of the MFM activation 

function is shown in Fig. 2.

For an input convolution layer cn
∈ R

W×H , where n = {1, 

2, …, 2N}, H is the height, and W represents the width of 

the feature map, the MFM can be calculated as:

where 1 ≤ k ≤ N, 1 ≤ x ≤ W, 1 ≤ y ≤ H, and 2N denotes the 

channels of the input layer.

4  Experimental results

In this section, we introduced the datasets and discussed the 

measures used to evaluate the performance of our proposed 

approach. We have performed extensive experimentation on 

the standard and diverse datasets for the evaluation of our 

model. The details of the experiments and their results are 

also discussed in the subsequent sections.

4.1  Datasets

We evaluated the performance of the proposed model on the 

World Leader Dataset (WLRD) [34] and on two standard, 

largescale and diverse datasets that are FF++ [35] and the 

Diverse Fake Face Dataset (DFFD) [36]. The details of these 

datasets are presented in the subsequent sections.

4.1.1  FaceForensics++ dataset

FaceForensics++ dataset is one of the largest deepfakes 

datasets and comprises 1000 original videos. These 

(3)f
(

ck
xy

)

= max

(

ck
xy

, ck+N
xy

)

,

Fig. 2  Structure of MFM activation function
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original videos are manipulated using different techniques 

including DeepFakes, FaceSwap, Face2Face, and Neural-

Textures. The source of original videos is YouTube, and 

all the videos contain the frontal face of a person without 

any occlusions. The videos in FF++ dataset is available in 

three compression levels, i.e., raw (without compression), 

high quality (HQ, low compression), and low quality (LQ, 

heavy compression) [35].

To evaluate our model, we need an image dataset. For 

this purpose, we split the FF++ video dataset into train-

ing, testing, and validation sets. Training set contains 720 

videos, while the testing and validation set comprises 140 

videos each. Afterward, we extracted the faces from the 

available video’s sequences (real and manipulated) to gen-

erate our image FF++ dataset. To generate our training 

set, we extract the first 100 frames of input video while for 

validation and testing, we extract only the first 10 frames. 

Shown in Fig. 3 are a few images from the FF++ dataset.

4.1.2  World leader dataset

WLRD comprises the videos having the FaceSwap manip-

ulated images of different political leaders i.e., Obama, 

Hillary Clinton, Joe Bidden, Elizabeth Warren, and Bernie 

Sanders. Real videos are gathered from YouTube having 

only one person facing the camera. The comedic imper-

sonator of the leaders is used to create the swapped faces. 

This dataset is highly imbalanced as it contains a very 

small number of fake videos as compared to real videos 

of each leader. The dataset is splitted into training, valida-

tion, and testing set. A few images from WLRD are shown 

in Fig. 4.

4.1.3  Diverse fake face dataset

DFFD as the name suggests comprises diverse types of 

fake faces which might be critical for the detection of face 

manipulations. DFFD comprises faces generated through 

StyleGAN, StarGAN, and PGGAN. DFFD also includes the 

real facial images of the FFHQ dataset. For real and each 

type of manipulated facial images, the dataset is splitted into 

50% for training, 45% for testing, and 5% for validation. In 

DFFD, 47.7% images are of male subjects, while 52.3% of 

images are of female subjects and the age range of the sub-

jects is 21–50 years [36]. Shown in Fig. 5 are a few images 

from the DFFD.

It is worth noticing that we performed our experiments on 

high-quality or low compression levels of the FF++ dataset. 

Moreover, for all the datasets (FF++, WLRD, and DFFD), 

training and validation images have never appeared in the test 

Fig. 3  FaceForensics++ dataset

Fig. 4  World leader dataset

Fig. 5  Diverse fake face dataset
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set. Thus, we tested our model on completely unseen images to 

show its effectiveness for manipulated facial image detection.

4.2  Implementation details

For the video dataset such as FF++ and WLRD, we used 

multi-task cascaded convolution neural network (MTCNN) 

[37] to extract the faces from the video frames. The extrac-

tion of faces from the video frames is a preprocessing step 

in the case of a video dataset. The proposed model imple-

mentation is based on PyTorch. All the images are resized 

to 300 × 300 resolution. The model is trained using an Adam 

optimizer with beta = 0.9 and learning rate = 0.0005. Other 

parameters are: batch size = 32, epochs = 25 and drop-

out = 0.05. For model implementation and execution, we 

used the high-performance computing machine with the fol-

lowing specifications: 4 NVIDIA Tesla V100 16G GPUs, 

192 GB RAM, and 48 CPU Cores at 2.10 GHz.

4.3  Evaluation measures

To evaluate the performance of our proposed model, we use 

the following three evaluation metrics:

Accuracy represents the ratio of correctly predicted fake 

and real facial images to the total number of fake and real 

images in the test set. Accuracy is calculated as follows:

where TP represents the correctly predicted fake facial 

images and TN indicates the correctly detected real face 

images. P and N represent the total number of fake and real 

images, respectively.

Equal error rate (EER) represents the value at the point 

where the false acceptance rate (FAR) and false rejection 

rate (FRR) are equal. FRR represents the rate at which the 

model incorrectly classifies the fake images as real ones 

while the FAR refers to the rate at which the model incor-

rectly classifies the real facial images as manipulated ones. 

The lower value of EER represents the good detection per-

formance of the model.

Area under curve (AUC) measures the classifier’s ability 

to discriminate between the two classes (i.e., real and fake). 

It summarizes the classifier’s performance by calculating 

the area under the receiver operating characteristic (ROC) 

curve. The higher AUC indicates better model performance 

in distinguishing between the two classes.

4.4  Performance evaluation of proposed method 
for real vs fake classification

To evaluate the performance of our method for the detec-

tion of real and fake/synthetic images, we designed an 

(4)Accuracy =
TP + TN

P + N
,

experiment to classify the real and fake images on FF++, 

DFFD, and WLRD datasets. In this experiment, we have 

a binary classification problem where we have two classes 

i.e., real and fake. The real class consists of pristine images 

while the fake class contains one type of manipulated images 

at a time. We split our datasets into three sets i.e., training, 

validation, and testing. For the training of our model, we 

used the training and validation sets. After that, the trained 

model is evaluated on the testing set to obtain the detec-

tion results. The results of this experiment in terms of AUC, 

EER, and accuracy on DFFD, FF++, and WLRD datasets 

are presented in Table 4.

Table 4 shows that our proposed model performs remark-

ably well on the DFFD dataset and achieved accuracy in 

excess of 99% for each type of GAN-generated fake facial 

images. Moreover, our model is able to detect the fake 

images generated through the StarGAN technique with 100% 

accuracy and AUC. These results indicate the effectiveness 

of the proposed model for accurately detecting the facial 

images having attribute manipulation. Overall, we can say 

that the proposed model can detect GAN-generated fake 

facial images with higher accuracy and less error rate. For 

the WLRD dataset, it can be seen that our proposed E-Cap 

Net accurately classifies the faceswap of the leaders with the 

AUC closer to 99% excluding Clinton for which the AUC is 

93%. It can be observed from Fig. 4 that Clinton’s imposter 

is closer to Hillary Clinton resulting in a more realistic 

swapped face, increasing the possibility of lower detection 

results compared to other leaders. We can observe that for 

the FF++ dataset, our proposed model detects the images 

generated through different deepfakes techniques with good 

accuracy and AUC. The AUC of DeepFakes and FaceSwap 

subset of FF++ is 98.61% and 99.51%, respectively. This 

remarkable performance on the faceswap manipulation 

Table 4  Binary classification

Dataset Face manipulation 

generation techniques

AUC Accuracy EER

DFFD StyleGAN-FFHQ 99.96 99.59 0.24

StyleGAN-Celeba 99.99 99.66 0.32

PGGAN 99.92 99.99 0.08

StarGAN 100 100 0.01

FF++ DeepFakes 98.61 97.17 2.50

FaceSwap 99.51 98.68 1.50

Face2Face 99.68 98.75 1.29

NeuralTextures 95.14 91.61 8.25

WLRD Hillary Clinton 93.05 92.29 16.08

Joe Bidden 99.97 99.96 0.16

Obama 98.87 98.28 2.16

Bernie Sander 99.75 99.73 0.91

Elizabeth Warren 99.91 98.51 0.45
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indicates that our model has a strong capability of detecting 

swapped faces generated via different techniques. The detec-

tion accuracy of our proposed model is lowest on NeuralTex-

tures images which is 91.61%. After a detailed investigation, 

we found that the NeuralTextures generate fake faces with 

very few semantic changes which are quite difficult to detect. 

This gives an indication that the detection of this type of 

manipulation is a challenging task.

Overall, it can be inferred from the results in Table 4, 

that the proposed E-Cap Net can accurately detect different 

types of manipulated images generated using different gen-

erative algorithms. This could be due to the fact that E-Cap 

Net captures the relative position and hierarchal relation-

ship between different features in the facial image (such as 

eyes, nose, and mouth). Additionally, the MFM activation 

function can help the model to focus on the salient features 

in the given input image and reduce the impact of noisy or 

irrelevant information. Therefore, the proposed E-Cap Net 

can help to capture the compact and fine-grained details of 

input image allowing the network to better detect subtle dif-

ferences between real and fake faces.

4.5  Performance evaluation of proposed method 
for multiclass classification

To examine the ability of our method for classifying multiple 

types of deepfakes, we designed an experiment to evalu-

ate the performance of our model for multiclass classifica-

tion problems on DFFD and FF++ datasets. In the case of 

FF++ multiclass classification, we have five classes named 

as DeepFakes, FaceSwap, Face2Face, NeuralTextures, 

and Real whereas, for DFFD multiclass classification, the 

classes are: StyleGAN-FFHQ, StyleGAN-Celeba, StarGAN, 

PGGAN and Real. We split both datasets into three sets i.e., 

training, validation, and testing. For the classification of the 

real and fake images, we trained our model using training 

and validation sets and then evaluated its performance on the 

testing set. For the FF++ dataset, the test set contains 1400 

images, whereas for DFFD there are 9000 images in each 

class. The results of this experiment in terms of accuracy 

for each class on DFFD and FF++ datasets are presented 

in Table 5.

For the multiclass classification of DFFD, the proposed 

model achieves an overall detection accuracy above 99%, 

indicating its ability to detect GAN-generated images accu-

rately. Table 5 shows that for multiclass classification of 

DFFD, the detection accuracy for StyleGAN-FFHQ and 

StyleGAN-Celeba falls to some extent as compared to the 

binary classification. The reason is that the images are gen-

erated through the same technique that is StyleGAN, the 

only difference between the two (StyleGAN-FFHQ and 

StyleGAN-Celeba) is the real images used to generate fake 

faces. So, there is a probability of misclassifying fake images 

generated via StyleGAN-FFHQ and StyleGAN-Celeba, in 

the case of multiclass classification. The overall detection 

accuracy for the FF++ dataset is 94% which indicates the 

good performance of our model in the case of multiclass 

classification. For the FF++ dataset, the accuracy of Deep-

Fakes and Face2Face falls whereas the accuracy of Fac-

eSwap and NeuralTextures increases slightly as compared 

to the binary classification. The reason is that in multiclass 

classification, there are more fake classes so the probabil-

ity of misclassifying a fake image increases which have an 

impact on the detection accuracy.

4.6  Performance evaluation of proposed method 
on rotation attack

To check the effectiveness of our proposed E-Cap Net on the 

unseen rotated images, we designed an experiment, where 

we rotate the testing set images of different subsets of DFFD 

dataset at 11 different rotation configurations (30°, 45°, 90°, 

120°, 135°, 180°, 210°, 225°, 270°, 300°, 315°). Then, the 

model trained on the respective subset of DFFD dataset is 

used to evaluate the rotated images. For this experiment, we 

also compared the performance of E-Cap Net with our exist-

ing CNN-based model namely InceptionResNet-BiLSTM 

(IR-BiLSTM) [38]. The results of the experiment in terms 

of average accuracy are shown in Table 6. It is important 

to note that the models are trained only on straight images, 

the rotated images are not included in the training. From 

Table 6, it can be observed that a decrease in the detection 

accuracy occurs for the rotated images when compared with 

the results of straight images. E-Cap Net classifies rotated 

images of different subsets of the DFFD dataset with an 

accuracy equal to or greater than 75%. This indicates the 

fairly good robustness of our model against the rotation 

attack. It is also inferred that E-Cap Net performs better 

than IR-BiLSTM on both rotated and straight images. E-Cap 

Net attained such reasonable detection results for the rotated 

images, because the proposed model builds the whole-part 

Table 5  Multiclass classification

Datasets Classes Accuracy

DFFD Real 98.69

StyleGAN-FFHQ 99.07

StyleGAN-Celeba 97.69

PGGAN 99.99

StarGAN 100

FF++ Real 89.07

DeepFakes 95.76

FaceSwap 98.71

Face2Face 96

NeuralTextures 92.21
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hierarchies, represents the subject image as parts, and cap-

tures the relationships between the parts. Which enables the 

model to become robust to the variations of the input image, 

not seen during the training time.

4.7  Ablation study

We conducted an ablation study to investigate the impact 

of various activation functions on the performance and 

efficiency of our proposed model in terms of accuracy and 

training time. We conducted this experiment to show that 

our proposed E-Cap Net model is more effective and com-

putationally efficient than its variants. This experiment is 

performed on the StyleGAN-FFHQ subset of the DFFD 

dataset and experimental protocols are kept the same as 

mentioned in Sect. 4.4 for the DFFD dataset. We employed 

four activation functions i.e., ReLU, LeakyReLU, Sigmoid, 

and MFM in Capsule Network to compare the performance 

and computational cost. The results of this ablation study 

are presented in Table 7.

It can be observed from the results that the MFM activa-

tion function has the least training time and achieved the 

highest accuracy as compared to other activation functions 

i.e., ReLU, LeakyReLU, and Sigmoid. Our proposed E-Cap 

Net outperforms all its variants by achieving the accuracy 

of 99.96% and attained the accuracy gain of 0.12 from the 

second-best performing activation function i.e., ReLU. How-

ever, ReLU has the most computational cost since its train-

ing time is the longest of all. From the results in Table 7, it 

can be concluded that MFM is a low-cost activation function 

that makes the model light and more robust while detecting 

fake images. Thus, we can summarize that our proposed 

E-Cap Net with MFM activation function can accurately 

detect synthetic fake faces and is more efficient and robust 

compared to its other variants.

4.8  Comparison with existing state‑of‑the‑art 
methods

To evaluate the performance and effectiveness of our pro-

posed approach against existing state-of-the-art methods, 

we designed a two-stage experiment. In the first stage of 

this experiment, we compared the overall detection results 

of classification on two datasets (DFFD and FF++) as the 

existing methods only provide the overall classification 

results. To conduct the experiment, experimental settings are 

kept the same as mentioned in Sect. 4.5. For the DFFD data-

set, we reported the overall AUC and EER of our proposed 

model for multiclass classification as done in the existing 

works. Likewise, for the FF++ dataset, we only reported the 

overall detection accuracy for comparing our model with the 

existing methods. In Table 8, we compared the results of our 

approach on DFFD with existing methods whereas Table 9 

shows the comparison of results on the FF++ dataset.

From Table 8, it is noticeable that our proposed model 

achieved the best performance on DFFD than any other 

stated model. Thus, our proposed approach is able to detect 

entirely synthetic facial images with almost 100% AUC. In 

other words, our model outperforms in detecting the GAN-

generated facial images with an accuracy of 99.92%. Moreo-

ver, the EER value of our model is lowest than the other 

stated methods, which also indicates a good detection per-

formance. From Table 9, we can see that our proposed model 

achieved an accuracy of 94.51% which is the highest among 

Table 6  Performance of E-Cap 

Net on rotation attack
Subsets of DFFD dataset

StyleGAN-FFHQ StyleGAN-

Celeba

PGGAN StarGAN

E-Cap Net Straight images 99.59 99.66 99.99 100

Rotated images 75 77.91 80.45 78

IR-BiLSTM [38] Straight images 90 97.86 97.86 99.52

Rotated images 60.88 64.5 72.66 74.4

Table 7  Ablation study

The best results are in bold

Activation function in pro-

posed model

Accuracy Training time

Sigmoid 99.49 2 h 40 min

LeakyReLU 99.53 2 h 30 min

ReLU 99.84 3 h

MFM 99.96 2 h

Table 8  Comparison with existing methods using DFFD

The best results are in bold

Models AUC EER

Xception + Reg. [36] 99.64 2.23

VGG16 + MAM [36] 99.67 2.66

Representative forgery mining (RFM) 

[39]

99.96 –

E-Cap Net (proposed) 99.99 0.41



 H. Ilyas et al.

1 3

the stated methods. As compared to the previous model [23], 

our approach increases the detection accuracy by 4%.

In the second stage of this experiment, we compared the 

results of our proposed E-Cap Net with [34] on the WLRD 

dataset. The experimental protocols are kept the same as 

mentioned in Sect. 4.4. Results in terms of AUC are dem-

onstrated in Table 10. It can be noticed that our model out-

performs in detecting swapped faces of Obama, Sanders, 

and Warren compared to [34] with the AUC gain of 3.87%, 

3.75%, and 1.91%, respectively. However, for faceswap of 

Clinton, our AUC is slightly less than [34].

In general, our proposed method provides remarkable 

detection results on all datasets against the existing state-

of-the-art methods, which shows its ability to detect dif-

ferent types of facial image manipulation. As we used two 

diverse datasets (DFFD and FF++) and a WLRD dataset 

for the evaluation of our proposed methodology, which 

are completely different from each other and contain the 

facial images generated through different deepfakes tech-

niques. These datasets encompass fake facial images that 

cover categories of deepfakes (i.e., entire face synthesis, 

face swap, attribute manipulation, and expression swap). 

The good detection performance of our proposed model on 

all datasets reveals its ability to identify manipulated facial 

images generated through widely used deepfakes methods. 

Therefore, it is obvious that our model is not limited to the 

detection of specific deepfake technique but is able to detect 

various face manipulation techniques. This shows that our 

proposed model is generalizable and has the capability to 

detect manipulated facial images generated via several fake 

face generation techniques.

4.9  Cross‑corpora evaluation

To assess the generalizability of our proposed method, we 

also performed the cross-corpora evaluation. The main pur-

pose of cross-corpora evaluation is to analyze the potential 

of the proposed method in real-world applications. We cross-

validated the fake facial images generated through different 

deepfakes techniques. For this purpose, we designed two 

experiments, cross-set and cross-dataset. The details of the 

experiments are provided in the subsequent sections.

4.9.1  Cross‑set

To evaluate the generalizability of our proposed model for 

subsets of the FF++ and DFFD dataset, we designed a cross-

set experiment. This experiment is carried out in different 

phases for both datasets based on the combination of manip-

ulated images subsets during training. There are four com-

binations of fake class for both datasets (DFFD and FF++). 

For FF++, the four combinations are: (1) DeepFakes + Fac-

eSwap + Face2Face (DF + FS + F2F), (2) DeepFakes + Fac-

eSwap + NeuralTextures (DF + FS + NT), (3) Deep-

Fake + Face2Face + NeuralTextures (DF + F2F + NT), (4) 

FaceSwap + Face2Face + NeuralTextures (FS + F2F + NT). 

Whereas the four fake class combinations for DFFD dataset 

are: (1) StyleGAN-Celeba + StyleGAN-FFHQ + PGGAN 

(SGC + SGF + PGG), (2) StyleGAN-Celeba + StyleGAN-

FFHQ + StarGAN (SGC + SGF + SG), (3) StyleGAN-Cel-

eba + PGGAN + StarGAN (SGC + PGG + SG), (4) Style-

GAN-FFHQ + PGGAN + StarGAN (SGF + PGG + SG). 

We trained the model on real and fake images where the 

fake class contains images from three subsets. The trained 

model is then evaluated on the remaining unseen subset. 

For instance, considering the DFFD dataset, in the first 

phase, we trained the model on real and fake images where 

the fake class contains three types of manipulated images 

(i.e., StyleGAN-Celeba, StyleGAN-FFHQ, and PGGAN). 

After that, an unseen subset i.e., StarGAN is used to evalu-

ate the trained model and so on. The results of cross-set 

experiments for the DFFD dataset are shown in Table 11. 

Likewise, for the FF++ dataset, during the first phase, we 

trained the model on real and fake classes (containing fake 

images of FaceSwap, Face2Face, and NeuralTextures) and 

Table 9  Comparison with existing methods using FF++

The best results are in bold

Models Accuracy

fCNN [40] 78.3

OC-FakeDect1 [11] 84.25

OC-FakeDect2 [11] 85.8

AMTENnet [23] 90.11

E-Cap Net (proposed) 94.51

Table 10  Comparison with the existing method using WLRD

The best results are in bold

Models AUC 

Clinton Joe Bidden Obama Sander Warren

Agarwal et al. [34] 95 – 95 96 98

E-Cap Net (pro-

posed)

93.05 99.97 98.87 99.75 99.91

Table 11  Cross-set evaluation on DFFD dataset

Training Testing Results

Accuracy AUC 

SGC + SGF + PGG SG 96.62 99.31

SGC + SGF + SG PGG 99.24 99.94

SGF + PGG + SG SGC 99.63 99.96

SGC + PGG + SG SGF 51.70 83.43
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then evaluated it on the unseen subset DeepFakes. The cross-

set experimental results on the FF++ dataset are reported 

in Table 12.

As noted from Table 11, our proposed method outper-

forms with an AUC of 99% on the unseen subset of the 

DFFD dataset except for StyleGAN-FFHQ. Therefore, it is 

concluded that our proposed model trained on GAN-gener-

ated fake images outperforms in accurately detecting other 

unseen entire synthetic faces and attribute manipulated fake 

images. From Table 12, it can be observed that AUC drops 

when E-Cap Net is evaluated for totally unseen subsets of 

the FF++ dataset. The highest achieved AUC is 82% for 

detecting the DeepFakes subset as an unknown class while 

the lowest achieved AUC is 45.98% on the FaceSwap subset. 

The fact that only a small number of frames are manipu-

lated in the FaceSwap subset could be the possible reason for 

lower AUC. All generative approaches utilized to create the 

fake faces in the FF++ dataset are completely distinct. For 

instance, Face2Face and FaceSwap are computer graphics-

based methods for generating the manipulated facial images 

while DeepFakes and NeuralTextures are the deep learn-

ing-based approaches. Moreover, DeepFakes and FaceSwap 

include the face swap manipulation while Face2Face and 

NeuralTextures comprise expression swap manipulation. 

The unsatisfactory results in the case of FF++ dataset are 

attributed to the fact that the training and testing set in the 

cross-set examination use the synthetic faces generated via 

distinct and diverse fake face creation techniques. Thus, we 

can conclude that, in the case of cross-set experiments, our 

proposed model is capable of accurately detecting unseen 

synthetic facial images generated through other GAN-based 

techniques. This proves that our proposed approach has good 

generalization ability, especially for GAN-generated fake 

facial images.

4.9.2  Cross‑dataset

To analyze the generalizability of our proposed E-Cap Net 

over distinct datasets, we performed a cross-dataset experi-

ment using FF++ and WLRD datasets. The cross-dataset 

experiment has the following scenarios: (1) training on all 

subsets of FF++ dataset and testing on WLRD, (2) training 

on all subsets of FF++ dataset and testing on the Celeb-DF 

dataset [41], (3) training on all the subsets of WLRD and 

testing on FF++ dataset and (4) training on all the subsets 

of WLRD and testing on Celeb-DF dataset. The results are 

demonstrated in Table 13.

It can be observed from Table 13 that the proposed model 

trained on the FF++ dataset provides incredible results 

while detecting face swap manipulation of different leaders 

in WLRD. The highest achieved AUC is 99.39% and the 

lowest AUC is 76%, while detecting the swapped faces of 

different leaders. However, for the comedic imposter of dif-

ferent leaders, the results are slightly lower than face swap 

manipulation detection. The highest AUC of 87% is attained 

on the imposter of Joe Bidden. As the comedic imposter is 

a real person impersonating himself as the leader and not 

a synthetic content, this could be the possible reason for 

lower accuracy and AUC on the imposter subsets of dif-

ferent leaders. Likewise, E-Cap Net trained on the FF++ 

dataset when evaluated on the Celeb-DF dataset provides 

an accuracy of 83.65% and AUC of 67.94%. Additionally, 

testing accuracy of 69.38% and AUC of 57.24% are achieved 

on the Celeb-DF dataset for the model trained on the WLRD 

dataset. Celeb-DF dataset contains the high-quality realistic 

swapped faces with no color mismatch and decreased tempo-

ral flickering making the detection task more difficult. The 

dataset is highly imbalanced which can be the reason for low 

AUC value as compared to the accuracy. From Table 13, it 

is clear that the model trained on the WLRD dataset when 

evaluated on the FF++ dataset shows acceptable detection 

results except for the FaceSwap subset. The WLRD dataset 

contains the swapped faces generated through GAN-based 

algorithm. However, in the FF++ dataset, DeepFakes and 

FaceSwap are the subsets that contain swapped faces, the 

Table 12  Cross-set evaluation on FF++ dataset

Training Testing Results

Accuracy AUC 

FS + F2F + NT DF 75.30 82.24

DF + FS + NT F2F 63.46 70.93

DF + FS + F2F NT 56.46 64.58

DF + F2F + NT FS 48.50 45.98

Table 13  Cross-dataset evaluation

Training Testing Results

Accuracy AUC 

FF++ Clinton Faceswap 92.32 99.14

Imposter 55.60 67.27

JB Faceswap 97.71 99.39

Imposter 84.59 87.06

Obama Faceswap 92.96 97.64

Imposter 71.04 74.77

Sander Faceswap 73.03 74.09

Imposter 74.03 84.36

Warren Faceswap 87.97 96.07

Imposter 76.16 76.86

WLRD DeepFakes 70.72 68.35

FaceSwap 44.91 38.94

Face2Face 51.32 52.48

NeuralTextures 67.65 60.69
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other two subsets (Face2Face and NeuralTextures) contain 

expression-swapped faces. The trained model shows good 

detection results for the DeepFakes subset, however, the 

poor detection result on the FaceSwap subset could be due 

to the reason that it involves the graphics-based method to 

generate the fake face. Moreover, the WLRD dataset is not 

diverse as it only contains the videos of five leaders, there-

fore, the model trained on this dataset is not robust enough 

to detect fake faces of diverse FF++ and Celeb-DF datasets. 

The remarkable detection results on the Faceswap subsets 

of WLRD and Celeb-DF dataset in the case of cross-dataset 

setting demonstrate the strong generalization ability of our 

proposed E-Cap Net especially when the fake face genera-

tion techniques are quite different from each other.

5  Discussion

The development of a robust model for detecting the shal-

low and deepfakes oriented synthetic facial images on 

diverse datasets and on cross-corpus settings is crucial to 

combat future viral disinformation campaigns. Moreover, 

lightweight deepfakes detectors are essential to deploy on 

resource constraint portable devices for real-time applica-

tions. Therefore, we introduced an E-Cap Net embedded 

with an MFM activation function that can detect fake facial 

images generated via diverse techniques (like DeepFakes, 

FaceSwap, Face2Face, NeuralTextures, StyleGAN, PGGAN, 

and StarGAN) with good accuracy. On the other hand, the 

MFM activation function provides sparse gradient and com-

pact feature representation, resulting in a model that is light 

and converges quickly. The MFM activation function also 

makes the model efficient by reducing training and test-

ing time as compared to other activation functions such as 

ReLU, LeakyReLU, and Sigmoid. We used only 25 epochs 

to train our model which is less than the number of epochs 

used in these methods [11, 40] indicating that less training 

time is required to train our proposed model E-Cap Net. 

Therefore, our model is more efficient than existing methods 

[11, 40].

Detailed analysis of the literature shows that the existing 

models are frequently evaluated on limited face manipula-

tion types and also are not well generalized for the other 

manipulation types. For instance, the ADDNet-2D model 

in [22] was only evaluated on the DeepFakes subset of the 

FF++ dataset and does not provide better detection perfor-

mance for other subsets included in the FF++ dataset. More-

over, the model in [23] is cross-validated for fake images 

altered using the image operations such as mean filtering 

and JPEG compression but not for fake images generated 

via diverse and different facial manipulation techniques. 

Our proposed model is evaluated on all the subsets of the 

FF++ dataset (i.e., DeepFakes, FaceSwap, Face2Face, and 

NeuralTextures) and also cross-validated for the detection of 

face images generated through different and diverse facial 

manipulation techniques (Sect. 4.9), thus solving the limi-

tations of these models [22, 23]. It is important to mention 

that the proposed model demonstrates remarkable detection 

results for cross-set and cross-dataset evaluation. Especially, 

E-Cap Net trained on FF++ dataset provides remarkable 

detection performance in detecting the face swap manipu-

lated images of WLRD and Celeb-DF datasets. However, 

the model trained on the WLRD dataset gives unsatisfactory 

results while detecting the fake images of FF++ and Celeb-

DF datasets. This might be due to the fact that the WLRD 

dataset is small and not diverse as compared to FF++ and 

Celeb-DF in terms of manipulation techniques, age, and 

ethnicity.

Our proposed E-Cap Net is also robust towards the rota-

tion attacks even though the model is not trained on such 

images (Sect. 4.6). The usage of the Capsule Network in 

our E-Cap Net model eliminates the problem of viewpoint 

variance, orientation and spatial information loss, and the 

Picasso problem that exists in the CNN. Capsule Network 

can handle viewpoint variance and Picasso problem since it 

models the hierarchical spatial relations between the differ-

ent features of the image, rather than just detecting the fea-

tures like CNNs. For instance, the network can recognize the 

relationship between facial features such as shape, position, 

and size of the eyes and nose, curvature of the mouth, etc. As 

the proposed model is based on Capsule Network, therefore, 

our E-Cap Net also learns the orientation and location of 

the parts (nose, eyes, lips, etc.) of real and fake faces. Thus, 

our model can capture the inconsistency in the orientation, 

position, and size of the components of the facial image, 

which enables the model to handle the images having all the 

mandatory parts but in the wrong place (Picasso problem). 

It is also important to note that our model provides good 

detection performance in the presence of varying illumina-

tion conditions, angled faces, and different ethnicities, ages, 

and gender.

Multiclass classification is another important aspect of 

deepfakes detection methods as it is more challenging than 

the binary classification problem. Besides the binary classifi-

cation, our proposed E-Cap Net model also performed excep-

tionally well for multiclassification problem. Performance 

evaluation of our model for binary and multiclass classifica-

tion (Tables 4, 5) shows remarkable results while detecting 

the GAN-generated images in both the binary and multiclass 

classification problems and thus overcomes the limitation of 

Face X-ray [24], which is unable to detect the entire synthetic 

faces. From Table 8, we can see that our proposed model 

brings a 2.25% decrease in EER over the model introduced in 

[36] for the DFFD dataset. On average, our proposed E-Cap 

Net model increases the detection accuracy by 10% on FF++ 

than the comparative methods shown in Table 9. Therefore, in 
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general, we can say that our proposed model achieves remark-

able results in detecting the manipulated facial images on all 

the datasets (FF++, DFFD, and WLRD), which proves that 

our model has the capability of detecting images generated 

through different facial manipulation techniques and is not 

limited towards the detection of specific fake face generation 

technique.

6  Conclusion

This paper has presented a novel and robust deep learning 

model E-Cap Net to detect the synthetic facial images gener-

ated through a variety of deepfakes algorithms. Our proposed 

E-Cap Net model has implemented MFM as an activation 

function which enabled it to become light and computationally 

efficient. Our model is capable of reliable detection of manipu-

lated facial images in case of both binary and multiclass clas-

sification problems. We evaluated our proposed framework on 

DFFD, WLRD, and FF++ datasets and showed that the pro-

posed model can effectively identify all types of manipulated 

facial images including  face swap, expression swap, entire 

synthetic face and attribute manipulation. Extensive experi-

mentation has also been accomplished to exhibit the general-

izability of our model. We also demonstrate the effectiveness 

of our proposed model against rotation attacks. Experimental 

results indicated the great generalization aptitude of our pro-

posed E-Cap Net for cross-set and cross-dataset evaluation. In 

the future, we plan to further improve the generalizability of 

the proposed model by making it more robust for all types of 

synthetic images. Additionally, we also intend to expand the 

model for the detection of deepfakes videos.
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