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Recent advances in the field of machine learning and social media platforms facilitate the creation
and rapid dissemination of realistic fake content (i.e., images, videos, audios). Initially, the fake
content generation involved the manipulation of either audio or video streams but currently, more
realistic deepfakes content is being produced via modifying both audio-visual streams. Researchers
in the field of deepfakes detection mostly focus on identifying fake videos exploiting solely visual
or audio modality. However, there exist a few approaches for audio-visual deepfakes detection but
mostly are not evaluated on a multimodal dataset with deepfakes videos having the manipulations in
both streams. The unified approaches evaluated on the audio-visual deepfakes dataset have reported
low detection accuracies and failed when the faces are side-posed. Therefore, in this paper, we
introduced a novel AVFakeNet framework that focuses on both the audio and visual modalities of
a video for deepfakes detection. More specifically, our unified AVFakeNet model is a novel Dense
Swin Transformer Net (DST-Net) which consists of an input block, feature extraction block, and output
block. The input and output block comprises dense layers while the feature extraction block employs a
customized swin transformer module. We have performed extensive experimentation on five different
datasets (FakeAVCeleb, Celeb-DF, ASVSpoof-2019 LA, World Leaders dataset, Presidential Deepfakes
dataset) comprising audio, visual, and audio-visual deepfakes along with a cross-corpora evaluation to
signify the effectiveness and generalizability of our unified framework. Experimental results highlight
the effectiveness of the proposed framework in terms of accurately detecting deepfakes videos via
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scrutinizing both the audio and visual streams.
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1. Introduction

In the last decade, we have seen tremendous growth in mul-
timedia content on the Internet due to the economical prices
of digital capturing devices and social media evolution. Nowa-
days, it has become very easy to manipulate content via dif-
ferent advanced multimedia editing tools [1]. For instance, the
Handcrafted Facial Manipulation (HFM) dataset introduced in [2]
encompasses high-quality fake faces, which the experts gener-
ated using only Adobe Photoshop CS6. Moreover, the availability
of cutting-edge machine learning (ML) algorithms like Genera-
tive Adversarial Networks (GANs) has made it possible to create
highly realistic forged content (i.e., images, videos, and audios) to
propagate disinformation through social networks (i.e., Facebook,
Twitter, Instagram, etc.). As a result, disseminating fake content
on social media platforms has become easier, making it more
difficult to trust the media information. False information on
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social networks can affect the opinions and emotions of society
and can also result in disruptive public acts based on mislead-
ing ideas. The generation of fake/synthesized content (including
images, videos, and audios) using deep learning algorithms is
well-known as deepfakes. Generative Adversarial Networks [3]
and Autoencoders (AEs) [4] based techniques are mainly used for
the generation of synthesized videos and audios. Video deepfakes
include the generation of fake/synthesized videos via replacing
the person’s face with another person (Face Swap), modifying
the person’s expression (Expression Swap), or synchronizing the
person’s lip movement with some sound (Puppet Mastery). While
the audio deepfakes are the creation of cloned voices of a person
depicting the individual speaking the things that are never spo-
ken. Text-to-Speech Synthesis (TTS) and Voice Conversion (VC)
are the two main techniques for audio deepfakes creation. In TTS
synthesis, the person’s natural voice is synthesized according to
the given input text whereas VC is a technology in which the
audio of the source person is modified to make it sound like
the voice of the target person [1]. The deepfakes videos and
audios generated using advanced Al algorithms have attained
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such realism that now it becomes difficult for humans to recog-
nize the video or audio as a fake one. Thus, bring up the major
privacy and security threats as fake voices can be used to fool the
voice recognition system and spread fake news while fake videos
can be used to defame a person or generate misinformation via
impersonating a renowned personality. The example includes the
fake video of Mark Zuckerberg posted on Instagram created with
Canny Al's Video Dialogue Replacement (VDR) software [5].

In existing works, the researchers mainly focus on detect-
ing deepfakes through a single modality/stream (either video or
audio). For instance, in [6], a deep learning model using the
multi-layer perceptron (MLP) and convolution neural network
(CNN) was introduced for the detection of Al-generated deepfakes
videos. Landmark features and frames were extracted from the
input videos and fed to the MLP and CNN, respectively. At the
classification stage, the output of MLP and CNN was combined
to predict whether the video was fake or real. The model [6] was
evaluated on a private dataset and achieved an accuracy and AUC
score of 87% and 87.7%, respectively. Kohli et al. [7] presented a
lightweight 3DCNN that extracted the spatial and temporal fea-
tures using the optical flow method. A 4-depth matrix comprising
two successive frames and their horizontal and vertical gradients
was given to the model as an input. The model [7] was evaluated
on the FaceForensics++ (FF++) dataset and showed good detec-
tion results. Likewise, for audio classification, a novel approach
DeepSonar was introduced in [8], which monitored layer-wise
neuron behavior to identify the Al-synthesized voices generated
using text-to-speech and voice cloning systems. To evaluate the
model [8], experiments were conducted on three datasets (FoR,
Sprocket-VC, MC-TTS) covering English and Chinese languages.
Hua et al. [9] demonstrated an end-to-end Time-domain Syn-
thetic Speech Detection Net (TSSDNet) for the detection of audio
deepfakes using deep learning features. TSSDNet was evaluated
on a challenging ASVSpoof-2019 logical access (LA) dataset and
attained an equal error rate (EER) of 1.64%. The model [9] shows
good generalizability but is computationally complex.

Due to the lack of audio-visual deepfakes datasets, few unified
models are presented in the literature for detecting deepfakes.
Zhou et al. [10] introduced a joint detection framework for de-
tecting deepfakes via audio and video modality. Similarly, [11,12]
classified the videos either as fake or real by finding the dis-
similarity between audio and visual streams. Due to the absence
of a proper dataset, [10] utilized existing deepfakes datasets
such as Deepfakes Detection Challenge (DFDC) and applied the
vocoders used in VC and TTS tasks to mimic the synthesized
speech. [11] used the DFDC and DeepfakeTIMIT datasets. How-
ever, [ 12] evaluated the model on synchronous and asynchronous
audio-visual pairs produced from VidTIMIT and DeepfakeTIMIT,
respectively. The above-mentioned approaches are not evalu-
ated on a dataset in which both audio and visual modalities
are manipulated. To enhance the research on unified models
for deepfakes detection, Khalid et al. [13] contributed a new
audio-visual dataset FakeAVCeleb. In [14], the ensemble methods
based on five classifiers i.e., Meso-4, Mesolnception-4, Xception,
VGG-16, and EfficientNet-B0O were evaluated on the FakeAVCeleb
dataset. The VGG-16 model achieved the highest accuracy of
78.04%, while XceptionNet showed the worst performance with
an accuracy of 43.94%. It can be concluded that none of the
methods provided satisfactory performance demonstrating that
they are not suitable for audio-visual deepfakes detection. Davide
etal.[15] presented a POI-Forensics for deepfakes detection based
on audio-visual identity verification. The model was trained only
on the augmented real videos of the VoxCeleb2 dataset and
attained an accuracy of 86.6% on the FakeAVCeleb dataset. This
model [15] has a limitation of the requirement of some real
videos of the target subject as a reference during the testing.
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Moreover, POI-Forensics failed on the side-posed faces and per-
formed well only on frontal-posed faces. Based on empirical
findings that faces and voices are more mismatched in fake videos
as compared to the real ones, Cheng et al. [ 16] introduced a deep-
fakes detection method called Voice-Face Matching Detection
(VFD) via finding the consistency between the voice and face of
a person. Three datasets DFDC, DeepfakeTIMIT, and FakeAVCeleb
were used to evaluate this approach [16]. VFD achieved an accu-
racy of 81.52% and an AUC of 86.11% on the FakeAVCeleb dataset.
VED fails to detect deepfakes in cases when a face is side-posed
and there is insufficient illumination where faces are not clearly
visible.

These days, deepfakes are not just created by forging only
one modality/stream (video or audio) rather, more convincing
fake videos are produced in which forgery is applied on both
modalities (video and audio), thus enhancing the threats and
concerns associated with deepfakes. Detecting such videos in
which both visual and audio stream is modified is a challenging
task. Moreover, there is also a lack of such datasets which contain
fake videos along with fake audio. Thus, limiting the development
of a unified model that can detect audio and video deepfakes
simultaneously. Most of the unified frameworks reported in the
literature are not evaluated on the multimodal deepfakes dataset
such as FakeAVCeleb. Also, the models [15,16] evaluated on the
FakeAVCeleb dataset have detection accuracies lesser than 90%
and fail to detect deepfakes videos that contain faces at different
angular positions. Therefore, the goal of the proposed work is to
develop an effective unified deepfakes detection framework that
is robust to the aforementioned limitations of the existing works
and reliably detects the deepfakes in the audio and visual stream
of the input video. Moreover, our motivation is also to demon-
strate the generalizability of the proposed unified AVFakeNet
through cross-corpora evaluation, which has not been done for
the existing unified models for deepfakes detection. To address
the above-mentioned limitations, we present a unified AVFakeNet
model that by using the visual and acoustic features exploits the
spatio-temporal characteristics of the input video for deepfakes
detection. For this purpose, we proposed a unified Dense Swin
Transformer Net (DST-Net) for the detection of deepfakes videos
via analyzing both audio and visual streams. Our unified DST-
Net has three blocks named input block, feature extraction block,
and output block. The input block consists of dense layers while
the output block contains a combination of dense and dropout
layers. Feature extraction block comprises the modified swin
transformer. For the evaluation of our proposed unified frame-
work, we utilized an audio-video multimodal deepfakes detection
dataset: FakeAVCeleb. To the best of our knowledge, it is the
only publicly available dataset that has the cloned deepfakes
audios along with deepfakes videos. Along with that, we also
utilized Celeb-DF, ASVSpoof-2019, World Leader, and Presidential
Deepfakes datasets for the evaluation of our method. The major
contributions of our work are:

o A novel unified framework AVFakeNet is proposed to accu-
rately detect the manipulation in both the audio and visual
streams of deepfakes video.

e A Dense Swin Transformer Net is proposed that computes
dense hierarchical features maps for better representation
of the input videos and improves the deepfakes detection
performance.

e The proposed unified model is robust against the high-
quality deepfakes videos with angled or side-posed faces
having variations in illumination conditions, people’s eth-
nicity, gender, and age groups.

e Extensive experimentation has been performed on five dif-
ferent datasets comprising audio, visual, and audio-visual
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deepfakes along with a cross-corpora evaluation to signify
the effectiveness and generalizability of our unified frame-
work.

e The proposed unified AVFakeNet has great generalization
aptitude, performed well on angled faces, and improved
the detection results on multimodal deepfakes dataset com-
pared to the existing unified models for deepfakes detection.

The rest of the paper is structured as follows: Section 2 con-
tains the literature review of the video and audio deepfakes
detection methods. The audio and video signal analysis is given
in Section 3 while in Section 4, a detailed description of the
proposed methodology is provided. Section 5 presents the de-
scription of datasets, experimental setup, detailed experiments
including cross-corpora evaluation, and the analysis and discus-
sion of experimental results. Finally, the conclusion is drawn in
Section 6.

2. Literature review

To counter the threats introduced because of deepfakes video
and audio generation, researchers have introduced many differ-
ent deepfakes detection models and algorithms. In this section,
we have reviewed the state-of-the-art (SOTA) methods for the
detection of audio and video deepfakes.

2.1. Video deepfakes detection

For video deepfakes detection, some approaches focus on
hand-crafted features [17-19] or physiological features [20-23].
For example, Geura et al. [17] introduced a no pixel-based ap-
proach in which feature vectors were constructed from the stream
descriptors information of the videos. These feature vectors were
then used to train the ensemble of SVM and random forest
classifiers. AUC score of 98.4% was achieved on Media Forensics
Challenge (MFC) dataset. Despite the good performance, this
approach [17] fails to handle video re-encoding attacks. Ciftci
et al. [20] presented a method that used biological features such
as heart rate estimation to identify the deepfakes videos. SVM
and CNN-based classifiers were trained on features extracted
using the remote photoplethysmography (rPPG) technique. Like-
wise, in [21,22], rPPG-based physiological features were used to
discriminate fake videos from real ones.

Keeping in view the possible abuses of deepfakes videos, re-
searchers have also introduced deepfakes detection models based
on deep neural networks (DNNs). Chintha et al. [24] introduced a
framework based on XceptionNet and Bidirectional LSTM. Xcep-
tionNet was used to extract the facial features whereas temporal
sequence analysis was performed using Bidirectional LSTM. To
distinguish the real video's features from the fake ones, the model
was trained on the combination of KL divergence and Cross
Entropy loss functions. Likewise, in [25], facial features extracted
using VGG-11 from the video frames were fed to the LSTM to
obtain the temporal sequence descriptors. These descriptors were
then used to train CNN frameworks named I3D, ResNet, and
R3D for recognizing fake videos. This approach [25] achieved
decent detection accuracy on the Celeb-DF dataset however it is
computationally complex.

2.2. Audio deepfakes detection

Traditional voice spoofing detection methods focus on feature
engineering where the hand-crafted features are used to train
the classifier for the detection of the audio deepfakes. For in-
stance, in [26], a global modulation 2D-DCT features extractor
was presented that captured global spectro-temporal modula-
tion patterns for audio deepfakes detection. The approach [26]
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attained an EER of 4.03% on ASVSpoof-2019 LA, however, the per-
formance decreases on noisy samples. To increase the diversity of
ASVSpoof-2019 LA training data, Das et al. [27] applied a signal
companding-based data augmentation technique before comput-
ing the constant Q transform (CQT) features and then used these
features to train the LCNN classifier. This method [27] improves
the detection accuracy but at the expense of extensive training
data. In our prior work [28], we developed a robust method for
the detection of multiple spoofing attacks including single and
multi-order playback, voice synthesis, and cloned replay attacks.
A novel acoustic ternary patterns-gammatone cepstral coeffi-
cients (ATP-GTCC) features were introduced to better capture
the dynamic traits of the real human voice, robotic noise, and
distortion in the playback samples for the accurate detection of
spoofing attacks on voice-driven systems. ATP features descriptor
uses a fixed threshold for patterns generation and provides a
lower performance in real-time scenarios. To overcome this lim-
itation of ATP features, we presented the extended local ternary
patterns (ELTP) and fused them with linear frequency cepstral
coefficient (LFCC) features in [29] for detecting the TTS and VC
spoofing attacks. ELTP calculated the threshold dynamically by
locally computing the standard deviation of each audio frame.
We also developed a unified voice spoofing detector [30] by
proposing novel acoustic-ternary co-occurrence patterns (ATCoP)
and fused them with GTCC patterns to accurately detect all types
of voice spoofing attacks. This anti-spoofing framework [30] was
evaluated on four different datasets including Voice Spoofing
Detection Corpus (VSDC), ASVSpoof-2019, Google's LJ Speech,
and YouTube deepfakes datasets to demonstrate the accurate
detection performance for various kinds of audio deepfakes.

Deep neural networks have also shown great performance
while detecting spoofed voices or audio deepfakes. Alanis et al.
[31] introduced a Light Convolutional Gated Recurrent Neural
Network (LC-GRNN) to expose the spoofing attacks (i.e., text-
to-speech, voice conversion, and replay) via extracting discrimi-
native frame level and contextual features. Log magnitude
spectrograms with 256 bins were fed to the model to identify the
speech as fake or real. ASVspoof-2015, 2017, and 2019 were used
to evaluate the model. This anti-spoofing system [31] is computa-
tionally efficient but not robust against unseen spoofing attacks.
In [32], a self-supervised approach known as SSAD consisting
of an encoder, regression, and binary workers was presented
to detect the original and fake voices. This approach [32] was
evaluated on the ASVSpoof-2019 LA dataset and achieved an EER
of 5.31%. Although the model [32] is computationally efficient, the
detection accuracy needs to be further improved. Zhang et al. [33]
presented a one-class learning model (based on ResNet-18 and
one-class softmax) that detected unknown synthetic voices gen-
erated using TTS and voice conversion techniques. The model was
trained on 60-dimensional LFCCs features and attained 2.19% EER
and a min t-DCF of 0.059 on the ASVSpoof-2019 LA dataset.

The SOTA methods for the detection of deepfakes mainly focus
on the fake audio or video detection separately and attained
reasonable results as discussed above. Less attention is given to
the field of a unified model for detecting deepfakes utilizing both
audio and visual streams of a video. The models exploiting both
streams of the video are either not evaluated on multimodal
datasets or failed to perform well in case of varying lighting
conditions, videos having side-posed faces, etc. Moreover, mod-
els are not evaluated for cross-corpora settings. In this paper,
a unified framework is presented that identifies the deepfakes
videos via analyzing audio and video streams and overcomes the
above-mentioned limitations of the existing deepfakes detection
methods.
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Skin tone mismatch

Blurness Distorted face swap

Fig. 1. Frames of real and fake videos, top row: real video frames, bottom row: fake video frames.

3. Analysis of the real and fake videos of FakeAVCeleb dataset

Deepfakes attacks can be very harmful and used to defame
a person, hack voice-controlled and face-recognition systems,
spread fake news on social media, and exploit society’s peace
by conveying misleading and disrupting ideas. Mostly deepfakes
attacks can either include audio or video manipulation. These
attacks could be more dangerous when both audio and video
stream of a video is modified to generate more realistic fake
content.

Fake videos can be distinguished through critical forensics
analysis as the fake visuals have many artifacts that are not
present in the real videos. For example, in the GAN-generated
fake faces some artifacts appear in the background, mismatch in
the eye color, eyeball size, and earrings can also be observed.
However, sophisticated manipulation algorithms reduce such ar-
tifacts and thus increase the realism of fake visuals. According to
our in-depth analysis, in face swap and face reenactment manip-
ulation, background artifacts are not present since the manipula-
tion only occurs at the face portion. However, some imperceptible
fake artifacts still exist but are difficult to detect by human
eyes. We suppose that our model considers the existence of
visible and subtle artifacts at the face portion of the manipulated
videos, as a clue for deepfakes detection. The visible artifacts
include distorted face swaps, appearance of different colors on
the face portion, blinking of the swapped portion, vanishing of the
swapped face for the side pose, and inconsistencies in the mouth
movement. Such artifacts diminish due to the compression in
low-resolution videos and because of the blurry and smoothness
effect on the face portion of the fake videos. Also, insufficient
illumination in which the person is hardly visible can cause deep-
fakes detection more difficult as the deepfakes artifacts become
imperceptible. Other imperceptible artifacts include the smooth
or less sharp edges of facial elements and a slight mismatch of
the skin color of swapped portion. Some fake videos also have
light red or green color appearance on the eye portion which
sometimes looks natural and indistinguishable for humans as
for the women'’s faces it looks more like makeup on the eyes.
Additionally, people belonging to different races and age groups,
varied illumination conditions, and side-posed faces in the videos,
make the detection task more challenging. For supporting our
analysis, a few samples are shown in Fig. 1 to show some of the
fake artifacts in the deepfakes videos.

Based on our analysis and observation, we also argue that fake
audio can be different from the real human voice from many
perspectives. For instance, the real human voice can have many
natural characteristics such as respiration, expression, vocalism,
change in pitch, and tone of voice. Voice recording also entails
many factors such as background noise, distortions, etc. Contrar-
ily, synthetic voices lack the human voice’s prosodic attributes

and variation in the pitch and tone of the voice. Also, the speaking
process is linear and seamless with void of distortions or back-
ground noise in fake audio due to its linear generation process.
Synthetic and real voices are also different in terms of the pauses
between the speech. There is no distortion or noise in the spoofed
speech if there is a pause. However, breathing or background
noise is present in the real voice during the pause.

The advancement in the quality of deepfakes audio generation
methods/tools has reduced the potential discriminative attributes
of audio used to classify between fake and real speech, thus
increasing the difficulty to detect fake utterances. We suppose
that spectrograms generated using high-resolution 2048fft bins
can demonstrate the imperceptible differences and also depict the
above-mentioned dissimilarity between real and fake audio. So,
we investigated the spectrograms in this research work for audio
modality with the expectation of providing a good performance
compared to the conventional acoustic feature extraction. To
support our assumptions, samples of real and fake audio Mel-
Spectrograms are shown in Fig. 2. From the highlighted patterns
in dotted regions in Fig. 2, it can be seen that the corresponding
region becomes entirely blank in the respective Mel-Spectrogram
where the pause occurs in fake audio. While in real speech,
when a pause occurs, the corresponding Mel-Spectrogram area
is not completely blank, but it contains some patterns due to
the presence of noise. Moreover, the bright horizontal patterns
represent the pitch and emphasize on the words. These lines are
brighter when the speaker emphasizes on a word or there is high
background noise and also patterns are not linear but irregular
due to the variations in the pitch. Whereas for the fake audio, the
horizontal patterns are more linear compared to the real audio
because of the same pitch of the voice throughout the audio sam-
ple. It is also notable that, in the synthetic speech, there appears a
vertical portion for each word in the Mel-Spectrogram while such
portions are less prominent in the real speech Mel-spectrograms.

Our proposed DST-Net model exploits globally aware dense
hierarchical deep learning features, so we hypothesize that such
features enable our model to accurately detect the aforemen-
tioned imperceptible fake artifacts in the facial frames and also
the above-mentioned distinctive artifacts in the Mel-Spectrogram
of fake and real speeches.

4. Proposed methodology

CNNs have been widely used in ML because of the effective
feature extraction of convolution layers. The majority of deep
learning-based deepfakes detection methods have employed
CNNs. However, the scope of CNNs is limited owing to network
depth and kernel size as the extremely deep neural networks
induce gradient vanishing problems and large kernels increase
computing costs. The transformers, on the other hand, have
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Mel-Spectrogram of real audio

Fig. 2. Mel-Spectrograms of real and fake audios.

first achieved considerable success in the natural language pro-
cessing arena via using self-attention settings, deeper mapping,
and sequence-to-sequence model design. Thereafter, it has been
employed in object detection and image recognition tasks.
Keeping in view the limitations of CNNs and the emerging use
of transformers in image recognition tasks, we utilize the swin
transformer architecture with a modified MLP module. In our
proposed network, we use the modified swin transformer as a
feature extraction module. The purpose of this research work is
to develop a unified model that can detect manipulation in both
audio and visual streams of deepfakes videos. The architectural
details of the proposed model DST-Net and the workflow of the
proposed framework are described in the subsequent sections.

4.1. Workflow of proposed unified framework

The detailed classification process of our unified framework
for deepfakes detection is shown in Fig. 3. Our proposed frame-
work is a two-stream network having an audio and video model
that can classify both the audio and visual features extracted
from a video. The video and audio models are trained on the
frames and Mel-Spectrogram images, respectively and make the
predictions individually. It is important to note that the proposed
DST-Net is used to classify audio and visual features in both
streams of the proposed framework. The model trained on audio
Mel-Spectrograms is referred to as an audio model while the DST-
Net trained on the extracted faces from the video frames is named
as a video model. For testing, the input to our framework is a
video along with its respective Mel-Spectrogram image. Frames
of the video are extracted, and the face detection algorithm
Multi-Task Cascaded Convolution Neural Network (MTCNN) [34]
is used to detect the faces. However, Python librosa package is
employed to generate Mel-Spectrogram with the following pa-
rameters: n_fft = 2048, hop_length = 512 and n_mels = 175. And
then power_to_db function is used to convert the spectrum to
decibel units. Mel-Spectrogram is an effective method to extract

hidden and useful features to visualize the audio as an image. In
the next step, we resize and reshape the extracted faces from the
video and a Mel-Spectrogram image. And then pass the frames
and Mel-Spectrogram to the respective stream of the model con-
taining the Dense Swin Transformer network. The video model
provides the prediction for the facial frames extracted from the
videos; therefore, we apply the majority voting rule to classify the
overall visual stream either as fake or real. The majority voting
rule is demonstrated in Eq. (1).

V, = max {real, fake} (1)

where Vs denotes the label prediction from the video stream of
the framework while real and fake indicates the real and fake
frames count, respectively. Finally, we compare the predicted
label from the audio and video stream of the framework and
based on the comparison shown in Eq. (2), we classify the video
as fake or real.

L) = Fake if A; = fake \/ Vi = fake
Y= Real Otherwise

In Eq. (2), L(v) represents the overall predicted label for a
video, and A; indicates the label prediction from the audio stream
of the network. According to Eq. (2), if the audio or the video
stream gets predicted as fake then the final label of fake is
assigned to the video. However, if both streams predict the real
label, then the video is classified as the real one. The algorithm
of the classification process is presented as Algorithm 1.

(2)

4.2. Dense swin transformer network

Our proposed unified model DST-Net consists of an input block
(IB), feature extraction block (FEB), and output block (OB). IB has
dense layers, FEB is composed of a swin transformer module and
OB comprises dense and dropout layers. The input and output
blocks are placed at the start and end of the whole network while
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Fig. 4. Dense Swin Transformer network.

FEB is placed in between IB and OB. The whole network is shown
in Fig. 4, and can be expressed as:

O = Y (%) (3)
Orep = Yres(Opp) (4)
Oos = Yop(Orzs) (5)

where x; indicates the input image. Y3 (.), Yres(.), and Yop(.) repre-
sent the input, feature extraction, and output block, respectively.
O, Opgp, and Ogp indicate the output of the IB, FEB, and OB,
respectively. The description of IB, FEB, and OB is provided in the
following sections.

4.2.1. Input block

The input block comprises three dense layers, which are em-
ployed for primary visual processing and to extract the dense
features from the input image. The dense layers transform the im-
age space into the dense, high-dimensional feature space. These
features encode the fine details of the input image which can be
effective for improving the detection performance. Dense features
are then passed to the feature extraction block based on the swin
transformer (ST) for further processing.

4.2.2. Feature extraction block

FEB consists of a swin transformer module and a 1D-global
average pooling layer at the end. Swin transformer module con-
structs the hierarchical feature maps starting with the small
patches and gradually merging the patches as the network gets
deeper in layers. The hierarchical features enable the model to
learn effective global and local contextual representations and
allows the model to perform dense prediction task. Moreover,
the multi-head self-attention module captures the long-range
dependencies and expands the receptive field with lesser param-
eters and lower computational complexity. This leads to better
performance while detecting deepfakes videos.

The ST module comprises the patch extracting, patch embed-
ding, two consecutive ST blocks, and patch merging. The patch
extracting layer is used to split the incoming dense features
into non-overlapping patches. Patch size is set to 3 x 3 and
each patch is considered as a token. The tokens are mapped to
vector data via the patch embedding layer, which is subsequently
utilized in transformer blocks. We used the embedded dimension
of 64. After that, two consecutive ST blocks are applied to these
tokens for the feature extraction. As the network grows, the patch
merging layer is utilized to minimize the number of tokens.
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Algorithm 1: Classification process of proposed unified framework
Input: Video Repository, V' = {vi, v2, vs ..., ..., vn}
Mel-Spectrogram Image Repository, M = { mi, mz, ms ..., ..., mn}

Output: Video prediction, V),
1. Set fake € 0,real €0

13.  m € Resize (m)
14. 0,5€ Yig(m)
15. OFEBe YFEB(OIE)

// Input Block

2. ForeachvinV do
3 Extract the frames from v and detect the faces F' = { f, £, f5 ..., ..., fa } through MTCNN().
4 For each fin F do
S. f € Resize (f) // Resized the detected facial frames
6 0,5€ Yis(f) // Tnput Block
7 Orgp€ Yrps(015)  // Feature Extraction Block
8 00p€ Yop(Opgg) // Output Block
real € real + + if Opp == 0
9 {[ake & fake ++ OCherwise}
10. End
11.  V, = max{real, fake} //Majority Voting Rule

12. Read Mel-Spectrogram Image m of the corresponding video v.
// Resized the Mel-Spectrogram Image

// Feature Extraction Block

16.  0pp€ Yop(Opgp) // Output Block

17. A €0,

TR {Fake if A;€fake VVS(—fa'ke
P Real Otherwise

19. End

} // Final Decision

—

Fig. 5. Consecutive Swin Transformer blocks.

Consecutive swin transformer blocks. The consecutive swin trans-
former blocks are presented in Fig. 5. Each ST block is composed
of layer normalization (LN) layers, multi-head self-attention
(MHSA) module, residual connection, and MLP module. Each
module (MHSA and MLP) followed a residual connection how-
ever, an LN layer is applied before each of these modules. The
two consecutive transformer blocks are different from each other
in terms of the MHSA module. The first transformer block has
a window-based MHSA (W-MHSA) module whereas in the sec-
ond transformer block, shifted window-based MHSA (SW-MHSA)
module is applied. Both modules conduct self-attention within
non-overlapping windows, leading the computation complexity
to become linear. However, the SW-MHSA module also allows
cross-window interaction without any additional computational
cost.

In both consecutive swin transformer blocks, the MLP is a four-
layered module. The first two layers are identical and composed
of Dense, ReLU activation function, and Dropout. Similarly, the
last two layers are also the same and consist of Dense and
Dropout. Each preceding and succeeding dense layer is fully con-
nected to each other thus enabling the dense feature extraction.

4.2.3. Output block

The feature vector obtained from the feature extraction block
is passed to the output block, which transforms the
high-dimensional feature space into the output image. OB con-
sists of two dense layers (having ReLU activation function) fol-
lowed by the dropout layer for regularization. Finally, to classify
the input image as either real or fake, a fully connected layer
with a softmax activation function is employed. The last fully

connected layer has two output neurons for the classification. The
softmax function in this layer, transforms the neuron’s value to 0
or 1 (0 for the real class whereas 1 for the fake class).

5. Experiments and results

In this section, details about the experimental setup and
datasets used to evaluate the performance of the proposed DST-
Net are provided. The performance of the proposed model is eval-
uated using standard metrics such as accuracy, area under curve
(AUC) score, precision, true positive rate (TPR), true negative
rate (TNR) and F1-Score, as used by contemporary approaches
for deepfakes detection. To justify the efficacy of our model, the
discussion on the results and comparison with state-of-the-art
methods are also given. Moreover, cross-corpora evaluation of the
unified model is also presented in the subsequent sections.

5.1. Datasets

For the detection of deepfakes, researchers have presented
large and standard datasets such as FaceForensics++ [35] and
Deepfakes Detection Challenge [36], but these datasets have some
drawbacks. For instance, FF++ only contains manipulated videos
with no audio. However, the DFDC dataset encompasses both
fake audio and fake video, but the entire video is labeled as fake
without specifying whether the audio or video is fake. There-
fore, a recent FakeAVCeleb dataset [13] (comprises the videos
having both visual and audio manipulation), is utilized for evalu-
ating the performance of the proposed unified framework. There
are 500 real videos of celebrities in the dataset whereas the
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Fig. 6. FakeAVCeleb dataset.

Fig. 7. Celeb-DF dataset.

total number of fake videos is more than 20k. This dataset con-
tains four subsets, RealAudioRealVideo (R;R,), FakeAudioFakeV-
ideo (F;F,), RealAudioFakeVideo (R,F,), and FakeAudioRealVideo
(FaRy). FakeAVCeleb dataset is unbiased in terms of gender and
ethnicity as it contains the videos of both men and women
belonging to four ethnic groups i.e., American, European, African,
Asian (south), and Asian (east). Performance of our proposed
model has also been evaluated on Celeb-DF [37] and ASVSpoof-
2019 LA [38] datasets. Celeb-DF dataset contains voiceless, visu-
ally manipulated deepfakes videos having individuals of various
ethnicities, ages, and gender. The dataset consists of a total of
590 real videos of 59 celebrities gathered from youtube and 5,639
deepfakes videos of corresponding real videos. It is a challenging
dataset since it comprises videos with different resolutions, light-
ing conditions, orientations, and backgrounds. ASVSpoof-2019
LA dataset encompasses speech data that is captured from 107
individuals including 61 females and 46 males. The training and
development sets of this dataset include known attacks while the
evaluation set contains 11 unknown and only 2 known spoofing
attacks. The spoofed audio is generated using the 17 diverse VC,
TTS, and hybrid systems. However, for cross-dataset evaluation,
World Leader Dataset (WLD) [18] and Presidential Deepfakes
Dataset (PDD) [39] are used. PDD dataset consists of 32 videos

of two US presidents Donald Trump and Joseph Biden. Half of
the videos in this dataset are real while the other half are fake
videos modified using impersonated audio, lip synchronization,
and misleading content. So, in the fake videos, the speech of both
presidents is fake as none of them actually spoke such state-
ments as mentioned in the videos. WLD dataset contains the real
and deepfakes videos of US politicians including Barack Obama,
Joe Biden, Donald Trump, Hillary Clinton, Bernie Sanders, and
Elizabeth Warren. The corresponding comedic impersonator of
each politician is used to create face-swapped and impersonated
deepfake videos via GANs. For Obama, lip sync deepfakes videos
are also included in the dataset. A few samples of the utilized
datasets are shown in Figs. 6-9.

5.2. Experimental setup and training parameters

The proposed DST-Net is trained from scratch with an image
resolution of 128 x 128 (for extracted faces) and 175 x 175
(for Mel-Spectrograms). In order to find the optimized hyper-
parameters for the proposed model, we performed extensive ex-
perimentation while tuning the hyper-parameters. After the de-
tailed experiments, the optimized parameters values are: learning
rate = 0.001, batch size = 16, label smoothing = 0.1, and weight
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Fake

Fig. 8. Presidential Deepfakes dataset.

Fake

. J

Real

Fig. 9. World Leader dataset.

decay = 0.0001. We trained the model using AdamW optimizer
and Binary Cross Entropy loss along with label smoothing. The
best model weights are stored using the early stopping on vali-
dation accuracy with the patience value of 5. All the experimen-
tations are performed on high-performance computing clusters
having the compute nodes with the following specifications: 40
CPU cores at 2.50 GHz and 192 GB RAM.

5.3. Detection performance on different spectrograms

We conducted an experiment to analyze the performance of
our proposed DST-Net model on different spectrograms of an
audio stream. The spectrogram depicts the visualization of the
frequency range that the signal contains over time. This exper-
iment is conducted on the FakeAVCeleb dataset. The subsets
used for this experiment are F,F, and R;R, each containing 500
videos. We split the subsets into training and testing sets with
a split ratio of 80:20. Chroma-CQT, Gammatone Cepstral Coeffi-
cients (GTCC), Mel-Frequency Cepstral Coefficients (MFCC), and
Mel-Spectrograms of the videos are computed using the python
package librosa. After that, the model is trained and assessed
on these spectrograms and the results are demonstrated in Ta-
ble 1. From Table 1, it can be clearly seen that our proposed
model, when evaluated on Mel-Spectrograms provides the high-
est accuracy of 97.51% and AUC of 97.52%. While, on all other
spectrograms (i.e., GTCC, MFCC, and Chroma-CQT) the detection
accuracy and AUC are below 90%. Mel-Spectrogram is a Spec-
trogram converted to a Mel Scale which mimics the working of
a human ear. Mel-Spectrogram provides the sound information

Table 1

Performance of DST-Net on different spectrograms.
Spectrograms Accuracy (%) AUC (%)
Mel-Spectrograms 97.51 97.52
GTCC 89.5 89.5
MFCC 88.5 88.5
Chroma-CQT 80.10 80.10

in a visual form to the model which is similar to the pitches
that humans can perceive. So, the Mel-Spectrogram depicts the
audio signal information in a more descriptive way resulting the
higher detection accuracy. As a result of these findings, we used
the Mel-Spectrograms of the audio stream for all other deepfakes
detection experimentations.

5.4. Performance evaluation

To evaluate the efficacy of the proposed model for audio-
visual deepfakes detection, we conducted multiple experiments
on standard datasets, and details are provided in the subse-
quent sections. The experimentation protocol in terms of dataset
splitting information is provided in Table 2.

5.4.1. Performance evaluation on FakeAVCeleb dataset

To show that our proposed DST-Net is a unified model and
capable of reliably detecting both the audio and visual deepfakes,
we evaluated the performance of our proposed model on the
FakeAVCeleb dataset. For this purpose, we conducted experi-
ments in three different stages. In the first stage, we evaluated
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Table 2
Datasets details.
Training Testing
Split Subsets No. of samples Split Subset No. of samples
Audio-video dataset FakeAVCeleb
RiRy 400 RiRy 100
Tein (80% R ok Test 202 ey .
F,Ry 400 F.Ry 100
Video dataset Celeb-DF (v2)
s 7 o s

Audio dataset ASVSpoof-2019 LA dataset

Subsets No. of bonafide samples No. of spoofed samples
Training 2,580 22,800
Development 2,548 22,296
Evaluation 7,355 63,882
Table 3
Performance evaluation on FakeAVCeleb dataset.
Models Testing subsets Accuracy AUC TPR TNR Precision F1-Score
Real Fake (%) (%) (Recall) (%) (%) (%) (%)
Video-onl RiRy F.F, 90.94 90.65 94.57 86.03 88.61 91.49
y RiRy R.F, 85.28 85.09 94.80 75.45 80.04 86.79
Audio-onl RaRy F.F, 98.73 98.66 99.62 97.72 98.06 98.83
Y RiRy FiRy 94.5 94.5 92 97 96.84 94.36
. . RiRy F.F, 92.59 92.01 99.95 84.08 87.91 93.55
Both (Audio and video) R.Ry R.Fy, FiRy 9341 84.67 94.35 75 98.67 96.46

the performance of DST-Net using only visual stream, and the
model trained on visual stream/modality is termed a video model.
In the second stage, performance is evaluated on audio stream
only and the trained model is named as audio model. While
at the third stage, our proposed unified framework is evaluated
on the FakeAVCeleb dataset via utilizing both the audio and
video models. So, we evaluated the performance of our proposed
model on the FakeAVCeleb dataset for video-only, audio-only, and
audio-video modality.

Augmentation techniques

Because the real subset comprises only 500 videos, therefore,
we applied different augmentation techniques to increase the
number of real videos to match the number of videos in the
fake subsets (F,F,, R;F,) of the FakeAVCeleb dataset. The ap-
plied video augmentation techniques are: horizontal flip, vertical
flip, translation, sharpening, elastic deformation, dropout, gamma
correction, gaussian blurring, average blurring, bilateral blurring,
median blur, gaussian noise, salt and pepper noise, raise blue
channel, raise green channel, raise red channel, raise hue, raise
intensity and raise saturation. Few of the frames of the aug-
mented videos in the same above-mentioned order are shown in
Fig. 10. Whereas we applied the following audio augmentation
techniques: white noise, time stretch, pitch scale, random gain,
invert polarity, gaussian noise, high pass filter, low pass filter,
pitch shift, shift, bandpass filter, band-stop filter, high shelf filter,
low shelf filter, peaking filter, gain transition, gaussian noise
and pitch shift, pitch shift and high pass filter, gaussian noise
and high pass filter. Some samples of Mel-Spectrograms images
of augmented audios in the same above-mentioned order are
presented in Fig. 11.

Evaluation on FakeAVCeleb for video-only modality

To evaluate the performance of our model for video-only
modality on FakeAVCeleb dataset, we performed two experi-
ments using three subsets (F,F,, R,F,, and R;R,) of the dataset.
These subsets are further splitted into training and testing sets. In
the first experiment, we used F,F, subset videos as fake and R;R,
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as real videos and trained the model on the extracted frames of
training set videos of these subsets. For the second experiment,
we used R,F, subset videos as fake and R;R, videos as the real
ones to train the model. The trained models are then evaluated on
the videos present in their respective testing sets. The results are
shown in Table 3. From the results, it is seen that the video model
has achieved an accuracy of 90.94% on F,F, and 85.28% on R,F,
subsets illustrating that the model has the capability to detect the
identity swapped and reenacted fake videos accurately. Both sub-
sets contain the face-swapped visual content generated through
different techniques i.e., DeepFacelLab [40], FaceSwap [41], and
FSGAN [42]. Moreover, in F,F, subset, the mouth region is also
modified to make it synced with the fake audio using the facial
reenactment technique Wav2Lip. For both experiments, the TPR
and TNR indicated that the video model predicts the fake videos
more accurately as compared to the real ones. The results validate
our hypothesis and indicate that the model has the ability to
capture the visible and imperceptible artifacts of fake videos
effectively for detecting the visual deepfakes.

Evaluation on FakeAVCeleb for audio-only modality

To check the effectiveness of DST-Net for audio-only modality,
we also performed two experiments using subsets (F,F,, F;Ry, and
RaRy) of FakeAVCeleb dataset. Both experiments are different in
terms of subsets used to train the model. For the first experiment,
we used F,;F, and R;R, whereas, for the second experiment, we
used F,R, and R;R, subsets. For both experiments, we computed
the Mel-Spectrograms of each video using the python library
librosa and stored them as 3-channel images. The proposed model
is then trained and assessed on the extracted Mel-Spectrograms
and the results are presented in Table 3. It can be observed from
Table 3 that the audio model attained 98.73% and 94.5% accuracy
on F,F, and F,R, subsets, respectively indicating that our audio
model can accurately detect the fake voices generated using TTS
systems. TPR is 99.62% and TNR is 97.72% on F,F, subset. Simi-
larly, for F,R, subset, TPR is 92% and TNR is 97%. These TPR and
TNR values clearly indicate that our audio model can accurately
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Fig. 10. Frames of the augmented videos.

Fig. 11. Mel-spectrograms of augmented audios.
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Fig. 12. Angled or side-posed faces.

detect both the fake and real Mel-Spectrograms. The precision
score on F,F, and F,R, subsets is 98.06% and 96.84%, respectively
indicating the outstanding fake video prediction quality of the
model. In both subsets, the fake audio is generated using a real-
time voice cloning method named Multispeaker Text-to-Speech
Synthesis (SV2TTS) [43]. The fake speech generated via SV2TTS
lacks the human voice naturalness and cannot isolate the refer-
ence audio prosody from the speaker’s voice. The outperforming
results indicate that our model captures these differences be-
tween real and synthetic voices with high detection accuracy. And
also proves our hypothesis that the analysis of Mel-Spectrogram
can be effective for detecting deepfakes audio.

Evaluation on FakeAVCeleb for audio-video modality

To analyze the robustness of our unified model for both the
audio and video modalities, we performed two experiments using
all subsets (F,F,, FiRy, RyFy, RaRy) of the FakeAVCeleb dataset. For
these experiments, training sets are the same as for video-only
and audio-only modality experiments. But the testing sets contain
the videos along with their respective Mel-Spectrogram images.
In the first experiment, we utilized the video and audio model
trained on F,F, and R;R, subsets of the FakeAVCeleb dataset and
evaluated our unified framework on the testing set containing
the F,F, subset videos along with its Mel-Spectrograms. For the
second experiment, the video model is trained on R,F, and R;R,
subsets whereas, the audio model is trained on F;R, and R;R,
subsets. The trained audio and video models are then evaluated
on the testing set containing the fake videos and their respective
Mel-Spectrograms from the testing set of both subsets (F;R, and
R,Fy). Table 3 shows the results of these experiments. Our unified
framework achieved the detection accuracy of 92.59% on F,F, and
93.41% on (R;F,, FiR,) subset. The model achieved the TPR of
99.95% for subset F,F, and 94.35% for (R,Fy, FiR,) subset. Overall,
the results shown in Table 3 indicate that our unified framework
is more robust in detecting fake videos as compared to the real
videos, in the case of the FakeAVCeleb dataset.

As can be seen from Table 3, the model trained on differ-
ent subsets when evaluated on their respective test sets, most
of them show exceptional TPR while some exhibit outstanding
precision, so the F1-Score is shown in Table 3 for a more thorough
analysis of the proposed model on different subsets in terms of
precision and recall. Except for one experiment in video-only
modality, F1-Score is above 90% on all experiments performed
for video-only, audio-only, and both modalities, indicating that
our proposed model performs well on the FakeAVCeleb dataset.
It can also be seen from Table 3 that for audio-video modality
experiment, the detection accuracy and F1-Score for F,F, subset
are slightly lower than the other subset. This may be due to the
reason that the facial reenactment technique such as Wav2Lip
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is applied on video in F,F, subset to generate more realistic
videos having the facial features modified and lip movement
synchronized with the fake audios.

Evaluation on FakeAVCeleb for angled or side-posed faces

To evaluate the performance of our proposed model specifi-
cally on the angled or side-posed faces, we designed an exper-
iment where we gathered the videos having the side pose of a
person from the FakeAVCeleb dataset. After that, we evaluated
our trained model on these videos to show their effectiveness
on the angled faces. Our model classifies the videos accurately
with 100% accuracy and AUC which indicates that DST-Net has
the capability to accurately detect the angled fake faces if present
in the videos while detecting the deepfakes. Few samples of the
angled face from the videos are shown in Fig. 12.

In the extreme side-posed faces, only half region of the face is
visible resulting in the loss of significant facial features informa-
tion and thus making it more difficult to detect the synthetic face
accurately. Our proposed DST-Net captures the global long-term
dependency and dense hierarchical features which enable them
to correctly classify the side-posed faces. Dense layer encodes
fine details about the input image and swin transformer in the
network architecture extracts the feature maps that have global
aware attributes and also establishes the relationship between
different image features. Due to these facts, our proposed model
is able to detect the fake videos having the extreme side-posed
faces of the person. Furthermore, there are certain frames in the
video when the person’s face is at an angle or is looking at the
camera rather than being severely side-posed at all times. Such
frames can also aid in the reliable identification of real or fake
videos with extreme side-facing poses.

5.4.2. Performance evaluation on Celeb-DF dataset

To evaluate the performance of our proposed model on a
diverse, challenging, and only visual manipulated dataset, we
designed an experiment to analyze the performance of our model
on the Celeb-DF dataset. For this purpose, the dataset is splitted
into training and testing sets. In order to train the DST-Net model,
we extracted the faces from the frames of the videos present
in the training set. From the training set, 20% of the extracted
faces are used for validation purposes during the training. After
training the model, we evaluated it on the videos present in the
testing set. The model was able to achieve an accuracy of 73.05%
and an AUC score of 75.64% on the testing set videos. However,
TPR and TNR are 72.07% and 79.21%, respectively. Moreover,
the model attained the F1-Score of 82.20% and a precision of
95.65%. The low detection performance on Celeb-DF (v2) dataset
is attributed to the fact that this dataset is highly unbalanced,
and the dataset is also biased towards the male gender as only



H. Ilyas, A. Javed and K.M. Malik

Table 4

Comparison with existing models on FakeAVCeleb dataset.

Applied Soft Computing 136 (2023) 110124

Models Accuracy (%)
Audio and video modality Video-only modality Audio-only modality
XceptionNet [14] 43.94 73.06 76.26
Meso-4 [14] 45,93 43.15 50.36
EfficientNet-BO [14] 63.18 59.64 50
Mesolnception-4 [14] 72.87 77.88 53.96
VGG-16 [14] 78.04 81.03 67.14
VED [16] 81.52 - -
POI-Forensics [15] 86.6 - -
DST-Net (proposed) 92.59 90.94 98.73
Table 5 _ _ o attaining the highest accuracy of 90.94% for video-only modality,
ifgﬁg‘g:“ce comparison  with existing  SOTA 98.73% for audio-only, and 92.59% for both (video and audio)
Vieth ci EER &) modalities. In the case of video-only modality, Meso-4 is the
etho - worst performing model while the VGG-16 performed the second
;[:/Sesdar;tezlal['3[04]4] 3'32 best. For audio-only modality, our proposed DST-Net outperforms
Arif et al. ['29] 074 the sgcond—b.est model with an average accuracy gain of 22%.
Javed et al. [28] 0.1 XceptionNet is the worst performer for the detection of deepfakes
Proposed model 0.13 via both modalities (audio and video). However, POI-Forensics

30% of the dataset is comprised of females. Moreover, the dataset
has less statistical difference between the real and fake videos.
As there is no mismatch of skin color and illumination difference
in the swapped fake faces, which may also affect the detection
performance.

5.4.3. Performance evaluation on ASVSpoof-2019 LA dataset

In order to investigate the model behavior for a large-scale and
standard audio-only dataset, we conducted an experiment where
we evaluated the performance of our proposed DST-Net on the
ASVSpoof-2019 dataset. More specifically, we used the Logical
Access subset of the ASVSpoof-2019 dataset for the assessment
of our model. We first generate the Mel-Spectrograms image of
the audios present in the training, development, and evaluation
set as our model demands images as input. Then, we trained
the model on these Mel-Spectrograms using the training and
development sets. The development set is used for validation
purposes. After that, the trained model is evaluated on the Mel-
Spectrograms present in the evaluation set. On ASVSpoof-2019 LA
dataset, our model attained the EER of 0.13%, accuracy, and AUC
of 86.77% of 88.34%, respectively. The LA dataset contains the fake
speech samples generated through voice cloning and synthetic
speech generation methods. The fake audio generated using VC
systems is more difficult to detect as compared to the audio
generated via TTS systems. VC systems utilize the human voice
as a source, conversely, TTS methods generate synthetic speech
using digitized text. So, VC systems generated voice can sustain
the prosodic characteristics of a person that the synthetic speech
may lack, making the fake speech more realistic. In the presence
of such challenging audio samples, the results indicate the ef-
fectiveness of our proposed model while detecting the spoofed
audios generated through different VC and TTS techniques.

5.5. Comparison with state-of-the-art methods on FakeAVCeleb
dataset

To justify and measure the effectiveness of our unified frame-
work, we performed a comparative analysis of our DST-Net with
the existing state-of-the-art methods on the FakeAVCeleb dataset.
We compared the accuracy of our DST-Net with the methods
reported in [14-16] for video-only, audio-only, and both (audio
and video) modalities. The results of the proposed and existing
models in terms of accuracy are provided in Table 4. The pro-
posed method outperforms the existing contemporary models by
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is the second-best performing model for audio-visual deepfakes
detection, but it has the limitation of requiring reference real
video of the target subject at the testing time. We can conclude
from this comparative analysis that the proposed framework
outperforms the existing models and is capable of accurately
identifying the deepfakes video via detecting manipulation in
both streams (audio and video). It is important to mention that
our proposed DST-Net also performed better over the baseline
models for deepfakes detection using audio-only and video-only
modalities of the FakeAVCeleb dataset.

5.6. Comparison with existing methods on ASVSpoof-2019 LA dataset

To investigate the performance of our model against the ex-
isting acoustic features extraction methods on the LA dataset,
we evaluated our DST-Net with SOTA methods [28-30,44]. The
purpose of this analysis is to show that the Mel-Spectrograms can
also be worthwhile for fake audio detection besides the acoustic
features used for classifying synthetic speech. The performance
comparison based on EER is shown in Table 5.

From Table 5, it is observable that our model achieves the EER
of 0.13%, which is 0.61% less than the second-best performing
model. However, our model performs almost equivalent to our
prior method [28] and shows that it is remarkably good at the
detection of logical access attacks. According to our expectations,
DST-Net shows incredible classification performance and proves
that Mel-Spectrograms provide good performance compared to
conventional acoustic features extraction for the detection of fake
audios. Thus, it can be concluded that the image visualization
of audios in terms of Mel-Spectrogram can also be effective for
classifying fake audios.

5.7. Cross-corpora evaluation

We performed cross-corpora evaluation to evaluate the gen-
eralization ability of our proposed unified framework, which is
further subclassified as cross-set evaluation and cross-dataset
evaluation. In cross-set evaluation, the models are trained on
one subset and tested on another subset of the FakeAVCeleb
dataset. Whereas in cross-dataset evaluation, models trained on
subsets of the FakeAVCeleb dataset are used to test the videos of
other datasets (i.e., PDD, WLD). The main goal of cross-corpora
evaluation is to analyze the potential and applicability of our
proposed unified model in real-world scenarios for deepfakes
detection.



H. Ilyas, A. Javed and K.M. Malik

Applied Soft Computing 136 (2023) 110124

Table 6
Cross-set evaluation on FakeAVCeleb dataset.
Training subsets Testing subset Accuracy AUC TPR TNR Precision F1-Score
Real Fake Real Fake (%) (%) (%) (%) (%) (%)
Video Model RiRy F.F,
Audio Model R.R, EF, RiRy RaFy, FaRy 78.41 83.43 77.87 89 99.29 87.29
Video Model RiRy R,Fy
Audio Model R.R, ER, R.Ry F,F, 85.94 84.87 99.42 70.32 79.52 88.36
Table 7
Cross-dataset evaluation.
Training subsets Testing subset Accuracy (%) AUC (%)
WLD - FaceSwap 73.98 74.52
. i WLD - Imposter 61.74 60.15
X‘L?(;‘; rrrn“;f'jill: ’;ﬁ‘;v WLD- LipSync 69.32 53.69
oA PDD - full 78.12 78.12
PDD-aug-full 62.34 62.34

5.7.1. Cross-set evaluation

The cross-set evaluation experiment is carried out to demon-
strate the generalizability of the proposed model on different
subsets of the FakeAVCeleb dataset. For this purpose, experimen-
tal protocols are kept the same as mentioned for audio-video
modality experiment in Section 5.4.1. This experiment is con-
ducted in two phases. In the first phase, audio and video models
(trained on F,F, subset) are used to evaluate the testing set
containing the videos and respective Mel-Spectrograms of R,F,
and F,R, subsets. Similarly, in the second phase, the audio model
(trained on F;R, subset) and video model (trained on R,F, subset)
are used to assess the testing set containing the videos and Mel-
Spectrograms of F,F, subset of the FakeAVCeleb dataset. The
results of the cross-set evaluation are provided in Table 6.

From Table 6, it is seen that when evaluated on (R,F,, FiRy)
subset, the video model and audio model (trained on F,F, subset)
have attained the precision of 99.29%. However, the video model
(trained on R,F,) and audio model (trained on F,R, subset), when
tested on F,F, subset, have achieved a TPR of 99.42%. F1-Score is
reported in Table 6 for better understanding as one unified model
achieves high recall and the other attains high precision. The
F1-Score of 87.29% and 88.36% on (R,Fy, F.Ry) and F,F, subsets,
respectively demonstrates that the model is quite effective at
detecting the deepfakes videos. Table 6 shows that under cross-
set evaluation settings, the proposed framework achieved an AUC
score of 83.43% on (R,F,, FiR,) subset and 84.87% on F,F, subset.
The difference in the accuracy and AUC for (R,F,, F;R,) testing
subset is attributed to the fact that the class imbalance problem
exists as the fake videos are greater in number as compared to the
real ones. The results highlight that the proposed unified frame-
work has great generalization aptitude for detecting deepfakes
videos under a cross-set evaluation setting. It can also be inferred
that the models trained on the videos having manipulation in
both streams can reliably detect the videos having either fake
audio or fake visual content.

5.7.2. Cross-dataset evaluation

The main purpose of the cross-dataset evaluation is to analyze
the generalizability of the unified framework over completely
different datasets. In this experiment, the audio and video models
are trained on the F;R, and R,Fv subsets of the FakeAVCeleb
dataset, respectively. Experimental protocols for training the au-
dio and video models are the same as mentioned in Section 5.4.1.
The trained models are then evaluated on unseen datasets in
three phases. In the first phase, videos of different subsets of WLD
are tested. In the second phase, models are evaluated on the PDD
dataset. In the third phase, we applied different augmentation
techniques to the PDD dataset and then tested the augmented
videos. The cross-dataset evaluation results are shown in Table 7.
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The real-world scenarios for the fake videos are included in
the WLD and PDD datasets. In the FaceSwap subset of the WLD
dataset, a more realistic fake video is created by swapping the
face of the leader with their respective imposter. The accuracy
of 73.98% on such realistic fake videos indicates that our pro-
posed unified model is capable of accurately detecting totally
unseen real-world face-swapped videos. On Imposter and LipSync
subsets, the accuracies are expected to be lower because the
Imposter subset involves the real person impersonating him-
self as a leader making it harder for the model to identify the
impersonated video. However, the LipSync subset consists of lip-
synced videos of Obama in which only the mouth area is modified
according to the speech. Therefore, it is more challenging for the
model to detect manipulated videos due to very little semantic
change in the lip-synced video. It is also important to note that,
in all these subsets the audio stream is not manipulated. The
accuracies of 61.74% and 69.32% on Imposter and LipSync subsets
demonstrate that the proposed model performed fairly well on
these subsets in a cross-dataset setting. The PDD dataset contains
the fake videos of Donald Trump and Joseph Bidden which are lip
synchronized according to the impersonated audio. The audio in
these videos is not synthesized using any fake audio generation
techniques, however, voice-over actors are used for producing
impersonated audio making them more difficult to detect. Both
of the leaders appear to be saying things that they have not really
spoken about. Our unified model detects such misleading content
with an accuracy of 78.12%. As the PDD dataset is very small, so
we utilized augmentation techniques such as noise, blurring, etc.,
to extend it by making it more diverse and challenging which
causes a decrease in the detection accuracy of our model on
the augmented videos of the PDD dataset. Additionally, all the
datasets used in cross-dataset evaluation are diverse and distinct
from each other in terms of illumination conditions, video cap-
turing devices, and manipulation techniques. It can be concluded
from the detection accuracies reported in Table 7 that our model
is generalizable and can be used to reliably detect real-world fake
videos.

6. Conclusion

In this paper, we have presented a unified framework that
is able to detect deepfakes via identifying the manipulation in
audio and visual streams of a video. We proposed a novel unified
DST-Net model that accurately detects both audio and video
deepfakes. DST-Net is evaluated on a challenging and diverse
FakeAVCeleb dataset for audio-only, video-only, and both (au-
dio and video) modalities. Our proposed model not only iden-
tifies the deepfakes videos accurately but also outperforms the
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contemporary models. To show the effectiveness of our model
for visual-only and audio-only manipulation, we evaluated it on
challenging Celeb-DF and ASVSpoof-2019 LA datasets. We have
also conducted a cross-corpora evaluation of our unified frame-
work on FakeAVCeleb, PDD, and WLD datasets to demonstrate
its efficacy and applicability in real-world scenarios. Extensive
experimentations show that the proposed approach is effective
and robust in detecting deepfakes videos having manipulation
in both the audio and visual streams. In future research, we
intend to further improve the performance of our model for
cross-corpora evaluation.
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