
Running Head: FRONTOLIMBIC DEVELOPMENT AND DIMENSIONS OF EMOTION 
REGULATION  

 
 
 
 
 

 

 

Managing fear and anxiety in development: 

A framework for understanding the neurodevelopment  

of emotion regulation capacity and tendency 

 

Camila Caballero, Erik C. Nook, & Dylan G. Gee 

 

Department of Psychology, Yale University 

Kirtland Hall, 2 Hillhouse Ave, New Haven, CT 06520 

 

 

 

 

Address correspondence to: 
Prof. Dylan G. Gee 
dylan.gee@yale.edu 
Kirtland Hall 
2 Hillhouse Ave 
New Haven, CT 06520 
 
  



FRONTOLIMBIC DEVELOPMENT AND DIMENSIONS OF EMOTION REGULATION  

 
2 

ABSTRACT 

How we manage emotional responses to environmental threats is central to mental health, 

as difficulties regulating threat-related distress can blossom into symptoms of anxiety disorders. 

Given that anxiety disorders emerge early in the lifespan, it is crucial we understand the multi-

level processes that support effective regulation of distress. Scholars have given increased 

attention to behavioral and neural development of emotion regulation abilities, particularly 

cognitive reappraisal capacity (i.e., how strongly one can down-regulate negative affect by 

reinterpreting a situation to change one’s emotions). However, this work has not been well 

integrated with research on regulatory tendency (i.e., how often one spontaneously regulates 

emotion in daily life). Here, we review research on the development of both emotion regulation 

capacity and tendency. We then propose a framework for testing hypotheses and eventually 

constructing a neurodevelopmental model of both dimensions of emotion regulation. Clarifying 

how the brain supports both effective and frequent regulation of threat-related distress across 

development is crucial to identifying multi-level signs of dysregulation and developing 

interventions that support youth mental health. 

Keywords: Emotion regulation, frontolimbic circuitry, development, prefrontal cortex, 

amygdala. 
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HIGHLIGHTS 

• Regulating emotional responses to threat is key to well-being across the lifespan. 

• Scholars have distinguished regulatory capacity (ability) from tendency (frequency). 

• Here, we synthesize research on the development and neural bases of these dimensions. 

• We formulate a framework for building a neurodevelopmental model of regulation 

capacity and tendency. 

• Validating this model could detect or prevent anxiety disorder development in youth. 
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1. Introduction 

The ability to cope with threats is central to mental health and well-being across the 

lifespan (Aldao et al., 2010; Cole et al., 1994; Schweizer et al., 2019). Indeed, how we manage 

(or regulate) emotional responses to environmental threats has been shown to shape whether or 

not these responses grow into symptoms of anxiety disorders (Cisler et al., 2010; McLaughlin et 

al., 2009; McLaughlin and Hatzenbuehler, 2009; McLean and Foa, 2017). Given that anxiety 

disorders are highly likely to onset in childhood and adolescence (Costello et al., 2005; Kessler 

et al., 2005), it is crucial that we build an understanding of how people learn to regulate 

emotional responses to threats as they develop.  

 Scholars have dedicated substantial energy to addressing this question across multiple 

levels of analysis. We have consequently learned that there are tight connections between 

emotion regulation and both the development of psychopathology and its treatment (Aldao et al., 

2010; Berking et al., 2008; Gratz and Tull, 2010; McLaughlin et al., 2011, 2009; Radkovsky et 

al., 2014; Sloan et al., 2017; Zorowitz et al., 2020). Although we have learned much through this 

research, empirical and theoretical work has so far paid little attention to a key distinction 

between emotion regulation capacity (i.e., how successfully one can change one’s emotions 

when instructed to do so) and emotion regulation tendency (i.e., how often one spontaneously 

deploys emotion regulation strategies in daily life) across development (though see Berkman and 

Lieberman, 2009; Guassi Moreira et al., 2020; McRae, 2013; Silvers and Guassi Moreira, 2019 

for studies of emotion regulation capacity focused on adults).  

In this paper, we summarize research on the neural bases of emotion regulation capacity 

in both adult and youth samples before offering a framework for further clarifying the 

neurodevelopment of emotion regulation capacity and tendency (see Table 1 for glossary). We 
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focus this review on cognitive reappraisal (i.e., reinterpreting the meaning of a stimulus to alter 

its emotional impact; Gross, 1998) given that this has been a focus of most relevant research. 

Delineating developmental trajectories of capacity and tendency, as well as interactions between 

these two constructs during neurodevelopment, can advance basic understanding of emotion 

regulation and potentially inform translational efforts to detect and intervene on emerging 

maladaptive emotion regulation or even anxiety-related symptoms. 

 

2. Development and Neural Correlates of Emotion Regulation Capacity 

2.1. Developmental Trends in Behavioral Measures of Regulatory Capacity  

Reappraisal capacity is often measured by comparing negative affect ratings when 

participants down-regulate emotional reactions to aversive or threatening stimuli to negative 

affect ratings when responding naturally to these stimuli (Nook et al., 2021b, 2020, 2017; 

Ochsner et al., 2002; Silvers et al., 2012). Several cross-sectional behavioral studies in which 

participants regulate their reactions to standardized emotional images show improved reappraisal 

capacity from childhood to young adulthood. This positive linear trend has been replicated across 

these reappraisal-based laboratory paradigms both in and outside of the scanner (McRae et al., 

2012b; Silvers et al., 2017b). However, some studies do not show this linear increase, suggesting 

that there may be task- or sample-level moderators that influence when children and young 

adults differ in their regulatory capacity (Ahmed et al., 2018; Nook et al., 2020; Van 

Cauwenberge et al., 2017). Similarly, investigations into the nonlinearities of regulatory success 

between broad developmental stages have returned mixed results. Some studies have found 

quadratic trends with both peak (Silvers et al., 2012) and lowest (McRae et al., 2012b) levels of 

effectiveness coinciding with mid/late adolescence (i.e., ages 14 to 17), whereas others have 
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failed to find nonlinear associations (Silvers et al., 2017b). The type of stimulus used during 

reappraisal paradigms may in part contribute to these mixed findings. For example, young 

adolescents were less successful at reducing negative affect with reappraisal compared to other 

age groups when the stimulus was social versus nonsocial (Silvers et al., 2012). Nonetheless, the 

balance of evidence from these cross-sectional studies suggests increased capacity to cognitively 

down-regulate emotional reactions to aversive stimuli across age.  

 

2.2. Neural Correlates of Emotion Regulation Capacity 

Delineating the neurodevelopmental trajectory of regulatory effectiveness first requires 

identifying key brain regions within the cognitive control and salience networks that have been 

implicated in reappraisal of aversive stimuli (Buhle et al., 2014). A broad literature using a 

variety of tasks points to the dorsal and ventral lateral regions of the prefrontal cortex (lPFC) as 

involved in cognitive control (i.e., ventrolateral prefrontal cortex (vlPFC) and dorsolateral 

prefrontal cortex (dlPFC)), and this prior literature has been used to propose a model for the role 

of these regions in emotion regulation (Buhle et al., 2014; Ochsner et al., 2012, 2002; Ochsner 

and Gross, 2005). Together, the vlPFC—thought to select and inhibit appraisals depending on 

goals—and the dlPFC—thought to alter appraisals in working memory to align with goals—are 

thought to contribute reappraisal during explicit, instructed paradigms (Badre and Wagner, 2006; 

Buhle et al., 2014; Thompson-Schill et al., 2005; Wager and Smith, 2003). The supplemental 

role of dorsal and ventral regions of the medial prefrontal cortex (mPFC) in regulatory behaviors, 

like reappraisal, is thought to be twofold (O’Reilly, 2010). First, the ventromedial prefrontal 

cortex (vmPFC) is thought to encode and represent the affective value of a stimulus in order to 

signal the need for regulation (Rudebeck et al., 2008). Second, the dorsomedial prefrontal cortex 
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(dmPFC) is thought to monitor the resulting changes in affect following regulatory behaviors 

(e.g., cognitive control) instantiated by more lateral prefrontal regions and provide feedback to 

lateral prefrontal regions about whether further actions are needed (O’Reilly, 2010; Taren et al., 

2011). In particular, dmPFC is thought to maintain these self-reflective processes by representing 

and updating the value of regulatory actions (Amodio and Frith, 2006; Binder et al., 2009; Cato 

et al., 2004; Crosson et al., 2002; Ochsner and Gross, 2005; Olsson and Ochsner, 2008). The 

dorsal anterior cingulate cortex (dACC) is thought to further support regulatory processes 

through its close functional and anatomical associations with the dmPFC by allocating attention 

as it monitors conflict between goals and current states (Cole and Schneider, 2007; O’Reilly, 

2010; Shenhav et al., 2013). Thus theoretically, the dorsal and ventral regions of the mPFC work 

in concert to link affect and value representations with regulatory behaviors in order to guide and 

initiate future regulatory processes (O’Reilly, 2010; Rudebeck et al., 2008). 

These lateral prefrontal regions involved in cognitive control and medial prefrontal 

regions involved in valuation are thought to interact with and modulate activity in subcortical 

regions, particularly the amygdala, which is implicated in tracking and reacting to the affective 

value of a stimulus, especially stimuli that may be threatening to an individual (Buhle et al., 

2014; Cunningham et al., 2008; Neta and Whalen, 2011; Ochsner et al., 2002). Functional 

connectivity analyses during instructed reappraisal support this model: For example, inhibitory 

projections from the vmPFC to the amygdala reduce amygdala reactivity in response to affective 

stimuli (Delgado et al., 2008; Hare et al., 2008; Motzkin et al., 2015). Interactions between these 

cortical regions, as well as connectivity with subcortical regions, may underlie individual 

differences in reappraisal capacity and are often fundamental to neurodevelopmental theories of 

emotional development given age-related changes in these large-scale circuits (Casey et al., 
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2019; Heller and Casey, 2016). While this model offers an interpretation of neural activity in 

reappraisal tasks, it is important to note that it is both speculative and depends largely on reverse 

inference (i.e., attributing functions to brain regions based on prior research associating activity 

in those regions with presumed cognitive functions used in certain tasks). 

 

2.3. Changes in Frontolimbic Circuitry Associated with Emotion Regulation Capacity 

Across Development  

Neurodevelopmental theory posits that normative developmental changes in brain 

circuitry play a mechanistic role in the maturing ability to regulate emotional responses to 

threats. The circuitry recruited during reappraisal in adulthood undergoes dynamic changes 

during childhood and adolescence, as we outline below. In particular, behavioral changes in 

emotion regulation across development correspond to maturational cascades from subcortical 

circuitry, to subcortical-cortical circuity, to cortical-cortical circuitry (Casey et al., 2019, 2016) 

(Figure 1).  

2.3.1. Interactions Between Subcortical Regions in Childhood  

 Both structural and functional brain imaging highlight the relatively faster and earlier 

changes in the development of limbic regions compared to the prefrontal cortex (PFC) (Figure 

1A). Within the first year of life, the total volume of subcortical regions, such as the amygdala 

and thalamus, increase on average almost 110% (Gilmore et al., 2012). Additional studies have 

identified anatomical changes in other subcortical regions such as the ventral striatum (VS) in 

children as young as five (Raznahan et al., 2014). Functional brain imaging has shown 

heightened reactivity in subcortical regions, especially the amygdala, to emotional cues in 

children as young as six compared to adults (Gee et al., 2013; Silvers et al., 2017a; Swartz et al., 
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2014; Vink et al., 2014). Given the hypothesized role of the amygdala and the VS in tracking 

affective or threatening cues (Hare et al., 2008; Somerville et al., 2011) and supporting reward 

learning processes relevant for motivated behaviors (e.g., Fiorillo, 2003), these two subcortical 

regions have received significant attention in the literature as regions influenced by top-down 

regulatory processes. 

Age-dependent interactions between subcortical regions contribute to variability in 

affective responding and regulatory success across development. In a cross-sectional sample 

ranging from age 5 to young adulthood, the strength of amygdala-VS connectivity decreased 

with age and was associated with cognitive control when responding to emotional cues (Heller et 

al., 2016). Studies have also found less mature patterns of functional connectivity between the 

mPFC and subcortical regions (e.g., amygdala) during both naturally viewing (Gee et al., 2013) 

and cognitive control conditions with affective stimuli in children (Perlman and Pelphrey, 2011). 

Additionally, resting state fMRI reveals that interactions between neighboring subcortical 

regions, such as the amygdala and VS, tend to emerge earlier in development compared to 

connections between more distal regions (e.g., between subcortical and cortical regions; Fareri et 

al., 2015; Gabard-Durnam et al., 2018). These findings, coupled with age-related increases in 

structural connectivity from amygdala to PFC in rodents (Bouwmeester et al., 2002) and humans 

(Swartz et al., 2014), suggest that subcortical-subcortical and later emerging bottom-up 

subcortical-cortical circuitry characterize childhood neurodevelopment. A dominant subcortical 

circuitry may explain reduced reappraisal capacity for aversive stimuli in childhood compared to 

older ages. Note, however, that the studies reviewed in this section and some of the following 

sections do not use classic reappraisal paradigms but rather involve exerting cognitive control in 

the context of affective stimuli (e.g., withholding a button press to a smiling face). Some authors 
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have argued that these tasks can assess implicit rather than explicit emotion regulation 

(Braunstein et al., 2017), and consequently they provide only indirect information regarding the 

role of these networks in the development of cognitive reappraisal.  

 

2.3.2. Development of Reciprocal Frontolimbic Projections and Ventral-to-Dorsal mPFC 

Engagement in Adolescence 

 Early adolescent experiences with increased emotional lability, still-maturing regulatory 

capacity, and sensitivity to environmental threats may arise from protracted development of 

connections between earlier-developing subcortical versus later-developing cortical regions 

(Somerville and Casey, 2014). Heightened activity of subcortical regions begets not only the 

increase in reactivity but also drives the maturation of bottom-up and top-down projections 

(Tottenham and Gabard-Durnam, 2017). Increased engagement of subcortical-cortical circuitry 

leads in turn to the strengthening of reciprocal projections from prefrontal regions back to 

subcortical regions, which is associated with increased reappraisal capacity (Silvers et al., 

2017b). Structural tracing studies in rodents document this sequential cascade from earlier 

developing amygdala-PFC projections to later strengthening of projections from the PFC to the 

amygdala (Bouwmeester et al., 2002), with initial evidence of a similar directional shift in 

human development (Gee et al., 2022).  

Molecular changes within subcortical and cortical regions coincide with this shift from 

excitatory bottom-up to inhibitory top-down frontolimbic projections (Hensch, 2004) with 

maturation of relevant gamma-aminobutyric acid (GABA) circuitry thought to underlie shifts in 

excitatory-inhibitory balance during adolescence (Werker and Hensch, 2015). These molecular 

changes often mark the onset of system-specific “sensitive periods,” during which certain brain 
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circuits are uniquely restructuring given biological readiness and increased potency of 

environmental inputs to guide learning and shape behaviors (Doremus-Fitzwater et al., 2010; 

Kaufman, 2018; Morgan et al., 2018; Spear, 2000), relative to other developmental stages 

(Takesian and Hensch, 2013; Werker and Hensch, 2015). Characterized by concurrent cascades 

of hierarchical changes in subcortical and cortical circuitry, adolescence may be a sensitive 

period in brain development that supports age-dependent changes in emotion regulation capacity 

(Blakemore and Mills, 2014; Fuhrmann et al., 2015; Larsen et al., 2022; Sisk and Gee, 2022). 

An adolescent peak in mPFC engagement during reappraisal (McRae et al., 2012a) 

highlights its role in scaffolding functional switches in frontolimbic circuitry underlying changes 

in the capacity to regulate emotional responses (Figure 1B). Cross-sectional neuroimaging 

studies of frontolimbic functional connectivity during the transition into adolescence reflect these 

dynamic developmental processes. For example, 10 year-olds and older youth exhibited negative 

amygdala-mPFC functional connectivity while viewing threat-related stimuli (e.g., fearful faces), 

whereas younger youth had positive functional connectivity (Gee et al., 2013). This directional 

switch in connectivity was associated with better task performance, lower amygdala reactivity 

during the task, and age-related declines in anxiety. In another study, amygdala-mPFC 

connectivity was associated with better cognitive control while viewing emotional cues, and this 

regulation-related pattern of connectivity mediated the negative correlation between amygdala-

VS connectivity and cognitive control (Heller et al., 2016). Further evidence shows that the 

valence of amygdala-vmPFC connectivity moderated the association between vlPFC activity and 

age-related decreases in amygdala activity, such that negative amygdala-vmPFC connectivity 

was associated with higher levels of vlPFC engagement (Silvers et al., 2017b). These findings 

suggest that age-related changes in amygdala-mPFC connectivity may act as a “rate-limiting 
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step” for increasing lPFC engagement and modulation of subcortical reactivity during these 

tasks. Indeed, age-related increases in vlPFC activity, as well as decreased coupling between the 

vlPFC and vmPFC, are associated with higher reappraisal effectiveness (McRae et al., 2012a; 

Morawetz et al., 2017; Silvers et al., 2017b).  

 Age-related changes in reappraisal capacity may also hinge on functional shifts within 

mPFC subregions. Specifically, the dmPFC and vmPFC have dissociable structural 

developmental trajectories (Markham et al., 2007; Shaw et al., 2008) and distinct functional 

contributions to emotional processes (Etkin et al., 2011). As reviewed earlier, the vmPFC is often 

associated with encoding and updating the affective value of stimuli, whereas the dmPFC is 

thought to track the effectiveness of regulatory behaviors by monitoring subsequent changes in 

affective states (e.g., through the dACC). Several studies have documented less robust vmPFC 

activity in late adolescence during the transition into young adulthood while responding to 

aversive stimuli (Lindquist et al., 2016; McRae et al., 2012a; Silvers et al., 2017a). Concurrently, 

increasing dmPFC response to aversive stimuli driving stronger dmPFC-vmPFC connectivity 

suggests that this ventral-to-dorsal shift within the mPFC underlies an enhanced ability to tightly 

couple the representation of emotional events with cognitive control regulatory behaviors (Cohen 

et al., 2016; Silvers et al., 2017a).   

Adolescents engage the dmPFC and dACC more than adults during both cognitive 

control tasks and while viewing affective stimuli (Blakemore, 2008). Top-down inputs from the 

dmPFC to the vmPFC are additionally associated with downregulation of amygdala activity in 

late adolescence and adulthood (Banks et al., 2007; Hartley and Phelps, 2010; Lee et al., 2012; 

Roy et al., 2012), and the dmPFC and dACC have relatively more outputs to the amygdala than 

other prefrontal regions (Ray and Zald, 2012). This ventral-to-dorsal shift within the mPFC 
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tracks age-related improvements in regulatory effectiveness not only by exerting modulatory 

effects on subcortical regions but also by acting as the conduit of affective information to and 

from lateral prefrontal regions that are critical in cognitive control processes (Allard and 

Kensinger, 2014; Helion et al., 2019; Mitchell, 2011; Phillips et al., 2008). For example, stronger 

coupling between the dmPFC and vlPFC during reappraisal was associated with reappraisal 

effectiveness in adults (Morawetz et al., 2017; Wager et al., 2008). As such, the dmPFC and 

dACC are well poised to integrate different components of prefrontal function to support 

increasing regulatory capacity. In support of this idea, patterns of vlPFC-amygdala or vmPFC-

amygdala connectivity do not track with individual differences in reappraisal effectiveness in 

adults (Morawetz et al., 2017, 2016) but do during other developmental stages (Silvers et al., 

2017b). Instead, stronger dlPFC-vlPFC coupling is related to reappraisal effectiveness in adults 

(Morawetz et al., 2017, 2016) (Figure 1C).  

 

3. Development and Neural Correlates of Emotion Regulation Tendency 

The tendency to use cognitive reappraisal to manage one’s emotions is often 

operationalized as a trait-like behavior and assessed using the reappraisal subscale of the well-

validated Emotion Regulation Questionnaire, of which there are both adult and child versions 

(Gross and John, 2003). As such, the following section largely discusses studies that focus on 

this construct. That said, operationalizing frequency in this trait-like manner may overlook the 

fluctuations, or state-like variability, in strategy use that vary across development and interact 

with contextual factors. We return to this point in the Discussion.  

 

3.1. Developmental Trends in Behavioral Measures of Emotion Regulation Tendency 
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Behavioral research documents a normative shift from behavioral, attention-related 

strategies for regulating distressing emotions (e.g., hiding under the covers) to more frequent use 

of effortful, cognitive strategies (i.e., reappraisal) during development, and this shift parallels 

improvements in effectiveness to implement these strategies (Cracco et al., 2017; Garnefski and 

Kraaij, 2007; Giuliani and Pfeifer, 2015; Kopp, 1989; Riediger and Klipker, 2014; Thompson, 

1991). Frequency of reappraisal use is thought to stabilize in adulthood, and studies find limited 

within-individual variability of strategy selection and use during adulthood (Benson et al., 2019). 

Similarly, analyses of age-related differences in reappraisal subtypes used within a laboratory 

task and cross-sectional sample show increased use of “normative” tendency to “change 

circumstances” of a situation across age and a peak of “denying reality” in early adolescence 

(Nook et al., 2020). That said, one accelerated longitudinal study found a slight linear decrease in 

frequency as a function of age within 1,130 youth (9- to 15-year-olds) using latent growth curve 

modeling across three time points (Gullone et al., 2010). Measurement approaches (e.g., trait-like 

versus state-like self-report questionnaires) and unassessed contextual factors may explain this 

discrepancy. Further empirical work can guide the field in supporting or refining the notion that 

the tendency to use reappraisal to manage emotions increases with age. 

 

3.2. Neural Correlates of Emotion Regulation Tendency 

Compared to capacity, there is a paucity of studies on neural processes related to 

reappraisal tendency. In one study, greater dispositional use of reappraisal was associated with 

increased activation in the dlPFC, vlPFC, and dmPFC and less amygdala activation while adults 

viewed affective stimuli (Drabant et al., 2009). These brain regions correspond to the neural 

correlates of reappraisal capacity, hinting at a potential link between one’s frequency of 
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reappraisal and spontaneous use of this strategy while viewing affective stimuli (i.e., an 

association between capacity and tendency). In another study, higher dispositional reappraisal 

use was associated with lower left basolateral amygdala-insula and right basolateral amygdala-

supplementary motor cortex functional connectivity during resting state fMRI (Picó-Pérez et al., 

2018). These patterns of connectivity were distinct from the connectivity pattern associated with 

dispositional suppression use, suggesting that individual differences in habitual emotion 

regulation strategy use may manifest in unique tonic brain processes. Lastly, higher self-reported 

trait regulatory tendency—collapsing across all strategies—correlated with decreased amygdala 

activity, stronger amygdala-vlPFC and amygdala-dmPFC connectivity, and less negative affect 

during reappraisal (Paschke et al., 2016). Together, these initial studies hint at the neural 

processes underlying regulatory tendency in adults.  

 

3.3. Open Questions in the Neurodevelopment of Tendency 

Echoing the paucity of neuroimaging studies probing the neural correlates of reappraisal 

tendency, only one study to date has examined this topic during development. Greater cortical 

thinning of the dlPFC and vlPFC in a longitudinal study of female adolescents assessed at two 

time points (at ages 12 and 16) was prospectively related to greater dispositional use of 

reappraisal in late adolescence (age 19) (Vijayakumar et al., 2014). Age-related decreases in 

cortical thickness have also been associated with increases in cognitive control ability in cross-

sectional studies (Tamnes et al., 2010a, 2010b). These structural MRI findings suggest that some 

of the same brain regions that support reappraisal effectiveness may also relate to reappraisal 

tendency. Although additional studies are needed to clarify the extent to which neural processes 
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supporting tendency parallel those supporting capacity, this result suggests that interrelated 

neurodevelopmental mechanisms may drive age-related changes in capacity and tendency.  

Another open question is whether the processes driving age-dependent changes in 

reappraisal use differ by developmental stage. That is, do changes in the frequency of reappraisal 

use (or lack thereof) stem from changes in the same underlying process during childhood as 

during adolescence? For example, more frequent use in late childhood to mid-adolescence may 

reflect an increasing number of potential learning opportunities to experiment with using 

reappraisal. By contrast, more frequent use in late adolescence may be driven by learning from 

prior experiences in which reappraisal was effective in managing emotions within a similar 

context. As an analogy from the field of education, “learning to read versus reading to learn new 

concepts” captures this potential switch in the meaning behind frequency measures (i.e., 

“learning to reappraise versus reappraising to regulate emotions”).  

Finally, a key task for future research is to develop an evidence-based 

neurodevelopmental model of how emotion regulation capacity and tendency interactively 

develop. We provide a preliminary framework for constructing, testing, and refining such a 

model in (Figure 2). Research exploring how effectiveness and frequency relate to each other in 

adulthood is limited and mixed, with some studies finding that reappraisal use is related to 

capacity (McRae et al., 2012b) and others finding no relationship (Troy et al., 2018). Although 

prior studies document both more frequent use of effortful, cognitive strategies (e.g., reappraisal) 

from childhood to young adulthood and age-related improvements in reappraisal effectiveness 

(Garnefski and Kraaij, 2007; McRae et al., 2012b), we are not aware of studies directly testing 

relationships between tendency and capacity in developmental samples. Such an investigation is 

sorely needed, as it is unlikely that these dimensions of emotion regulation develop orthogonally.  
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Given age-related differences in factors underlying improvements in emotion 

regulation—such as hierarchical, dynamic changes in frontolimbic circuitry (Casey et al., 2019) 

and the potential for more opportunities to practice reappraisal in novel situations during 

adolescence (Guyer et al., 2016)—it is likely that changes in effectiveness and frequency may be 

tightly linked during a period of dynamic change in brain development and social context. Here, 

we propose that developmental stage might moderate the relationship between capacity and 

tendency (Figure 2). In particular, we hypothesize that (i) synchrony between capacity and 

tendency may be lower in childhood given that children still have little evidence concerning the 

utility of regulation and the stronger subcortical-subcortical circuitry may limit belief updating 

concerning the value of regulation (e.g., Sutton, 1999), (ii) adolescence is a period of heightened 

coupling between capacity and tendency given that this is an active stage of exploration and 

developing subcortical-cortical circuitry facilitates learning of responses that foster adaptive 

outcomes, and (iii) adulthood will be a period of reduced capacity-tendency coupling due to 

relative decreases in neuroplasticity and greater crystallization of one’s regulatory habits 

(Hartley and Lee, 2015; Morawetz et al., 2017, 2016). Thus, adolescence may be a unique 

developmental stage during which changes in capacity and tendency may be closely linked and 

iteratively shape each other given dynamic cascades of hierarchical changes in subcortical and 

cortical circuitry (Figure 2). If so, adolescence is a key period in which learning cognitive skills 

to effectively manage emotional responses to threats and then implementing those skills may 

shape longer-term trajectories of resilience and mental health. Although our framework provides 

a sketch for how these processes may develop, these are all preliminary hypotheses built on the 

best available (though often indirect) evidence. As such, this framework is in need of direct 
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empirical scrutiny and careful refinement to eventually produce a clear and well validated model 

of these processes. 

 

4. Discussion 

Environmental stressors and threats are unfortunately extraordinarily common, and the 

ability to effectively manage one’s emotions is key to mental health and well-being across the 

lifespan (Aldao et al., 2010; Gross and Jazaieri, 2014). However, such beneficial outcomes 

requires both choosing to regulate one’s emotional reactions to threats and doing so effectively. 

Although attention to this distinction between regulatory capacity and regulatory tendency is 

growing (Berkman and Lieberman, 2009; Gross et al., 2006; Guassi Moreira et al., 2020; McRae, 

2013; McRae et al., 2012b; Silvers and Guassi Moreira, 2019), we lack a clear model of how 

these processes develop at the neural and behavioral levels. Here, we have summarized research 

on what is known about the development and neural bases of both emotion regulation capacity 

and tendency, sketched a framework, and generated a set of hypotheses that can guide future 

research on developing such a model. We now conclude with a brief discussion of the potential 

implications of this research and directions for future research. 

The field’s initial focus on regulatory capacity has offered important insight into the 

neural bases and development of this important skill. It is likely that part of the appeal of 

studying capacity over tendency is because emotion regulation capacity can be measured using a 

behavioral task, whereas tendency is typically measured via a self-report questionnaire. 

However, as we argue in this paper, there are several important reasons why future research 

should focus on a multidimensional approach to emotion development. First, there are theoretical 

reasons why we might hypothesize that capacity and tendency iteratively influence each other 
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and that these relations vary across developmental stage (see Section 3.3). Second, evidence 

suggests that studies of capacity alone miss a key part of emotion regulation’s benefits, as recent 

studies have found weak or null relations between behavioral measures of capacity and well-

being but instead stronger relations with tendency (Andrews et al., 2022; Guassi Moreira et al., 

2020; Wylie et al., 2022). Third, understanding the neurodevelopment of regulatory frequency 

(i.e., deciding to regulate emotions in a given context) is itself an interesting scientific question 

that offers an opportunity for synthesis across affective scientists, social psychologists, 

neuroscientists, cognitive scientists studying decision-making, and clinical scientists interested in 

facilitating mental health. What experiences or contexts cue individuals to choose to regulate 

their emotions, how does an individual’s learned value of regulation unfold over time, and what 

emerging brain systems support these developments? These are key open questions that we hope 

our framework highlights and organizes research around. Given the early age of onset for anxiety 

disorders and their potential for long-term negative impacts (Compton et al., 2004; Costello et 

al., 2005; Kessler et al., 2005), addressing these questions is particularly important for supporting 

youths’ ability to adaptively manage emotional responses to threatening experiences that 

generate distress, fear, and anxiety. Although several successful interventions for youth fear and 

anxiety are established and in development, clarifying the multi-level processes that support 

effective emotion regulation across development can further inform how to treat or even prevent 

anxiety disorders in youth. 

There are several exciting next steps for research in this area. Ongoing developments in 

and widespread use of sophisticated data collection methods (e.g., ecological momentary 

assessment; EMA), technology (e.g., neuroimaging; Berkman and Falk, 2013), and analytical 

methods (e.g., Bayesian network models) offer new opportunities to investigate how capacity 
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and tendency develop. As mentioned, relying on trait-level self-report questionnaires has likely 

dampened interest in tendency research, as these questionnaires can be prone to bias, rely on 

accurate recall (which may differ across development), and require reporting on averages that 

may not reflect important contextual variation. As such, examining these processes as they occur 

in ecologically-valid contexts with EMA study designs presents an exciting alternative to 

retrospective self-report questionnaires. Leveraging the real-time data collection of emotion 

regulation strategy use and effectiveness through EMA offers the potential to provide meaningful 

insight into real-world, multidimensional processes of emotion regulation across the lifespan. 

Given the dynamic nature of developmental processes underlying multidimensional phenomena, 

these multimodal and naturalistic approaches are critical.  

Initial evidence supports enthusiasm for an EMA approach, as one study found that 

adolescents who experienced prolonged periods of negative affect—suggesting lower emotion 

regulation effectiveness—following a real-world stressor also reported greater depression 

severity (Silk, Steinberg, & Morris, 2003). Another study examined the co-occurrence of 

regulatory strategies in daily life and their association with internalizing symptoms in adults with 

and without a clinical diagnosis (McMahon & Naragon-Gainey, 2019). Finally, a set of studies 

has examined how adolescents’ level of internalizing symptomatology is related to their daily 

“repertoire” of emotion regulation strategies (i.e., the strategies they tend to use, including 

reappraisal; de France and Hollenstein, 2017; Grommisch et al., 2019a; Lennarz et al., 2018; 

Lougheed and Hollenstein, 2012). Leveraging the real-time data collection of emotion regulation 

strategy use and efficacy through EMA study designs offers the potential to provide meaningful 

insight into the real-world, multidimensional processes of emotion regulation. Novel use of 

analytical approaches such as Bayesian network models can further support empirical efforts to 
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address this gap in the literature. Given the hierarchical relationship between the variables of 

interest (e.g., frontolimbic functional connectivity, effectiveness, frequency) across development, 

Bayesian network models, or directed acyclic graphs (Henderson et al., 2010), provide one 

example of a suitable analytical tool to account for the structure of these age-dependent 

associations. Additionally, more naturalistic laboratory methods that expose participants to 

threats using panels of dour judges, virtual reality goggles, or video game devices can balance 

the naturalism of real-world threatening situations with the tight control of in-lab designs (Kitt et 

al., 2022; Parrish et al., 2016; Seddon et al., 2020). Another methodological concern that the 

field must address is that common paradigms of emotion regulation capacity suffer from 

suboptimal psychometric reliability and ongoing concerns regarding construct validity 

(Braunstein et al., 2017; Guassi Moreira et al., 2020). We must continue to innovate to ensure 

our tasks measure what we think they measure and do so reliably. 

When reviewing how the field approaches the neuroscience of emotion and emotion 

regulation, it appears that most studies focus broadly on several negative emotions, for example 

by using standardized emotional images that tend to induce sadness, anxiety, fear, disgust, and 

anger (Mikels et al., 2005). Consequently, the current review focuses on how reappraisal 

functions generally across these affective experiences. However, there are potentially interesting 

distinctions between how anxiety and fear are regulated compared to other emotional 

experiences. Theoretically, avoidance is seen as a key strategy people use to regulate fear and 

anxiety, although this only serves to promote symptomatic reactions to threatening stimuli, and 

reducing avoidance is a central target in both youth and adult anxiety treatment (Arnaudova et 

al., 2017; Berman et al., 2010; Craske et al., 2014; Foa and Goldstein, 1978; Lebowitz et al., 

2013; Zorowitz et al., 2020). Distinctions between emotion regulation in anxious versus other 
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populations have been empirically documented, including differences in maladaptive regulatory 

strategies like worry and rumination (Desrosiers et al., 2013; Kashdan et al., 2013; Kircanski et 

al., 2015). These lines of research offer interesting future directions for extending the general 

framework provided here to specifically understand the role of fear and anxiety regulation in the 

development of anxiety disorders. Another limitation of the current framework is that it is based 

largely on cross-sectional rather than longitudinal studies. This leaves open the possibility that 

relations we propose based on prior work are due to third variables or cohort effects. 

Additionally, without longitudinal studies, we have little insight into potential bidirectional 

relations between variables (e.g., regulatory tendency and capacity could influence each other 

cyclically). As such, longitudinal designs will be crucial in gathering additional evidence 

regarding the ideas proposed here.  

In addition to applying novel research tools to validate our hypothesized relations and 

address limitations of the proposed framework, we encourage researchers to further expand it. 

We have purposefully constrained the set of factors relevant to emotional development in our 

framework. However, after validating it, attention should be paid to incorporating additional 

factors such as emotion regulation repertoire (i.e., how many strategies an individual has at their 

disposal; Grommisch et al., 2019), social context (i.e., how the presence or influence of others 

shapes capacity and frequency; Gee et al., 2014; Guyer et al., 2016; Nelson et al., 2016; Rodman 

et al., 2017), the interplay of biological and environmental inputs (Hensch, 2004), stress or 

situational demands (Troy et al., 2013), temporal dynamics (Heller and Casey, 2016), and other 

aspects of emotion expertise like the ability to specifically identify one’s emotions (Hoemann et 

al., 2021; Nook, 2021; Nook et al., 2021a, 2018). Another important line of extension is to push 

our understanding of neural processes beyond mere blood-oxygen-level-dependent (BOLD) 
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responses in fMRI contexts and down into finer neuron-level and molecular-level processes. 

Finally, we encourage researchers to work towards creating formal models of these phenomena 

to provide precise mathematical tests of key relations (Robinaugh et al., 2021). We hope the 

framework we offer here can become a center point of a fuller model that leads to a rich 

understanding of emotion regulation and its neurodevelopment. Even more so, this model may 

connect to developmental cascade theories (Thelen, 2005) of clinical change that can help hone 

interventions to the precise strengths and challenges individuals have managing fear, anxiety, 

distress, or other negative emotions given their neurodevelopmental stage. 
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TABLES 

Table 1. Glossary of terms.  
Term Definition Relevant citations 
Emotion 
regulation 

The set of strategies people use to change the 
duration, intensity, or type of emotions they feel 

(Gross, 2015, 1998) 

Cognitive 
reappraisal 

Changing one’s thoughts or interpretation of a 
stimulus to alter its emotional impact 

(Gross, 2015, 1998; 
Ochsner et al., 2002) 

Regulatory 
capacity 

How successfully one can regulate one’s emotions 
when instructed or freely choosing to do so 

(Buhle et al., 2014; 
Silvers and Guassi 
Moreira, 2019) 

Regulatory 
tendency 

How frequently one chooses to regulate one’s 
emotions 

(Gross and John, 
2003; Silvers and 
Guassi Moreira, 
2019) 

Sensitive period A period of development when the environment can 
have particularly strong influence on the brain and 
mind’s development of a certain faculty (e.g., 
language)  

(Blakemore and 
Mills, 2014; 
Fuhrmann et al., 
2015; Hartley and 
Lee, 2015; Sisk and 
Gee, 2022) 

Ecological 
momentary 
assessment 
(EMA) 

A method of data collection in which people report 
on their psychological experiences during their daily 
lives (e.g., by pinging their smartphones and 
surveying their emotions throughout a day) 

(Andrewes et al., 
2017; Colombo et 
al., 2019) 

Hierarchical 
Bayesian models 

A statistical and conceptual approach to testing 
theories in which relations between variables are 
nested hierarchically and Bayesian statistics are used 
to evaluate support for a hypothesized nested model 
given the evidence at hand  

(Glassen and Nitsch, 
2016; Henderson et 
al., 2010) 

Directed acyclic 
graph (DAG) 

A specific type of model in which variables are 
proposed to causally impact each other in a directed 
(i.e., non-recurrent, non-circular) fashion. DAGs can 
be built and tested using Bayesian statistics and are a 
promising method for testing developmental theory.  

(McNally et al., 
2017; Vanderweele 
and Robins, 2007; 
Williams et al., 
2018) 
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Figure 1. Age-related changes in frontolimbic circuitry during reappraisal implicated in 

dimensions of emotion regulation in (A) childhood, (B) adolescence, and (C) young adulthood. 

The arrows represent bidirectional projections (e.g., in part A, amygdala to vmPFC is an 

excitatory projection, whereas vmPFC to amygdala is an inhibitory projection). This figure 

depicts patterns of connectivity during reappraisal; changes in functional connectivity strengths 

are indicative of their relative role in the active process of using reappraisal (which is related to, 

but not limited by, changes in the density of anatomical connections). The schematic emphasizes 

developmental shifts in circuitry from dominant interactions between subcortical regions in 

childhood to reciprocal frontolimbic projections in adolescence and stronger cortical-cortical 

interactions in young adulthood. vmPFC = ventromedial prefrontal cortex, vlPFC = ventrolateral 

prefrontal cortex, dmPFC = dorsomedial prefrontal cortex, dlPFC = dorsolateral prefrontal 

cortex, VS = ventral striatum. 
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Figure 2. Hypothesized framework for studying age-related changes in the association between 

regulatory capacity and tendency (specifically for cognitive reappraisal). Based on preliminary 

results, we propose that developmental maturation of frontolimbic circuitry facilitates changes in 

effectiveness, which will reinforce frequency of use, which will in turn shape functional 

connections with experience. We hypothesize an inverted-U relationship between emotion 

regulation capacity and tendency across age. In childhood, dominant subcortical circuitry may 

mean that fluctuations in one dimension do not lead as directly to learning or changes in the 

other dimension. In adolescence, increased functional connectivity (FC) between the vmPFC and 

amygdala and increased maturation of the prefrontal cortex (PFC) may lead to increased 

coupling between capacity and tendency. The adolescent brain may be better tuned to increase 

regulatory tendency as regulatory capacity increases. This synchrony may decrease in young 
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adulthood, as both vlPFC-dlPFC coupling and regulatory capacity fully mature but regulatory 

tendencies become fixed habits. vmPFC = ventromedial prefrontal cortex, vlPFC = ventrolateral 

prefrontal cortex, dlPFC = dorsolateral prefrontal cortex. 


