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Abstract—Fluid therapy is a common treatment for hypov-
olemic scenarios to restore the lost blood volume and stabilize
acutely ill patients. Automating fluid therapy can lead to a
reduction of delay in care, a decrement in dosing errors, and a re-
duction of cognitive load on clinicians responsible for patient care
resulting in improved patient outcomes. However, this process is
highly challenging due to the complexity of patient’s physiology
and the variability of hemodynamic responses among patients.
This work presents a novel machine learning approach based on
reinforcement learning (RL) for automated fluid management,
where the RL agent is designed to recommend subject-specific
infusion dosages without having the knowledge of dose-response
models and only by interacting with the environment (virtual
subject generator). Compared to the state-of-the-art focusing on
the entire population’s data, the proposed approach uses indi-
vidual patient’s data to recommend patient-specific fluid dosage
adjustment. Simulation results demonstrate that the proposed
approach outperforms a proportional-integral-derivative (PID)
and a rule-based fluid resuscitation controller previously reported
for an animal study.

Index Terms—Machine learning, reinforcement learning, fluid
management, automated fluid therapy, mean arterial pressure

I. INTRODUCTION

Fluid therapy is a medical treatment for life-threatening
conditions such as hemorrhage, sepsis, and third-degree burn.
Automated fluid therapy systems can regulate fluid infu-
sion dosages by targeting a hemodynamic endpoint such as
blood volume [1] or mean arterial pressure (MAP) [2]. Such
automated systems are capable to significantly reduce the
clinician’s cognitive overload in critical care and can also
be employed in remote or hostile environments. e.g., combat
casualty care, to potentially save lives. Additionally, automated
fluid calibration has the potential to prevent over- and under-
dosing, a common issue in fluid therapy, by providing an
optimal infusion dosage schedule [3], [4].

Various control methodologies have been proposed for
automated fluid therapy, including adaptive control [4], op-
timal receding horizon control [5], fuzzy logic control [6],
proportional-integral-derivative (PID) control [7] and rule-
based (decision table) control [8]. A review of recent advances
and open challenges in fluid therapy was presented in [3]. Most
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of the existing fluid resuscitation controllers are population-
based methods that use a one-size-fits-all model and controller
that may not hold for a large group of patients. Also, the
accuracy of fluid management can be significantly improved
using a more accurate dosing adjustment tool.

Machine learning has been successfully applied in the
healthcare domain in the development of new diagnosis and
treatment methods [9]–[16]. Reinforcement learning (RL) is a
machine learning paradigm concerned with training intelligent
agents interacting with an environment through a series of
actions aimed at maximizing cumulative rewards in the long
term. RL-based controllers were previously used in medication
dosing for anemia management [9], cancer therapy [10], and
blood glucose control [11]. These controllers leverage the
power of RL to adjust medication dosages, resulting in a more
accurate and personalized treatment plans for patients with
complex medical conditions.

In this work, a novel, model-free RL control approach
is designed for subject-specific fluid therapy. The proposed
algorithm regulates MAP as the hemodynamic endpoint for
individual subjects by employing a Q-learning algorithm that
enables the RL agent to learn the optimal behavior in a
stochastic environment. The RL algorithm does not need a
dose-response model, which sets it apart from model-based
approaches whose performance depends on the accuracy of the
model. Compared to existing model-free controllers, including
a rule-based [8] and a PID [7] controller, the proposed ap-
proach has a higher performance in adjusting fluid dosages and
controlling the physiological variable, as will be demonstrated
in Sections III and IV. To the best of Authors’ knowledge, this
is the first attempt at applying RL to fluid therapy delivery
systems.

II. METHODOLOGY

RL is a sequential decision-making algorithm with two
main components including an environment that represents the
system and an agent that learns how to behave optimally in the
environment to maximize reward during the training process.
The agent interacts with the environment by taking actions,
and the environment responds with rewards or penalties,
enabling the agent to learn from its actions and refine its
behavior over time.
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By formulating the problem as an MDP, we enable the agent
to learn an optimal behavior using a Q-learning algorithm [12].
This algorithm allows the agent to estimate the values asso-
ciated with various actions and improve its action-selection
policy during the training process. Equation (1) represents the
Q-learning update rule, where the agent updates the action-
value function based on the received reward, the estimated
future maximum value, and the learning rate and discount
factor.

The RL environment can be described as a finite Markov
decision process, defined as a 4-tuple, including sets of per-
missible states (S) and Actions (A) taken by the agent, a
reward function (R) that represents reward or penalty received
by the agent from the environment, and the probability of
transitioning from one state to another by taking a specific
action (P) [17]. By formulating the problem as an MDP, we en-
able the agent to learn an optimal behavior using a Q-learning
algorithm [18]. This algorithm allows the agent to estimate the
values associated with various actions and improve its action-
selection policy during the training process. The Q-learning
update rule is shown in (1), where the agent updates the action-
value function based on the received reward, the estimated
future maximum value, the learning rate, and discount factor.

Qnew(si,ai)←Q(si,ai)+α(ri+γmax(si+1,ai)−Q(si,ai)) (1)

where i = {1,2, ...,N} denotes the number of current episode,
ri is the reward obtained when transitioning from state si
to si+1, Q(s,a) denotes the current value of the action ai,
max(si+1,ai) provides an estimation of the optimal value in
the future, and Qnew(si,ai) indicates the accumulated value
obtained by selecting action ai in state si+1. The learning rate,
α ∈ [0,1] determines how much adjustment of Q-values is
used based on new information. The discount factor γ ∈ [0,1]
reflects the importance of future rewards versus an immediate
reward.

The RL algorithm proposed in this study is model free. In
the absence of real subjects, a simulator was employed in this
study to create virtual subjects. The virtual subject generator
(simulator) has been previously verified as a digital twin of
an animal study [19]. The simulator relates the change of
hemodynamic response to fluid gain and loss as [19]

∆V̈B(t)+ kp∆V̈B(t)+ ki∆V̇B(t) = [ü(t)− v̈(t)]+
kp

1+αu
u̇−

kp

1+αv
v̇− ki

1+αu
u− ki

1+αv
v (2)

CO(t) = HR(t)θ1log(θ2CO(t) + θ3∆VB(t)θ4) (3)

MAP(t) =CO(t)× [T PR0×
∆T PR

2
×

sgn(MAP(t)−MAP0)
√
|MAP(t)−MAP0|√

|MAP(t)−MAP0|
] (4)

TABLE I: The State Mapping Table

State Number e(t)(mmHg)
1 [0,5)
2 [5,10)
3 [10,15)
4 [15,20)
5 [20,25)
6 [25,30)
7 [30,35)
8 [35,40)
9 [40,45)

10 [45,50)
11 [50,∞)

where αu and αv are the steady-state ratio between the
changes in intravascular and extravascular volume resulting
from fluid gain and loss. The infusion and hemorrhage rates
are represented by u and v, respectively, and the change in
blood volume is expressed as ∆VB(t). CO denotes the cardiac
output, and θ1, θ2, θ3, and θ4 are constant values optimized
for each subject. The proportional and integral gains are given
by Kp and Ki, respectively. HR is the heart rate, MAP(t) is
the current value of MAP, MAP0 is the nominal MAP, and
T PR0 represents the nominal total peripheral resistance (for
more information about the simulator see [19]).

To ensure the optimal performance of our RL agent, we
defined the action set as a predetermined range of fluid
infusion dosages at a given time t. To this end, the infusion rate
range of [0,100] ml/min [20] was translated to the action set
A = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90,
100} ml/min. Also, the environment state was represented by
MAP, a readily accessible hemodynamic variable displayed on
patient monitors. The environment state set was defined based
on the absolute MAP error e(t) as

e(t) = |MAP(t)−MAPtarget | (5)

where MAP(t) and MAPtarget denote the current and target
(desired) MAP, respectively. Also the state mapping table for
different ranges of e(t) is shown in Table I.

The RL agent strengthens its action-selection strategy by
evaluating the reward received from the environment by se-
lecting an action at . The reward function plays an important
role in learning process, as it provides a positive value when
the error decreases and a zero value when the error increases.
Therefore, the reward function was established based on at as

ri+1 =

{
e(i)−e(i+1)

e(i) e(i+1)< e(i)
0 e(i+1)≥ e(i)

(6)

III. RESULTS

The resuscitation and hemorrhage scenarios were adopted
from [8] where sheep underwent medium and small hemor-
rhaging events. In the first 15 minutes of the experiment, 25
ml/kg hemorrhage was applied to each animal subject. Then
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hemorrhage stopped for the rest of the experiment except for
t = 52 min and t = 72 min where a small hemorrhage rate
of 5 ml/kg was applied to each subject for 2 minutes. MAP
was considered the design endpoint and measured every 5
minutes during the study. The resuscitation started with the
lactated Ringer’s solution after 30 minutes from the beginning
of the study and continued until the end of the study (180
minutes). The simulator [19] used in our work was a digital
twin model designed for the aforementioned animal study [8].
The parameter values used in the simulator for each animal
subject were identified in [19]. We run our simulation in
Python for 180 minutes and recorded 20,000 episodes. The
RL controller parameters were set to α = 0.2, λ = 0.69, and
ε = 0.9. The selection of the discount factor was based on an
exhaustive search and iterative refinement of the RL algorithm.
Also, various values of λ were tested to assess their impact
on the RL agent’s learning and performance. The value of λ

was selected as a balance between prioritizing recent rewards
and accounting for the importance of future rewards. The RL
agent was trained to reach and maintain the desired MAP
level during the simulation. The initial value of MAP (MAP0)
was considered the desired MAP (MAPtarget ) for each subject.
The Results of the proposed algorithm were compared against
two other model-free approaches previously reported for this
animal study: a rule-based (decision table) [8] and a PID
controller [7]. All controllers used MAP as the hemodynamic
endpoint to regulate the infusion rate.

A. The results of MAP Regulation with Different Controllers

Figs. 1 and 2 demonstrate the recommended fluid infusion
dosages and MAP responses for 8 subjects using each control
algorithm (RL and PID in Fig. 1, RL and rule-based in Fig. 2).
The large hemorrhage scenario in the first 15 minutes caused a
large drop in the MAP level at the beginning of the study. The
MAP slightly recovered after hemorrhage stopped and before
resuscitation started, due to the fluid shift mechanism in the
body. The controller began at t = 30 min to compensate for
the fluid loss and stabilize the MAP to the target level.

B. Performance Assessment

A variety of performance metrics including dynamic perfor-
mances, measurement errors, and input/output responses were
employed for comparison studies. These performance mea-
sures followed the IEC 60601-1-10 standard for the evaluation
of physiologic closed-loop controllers [21]. The dynamic per-
formances consisted of rise time, the time taken for the MAP
response to transition from 10% to 90% of its target value, and
settling time, the time required for the MAP to stabilize within
a 2% error band of its final value. Measurement errors used
for comparison studies were mean absolute performance error
(MAPE), mean absolute error (MAE), and root-mean-square
error (RMSE) and computed as

MAPE = mean(|PEi|), i = 1, ...,N (7)

where,

PEi =
MAP(t)−MAPtarget

MAPtarget
×100, i = 1, ...,N, (8)

MAE =
ΣN

i=1|MAP(t)−MAPtarget

N
, (9)

and

RMSE =

√
ΣN

i=1(MAP(t)−MAPtarget)2

N
. (10)

The input/output responses included the total amount of
infusion and the final MAP response from each method. Table
II demonstrates the comparison of RL, PID, and rule-based
fluid resuscitation controllers with respect to the dynamic per-
formances, measurement errors, and input/output responses.
The results clearly indicate the higher performance of the RL
controller compared to the other two approaches.

IV. DISCUSSION

This study presented a model-free RL-based fluid resus-
citation control algorithm for regulating MAP response in
hemorrhagic scenarios. The RL framework used a Q-learning
algorithm to develop an optimal drug delivery policy for fluid
management by interacting with a simulator that represented
the digital twin of an animal study. As indicated by different
performance measures in Table II, the performance of the RL
algorithm was higher than the rule-based and PID fluid re-
suscitation controllers previously implemented for this animal
study.

Figs. 1b and 2b illustrate a large decrease in the value of
MAP in the beginning of the simulation due to the large hem-
orrhage applied to each subject and the lack of a resuscitation
strategy to compensate for the blood loss. As the controller
started working at t = 30 min, the value of MAP increased
significantly due to the large amount of infusion delivered by
the controllers. The RL algorithm also demonstrated a faster
transition to the target MAP compared to the rule-based and
PID controllers in all subjects, most notably in subjects 1, 3,
4, 5, and 7. When two smaller hemorrhages occurred at t =
52 min and t = 72 min, the MAP responses of the rule-based
and PID controllers sharply dropped. Conversely, the MAP
responses of the RL controller were less negatively affected
by these two hemorrhages, as indicated in Figs 1 and 2. This
demonstrates the higher robustness of the RL algorithm against
the external disturbances, compared to the other two methods.

Comparing dynamic performances of the fluid resuscitation
controllers reveals that the RL-based controller provided a
faster transition to the target value of MAP (Table II). Both rise
time and settling time of the RL controller were smaller than
corresponding values from the other two methods, indicating
faster convergence of the hemodynamic response (MAP) to
the steady-state level in the proposed method. In addition,
the measurement errors (MAPE, MAE, and RMSE) of the
RL controller were smaller than those from the rule-based
and PID, demonstrating the higher accuracy of the proposed
algorithm in the control of MAP. Further, while the final MAP
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Fig. 1: (a) Fluid dose adjustments and (b) achieved mean arterial pressure levels from the RL and PID controller
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Fig. 2: (a) Fluid dose adjustments and (b) achieved mean arterial pressure levels from the RL and rule-based controller

responses of all three algorithms were similar and close to
the target level, the RL controller used a lower amount of
total infusion than the rule-based and PID controllers. This
may suggest that the proposed approach was more effective in
preventing fluid overdoing, a common issue in fluid therapy
delivery.

The RL-based control algorithm was designed based on the
error between the instantaneous MAP and MAPtarget . While
the desired level of MAP was considered 90 mmHg in the
original animal study [8], MAPtarget varied from subject to
subject depending on the initial value of MAP (at t=0) in
training of the RL method. Our evaluation of the digital twin
simulator [19] showed that the final value of MAP computed
by this simulator cannot exceed the initial MAP for each

subject. As a result, If MAPtarget was set to 90 mmHg for all
subjects, the RL agent would have not been able to observe
the desired target state for some of these subjects and would
have trapped into an infinite loop preventing its training. Due
to this limitation of the simulator, MAPtarget was set to the
initial MAP of each subject in training of the RL agent.

This study used MAP as the design endpoint. A multivari-
able control approach that considers multiple hemodynamic
endpoints such as cardiac output, HR, and MAP can be
examined in the future to consider the influence of multiple
factors that affect the physiological state of the patient. The
proposed algorithm can also be extended to assess the effect
of multiple medication infusions (e.g., fluid and vasopressors)
in critical care. In addition, further assessments are needed
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TABLE II
COMPARISON OF RL, PID, AND RLUE-BASED FLUID RESUSCITATION CONTROLLERS

PID Rule-based RL
Dynamic
Performances

Rise Time (min) 16.65±3.23 20.77±7.45 13.06±16.51
Settling Time (min) 63.53±25 82.63±50.17 62.22±47.86

Measurement
Errors

MAPE (%) 4.61±2.46 7.37±5.88 4.27±1.57
MAE (%) 3.98±2.37 6.25±5.19 2.81±1.12
RMSE (%) 6.69±3.15 9.49±5.07 5.29±1.79

Input/Output
Responses

Total infusion (ml) 1801±1502 2373±1202 1612±1115
MAP Response (mmHg) 82.23±6.55 80.12±8.05 81.68±7.77

to evaluate the robustness of the proposed algorithm against
clinical disturbances.

V. CONCLUSION

The study presented a machine learning algorithm based
upon a model-free Q-learning RL for fluid management in
hypovolemia. The method was tested on eight animal subjects
using their digital twin models. Simulation Results indicated
that the proposed approach outperformed PID and rule-based
fluid resuscitation controllers previously implemented for this
animal study. Evaluating the proposed method in presence of
clinical disturbances and extending it a multivariable approach
for simultaneous control of multiple hemodynamic endpoints
will be investigated in future research directions.
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