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A B S T R AC T

Neural oscillations in the form of electroencephalogram (EEG)
can reveal underlying brain functions, such as cognition, memory,
perception, and consciousness. A  comprehensive EEG computa-
tional model provides not only a stochastic procedure that directly
generates data but also insights to further understand the neurolog-
ical mechanisms. Here, we propose a generative and inference ap-
proach that combines the complementary benefits of probabilistic
graphical models and generative adversarial networks (GANs) for
EEG signal modeling. We investigate the method’s ability to jointly
learn coherent generation and inverse inference models on the CHI-
MIT epilepsy multi-channel EEG dataset. We further study the ef-
ficacy of the learned representations in epilepsy seizure detection
formulated as an unsupervised learning problem. Quantitative and
qualitative experimental results demonstrate the effectiveness and ef-
ficiency of our approach.

Index Terms— EEG, GAN, Bayesian networks

1. INTRODUCTION

Electroencephalogram (EEG) is a non-invasive technique that mea-
sures the spontaneous electrical activity of the brain. EEG has been a
driver of studies from basic neurological research to clinical appli-
cations. EEG modeling is essential to understanding the underlying
mechanisms that generate brain signals and serve to design experi-
ments and test hypotheses in silico. There exist extensive prior works
on EEG computational models [1] that derived principled neuro-
science laws, empirically validated rules, or other domain expertise.
Those are often in the form of general time-dependent and nonlin-
ear partial differential equations. Nevertheless, they rely on strong
assumptions which are not always generalizable. Further, those are
slow to simulate and often suffer from model misspecifications.

Generative Adversarial Networks (GANs) [2] provide a pow-
erful framework and tools for machine learning, especially for
deep representation learning and generative models. Over the past
few years, GANs have witnessed tremendous advancements and
achieved state-of-the-art performance in a variety of prominent
tasks, including photo editing, video prediction, text generation, and
signal synthesis [3, 4]. As a data-driven method, GANs are flexible
and do not depend on rigid assumptions. Therefore, GANs hold
great potential in modeling the inherent stochasticity and extrinsic
uncertainty of EEG signals.

Recent work [5, 6, 7] applying GANs in EEG synthesis tend to
simply characterize the spatio-temporal characteristics of EEG data

subject to latent spaces of basic distributions, e.g., Gaussian or uni-
form distributions. Such assumptions impose limitations in captur-
ing the intrinsic dependence among latent variables. Also, the GANs
require deeper networks to synthesize longer sequences, which are
computationally expensive and challenging to train, e.g., vanishing
or exploding gradient problems. Moreover, the lack of inference ca-
pability in vanilla GANs hinder insight into structural information of
EEG signals. On the other hand, probabilistic graphical models [8]
enable inference through structured representations but often lack
the capability to model arbitrarily complex distributions.

To address these challenges, we propose a novel GAN-based
approach for EEG signal modeling that couples deep implicit likeli-
hoods [9] with structured latent variable representations to combine
their complementary strengths. Our method uses graphical mod-
els for representing underlying structures of the signals, and ap-
plies ideas from the Graphical-GAN [10] for effectively learning not
only a generative model mapping from latent distributions to com-
plex high-dimensional EEG data space but also an inverse inference
model mapping from the data space to the latent space. Our study
paves the way for leveraging implicit probabilistic models to com-
prehensively investigate the mechanisms that generate brain waves.

2. METHODOLOGY

2.1. E E G  Signal Synthesis with GANs

A  GAN is a generative model trained by a pair of neural networks
in a game-theoretic approach [2]. In GANs, a discriminator neural
network D  is trained to distinguish real from synthetic EEG sig-
nals, while a neural generator network G  is trained to generate EEG
signals from a latent space to make them indistinguishable by the
discriminator. With EEG signal x  drawn from data generating dis-
tribution q(x), z drawn from noise prior pz , and p(x) is the gener-
ator’s distribution over synthetic data, G  and D  jointly optimize the
following objective:

L G A N  ( G ; D )  =  Ex q ( x ) [ log D (x ) ]  +  Ez p z ( z ) [ log(1   D (G(z ) ) ]
=  Ex q ( x ) [ log D (x ) ]  +  Ex p ( x ) [ log(1   D (x ) ) ]  (1)

The discriminator is expected to output a high probability for a
valid EEG signal and a low probability for a synthesized one, corre-
sponding to the values of log D ( x )  and log(1   D (G(z ) ) ,  respec-
tively. G  and D  are trained simultaneously until G  is able to suc-
cessfully fool D .

Following the proofs in [2], given a fixed generator G, the opti-
mal discriminator is given by D ( x )  =  q ( x ) + p ( x )
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Under an optimal discriminator D ,  the generator minimizes the
Jensen-Shannon (JS) divergence, which attains its minimum if and
only if p(x) =  q(x).

state vp given the previous state. G 3  uses noise zp , state vp, and
condition c to generate the synthetic -second EEG signal x t  .

The joint distribution of the inverse inference model q is

2.2. Conjoining GANs with Bayesian Networks

2.2.1. Generative and Inverse Inference Process

q (x1 : T  ; v1:T ; z; k; c)

=  q (x1 : T  )q (z j x 1 : T  ; c)q(k j z )  
Y  

q(vt j x t )
(3)

t = 1

(a) Generative model - p

(b) Inverse inference model - q

Fig. 1: Directed graphical models for EEG signal modeling. Each
time step corresponds to a -second multi-channel signal. Shaded
nodes represent observed variables. Clear nodes represent latent
variables. Directed edges indicate statistical dependencies between
variables.

As shown in Figure 1, we model the generative process and the
inverse inference process by a generative model and an inverse in-
ference model in the Bayesian network. The framework exploits
a Gaussian mixture model (GMM) to characterize the static latent
variable structure with its capability to approximate arbitrary distri-
butions, and a Markov model for the dynamic latent characterization.
We use the notations p and q to denote the generative and inverse in-
ference models.

The joint distribution of the generative model p is

p(x1 : T  ; v1:T ; z; k; c)

=  p(k)p(z j k)p(c) 
T      

p(vt j vt     1 )p(xt  j z; vt; c)
(2)

t = 1

where p(k) and p(c) are simple prior distributions for Gaussian mix-
ture indicator k and condition c, e.g., a categorical distribution and a
uniform distribution, p(z j k) models a component selecting proce-
dure for sampling noise z which encodes the temporal-spatial rela-
tionships invariant across time, vt ’s form a first-order Markov chain,
with p(v1jv0 )  N (0; I ),  to encodes the temporal relationships
variant across time, p(xt  j z; vt; c) specifies the conditional prob-
ability of the data at each time step t given noise z, state vt , and
condition c, and is of interest for the final generation.

The distribution function p(x1 : T  ; v1:T ; z; k; c) is parametrized
as generator neural networks.     It consists of three parts: z =
G1 (kp ), vp =  G2 (v p ; t ), t   N (0; I ),  and x p  =  G3 (z; vp ; c). G 1

is responsible for a mapping from the input prior to a mixed
Gaussian distribution with respect to kp. G 2  transitions to a new

where each latent variable of the Markov structure is assumed to be
independent using the mean-field approximation [11]. q (x1 : T  )  is the
empirical data distribution, q(z j x 1 : T  ; c), q(vt j xt ) ,  and q(k j z )
are of interest for the inference. Contrary to p(vt + 1  j vt ), q(vt j x t )
models a dynamic tracing procedure for reconstructing the hidden
features vt . In contrast to p(z j k); q(k j z )  models a component
tracing procedure for reconstructing the Gaussian mixture indicator
k.

The distribution function q (x1 : T  ; v1:T ; z; k; c) is parametrized
as extractor neural networks.     It consists of three parts: z =
E 1 (x q        ; c), vq     =  E 2 (xq ) ,  and kq     =  E3 (z q ) .  E 1  and E 2  are
responsible for a mapping from original signals to noise z and state
vq, respectively. E 3  infers within the latent space from zq to kq.

2.2.2. Learning Process

Our goal is to learn the parameters of the generative model p and the
inverse inference model q by jointly minimizing the Jensen-Shannon
(JS) divergence

JS(q (x1 : T  ; v1:T ; z ; k; c)kp(x1:T ; v1:T ; z; k; c)) (4)

Expectation Propagation (EP) [12], a deterministic approxima-
tion algorithm, is proposed to utilize the locally structured data fol-
lowing [10]. The joint distributions can be factorized in terms of a
set of factors FG  =  f(k; z) ; (vt ; vt     1 ) ; (xt ; vt ; z; c)g. For a factor
a, the divergence of interest is

JS (q (a) 
Y  

q(b)kp(a) 
Y  

p(b)) (5)
b = a b = a

EP iteratively minimize a local divergence in terms of each fac-
tor individually with the assumption that q(b) p(b).
The divergence becomes

JS (q (a) 
Y  

q(b)kp(a) 
Y  

q(b)) (6)
b = a b = a

Using the same proof sketch as in [10], the divergence for factor
a is approximated as

JS ( q (x 1 : T  ; v1:T ; z; k; c)kp(x1:T ; v1:T ; z; k; c))
2q(a) 2p(a) (7)

q p(a) +  q(a)            p                 p(a) +  q(a)

The divergences are further averaged over all local factors as

2 2 3 2 3 3
1                  X                2q(a)                          X                2p(a)

jFG j q       
a 2 F G

p(a) +  q(a) p       
a 2 F G

p(a) +  q(a)

(8)
Individual parametric discriminators D a  can be employed to es-

timate the local divergences as follows
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p 3 2 t+  E      log (1   D  (k ; z ) )  +  log 1   D      v ; v
  

p         p        p

(10)

q p q p

(11)

G  ; E        D        
min max L +  L (12)

G  ; D  ; D2 3 2 G 3

D  Linear 1, SN, Sigmoid Conv 1, Tanh

Conv 6, BN/SN, lReLU

t 2Get v , z , c E  Linear 32

1 2

3. E XPE R I ME NT S

3.1. Dataset

d      1( )
2

1

#

X

Table 1: Network architectures. Models having similar

2 3 2 3
architectures are grouped together.

max     
1 

Eq  4  
X  

log ( D a ( a ) ) 5 +  
1 

E p  4  
X  

log (1   D a (a ) ) 5 Linear 512, (SN), lReLU Linear 1536, lReLU
a 2 F G a 2 F G Linear 512, (SN), lReLU Reshape 96x16

(9) Linear 256, (SN), lReLU Upsample
where denotes the parameters in all discriminators. The discrimi- G 2  Linear 32 Conv 6, BN, lReLU X  4

native models distinguish between the variables from the generative D 3  Linear 1, SN, Sigmoid Conv 6, BN, lReLU

model p and those from the inverse inference model q as synthetic                          2
and original, respectively. D 1 E 2 ; E 1

Get x t  or x[1 ; T ]  (concatenated along channels)
2.2.3. Optimization Objective Conv 1, lReLU - 96x256

Three discriminators D  , D  and D  receive local variable pairs, Conv 6, Stride 2, BN/SN, lReLU X  4

i.e., (k; z), (vt ; vt     1 ), (xt ; vt ; z ; c), from either the generative                                                    Reshape 1536
model p or the inverse inference model q, separately. The adversar-  

Linear 256, SN, lReLU E 1  Linear 128
Join features of xt ,  vt , z , c

Linear 512, SN, lReLU

L G A N  ( G ; E ; D ) Linear 1, SN, Sigmoid

=  Eq      log D 3  (kq ; zq ) +  log D 2      vq; vq +  log D 1  (xq ; vq ; zq ; c)
p       p p         p learning rate of 0.0001 for G  and E ,  and the exponential decay

t      1 rates  = 0.5 and  = 0.999. All  weights are initialized using
+  log (1   D 1  (x t  ; vt ; z ; c))] a zero-centered Gaussian distribution with a standard deviation of

All components are trained simultaneously in an adversarial pro-
0.02. We make the implementation publicly available 1.

cess. Let  and  denote the parameters of G  and E ,  respectively.
Iteratively, D  learn to maximize Equation 10 by updating     , while G
and E  learn to minimize Equation 10 by updating correspond-ing
parameters  and , respectively.

In order to ensure the global consistency of an entire signal         The 23-channel interictal EEG recordings from the CHB-MIT
across time steps, a frequency domain loss is added as                                 epilepsy dataset [18] are used for the experiments. The dataset con-

sists of scalp EEG from pediatric subjects with intractable seizures.
We select a subset of 6 patients (chb01-03, chb05-06, chb10) having

L f  ( G )  =  kr(x i ; 1 : T  )    r(x i ; 1 : T  )k1 +  k ’( x i ; 1 : T  )    ’( x i ; 1 : T  )k1 the same measurement setup, including males and females, 1.5-14
years old. Interictal periods are extracted at least 4-hour away before

where r and ’ refer to the average magnitude and phase across sig-         a seizure onset and after the seizure ends. The signals are low-pass
nals i  in a batch, respectively. They are computed by a fast Fourier         filtered with a cut-off frequency at 50 Hz and scaled to the range

transform (FFT). Hence, the total objective is                                                 [ 1; 1]. Overall, the dataset contains 43593 signals, from which
70% are used for training and validation, and the other 30% are used

G A N                   f                                                                      as the test set. Each signal is 10-second long (T=10), at a sampling
rate of 256 Hz. Additionally, 339 ictal EEG signals are extracted for

2.3. Network Architectures and Hyperparameters evaluating epilepsy seizure detection performance.

Table 1 presents the architectures of the deep neural networks. Each
time step corresponds to a 1-second EEG signal ( = 1). All  the

feature maps have 96 channels. Leaky ReLU activation functions
are applied to all layers, with the slope 0.1 to stimulate easier gradi-
ent flow. Batch normalizations (BN) [13] are used at each convolu-
tional layer of the generators and extractors. Spectral normalizations
(SN) [14] are applied to the discriminators to constrain their Lips-
chitz constants. c are subject embeddings as one-hot vectors. The

sizes of z, k, and vt , and t  are set at 128, 6, 32, and 16 respectively.
G 1  and E 2  are single-layer neural networks. We use the repa-

rameterization trick [15] to estimate the gradients with the continu-
ous variable z, and the Gumbel-Softmax trick [16] (the temperature
of 0.1) to estimate the gradients with the discrete variable k.

 is set at 0.1 to have the training process driven mainly by the
adversarial loss. In order to mitigate the issue of slow learning in
regularized discriminators, a higher learning rate is provided to the
discriminators than the generators and extractors by the Two Time-
scale Update Rule (TTUR) [17]. The models are trained with the
Adam optimizer with the initial learning rate of 0.0004 for D ,  the

3.2. Evaluation Metrics

Sliced 2-Wasserstein distance (SWD) [19, 20] quantifies the cost of
transforming one distribution to another. It is an approximation to
the 2-Wasserstein distance using 1D projections for a closed-form
solution and is defined as

S W D2 (; )  = E W 2 ( # ; # ) 2 (13)
U  S

where  and  are two probability measures,   stands for the
pushforwards of the projection R d  3  X  !  h; X i, and U Sd      1       is the
uniform distribution on the hypersphere of d dimensions.

Spectral entropy (SEN) measures the uniformity the of signal
energy distribution in the frequency-domain. It is given by

f s = 2

H ( x )  =   P (f ) log 2[P (f )] (14)
f = 0

1https://github.com/khuongav/Graphical-Adversarial-Modeling-of-EEG
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q q

where P  is the normalised power spectral density, and f s  is the sam-
pling frequency of signal x.

Reconstruction error (REC) measures the differences between
the values of an original signal and its reconstruction x~ as

R E C  =  kx1 : T    x~1 : T  k1 (15)

3.3. Results and Discussion

Table 2: Performances of different GAN models in interictal EEG
signal synthesis and reconstruction tasks.

Figure 4. These results prove the effectiveness of our proposed data
structures and confirm our inverse inference strategy.

By training with the additional FFT loss, GMMarkov-GAN en-
joys the highest performance (SWD of 0.0116, R E C  of 0.0474, and
SEN difference of 0.012). It should be noted that the frequency-
domain loss added little time for training, yet it noticeably improved
the results.

Original data
GMMarkov-GAN
Markov-GAN
GMMarkov-GAN (w/o FFT)
Markov-GAN (w/o FFT)
C-BiGAN/ALI

SWD

1.16e-2
1.34e-2
1.70e-2
1.78e-2
2.13e-2

R E C

0.0474  0.0392
0.0494  0.0413
0.0519  0.0438
0.0530  0.0391
0.0562  0.0415

SEN
0.620  0.070
0.608  0.063
0.636  0.070
0.585  0.074
0.583  0.069
0.539  0.066 Fig. 3: ROC curve for epilepsy seisure detection.

(a) C-BiGAN/ALI (b) GMMarkov-GAN

Fig. 2: Last 10-second of a 30-second synthetic 23-channel EEG
signal by the GMMarkov-GAN model, conditioned on patient 3. 5
channels with the highest standard deviations are shown.

Table 2 presents the performance of our proposed approaches
and the comparison with the BiGAN/ALI model [21, 22]. We denote
its conditional version as C-BiGAN/ALI. GMMarkov-GAN is our
model characterized by Gaussian mixture and Markov latent struc-
tures, while Markov-GAN is only with the Markov structure. C-
BiGAN/ALI is the GAN with an inference capability but without a
latent variable structure, in which the latent space is a simple Gaus-
sian, and data at each timestep are generated independently.

Both the graphical GANs achieve significantly lower SWD,
REC, and SEN differences than C-BiGAN/ALI, indicating that they
are better at capturing the characteristics of EEG in both time and
frequency domains.     Besides, by encoding the invariant spatial-
temporal features of EEG signals subject to the flexibility of a
Gaussian mixture, GMMarkov-GAN enjoys better performance
(SWD of 0.0173, R E C  of 0.0519, and SEN difference of 0.035)
than the Markov-GAN. We attribute this to GMMarkov-GAN being
able to learn a structured clustering of the latent space as shown in

Fig. 4: t-SNE visualization of the static latent spaces.

In Figure 2, synthetic multi-channel EEG signals are plotted.
The signals are naturally realistic across channels and show good
fits in different frequency bands. Although our model is trained on
10 second-long signals, it can generate much longer sequences of 30
seconds, thanks to the Markov structure.

To demonstrate the efficacy of our generative and inverse map-
ping approach for auxiliary tasks, we further evaluated our approach
in epilepsy seizure detection. As the model is trained on the inter-
ictal EEG signals, seizure segments are detected with reconstruction
error thresholds in an anomaly detection framework. Figure 3 shows a
high detection performance from our model by the ROC curve with the
area under the curve of 0.92, competitive with contemporary ap-
proaches in supervised learning [23]. We plan to build on these re-
sults in our future work for interpreting more encoded features in the
low-dimensional manifolds and further investigate the partial mode
collapse issue of GANs.

4. CONCLUSION

In this work, we proposed an EEG modeling scheme that combines
the strengths of probabilistic graphical models and generative ad-
versarial networks. Our experimental results demonstrate that our
method effectively characterized EEG latent variable structure via a
Gaussian mixture and a Markov model. The structured representa-
tions can provide interpretability and encode inductive biases to re-
duce the data complexity of neural oscillations. Our approach holds
promise to new generative applications in neuroscience and neurol-
ogy. Future directions include generalizing learning and inference
algorithms with more complicated structures to truly model the un-
derlying relationships at different scales spanning from the single
cell spike train up to macroscopic oscillations.
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