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Abstract— As the complexity of both products and systems
increases across a wide range of industry sectors, there has been
an influx in demand for methods of system organization and
optimization. MBSE enhances the ability to obtain, analyze,
communicate, and manage data on a comprehensive
architecture of a system. In this study, a military combat
surveillance scenario is modeled using SysML generating state
machine diagrams and activity diagrams using the Magic Model
Analyst execution framework plugin. This study seeks to prove
the feasibility of an MBSE-enabled framework using SysML to
create and simulate a surveillance system that monitors and
reports on the health status and performance of an armored
fighting vehicle (combat tank) through an Unmanned Ariel
Vehicle (UAV). The Magic System of Systems Architect, which
actively promotes system development architectural
frameworks, was used to construct SysML-compliant models,
allowing the creation of intricate model diagrams. The
construction of the UAV surveillance scenario emphasized the
capability of modifying a diagram feature and ensuring that the
alteration is communicated to all linked model diagrams. This
study builds on a previously published MBSE-enabled
conceptual framework for creating digital twins. The purpose of
this research is to test and validate the framework's procedures.

Keywords—MBSE, SysML, MBSE framework, UAV,
Surveillance

L INTRODUCTION

As defined in the 2007 INCOSE Model-Based Systems
Engineering (MBSE) Initiative, Model-based systems
engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis,
verification, and validation, beginning in the conceptual
design phase and continuing throughout development and
later life cycle phases [1]. MBSE improves the capacity to
acquire, analyze, distribute, and manage data related to a
system's in-depth architecture. Attested by several latest
studies, MBSE  techniques demonstrate enhanced
interconnectivity among system stakeholders, allowing a
system model to be understood from several viewpoints while
assessing the implications of alternative solutions. MBSE
adoption has successfully resulted in increased system
dependability by providing a clear and comprehensive model
of a system that can be examined for stability and reliability.
Three pillars facilitate MBSE: a modeling approach, a
modeling  language, and a modeling tool. A
modeling approach is a specified set of procedures that
supports system interoperability that allows for consistent
system model construction. A modeling language is a formal
language that is used to represent, express, and communicate
the structure, behavior, or other aspects of a system or
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process. A modeling language provides a way to describe a
system or process using symbols, rules, and syntax that are
defined in a formal specification. Modeling tools are software
applications that enable the creation, analysis, and
manipulation of models using a specific modeling language
or notation. These tools are used to create and manage models
of complex systems and processes in various domains,
enabling users to visualize, simulate, and test different
scenarios and solutions. They also help to improve
collaboration and communication between team members by
providing a shared language and framework for
understanding complex systems. Modeling tools can vary in
complexity, features, and usability. Magic System of Systems
Architect is one MBSE tool that is used in this paper to
actively support system development and analyze different
system parameters. Magic System of Systems Architect,
formally known as MagicDraw, is a tool based on a unique
data repository that allows the design of complex multi-
domain systems [2]. This software can provide organizations
with a better understanding of how changes to a component
or subsystem can affect the overall system. To aid users
in evaluating potential design options, Magic System of
Systems Architect makes use of MBSE methods and a variety
of modeling languages. This encourages improved risk
management and may result in fewer problems throughout
many phases of the system's life cycle. This MBSE tool is just
one of many with the features indicated. Technologies like
IBM Rhapsody, Capella, Enterprise Architect, and Papyrus,
among others, provide features comparable to the Magic
System of Systems Architect. There are numerous modeling
languages that can be used with MBSE tools; however,
Systems Modeling Language (SysML) is used as the primary
modeling language of this study. SysML is a comprehensive
graphical modeling language that enables the visualization
and communication of the main components of system
architecture:  structure, behavior, requirements, and
parametric [3]. SysML was designated as the primary
modeling language attributed to the fact that its semantics are
more customizable and comprehensive but will be utilized to
specify performance and quantitative measures. SysML
models were executed by animating state machine diagrams
and activity diagrams using Magic Model Analyst, an
execution framework plugin for Magic System of Systems
Architect [2].

In Section II, the authors explore a theoretical conceptual
framework that has been previously established to facilitate
the development of MBSE-driven digital twins [4].
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Section III outlines a scenario that was created to assess the
practicality of the MBSE-enabled framework, along with the
relevant modeling tool and language. Section IV breaks down
the surveillance scenario into four segments: problem
domain, solution domain, UAV subsystem, and ground
control unit (GCU). Additionally, a brief overview is
provided on how the simulation of time-based transfer of
UAYV flight and image data was carried out.

II. MBSE ENABLED FRAMEWORK

In a prior study [4], an effort was made to establish a
theoretical conceptual framework facilitated by MBSE for
developing a digital twin. To design, develop, and implement
a digital twin for a physical system, the framework specifies
the development of system requirements before system design
or employment (see Figure 1). According to the framework,
several MBSE modeling languages can be used to represent
system requirements. SysML is identified as the most utilized
modeling language, which is used in this study. Modeling
tools should then be used to build complex model diagrams
that are interconnected and allow for an organized system
design and implementation process. Magic System of Systems
Architect was used in this study to develop models following
SysML, enabling the development of complicated model
diagrams. The next step is to create data connectivity through
executable program files written in a suitable programming
language. Depending on the desired virtual model type
(Digital Model, Digital Shadow, or Digital Twin), information
gathered from changes in either the physical system or virtual
model is implemented manually or automatically. The final
virtual model type is determined by the amount and
combination of model diagrams utilized and the method by
which data is transferred between the physical system and the
virtual model [4]. After implementing the initial stages of the
framework, the development of the UAV surveillance
scenario using Magic System of Systems Architect
demonstrated the interconnectedness of modifying a
diagram's feature, which in turn updates any other associated

model diagrams. This interconnectivity allows for more
coordinated and efficient system design and execution. This
paper’s research evaluated the first two phases of the
framework's validity, while the subsequent phases will be the
focus of future work.

III. SURVEILLANCE SCENARIO

The focus of this research is to demonstrate the
applicability of a previously developed MBSE-enabled
framework. SysML and Magic System of Systems Architect
were used to model a hypothetical UAV surveillance system
that monitors and reports on an armored combat vehicle's
health and performance.

The tutorial "Aircraft Radar Display SysML MagicGrid
Sample with Simulation and Analysis" by Saulius Pavalkis
was used to generate the SysML diagrams depicting the UAV
surveillance scenario [11]. The tutorial provided a solid
foundation and valuable insights into the application of
SysML modeling techniques to an aircraft radar display
system. This served as the basis for the development of
diagrams depicting the intricate interdependencies and
connections present in the UAV surveillance scenario.

The US Army maintains a fleet of ground combat vehicles
designed to undertake combat operations against opposing
troops. The Congressional Budget Office has estimated the
cost of such vehicles until the year 2050. The total acquisition
expenditures for the Army's ground combat vehicles are
estimated to average about $5 billion per year until 2050 [5].
Traditionally, the Army's armored combat vehicle
maintenance standards rely heavily on lengthy manual
diagnostic processes [6]. Instead of using automated
diagnostic paradigms, present practice only monitors if
operational conditions are within the range of acceptability.
There is a need for automated real-time monitoring of armored
combat vehicles to evaluate ongoing vehicle health and better
anticipate vehicle conditions to save both resources and lives.
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Any tactical mission's objective is to defend and protect at
all costs. However, maintaining and repairing tank units may
be both expensive and dangerous if not managed carefully and
timely. To minimize servicing time and implement additional
safety measures, a UAV is employed to track and monitor a
combat vehicle to detect potential changes in the tank's overall
physical and structural health status and performance. The
UAYV will record/capture image data via an onboard camera
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Combat Tank

Figure 2. Surveillance Scenario

Combat Tank

Figure 3. Lost Connection between UAV and GCU

and will maintain a maximum altitude of 200(m) and a
minimum altitude of 60(m) from its target to ensure optimal
surveillance parameters are maintained. The UAV will
communicate to and from a ground control unit, as seen in
Figure 2, where a flight operator can make informed decisions
about the structural health and status of the target from the
imaging data sent from the UAV. The UAV will also transmit
data to the operator regarding its own health/battery status and
performance. In the event of an abnormality in the tank's
operations, the tank operator and the maintenance personnel
will be notified and then equipped for unscheduled
maintenance. In the event of a loss of communication between
the UAV and the Ground Control Unit (GCU), the UAV will
continue to track and store imaging data independently, as
seen in Figure 3. When a connection is lost, the GCU will alert
the operator. Once the link is re-established, all stored imaging
and flight data is transmitted to the GCU, along with real-time
data. If the UAV's link is lost, it will continue to monitor and
capture data from its target until the battery is down to 25%
capacity and then returns to its home base.

The modeling of the scenario will be utilized to
demonstrate the feasibility of the MBSE-enabled framework
(Figure 1) by developing and simulating the scenario using
SysML. The scenario will be modeled and simulated utilizing
pre-determined optimal UAV flying parameters and weather
conditions; no physical experiments were performed. It is
assumed that the operator's only engagement with the
surveillance systems will be for assigning flight operations
and analyzing incoming data.

IV. DEVELOPING SCENARIO MODELS

A. Problem Domain

The UAV Surveillance Mission was divided into four
distinct categories: the problem domain, the solution domain,
the UAV subsystem, and the GCU. The initial stage is to
break down system information and categorize it according
to what information influences each subsystem, the
environment, or the mission. This is essential for simulating
the transfer of imaging data, UAV health, and flight data
among system elements. These elementsare then
deconstructed into  separate requirements which allow
information to be sent from the UAV to the GCU and viewed
by a human operator. A Black and White Box were created.
Black box provides external insights into a system. The
purpose of a black box is to develop a thorough and consistent
set of requirements to avoid future revisions caused by poor
specifications. White box, on the other hand, is an internal
perspective of the system in which the system architecture is
gradually identified [7]. Critical performance needs might be
recorded as value attributes of the system's black box or as
flow properties of moving objects. The needed system
reaction time may be described as a value property item of
the system black box, that flows in or out of the system black
box [8]. The Black Box consisted of Stakeholder
requirements, Use Cases, System Context, and Performance
Metrics (MoEs) (see Figure 4). Functional Analysis, Logical
architecture, and system analysis constituted the White box.
Table 1. displays the requirements included in the Black Box
for employing communications between the UAV and GCU.
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«blocks ablocks ablocks
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Figure 4. Functions and MoEs to Stakeholder Needs

TABLE L MISSION COMMUNICATION REQUIREMENTS

1.1 Imaging data shall display in less than 1s and refresh in
less than 0.5s

1.2 GCU shall support the following operation modes: pre-
flight, post-flight, UAV surveillance, and warning
mode.

1.3 The in-flight mode system shall display the planned
trajectory of the UAV on the GCU screen.

1.4 GCU screen shall provide visual and acoustic warning
in case of UAV malfunction in less than 2s

1.5 GCU screen shall provide visual and acoustic warning
in case of lost connection from UAV to GCU in less than
2s

1.6 GCU screen shall provide visual and acoustic warning
in case of lost connection from GCU to combat tank in
less than 2s

Figure 5 depicts a package diagram used to develop the use
case for the GCU operator. The features for the functional
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analysis of the GCU are: display all data on a screen, receive
imaging data, receive UAV flight data, perform operation
mode, and provide warnings to the operator and combat tank.

To develop connections between each subsystem so that
communication can occur, a BDD was developed with
corresponding ports that are referenced across multiple
models as seen in Figure 6. Now that the connections have
been developed, signals such as ‘location data’ or ‘warning’
can be sent between subsystems. For each port, activity
diagrams (Figures 7 and 8) representing the operator's
response to information received via the GCU were
constructed [11].

package Uss Cases[ &y Missien Use Case

( rnin
‘\ Nl Combat Tank

Figure 6. BDD For System Port Connections
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Figure 7. GCU Operation Mode Activity Diagram

These varied characteristics composed the problem domain,
allowing for the incorporation of system requirements in the
solution domain.

B. Solution Domain

Each action or activity must be meticulously documented
with its corresponding requirements so that the
implementation of each system adheres to the intended
objective as seen in Figure 9, the model's primary purpose is
to quantitatively characterize the information given to the

Figure 8. GCU Display Screen Activity Diagram

operator through the GCU. Depending on the system's
abilities, various quantities of data representing various
quantitative information, such as the time between delivered
messages or imaging data, will be sent.

Modeling the system behavior within the scope of the
surveillance scenario is the next phase. This stage employs
both state and activity diagrams for enhanced customization
and adaptability. The mission is subdivided into several states
that correspond to distinct parts of the event. The system states
and activities are modeled to reflect what is occurring with the
UAV during the operation. An example of a system state is
having sufficient battery life for the mission and providing a
warning if it is insufficient. To describe the relationships
between the GCU, the operator, and the UAV, an IBD
representing each subsystem block was built (see Figure 10)
[11]. Due to the scope of this research phase, information was
restricted to the transmission and reception of data between
subsystems. The following simulation data depicts the number
of milliseconds required for the UAV to transmit image data
to the GCU so that the operator may make judgments on the
combat tank's health.

C. Simulation

As mentioned prior, the scope of this research was to
simulate the communication between the operator, GCU, and
UAV. A duration analysis was conducted to calculate the time
(milliseconds) each message was sent and how long it was
displayed on the GCU, see Figure 11 [11]. These results can
also be referenced to the previously made GCU Display
Screen Activity Diagram (Figure 8). The information can then
be seen on the GCU screen. Figure 12 provides an example of
the GCU interface and a type of imaging data that can be sent
from the UAV [11].

D. Shared Workspace

Magic Systems of Systems Architect (MSOSA) supports
various simulation features. MSOSA provides four different
kinds of simulation engines: Activity engine, State Machine
engine, Interaction engine, and Parametric engine [2]. In this
phase of the case study, the Parametric engine and Activity
engine were employed to simulate and model the UAV's
flight sequence. In addition, MATLAB® and Simulink®
were used to simulate and illustrate the scenario described in
section III. Simulink® is a block diagram environment
that supports MBSE by providing system-level design,
simulation, code generation, and embedded system testing
and verification where MATLAB scripts can be integrated
into Simulink models [10].
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Using coordinate tracking, the drone follows the combat
vehicle. While traveling to a predetermined destination, the
tank transmits its GPS position to the UAV. The UAV
functions by maintaining a fixed distance to these coordinate
positions, where the operator will receive incoming flight
and image data based on a time interval to verify whether
the UAV is functioning properly. For the scope of this case
study, the trajectory of the combat vehicle is predetermined.
Chun-Wei Kong's 6-DOF (degrees of freedom) Quadcopter
Simulation and Control MATLAB/Simulink project laid the
groundwork for the simulations that were developed for this
case study [9].

In MATLAB scripts, simulation-required UAV flight
parameters were generated. MSOSA enables the integration
of MATLAB and the establishment of a collaborative
workspace. Even though these variables are editable and
modifiable within MATLAB, visualizing and defining inputs
and parameters expedites model development and assures
consistency across many platforms/software. MSOSA
recognizes expressions written in MATLAB syntax, which
may be modified in MSOSA and imported into saved
MATLAB files simultaneously.

A Dblock definition diagram was created to specify and
visualize certain parameters in the previously established
MATLAB code files. As shown in Figure 13, four blocks
were incorporated into this diagram: test,
A_SetDroneControl, C_XYZSignal, and E animation. The
first block 'test' was constructed to verify that a shared
workspace was established correctly.

As shown in Figure 14, the test block is separately chosen
and simulated to verify the shared workspace. MSOSA will
create a shared workspace with MATLAB after the
simulation has begun, and the new mass should be
represented in the corresponding file as seen in Figure 15.
This shared workspace ensures interoperability by allowing a
user to make a modification on one platform and have it
simultaneously updated on another. Not only does this save
time, but it also ensures that all parameters, values, and inputs
stay constant throughout product and system development.
Once each block has been independently simulated, resulting
in updated values in the appropriate MATLAB code, an
activity diagram was created to begin the required processes
for executing all the MATLAB scripts to provide a simulation
output.
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Figure 14: Simulating Test Block
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Although MSOSA offers some simulation capabilities, its
range of simulation outputs is limited. To overcome this,
MATLAB and Simulink were employed to provide a more
advanced and dynamic simulation output. Rather than
attempting to construct a simulation output for the flight path
of the UAV within MSOSA, an activity diagram was created
to develop a shared workspace with MATLAB and Simulink.
Cameo Simulation Toolkit was utilized to call
MATLAB/Simulink functions directly from Magic Systems
of System Architect.

MATLAB is one of the supported evaluation tools,
meaning that SysML model parameters can be input and run
through MATLAB/Simulink models, resulting in outputs that
can be integrated back into the SysML models. After the
parameters have been imported using a block definition
diagram, the necessary MATLAB and Simulink files can be
loaded via the activity diagram, which provides a simulation
output of the UAV's flight path. To achieve a complete
simulation, five files must be executed or loaded, as shown in
Figure 16. This integration of MSOSA, MATLAB, and
Simulink enables the creation of more sophisticated
simulation outputs, facilitating the assessment and
improvement of the UAV's flight route.

v
‘A_setDroneControl

MATLAB code fle

v

load
8_Dronesignal_targetpath
-DroneSianal ISR - —uaTLaB data e

T wanas cace e |

~ simuink fie. |

= ~IMATLAB code fie |

Figure 16: MATLAB/Simulink Simulation Activity Diagram

The initialization of the UAV's parameters is achieved
through the use of A SetDroneControl. The target path for
the drone is determined by B_DroneSignal, which establishes
the X, Y, and Z coordinates, as well as the T (time) required
to reach each set of coordinates using a matrix. After this is
complete, the C _XYZsignal MATLAB script is executed to
calculate the UAV's velocity and Euler's angles at each of the
specified points.

Once these calculations are complete, the output values
are input into the Simulink File D DroneControl, and
subsequently sent into E animation. The chronological
sequence of the files' execution is depicted in the activity
diagram, with each step clearly illustrated in Figure 17.

After all the stages are completed, Figure 18 shows the
successful conclusion of the simulation. By following this
process, the simulation can accurately determine the UAV's
flight path and ensure that it follows the specified target path.

Staring Math Engine. ]

Figure 17: Simulating Activity Diagram and Establishing Shared
Workspace

Figure 18: UAV Flight Path Simulation

MSOSA, MATLAB, and Simulink work together to provide
a unified workspace that enhances the capabilities of
simulations. When simulating the flight route of a UAV, the
number of required files and input parameters can lead to
errors. However, MSOSA ensures that the necessary input
values are not only visualized but also maintained in
MATLAB and Simulink, even when user or system
requirements change. This functionality not only helps to
prevent errors but also makes it easier for other users to
replicate the simulation process.

Thanks to the shared workspace created by MSOSA, even
a user with no prior knowledge of MATLAB can execute the
corresponding files. This greatly enhances the accessibility of
the simulation process and allows for more collaboration
between different stakeholders.

The overall objective of Model-Based Systems
Engineering (MBSE) is to provide a framework that makes
complex system models more understandable and
manageable throughout the development process. By using
MSOSA, users and stakeholders can be confident that the
architecture of the system satisfies their requirements. The
models and shared workspace created by MSOSA allow for
a more comprehensive representation of the system, ensuring
that all users can understand its behavior and interactions.

E. Future Work

Real-time data can be obtained from a variety of
operational factors, such as velocity, battery mAh, picture
resolution, and GPS coordinates. These variables can be
simulated using game engines such as Unity or Unreal Engine.
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State machine diagrams can be created and exported as code,
which can then be utilized to set game engine parameters.
While both MSOS and MATLAB offer simulation features,
they have limits in terms of visualization. However, using
algorithms and scripting languages in a game engine like
Unity 3D can significantly enhance simulations.

Unity 3D is a well-known game engine that enables the
creation of 2D and 3D visual effects, making it an ideal tool
for dynamic simulations. By integrating MSOS and
MATLAB with Unity, it is possible to create a cross-platform
shared workspace where any scenario or system can be
recreated.

In order to create a dynamic simulation, reliable and
confirmed data as well as time are required for modeling. This
involves discovering the necessary computations, equations,
and data for the simulation. While this process may be time-
consuming, the use of a game engine like Unity can help to
create more engaging and dynamic simulations.

V. CONCLUSION

MBSE tools, languages, and methodologies offer a
framework for organizing system data, which can be used for
quantitative analysis and simulation. The development of
models using SysML is motivated by the belief that it
provides a comprehensive architecture that illustrates the
behavior characteristics of an operationally realistic situation.
This methodology enables the creation of system blocks with
specific properties and behaviors that can be modified
continuously, thus avoiding wastage of resources.

To simulate scenarios with greater dynamic complexity,
the parameters for the surveillance scenario are classified into
their corresponding diagrams. The next stages of the study
involve the development of more detailed models, which will
be simulated using a gaming engine like Unity 3D or Unreal
Engine. The aim is to extract data from generated SysML
models and export it to MATLAB and the appropriate game
engine, and vice versa, to develop a digital twin.

Testing the established framework is a crucial objective to
validate the procedures necessary for creating an MBSE-
enabled digital twin. Displaying the created surveillance
scenario in greater detail using a game engine will enable
stakeholders to gain a better understanding of the ideal flying
settings, weather conditions, and scenario test runs. Game
engines employ algorithms that more accurately imitate the
behavior of real-world objects such as unmanned aerial

vehicles (UAVs) or combat vehicles. These methods are
essential for verifying the SysML-developed parameters and
requirements. This experimentation eliminates the need for
physical testing, saving both money and physical resources.
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