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Abstract— A digital twin (DT) is an interactive, real-time 

digital representation of a system or a service utilizing onboard 

sensor data and Internet of Things (IoT)  technology to gain a 

better insight into the physical world. With the increasing 

complexity of systems and products across many sectors, there 

is an increasing demand for complex systems optimization. 

Digital twins vary in complexity and are used for managing the 

performance, health, and status of a physical system by 

virtualizing it.  The creation of digital twins enabled by Model-

based Systems Engineering (MBSE) has aided in increasing 

system interconnectivity and simplifying the system 

optimization process. More specifically, the combination of 

MBSE languages, tools, and methods has served as a starting 

point in developing digital twins. This article discusses how 

MBSE has previously facilitated the development of digital 

twins across various domains, emphasizing both the benefits and 

disadvantages of adopting an MBSE enabled digital twin 

creation. Further, the article expands on how various levels of 

digital twins were generated via the use of MBSE. An MBSE 

enabled conceptual framework for developing digital twins is 

identified that can be used as a research testbed for developing 

digital twins and optimizing systems and system of systems. 

Keywords—MBSE, Digital Twin, Digital Shadow, Digital 

Model, SysML  

I. INTRODUCTION 

A. Model-based Systems Engineering

Model-based Systems Engineering (MBSE) is described 
as the structured utilization of modeling to assist system 
requirements, design, analysis, verification, and validation 
activities starting with the conceptual design phase and 
continuing through the development and subsequent life cycle 
stages [1]. The three major components of enabling an MBSE 
approach are modeling languages, modeling methods, and 
modeling tools [2]. These three major components are used in 
conjunction: a tool for modeling systems, a language for 
carrying out the model(s), and a technique for implementing 
the model(s). MBSE methods refer to a collection of linked 
engineering processes, scientific methodologies, and 
associated technologies that enable systems engineering in a 
model-based environment. Modeling languages are used to 
communicate the needs and architecture of a system. 
Additionally, modeling tools may be used to digitize a system 
and its components which have been identified using the 
modeling language of preference. The MBSE method enables 
system contributors and stakeholders to collaborate 
throughout a system life cycle for convenient data exchange 
and a centralized understanding of a physical system's status 
by sharing information via models instead of traditional one-
use documents [3].  

B. An Understanding of Digital Twins from Literature

A digital twin (DT) is an interactive, real-time digital
representation of a system or service utilizing onboard sensor 
data and internet of things technology. Data from the physical 
system is used to develop and enhance the digital twin by 
providing an accurate and consistent, real-time model of a 
physical system. The notion of a digital twin, first proposed in 
2002 by Michael Grieves [5], is increasingly being echoed 
upon in MBSE landscape. A digital twin is continuously 
updated with the corresponding physical system and 
performance data throughout its system life cycle [6]. 
However, a review of scientific articles proved that a precise 
definition of a DT has yet to be developed as definitions vary 
across different domains. According to Kritzinger et al., there 
are three virtual representation levels of a digital twin. Each 
level has a distinct purpose and scope throughout the system's 
lifecycle, helping with decision-making and addressing 
challenges. Depending on the level of data integration, some 
virtual models are created manually and have no physical data 
from the product/systems, while others are extensively 
interconnected with real-time data exchange [7]. It is observed 
that the terms digital model (DM), digital shadow (DS), and 
digital twin (DT) are used interchangeably across literature 
based on the level of interoperability among a virtual model 
created and its corresponding physical system. Figure 1 
attempts to illustrate the core differences between a DM, DS, 
and DT. 

A DM is a digital depiction of a physical system that does 
not utilize any computerized data exchange between the 
physical system and the virtual model [7].  Data from the 
physical system is manually input, negating the real-time 
exchange of data between the physical system and DM. The 
level of complexity can only pertain to the detail of physical 
system components and environment. Any information gained 
from a DM will not directly affect the physical system. As 
seen in Figure 1 information about the state of the physical 
system is manually input by a user to the digital model. This 
manual exchange of information is represented in the figure as 
a dotted line.  

A DS is all that a DM is with an addition of an integrated 
one-way data flow between the state of an existing physical 
system and the state of a virtual model [7]. Any modification 
made to the physical system will result in an automated update 
to the DS, which is accomplished via an information exchange 
that is processed by a database. This automatic one-way 
exchange of information is represented as a solid line in Figure 
1. However, a change in the virtual model will not directly
affect a change in the physical system. Changes determined
by the DS must be manually implemented in the physical
system by the user.
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A DT has real-time interconnectivity between an existing 
physical system and the virtual model [7]. Changes in the 
virtual model can directly affect the physical system. The DT 
can also make decisions that change the performance, 
functionality, or status of the physical system. Other physical 

elements, such as the environment of a physical system, may 
affect the status of the DT as information is automatically 
transmitted through a database. A change in the physical 
system causes a change in the DT state and vice versa as 
represented by Figure 1. 

C. Intersection of MBSE and Digital Twins 

The information and data obtained by a DT has seen an 
impact on the design and optimization of physical systems. 
The use of the three pillars of MBSE can serve as a DT’s 
starting point. Processes may be streamlined by using MBSE 
techniques. MBSE languages, methods, and tools such as 
SysML, Cameo Systems Modeler, MagicGrid have been 
utilized to develop system models gradually [4]. SysML is a 
graphical language that enables users to create system 
specifications via the use of three kinds of model diagrams: 
behavior diagrams, requirement diagrams, and structure 
diagrams [2]. As a result, these diagrams can be translated 
into a programming language like Java and utilized to mimic 
the system model in a simulation engine [4]. Cameo Systems 
Modeler is a cross-platform MBSE environment that allows 
users to create, track, and digitize system characteristics using 
SysML model diagrams [4] [14] [19]. System stakeholders 
and contributors can then easily track system models and 
those models are then saved as XMI files, or distributed to 
documents, graphics, and web interfaces. MagicGrid enables 
separating the process of creating a system model into three 
domains: problem, solution, and implementation [4] [14] 
[19]. Comparing simulation outputs to actual results can 
reveal important information about the physical system’s 
performance, health, and status. Engineers can create event-
driven or agent-based simulations to investigate the behavior 
and interactions of the DT using an appropriate MBSE tool 
and language [6]. To encourage synchronous model creation 
and improve model data re-usability, MBSE offers a standard 
guideline for system management, system-to-system 
architecture, and operational scenarios. MBSE allows users 
to collect model data from engineering and manufacturing 
products and processes. Users of MBSE may utilize modeling 
and simulation data to generate a DT of a physical system at 
each stage of its correspondent lifecycle phase [3]. The 
implemented MBSE method depends on functional, 

operational, and other system requirements to generate a DT, 
which reflects system behavior and functionality. The 
analysis of a system's requirements, behavior, structure, and 
parameters, as well as their representation in a modeling 
language such as SysML, have previously been used in the 
instance of creating a DT using MBSE. Integrating MBSE 
aids in the establishment of synchronization across different 
engineering disciplines such as structural, technical, 
inspection, software, and other various elements of a physical 
system [8]. 

II. THE USE OF MBSE FOR DEVELOPING DIGITAL TWINS – A 

BRIEF EXPLORATION  

In this section, we explore how MBSE has been previously 
used for DT development across various industry domains. 
Within the aerospace domain, assembling and running a DT 
for system function, physical impacts, operational 
environment, and purpose were explored [9]. An ice 
protection system for a regional airplane was studied to see 
whether an MBSE enabled DT might handle lifecycle 
components more effectively. Physical processes and 
performance were specified using a DT. Using 
interoperability standards to connect a DT from the simulation 
environment has been proven to significantly reduce the 
amount of effort needed to join large IT data systems. 
However, MBSE tool integration is still hindered by various 
proprietary languages, syntax, and formats. Due to increasing 
digitization and system complexity, a DT has been used to 
optimize, assess alternatives, reduce faults, and replace 
physical mockups and prototypes [9]. A technique for 
applying digital twins and MBSE to civil aviation, 
emphasized the advantages and disadvantages of DT 
implementation within product family development [10]. For 
a DT, system variation must be based on both a physical 
prototype and customer requirements. When there are fewer 
variations and more continuous production, product families 
need more information processing and management. By 
developing modular product families, which includes various 
process elements for reducing internal system variety while 
leaving external variety unchanged, the combined Product 
Development and Mechanical Engineering Design (PKT)-
Approach data model was used to analyze the product 
structure of an aircraft cabin monument and its processes [10]. 
Using an MBSE approach during system development assists 
in the handling of complicated and big datasets. MBSE has 
also been utilized to build a DT for multi-UAV 
swarms. Standalone MBSE tools cannot provide model 
integration, tool interoperability, experimentation, or data 
collection [11]. Therefore, MBSE has been observed to be 
used as a research testbed for aeronautical systems and 
systems-of-systems which allows for the development and 
testing of abstract models. An environment for modeling, 
simulation, and integration is essential in the MBSE testbed. 
When users start with a comprehensive set of operating 
limitations and requirements using MBSE, DT development 
is not only streamlined but will ensure system safety [11]. To 
create and analyze a DT virtual simulation with real-world 
system components gives access to real-time 
interconnected data. Using MBSE as a foundation for a 
physical system to develop a DT allows for future aeronautical 
and automotive optimization.  

 Using a DT in a model-based environment may also 
help optimize manufacturing shop floors and machine layout 
prior to building and implementation. To predict physical 

 

Fig. 1. Data flow from physical system to virtual model type 
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disturbances and create preventive actions, a DT was built for 
a material handling system [12]. A DT with a physics-based 
simulation that could anticipate certain disruptions was 
developed for this material handling system. With such a high 
degree of system complexity, an MBSE approach proved 
successful in ensuring anticipated system functionality and 
advantages, while reducing implementation disruptions. A 
system user may visualize abnormalities through the DT. The 
DT can have the ability to detect problems automatically by 
monitoring the system's performance and health. Using a DT 
can provide cost-effective traceability and MBSE procedures. 
There is a large need for increased DT usage in all types 
of production systems to identify, prevent, and 
mitigate potential problems. One such application is the use of 
MBSE to build a DT for streamlining a manufacturing shop 
floor using SysML and MagicGrid [4].  The development of 
both a DM and DT allows for controlled, reusable, and 
traceable system data. The DT integrates real-time data via 
state cycle scanning, making it more sustainable than prior 
document-based systems. A physical system is not needed if 
the equipment and configurations are predetermined. While 
MBSE can manage data interconnection, further MBSE and 
DT implementation is required to improve DT research 
capabilities [4].  

An MBSE enabled DT was developed to improve the 
shipbuilding process by reducing errors and increasing 
efficiency [3]. An MBSE approach enabled to view digital and 
physical manufacturing processes by creating digital twins of 
physical systems, thus improving operational procedures and 
data traceability in both the real and virtual environments. 
MBSE was also used to create a DT by expanding a product 
model [14].  

A. Benefits and Challenges of developing an MBSE enabled 

DT. 

Controlling the MBSE process to create a system or 
service becomes difficult due to factors such as imprecise 

design information, interconnection of design functions, and 
changes in design progress where product development 
becomes too time-consuming. Because MBSE retains 
comprehensive information on not only how the system was 
created but also how it may be improved, using an MBSE 
enabled DT generates privacy and ownership concerns, as 
many people are concerned about widespread data sharing 
with suppliers and prospective customers [6]. However, 
because MBSE enables organized data storage, the 
information obtained from a DT may be used for a variety of 
other purposes, such as performing quality checks at the 
conclusion of the manufacturing process or throughout the 
remainder of the product's life cycle. For product families, the 
interconnectivity of information provided by MBSE about 
current products into the DT of the product family may be 
utilized in future lifecycle stages, resulting in a flood of new 
advantages. This information may be utilized to create new 
product variations or the next generation of current products 
[10]. Additionally, by combining DT with MBSE, it is 
possible to develop a strategy for more effectively addressing 
environmental and other problems, since potential 
modifications may be validated using an MBSE methodology 
rather than physically testing them, resulting in the usage of 
less material and energy over time [3]. 

III. AN MBSE CONCEPTUAL FRAMEWORK FOR DEVELOPING 

DIGITAL TWINS 

In this section, guided by the observed use of MBSE 
approach to develop digital twins across various domains 
(Section II), we attempt to map a theoretical MBSE enabled 
conceptual framework for developing a DT. To design, 
develop, and implement a physical system, system 
requirements must first be defined to develop a system design. 
These system requirements are then visualized and modeled 
using a variety of MBSE modeling languages. Identifying 
these requirements is crucial for the development of a DT.  

  

Figure 2.0 MBSE enabled process to develop varying virtual models from a physical system 
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Second, modeling tools can then be implemented to 
conform with the standards of a specified modeling language, 
allowing users to build complex model diagrams. Every time 
a user makes a change to a feature on a diagram created by a 
modeling tool, it is then changed to the specific diagram itself 
and other connected model diagrams. This interconnectivity 
allows for an organized and streamlined system design and 
implementation process. 

The most utilized modeling language identified was 
SysML which represents system structure, behavior, 
requirements, and restrictions. SysML is an extension of 
UML, and some of its rules are specified in the UML standard 
[2]. There are nine types of SysML diagrams as illustrated in 
the lower section of Figure 2.0: block definition diagram 
(BDD), internal block diagram (IBD), use case diagram, 
activity diagram, sequence diagram, state machine diagram, 
parametric diagram, package diagram, and requirements 
diagram. Please refer to the sources listed in Table I for 
additional information on how the nine types of SysML 
diagrams were observed to be used to create digital twins and 
how they were implemented. 

TABLE I.  SYSML DIAGRAM TYPES 

BDD 

Diagram 
BDD can be used to depict system elements like blocks and 
value types and their connections. A BDD is often used to 
illustrate system hierarchy and categorization trees [4] [15] 
[16] [17] [18]. 

IBD Diagram The IBD describes a block's internal structure. An IBD can 
be used to display the interfaces between the internal 
sections of a block [4] [13] [15] [19] [20]. 

Use Case 

Diagram 

The use case diagram depicts a system's actions and the 
actors who initiate and participate in them. A use case 
diagram illustrates the services provided by a system in 
conjunction with its actors [4] [19] [21]. 

Activity 
Diagram 

The activity diagram is used to describe a behavior, focusing 
on system logic and the translation of inputs into outputs. 
Activity diagrams were frequently used to analyze and 
describe intended system behavior [4] [15] [19] [20] [22] 
[23]. 

Sequence 

Diagram 

The sequence diagram is used to describe a process. To 
accurately define a process for the development stage of the 
life cycle, sequence diagrams are frequently employed. 
Sequence diagrams are also a great resource for defining test 
scenarios [4] [12] [19] [20]. 

State 

Machine 

Diagram 

A state machine diagram is used to describe a block's state 
and potential changes. In the development stage of a 
systems life cycle, state machine diagrams are used to 
describe a block's behavior [4] [9] [15] [21] [22]. 

Parametric 

Diagram 

The parametric diagram can be used to show how equations 
and inequalities are linked to design parameters [13] [14] 
[20]. 

Package 

Diagram 
 

The package diagram shows a model's package containment 
structure. A package diagram illustrates model components 
included in packages, their dependencies, and the 
connections between requirements [4].  

Requirements 

Diagram 

The requirements diagram is used to illustrate text-based 
requirements and their connections to other model 
components that fulfill, verify, and improve them. The 
requirements diagrams are used to link subsystem 
functionality to the systems’ needs and create a baseline for 
future DT development [4] [13]. 

 Only when an appropriate MBSE tool is employed, is the 
quantity and combination of model diagrams proportional to 
the complexity of the virtual model type. Since the level of 
MBSE integration varies across different domains, tools and 
data exchange components must be considered when 
developing the desired virtual model type. A DM, for 
example, may be robust in its representation of various system 
components and may also suggest improvements, but it will 
not be able to transmit data in real-time. Regardless of the 
complexity of the virtual models, a DT is defined by its ability 

to transfer data in real-time to and from the physical system 
and virtual model, as defined by the different virtual model 
types. It is important to emphasize that, although digital twins 
may be created using an MBSE framework, the benefit of 
MBSE is that complicated systems can be structured, 
streamlining system design and implementation. Table II 
maps the type of SysML diagrams that can be used to facilitate 
the development of virtual models i.e. either a DM, DS, or a 
DT. 

TABLE II.  VIRTUAL MODEL TYPES AND THE CORRESPONDING 

SYSML MODEL DIAGRAM REQUIRED 

Digital Model State Machine Diagram, BDD, IBD, Parametric Diagram 
Use Case Diagram, Activity Diagram, Requirement 
Diagram, and Sequence Diagram 

Digital 
Shadow 

BDD, IBD, Package Diagram, Parametric Diagram, and 
Requirements Diagram, Sequence Diagram, Activity 
diagram, Use Case Diagram, and State Machine Diagram 

Digital Twin BDD, IBD, Use Case Diagram, Activity Diagram, Sequence 
Diagram, State Machine Diagram, Package Diagram, and 
Requirements Diagram 

 The next stage in this procedure is to create data 
connectivity through executable program files that are kept in 
a database or model library and are written in a suitable 
programming language. File reading and writing enable the 
required information to be transformed into a simulated virtual 
model once the system model data has been processed [4] [19] 
[24]. One method for doing this is to generate a SQL 
configuration file, retrieve the database connection 
information from the file, and then establish the connection 
once the DT begins to operate. The SQL instructions are then 
sent to a database, and the returned results are stored on a 
respective MBSE modeling tool. Once the query results are 
obtained, real-time information exchange between the 
physical system and virtual model is established. The kind of 
program files generated will vary according to the tool(s) 
utilized, as well as the system communication devices and 
database(s) used. Depending on the desired virtual model 
type, information gathered from changes in either the physical 
system or virtual model are implemented manually or 
automatically. In addition to the three levels of a virtual model 
shown in Figure 1., those three levels of a virtual model are 
also depicted in Figure 2. Finally, the type of virtual model 
that is generated will be determined by not only the amount 
and combination of model diagrams utilized but as well as the 
method by which data is transferred between the physical 
system and virtual model will also be determined. In Figure 
2., the type of data exchange is represented by either a dotted 
or a solid line, in the same way as it is in Figure 1. Manual 
data exchange is depicted as a colored dotted line. A user will 
have to manually make changes in either the physical system 
or the virtual model, and those changes will not be reflected in 
either until the user makes the adjustments manually [7]. The 
automatic (real-time) exchange of data is depicted by a 
colored solid line. In the case of a DS and DT, information is 
supplied into the virtual model type in real-time. The most 
important distinction between a DS and a DT is that only a DT 
has the capacity of making real-time modifications to the 
physical system, while a DS does not have this capability. A 
greater degree of a virtual model may be created if more 
sophisticated model diagrams are used and the capacity of a 
physical system to transmit information becomes more 
complex. 
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IV. CONCLUSION AND FUTUREWORK 

It is observed that digital twin (DT) technologies are 
still in their infancy and additional research is needed in 
implementation framework design, data processing, storage, 
and security for digital twins using enabled by MBSE. The 
current integration efforts by the research community on 
MBSE and DT development has so far shown that the 
benefits outweigh its challenges.  In this paper, an attempt to 
map an MBSE enabled DT development framework is 
portrayed based on the literature observed in facilitating 
digital twins using MBSE languages, tools, and techniques. 
The authors are currently working on exploring the 
applicability of the identified framework to develop digital 
shadow and digital twins and verify the repeatability. Further 
research is needed to determine the benefits of each virtual 
model type and the correlation between system complexity 
and DT system optimization. 
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