
A Conceptual Model-based Systems Engineering
(MBSE) approach to develop Digital Twins

Viviana Lopez
Complex Engineering Systems Laboratory

Department of Manufacturing and Industrial
Engineering,

University of Texas Rio Grande Valley,

Brownsville, Texas.

Aditya Akundi
Complex Engineering Systems Laboratory

Department of Informatics and Engineering Systems,

University of Texas Rio Grande Valley,

Brownsville, Texas.

Abstract— A digital twin (DT) is an interactive, real-time

digital representation of a system or a service utilizing onboard

sensor data and Internet of Things (IoT) technology to gain a

better insight into the physical world. With the increasing

complexity of systems and products across many sectors, there

is an increasing demand for complex systems optimization.

Digital twins vary in complexity and are used for managing the

performance, health, and status of a physical system by

virtualizing it. The creation of digital twins enabled by Model-

based Systems Engineering (MBSE) has aided in increasing

system interconnectivity and simplifying the system

optimization process. More specifically, the combination of

MBSE languages, tools, and methods has served as a starting

point in developing digital twins. This article discusses how

MBSE has previously facilitated the development of digital

twins across various domains, emphasizing both the benefits and

disadvantages of adopting an MBSE enabled digital twin

creation. Further, the article expands on how various levels of

digital twins were generated via the use of MBSE. An MBSE

enabled conceptual framework for developing digital twins is

identified that can be used as a research testbed for developing

digital twins and optimizing systems and system of systems.

Keywords—MBSE, Digital Twin, Digital Shadow, Digital

Model, SysML

I. INTRODUCTION

A. Model-based Systems Engineering

Model-based Systems Engineering (MBSE) is described
as the structured utilization of modeling to assist system
requirements, design, analysis, verification, and validation
activities starting with the conceptual design phase and
continuing through the development and subsequent life cycle
stages [1]. The three major components of enabling an MBSE
approach are modeling languages, modeling methods, and
modeling tools [2]. These three major components are used in
conjunction: a tool for modeling systems, a language for
carrying out the model(s), and a technique for implementing
the model(s). MBSE methods refer to a collection of linked
engineering processes, scientific methodologies, and
associated technologies that enable systems engineering in a
model-based environment. Modeling languages are used to
communicate the needs and architecture of a system.
Additionally, modeling tools may be used to digitize a system
and its components which have been identified using the
modeling language of preference. The MBSE method enables
system contributors and stakeholders to collaborate
throughout a system life cycle for convenient data exchange
and a centralized understanding of a physical system's status
by sharing information via models instead of traditional one-
use documents [3].

B. An Understanding of Digital Twins from Literature

A digital twin (DT) is an interactive, real-time digital
representation of a system or service utilizing onboard sensor
data and internet of things technology. Data from the physical
system is used to develop and enhance the digital twin by
providing an accurate and consistent, real-time model of a
physical system. The notion of a digital twin, first proposed in
2002 by Michael Grieves [5], is increasingly being echoed
upon in MBSE landscape. A digital twin is continuously
updated with the corresponding physical system and
performance data throughout its system life cycle [6].
However, a review of scientific articles proved that a precise
definition of a DT has yet to be developed as definitions vary
across different domains. According to Kritzinger et al., there
are three virtual representation levels of a digital twin. Each
level has a distinct purpose and scope throughout the system's
lifecycle, helping with decision-making and addressing
challenges. Depending on the level of data integration, some
virtual models are created manually and have no physical data
from the product/systems, while others are extensively
interconnected with real-time data exchange [7]. It is observed
that the terms digital model (DM), digital shadow (DS), and
digital twin (DT) are used interchangeably across literature
based on the level of interoperability among a virtual model
created and its corresponding physical system. Figure 1
attempts to illustrate the core differences between a DM, DS,
and DT.

A DM is a digital depiction of a physical system that does
not utilize any computerized data exchange between the
physical system and the virtual model [7]. Data from the
physical system is manually input, negating the real-time
exchange of data between the physical system and DM. The
level of complexity can only pertain to the detail of physical
system components and environment. Any information gained
from a DM will not directly affect the physical system. As
seen in Figure 1 information about the state of the physical
system is manually input by a user to the digital model. This
manual exchange of information is represented in the figure as
a dotted line.

A DS is all that a DM is with an addition of an integrated
one-way data flow between the state of an existing physical
system and the state of a virtual model [7]. Any modification
made to the physical system will result in an automated update
to the DS, which is accomplished via an information exchange
that is processed by a database. This automatic one-way
exchange of information is represented as a solid line in Figure
1. However, a change in the virtual model will not directly
affect a change in the physical system. Changes determined
by the DS must be manually implemented in the physical
system by the user.

978-1-6654-3992-3/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ys

te
m

s C
on

fe
re

nc
e

(S
ys

C
on

) |
 9

78
-1

-6
65

4-
39

92
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

Sy
sC

on
53

53
6.

20
22

.9
77

38
69

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on June 15,2022 at 02:42:28 UTC from IEEE Xplore. Restrictions apply.

A DT has real-time interconnectivity between an existing
physical system and the virtual model [7]. Changes in the
virtual model can directly affect the physical system. The DT
can also make decisions that change the performance,
functionality, or status of the physical system. Other physical

elements, such as the environment of a physical system, may
affect the status of the DT as information is automatically
transmitted through a database. A change in the physical
system causes a change in the DT state and vice versa as
represented by Figure 1.

C. Intersection of MBSE and Digital Twins

The information and data obtained by a DT has seen an
impact on the design and optimization of physical systems.
The use of the three pillars of MBSE can serve as a DT’s
starting point. Processes may be streamlined by using MBSE
techniques. MBSE languages, methods, and tools such as
SysML, Cameo Systems Modeler, MagicGrid have been
utilized to develop system models gradually [4]. SysML is a
graphical language that enables users to create system
specifications via the use of three kinds of model diagrams:
behavior diagrams, requirement diagrams, and structure
diagrams [2]. As a result, these diagrams can be translated
into a programming language like Java and utilized to mimic
the system model in a simulation engine [4]. Cameo Systems
Modeler is a cross-platform MBSE environment that allows
users to create, track, and digitize system characteristics using
SysML model diagrams [4] [14] [19]. System stakeholders
and contributors can then easily track system models and
those models are then saved as XMI files, or distributed to
documents, graphics, and web interfaces. MagicGrid enables
separating the process of creating a system model into three
domains: problem, solution, and implementation [4] [14]
[19]. Comparing simulation outputs to actual results can
reveal important information about the physical system’s
performance, health, and status. Engineers can create event-
driven or agent-based simulations to investigate the behavior
and interactions of the DT using an appropriate MBSE tool
and language [6]. To encourage synchronous model creation
and improve model data re-usability, MBSE offers a standard
guideline for system management, system-to-system
architecture, and operational scenarios. MBSE allows users
to collect model data from engineering and manufacturing
products and processes. Users of MBSE may utilize modeling
and simulation data to generate a DT of a physical system at
each stage of its correspondent lifecycle phase [3]. The
implemented MBSE method depends on functional,

operational, and other system requirements to generate a DT,
which reflects system behavior and functionality. The
analysis of a system's requirements, behavior, structure, and
parameters, as well as their representation in a modeling
language such as SysML, have previously been used in the
instance of creating a DT using MBSE. Integrating MBSE
aids in the establishment of synchronization across different
engineering disciplines such as structural, technical,
inspection, software, and other various elements of a physical
system [8].

II. THE USE OF MBSE FOR DEVELOPING DIGITAL TWINS – A

BRIEF EXPLORATION

In this section, we explore how MBSE has been previously
used for DT development across various industry domains.
Within the aerospace domain, assembling and running a DT
for system function, physical impacts, operational
environment, and purpose were explored [9]. An ice
protection system for a regional airplane was studied to see
whether an MBSE enabled DT might handle lifecycle
components more effectively. Physical processes and
performance were specified using a DT. Using
interoperability standards to connect a DT from the simulation
environment has been proven to significantly reduce the
amount of effort needed to join large IT data systems.
However, MBSE tool integration is still hindered by various
proprietary languages, syntax, and formats. Due to increasing
digitization and system complexity, a DT has been used to
optimize, assess alternatives, reduce faults, and replace
physical mockups and prototypes [9]. A technique for
applying digital twins and MBSE to civil aviation,
emphasized the advantages and disadvantages of DT
implementation within product family development [10]. For
a DT, system variation must be based on both a physical
prototype and customer requirements. When there are fewer
variations and more continuous production, product families
need more information processing and management. By
developing modular product families, which includes various
process elements for reducing internal system variety while
leaving external variety unchanged, the combined Product
Development and Mechanical Engineering Design (PKT)-
Approach data model was used to analyze the product
structure of an aircraft cabin monument and its processes [10].
Using an MBSE approach during system development assists
in the handling of complicated and big datasets. MBSE has
also been utilized to build a DT for multi-UAV
swarms. Standalone MBSE tools cannot provide model
integration, tool interoperability, experimentation, or data
collection [11]. Therefore, MBSE has been observed to be
used as a research testbed for aeronautical systems and
systems-of-systems which allows for the development and
testing of abstract models. An environment for modeling,
simulation, and integration is essential in the MBSE testbed.
When users start with a comprehensive set of operating
limitations and requirements using MBSE, DT development
is not only streamlined but will ensure system safety [11]. To
create and analyze a DT virtual simulation with real-world
system components gives access to real-time
interconnected data. Using MBSE as a foundation for a
physical system to develop a DT allows for future aeronautical
and automotive optimization.

 Using a DT in a model-based environment may also
help optimize manufacturing shop floors and machine layout
prior to building and implementation. To predict physical

Fig. 1. Data flow from physical system to virtual model type

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on June 15,2022 at 02:42:28 UTC from IEEE Xplore. Restrictions apply.

disturbances and create preventive actions, a DT was built for
a material handling system [12]. A DT with a physics-based
simulation that could anticipate certain disruptions was
developed for this material handling system. With such a high
degree of system complexity, an MBSE approach proved
successful in ensuring anticipated system functionality and
advantages, while reducing implementation disruptions. A
system user may visualize abnormalities through the DT. The
DT can have the ability to detect problems automatically by
monitoring the system's performance and health. Using a DT
can provide cost-effective traceability and MBSE procedures.
There is a large need for increased DT usage in all types
of production systems to identify, prevent, and
mitigate potential problems. One such application is the use of
MBSE to build a DT for streamlining a manufacturing shop
floor using SysML and MagicGrid [4]. The development of
both a DM and DT allows for controlled, reusable, and
traceable system data. The DT integrates real-time data via
state cycle scanning, making it more sustainable than prior
document-based systems. A physical system is not needed if
the equipment and configurations are predetermined. While
MBSE can manage data interconnection, further MBSE and
DT implementation is required to improve DT research
capabilities [4].

An MBSE enabled DT was developed to improve the
shipbuilding process by reducing errors and increasing
efficiency [3]. An MBSE approach enabled to view digital and
physical manufacturing processes by creating digital twins of
physical systems, thus improving operational procedures and
data traceability in both the real and virtual environments.
MBSE was also used to create a DT by expanding a product
model [14].

A. Benefits and Challenges of developing an MBSE enabled

DT.

Controlling the MBSE process to create a system or
service becomes difficult due to factors such as imprecise

design information, interconnection of design functions, and
changes in design progress where product development
becomes too time-consuming. Because MBSE retains
comprehensive information on not only how the system was
created but also how it may be improved, using an MBSE
enabled DT generates privacy and ownership concerns, as
many people are concerned about widespread data sharing
with suppliers and prospective customers [6]. However,
because MBSE enables organized data storage, the
information obtained from a DT may be used for a variety of
other purposes, such as performing quality checks at the
conclusion of the manufacturing process or throughout the
remainder of the product's life cycle. For product families, the
interconnectivity of information provided by MBSE about
current products into the DT of the product family may be
utilized in future lifecycle stages, resulting in a flood of new
advantages. This information may be utilized to create new
product variations or the next generation of current products
[10]. Additionally, by combining DT with MBSE, it is
possible to develop a strategy for more effectively addressing
environmental and other problems, since potential
modifications may be validated using an MBSE methodology
rather than physically testing them, resulting in the usage of
less material and energy over time [3].

III. AN MBSE CONCEPTUAL FRAMEWORK FOR DEVELOPING

DIGITAL TWINS

In this section, guided by the observed use of MBSE
approach to develop digital twins across various domains
(Section II), we attempt to map a theoretical MBSE enabled
conceptual framework for developing a DT. To design,
develop, and implement a physical system, system
requirements must first be defined to develop a system design.
These system requirements are then visualized and modeled
using a variety of MBSE modeling languages. Identifying
these requirements is crucial for the development of a DT.

Figure 2.0 MBSE enabled process to develop varying virtual models from a physical system

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on June 15,2022 at 02:42:28 UTC from IEEE Xplore. Restrictions apply.

Second, modeling tools can then be implemented to
conform with the standards of a specified modeling language,
allowing users to build complex model diagrams. Every time
a user makes a change to a feature on a diagram created by a
modeling tool, it is then changed to the specific diagram itself
and other connected model diagrams. This interconnectivity
allows for an organized and streamlined system design and
implementation process.

The most utilized modeling language identified was
SysML which represents system structure, behavior,
requirements, and restrictions. SysML is an extension of
UML, and some of its rules are specified in the UML standard
[2]. There are nine types of SysML diagrams as illustrated in
the lower section of Figure 2.0: block definition diagram
(BDD), internal block diagram (IBD), use case diagram,
activity diagram, sequence diagram, state machine diagram,
parametric diagram, package diagram, and requirements
diagram. Please refer to the sources listed in Table I for
additional information on how the nine types of SysML
diagrams were observed to be used to create digital twins and
how they were implemented.

TABLE I. SYSML DIAGRAM TYPES

BDD

Diagram
BDD can be used to depict system elements like blocks and
value types and their connections. A BDD is often used to
illustrate system hierarchy and categorization trees [4] [15]
[16] [17] [18].

IBD Diagram The IBD describes a block's internal structure. An IBD can
be used to display the interfaces between the internal
sections of a block [4] [13] [15] [19] [20].

Use Case

Diagram

The use case diagram depicts a system's actions and the
actors who initiate and participate in them. A use case
diagram illustrates the services provided by a system in
conjunction with its actors [4] [19] [21].

Activity
Diagram

The activity diagram is used to describe a behavior, focusing
on system logic and the translation of inputs into outputs.
Activity diagrams were frequently used to analyze and
describe intended system behavior [4] [15] [19] [20] [22]
[23].

Sequence

Diagram

The sequence diagram is used to describe a process. To
accurately define a process for the development stage of the
life cycle, sequence diagrams are frequently employed.
Sequence diagrams are also a great resource for defining test
scenarios [4] [12] [19] [20].

State

Machine

Diagram

A state machine diagram is used to describe a block's state
and potential changes. In the development stage of a
systems life cycle, state machine diagrams are used to
describe a block's behavior [4] [9] [15] [21] [22].

Parametric

Diagram

The parametric diagram can be used to show how equations
and inequalities are linked to design parameters [13] [14]
[20].

Package

Diagram

The package diagram shows a model's package containment
structure. A package diagram illustrates model components
included in packages, their dependencies, and the
connections between requirements [4].

Requirements

Diagram

The requirements diagram is used to illustrate text-based
requirements and their connections to other model
components that fulfill, verify, and improve them. The
requirements diagrams are used to link subsystem
functionality to the systems’ needs and create a baseline for
future DT development [4] [13].

 Only when an appropriate MBSE tool is employed, is the
quantity and combination of model diagrams proportional to
the complexity of the virtual model type. Since the level of
MBSE integration varies across different domains, tools and
data exchange components must be considered when
developing the desired virtual model type. A DM, for
example, may be robust in its representation of various system
components and may also suggest improvements, but it will
not be able to transmit data in real-time. Regardless of the
complexity of the virtual models, a DT is defined by its ability

to transfer data in real-time to and from the physical system
and virtual model, as defined by the different virtual model
types. It is important to emphasize that, although digital twins
may be created using an MBSE framework, the benefit of
MBSE is that complicated systems can be structured,
streamlining system design and implementation. Table II
maps the type of SysML diagrams that can be used to facilitate
the development of virtual models i.e. either a DM, DS, or a
DT.

TABLE II. VIRTUAL MODEL TYPES AND THE CORRESPONDING

SYSML MODEL DIAGRAM REQUIRED

Digital Model State Machine Diagram, BDD, IBD, Parametric Diagram
Use Case Diagram, Activity Diagram, Requirement
Diagram, and Sequence Diagram

Digital
Shadow

BDD, IBD, Package Diagram, Parametric Diagram, and
Requirements Diagram, Sequence Diagram, Activity
diagram, Use Case Diagram, and State Machine Diagram

Digital Twin BDD, IBD, Use Case Diagram, Activity Diagram, Sequence
Diagram, State Machine Diagram, Package Diagram, and
Requirements Diagram

 The next stage in this procedure is to create data
connectivity through executable program files that are kept in
a database or model library and are written in a suitable
programming language. File reading and writing enable the
required information to be transformed into a simulated virtual
model once the system model data has been processed [4] [19]
[24]. One method for doing this is to generate a SQL
configuration file, retrieve the database connection
information from the file, and then establish the connection
once the DT begins to operate. The SQL instructions are then
sent to a database, and the returned results are stored on a
respective MBSE modeling tool. Once the query results are
obtained, real-time information exchange between the
physical system and virtual model is established. The kind of
program files generated will vary according to the tool(s)
utilized, as well as the system communication devices and
database(s) used. Depending on the desired virtual model
type, information gathered from changes in either the physical
system or virtual model are implemented manually or
automatically. In addition to the three levels of a virtual model
shown in Figure 1., those three levels of a virtual model are
also depicted in Figure 2. Finally, the type of virtual model
that is generated will be determined by not only the amount
and combination of model diagrams utilized but as well as the
method by which data is transferred between the physical
system and virtual model will also be determined. In Figure
2., the type of data exchange is represented by either a dotted
or a solid line, in the same way as it is in Figure 1. Manual
data exchange is depicted as a colored dotted line. A user will
have to manually make changes in either the physical system
or the virtual model, and those changes will not be reflected in
either until the user makes the adjustments manually [7]. The
automatic (real-time) exchange of data is depicted by a
colored solid line. In the case of a DS and DT, information is
supplied into the virtual model type in real-time. The most
important distinction between a DS and a DT is that only a DT
has the capacity of making real-time modifications to the
physical system, while a DS does not have this capability. A
greater degree of a virtual model may be created if more
sophisticated model diagrams are used and the capacity of a
physical system to transmit information becomes more
complex.

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on June 15,2022 at 02:42:28 UTC from IEEE Xplore. Restrictions apply.

IV. CONCLUSION AND FUTUREWORK

It is observed that digital twin (DT) technologies are
still in their infancy and additional research is needed in
implementation framework design, data processing, storage,
and security for digital twins using enabled by MBSE. The
current integration efforts by the research community on
MBSE and DT development has so far shown that the
benefits outweigh its challenges. In this paper, an attempt to
map an MBSE enabled DT development framework is
portrayed based on the literature observed in facilitating
digital twins using MBSE languages, tools, and techniques.
The authors are currently working on exploring the
applicability of the identified framework to develop digital
shadow and digital twins and verify the repeatability. Further
research is needed to determine the benefits of each virtual
model type and the correlation between system complexity
and DT system optimization.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation under grant 2112650 (CREST - Center for
Multidisciplinary Research Excellence in Cyber-Physical
Infrastructure Systems (MECIS)), and University of Texas
Rio Grande Valley (UTRGV) Presidential Research
Fellowship (PRF) Award . The authors wish to express sincere
gratitude for their financial support.

Disclaimer: “Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the

National Science Foundation or UTRGV PRF Award Office.”

REFERENCES

[1] Friedenthal, Sanford, Regina Griego, and Mark Sampson. "INCOSE
model-based systems engineering (MBSE) initiative." In INCOSE
2007 symposium, vol. 11. 2007.

[2] Delligatti, Lenny. SysML distilled: A brief guide to the systems
modeling language. Addison-Wesley, 2013.

[3] Pang, Toh Yen, Juan D. Pelaez Restrepo, Chi-Tsun Cheng, Alim Yasin,
Hailey Lim, and Miro Miletic. "Developing a digital twin and digital
thread framework for an ‘Industry 4.0’Shipyard." Applied Sciences 11,
no. 3 (2021): 1097.

[4] Liu, Juan, Jianhua Liu, Cunbo Zhuang, Ziwen Liu, and Tian Miao.
"Construction method of shop-floor digital twin based on MBSE."
Journal of Manufacturing Systems 60 (2021): 93-118.

[5] Grieves, Michael, and John Vickers. "Digital twin: Mitigating
unpredictable, undesirable emergent behavior in complex systems." In
Transdisciplinary perspectives on complex systems, pp. 85-113.
Springer, Cham, 2017.

[6] Madni, Azad M., Carla C. Madni, and Scott D. Lucero. "Leveraging
digital twin technology in model-based systems engineering." Systems
7, no. 1 (2019): 7.

[7] Kritzinger, Werner, Matthias Karner, Georg Traar, Jan Henjes, and
Wilfried Sihn. "Digital Twin in manufacturing: A categorical literature

review and classification." IFAC-PapersOnLine 51, no. 11 (2018):
1016-1022.

[8] Phanden, Rakesh Kumar, Priavrat Sharma, and Anubhav Dubey. "A
review on simulation in digital twin for aerospace, manufacturing and
robotics." Materials Today: Proceedings 38 (2021): 174-178.

[9] Bachelor, Gray, Eugenio Brusa, Davide Ferretto, and Andreas
Mitschke. "Model-based design of complex aeronautical systems
through digital twin and thread concepts." IEEE Systems Journal 14,
no. 2 (2019): 1568-1579.

[10] Laukotka, Fabian, Michael Hanna, and Dieter Krause. "Digital twins
of product families in aviation based on an MBSE-assisted approach."
Procedia CIRP 100 (2021): 684-689.

[11] Madni, Azad M., Dan Erwin, and Carla C. Madni. "Digital Twin-
enabled MBSE Testbed for Prototyping and Evaluating Aerospace
Systems: Lessons Learned." In 2021 IEEE Aerospace Conference
(50100), pp. 1-8. IEEE, 2021.

[12] Glatt, Moritz, Chantal Sinnwell, Li Yi, Sean Donohoe, Bahram Ravani,
and Jan C. Aurich. "Modeling and implementation of a digital twin of
material flows based on physics simulation." Journal of Manufacturing
Systems 58 (2021): 231-245.

[13] Kutzke, Demetrious T., James B. Carter, and Benjamin T. Hartman.
"Subsystem selection for digital twin development: A case study on an
unmanned underwater vehicle." Ocean Engineering 223 (2021):
108629.

[14] Wang, Yübo, Tanja Steinbach, Jonathan Klein, and Reiner Anderl.
"Integration of model based system engineering into the digital twin
concept." Procedia CIRP 100 (2021): 19-24.

[15] Brusa, Eugenio. "Digital Twin: Towards the Integration Between
System Design and RAMS Assessment Through the Model-Based
Systems Engineering." IEEE Systems Journal (2020).

[16] Schluse, Michael, Marc Priggemeyer, Linus Atorf, and Juergen
Rossmann. "Experimentable digital twins—Streamlining simulation-
based systems engineering for industry 4.0." IEEE Transactions on
industrial informatics 14, no. 4 (2018): 1722-1731.

[17] Schluse, Michael, Linus Atorf, and Juergen Rossmann.
"Experimentable digital twins for model-based systems engineering
and simulation-based development." In 2017 Annual IEEE
International Systems Conference (SysCon), pp. 1-8. IEEE, 2017.

[18] Delbrügger, Tim, and Jürgen Rossmann. "Representing adaptation
options in experimentable digital twins of production systems."
International Journal of Computer Integrated Manufacturing 32, no. 4-
5 (2019): 352-365.

[19] Tsui, Roy, Devin Davis, and John Sahlin. "Digital Engineering Models
of Complex Systems using Model‐ Based Systems Engineering
(MBSE) from Enterprise Architecture (EA) to Systems of Systems
(SoS) Architectures & Systems Development Life Cycle (SDLC)." In
INCOSE International Symposium, vol. 28, no. 1, pp. 760-776. 2018.

[20] Wang, Haoqi, Hao Li, Xiaoyu Wen, and Guofu Luo. "Unified
modeling for digital twin of a knowledge-based system design."
Robotics and Computer-Integrated Manufacturing 68 (2021): 102074.

[21] Hause, Matthew. "The Digital Twin Throughout the SE Lifecycle." In
INCOSE International Symposium, vol. 29, no. 1, pp. 203-217. 2019.

[22] Walter, Benedikt, Dennis Kaiser, and Stephan Rudolph. "From Manual
to Machine-executable Model-based Systems Engineering via Graph-
based Design Languages." In MODELSWARD, pp. 201-208. 2019.

[23] Tarabini-Castellani, L., V. Gómez, J. Fombellida, S. Ramirez, N.
Puente, R. Contreras, and R. Haya. "Lessons learned from the use of
SysML in Space Systems at SENER Aeroespacial."

[24] Eisenträger, Marlene, Simon Adler, Matthias Kennel, and Sebastian
Möser. "Changeability in Engineering." In 2018 IEEE International
Conference on Engineering, Technology and Innovation (ICE/ITMC),
pp. 1-8. IEEE, 2018.

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on June 15,2022 at 02:42:28 UTC from IEEE Xplore. Restrictions apply.

