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ABSTRACT

Hypercontractivity is one of the most powerful tools in Boolean
function analysis. Originally studied over the discrete hypercube,
recent years have seen increasing interest in extensions to settings
like the 𝑝-biased cube, slice, or Grassmannian, where variants of
hypercontractivity have found a number of breakthrough appli-
cations including the resolution of Khot’s 2-2 Games Conjecture
(Khot, Minzer, Safra FOCS 2018). In this work, we develop a new
theory of hypercontractivity on high dimensional expanders (HDX),
an important class of expanding complexes that has recently seen
similarly impressive applications in both coding theory and approx-
imate sampling. Our results lead to a new understanding of the
structure of Boolean functions on HDX, including a tight analog
of the KKL Theorem and a new characterization of non-expanding
sets.

Unlike previous settings satisfying hypercontractivity, HDX can
be asymmetric, sparse, and very far from products, which makes the
application of traditional proof techniques challenging. We handle
these barriers with the introduction of two new tools of independent
interest: a new explicit combinatorial Fourier basis for HDX that
behaves well under restriction, and a new local-to-global method for
analyzing higher moments. Interestingly, unlike analogous second
moment methods that apply equally across all types of expanding
complexes, our tools rely inherently on simplicial structure. This
suggests a new distinction among high dimensional expanders
based upon their behavior beyond the second moment.

This is an extended abstract. The full paper may be found at
https://arxiv.org/abs/2111.09444.
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1 INTRODUCTION

Introduced over 50 years ago today, hypercontractivity remains one
of the most powerful tools in the analysis of boolean functions.
Originally used to prove numerous landmark results on the discrete
hypercube such as the KKL Theorem [40] and Majority is Stablest
[58], the study of hypercontractivity has since seen a resurgence
on extended domains such as the 𝑝-biased cube [50], slice [52], and
Grassmannian [54]. Fascinatingly, these regimes all share a com-
mon thread: while hypercontractivity doesn’t hold in general, it is
satisfied for certain classes of pseudorandom functions. This recently
discovered phenomenon has led to a slew of breakthroughs, most
famously including the resolution of Khot’s 2-2 Games Conjecture
[54]. Unfortunately, the scope of these results is currently restricted,
as all known proof techniques rely on product structure or other
strong symmetries, and no unifying theory is known to exist.

In this work we take the first substantive step towards solving
this issue with the introduction of a new theory of hypercontractiv-
ity for the general class of high dimensional expanders (HDX). HDX
are a family of expanding complexes that have seen an explosion
of work in recent years, leading to major breakthroughs across a
number of areas including (among others) the recent construction
of c3-LTCs and qLDPC codes [21, 60], and efficient approximate
sampling for many important systems (e.g. for matroid bases [6],
independent sets [5], Ising models [4], and more). Our results lead
to a new understanding of the structure of boolean functions on
HDX, including a tight analog of the KKL Theorem, and a charac-
terization of non-expanding sets similar to that used in the proof
of 2-2 Games [54]. Proving such results previously seemed out of
reach since HDX are very far from products, asymmetric, and can
be quite sparse. To handle these challenges, we introduce a new
set of tools including a new explicit Fourier decomposition and a
local-to-global method for analyzing higher order moments. Inter-
estingly, unlike previous ℓ2-based techniques which apply equally
across all types of expanding complexes, our methods rely crucially
on the underlying HDX structure being simplicial. This suggests
a new stratification of spectral HDX based upon their behavior
beyond the second moment.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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1.1 Contributions

Before jumping into a more detailed breakdown of our results, we
start by giving an informal overview of our main contributions
within the broader context of classical Fourier analysis and the
theory of high dimensional expanders.

Classical Fourier Analysis: Classical Fourier Analysis on the dis-
crete hypercube focuses on analyzing functions 𝑓 : {0, 1}𝑛 → R
through their Fourier Expansion, a decomposition that breaks 𝑓 into
a series of orthogonal łlevel functions,ž each corresponding to the
projection of 𝑓 onto a certain eigenspace of the (noisy) hypercube
graph.1 At a basic level, a function’s Fourier decomposition gives a
nice method for understanding its second moment, since orthogonal-
ity allows one to move between this and the standard basis freely (a
result usually known as Parseval’s Theorem). On the other hand, in
computer science, we are usually interested in analyzing the special
class of boolean functions 𝑓 : {0, 1}𝑛 → {0, 1}. These functions
exhibit rich structure that Parseval’s Theorem isn’t equipped to
captureÐto understand them, we usually need to look beyond the
second moment.

Hypercontractivity, introduced in 1970 by Bonami [12] (and later
independently by Beckner [10] and Gross [34]), is exactly the tool
for the job. In its simplest form, hypercontractivity boils down to
the statement that the fourth moment of low levels of the Fourier
decomposition should behave nicely. Namely that the 𝑖th level of a
boolean function 𝑓 , denoted 𝑓𝑖 , should satisfy:

∥ 𝑓𝑖 ∥4 ≤ 2𝑂 (𝑖) ∥ 𝑓𝑖 ∥2 . (1)

This deceptively simple observation, known in the above form as
łBonami’s Lemmaž [12], led to many landmark results including
the KKL Theorem [40], noise-sensitivity of sparse functions [40],
Friedgut’s Junta Theorem [30], and Majority is Stablest [58]. What’s
more, hypercontractivity (and its resulting applications) actually
extend beyond the hypercube. After KKL’s seminal work, many
authors studied extensions and applications of hypercontractivity
[13, 30, 32, 62], but it wasn’t until recently that tight analogues
of Equation (1) were developed for general product spaces [50]
(generalizing work of Friedgut and Bourgain [31] and Hatami [36])
as well as for other structured domains such as the symmetric group
[28] and Grassmannian [54]. These extended domains differ from
the hypercube in that they are only hypercontractive for special
classes of pseudorandom functions, but are nevertheless responsible
for an impressive set of applications including analogues of classical
results, a variety of sharp threshold theorems [31, 50, 51, 55], and
perhaps most famously the proof of the 2-2 Games Conjecture [9,
24, 25, 52ś54]. Unfortunately, despite the stark similarities between
these settings, no unified theory explaining the phenomenon exists.
Further, all known techniques rely heavily on product structure
or other strong forms of symmetry, which makes it difficult to
approach the problem in more general settings.

Fourier Analysis on HDX:. High dimensional expanders (HDX)
are a class of robustly connected complexes that have seen an
incredible amount of development and application throughout the-
oretical computer science in the past few years, most famously in

1More generally, these are the eigenspaces of the Hamming scheme.

coding theory [20ś22, 26, 38, 39, 46, 49, 60] and approximate sam-
pling [3, 5, 6, 11, 14ś16, 27, 37, 56], but also in agreement testing
[18, 23, 42], CSP-approximation [2, 7], and (implicitly) hardness
of approximation [52, 54]. In this work, we study a central notion
of high dimensional expansion called two-sided local-spectral ex-

pansion, originally developed by Dinur and Kaufman [23] to build
sparse agreement testers. For simplicity, we’ll often refer to these
objects just as local-spectral expanders, but the reader should be
aware we always refer to the two-sided variant, not the weaker
one-sided variant commonly used in approximate sampling.

Interestingly, local-spectral expanders are actually known to ad-
mit a (nascent) theory of Fourier analysis due to Dikstein, Dinur,
Filmus, and Harsha (DDFH) [19], and Kaufman and Oppenheim
(KO) [45]. Initial works in this area have focused on the develop-
ment and application of Fourier Decompositions and Parseval’s
Theorem, and while the existing theory does have a few interest-
ing applications (e.g. an FKN theorem for HDX [19, 33], efficient
CSP-approximation [2, 7]), it is subject to the same limitations
as original second moment methods on the hypercube: they sim-
ply don’t capture the richer structure of boolean functions. Let’s
consider a concrete and important example: the expansion of pseu-
dorandom sets (an analog of łsparse functions are noise-sensitivež
on the hypercube).2 Traditionally proved via hypercontractivity,
a variant of this result on the Grassmannian recently led to the
resolution of the 2-2 Games Conjecture [54]. On the other hand,
Bafna, Hopkins, Kaufman, and Lovett (BHKL) [7] showed that sec-
ond moment methods cannot recover such a result. While they are
able to recover some sort of characterization with these techniques,
it necessarily decays as the dimension grows to infinity, becoming
trivial in the regime useful for hardness of approximationÐif we
want to do better, it appears we need a theory of hypercontractivity.

This is easier said than done: local-spectral expanders look noth-
ing like any object previously known to satisfy hypercontractivity.
They can be sparse, asymmetric, and very far from products. More-
over, there are no known techniques for analyzing local-spectral
expanders beyond the second moment.3 Even DDFH and KO’s
Fourier decompositions are intrinsically tied to second moment
methods, since they are defined by linear algebraic manipulation
of the standard inner product. Surprisingly, it turns out that these
barriers are not inherent, and can be removed with the introduc-
tion of just two new tools: a combinatorial Fourier decomposition
for HDX, and a new local-to-global method to replace reliance on
product structure in the analysis of higher moments.

Our new decomposition is the natural analog of the standard
Fourier decomposition on product spaces (often called the łorthogo-
nalž or łEfron-Steinž decomposition). It is equivalent to old decom-
positions in an ℓ2-sense (and therefore shares all relevant ℓ2-based
properties), but comes with a number of additional benefits: it has
simple explicit and recursive forms, and it behaves nicely under
restriction. This allows us to bring to bear much of the power of
more traditional Fourier-analytic machinery, which often relies on

2The connection lies in the fact that the noise-sensitivity result can equivalently be
phrased as saying that small sets on the noisy hypercube are expanding.
3We note that recent works in the sampling literature have considered entropic notions
of high dimensional expansion, but the underlying assumptions are much stronger
than local-spectral expansion.
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these same properties. Historically, however, applying this machin-
ery in a useful fashion has also required the underlying object to be
a product, or to satisfy some other strong symmetry. Our second
key observation is that while individual variables in a local-spectral
expander may be highly correlated, they look independent on aver-

age. More concretely, this means that in the analysis of expectations
(such as a higher moment), we are free to treat the underlying vari-
ables as independent even if they actually exhibit a very high level
of correlation.

Hypercontractivity on HDX:. Leveraging these tools, we build a
theory of hypercontractivity on HDX. Concretely, we prove that
Equation (1) holds on local-spectral expanders for an appropriate
notion of pseudorandom functionsÐones that are not concentrated
in any local restrictions on the complex.4 Combined with BHKL’s
recent spectral analysis of higher order random walks (which, for
the moment, we’ll think of as analogues of the noisy hypercube
graphs or Hamming scheme), this leads to the resolution of a num-
ber of open questions in boolean function analysis. To start, we
provide a tight characterization of (edge) expansion on higher or-
der random walks, which, unlike previous methods [7], does not
decay with dimension. This matches the version of the result on
the Grassmannian which led to the resolution of the 2-2 Games
Conjecture [54], and opens yet another avenue towards the use
of HDX in hardness of approximation. We also introduce natural
analogues5 of two classic Fourier-analytic notions: influence and
the noise operator. Combining these with the above recovers tight
variants of both the KKL Theorem and noise-sensitivity of sparse
(or in this case pseudorandom) functions.

Beyond these concrete applications, hypercontractivity on HDX
also has interesting implications in the broader context of discrete
Fourier analysis and high dimensional expansion. For the former,
our result gives the first general class of hypercontractive objects
beyond products, and combined with bounded degree constructions
[44, 57], the first example of hypercontractivity over any sparse
object at all.6 For the latter, our result suggests a new stratification
among notions of local-spectral expansion. This requires some addi-
tional explanation. While local-spectral expanders were originally
introduced only over simplicial complexes, they were quickly ex-
tended to more general settings such as the Grassmannian, or even
to general ranked posets [19]. While these classes of local-spectral
expanders are essentially equivalent in an ℓ2 sense [7, 19, 48], our
analysis of the fourth moment crucially relies on simplicial struc-
ture. We conjecture that this is an inherent rather than technical
barrier: only special classes of underlying objects (e.g. Grassman-
nian, simplicial complexes) satisfy hypercontractivity, and thereby
lead to the strongest known form of spectral high dimensional
expanders.

4In the high dimensional expansion literature, these restrictions are known as links.
5When applied to the embedding of the hypercube into a simplicial complex, these
definitions return the standard notions.
6Formally, it is more accurate to say ‘locally sparse’ or ‘bounded degree’ here. While
previous settings such as highly imbalanced products may be sparse in the sense that
most of their weight is concentrated on relatively few faces, they are not sparse in the
much stronger sense of a bounded-degree HDX. The former, for instance, will always
have some very dense restrictions, whereas every vertex in the latter sees only a tiny
fraction of the full complex.

2 BACKGROUND

Before stating our results more formally, we give a quick overview
of the theory of local-spectral expanders and higher order random
walks. Local-spectral expansion is a robust notion of connectivity
on weighted hypergraphs introduced by Dinur and Kaufman [23]
in the context of agreement testing. As is standard in the area, we

will view 𝑑-uniform hypergraphs 𝐻 ⊆
( [𝑛]
𝑑

)

as (pure) simplicial

complexes:
𝑋𝐻 = 𝑋 (0) ∪ . . . ∪ 𝑋 (𝑑),

where 𝑋 (𝑑) = 𝐻 , 𝑋 (𝑖) ⊆
( [𝑛]
𝑖

)

is given by downward closure, and
𝑋 (0) = ∅. We note that this notation is off by one from much of

the HDX literature which considers 𝑋 (𝑖) ⊆
( [𝑛]
𝑖+1

)

. This notation is
standard in the topological literature (where an 𝑖-simplex indeed as
𝑖 + 1 points), but is less natural for our purely combinatorial work.

Most recent work on high dimensional expansion is based on
the local-to-global paradigm, in which local properties of a complex
are lifted to a desired global property (e.g. mixing or agreement
testing). The main local structure of interest are called links. For
every ł𝑖-facež 𝜏 ∈ 𝑋 (𝑖), the link of 𝜏 is the subcomplex obtained by
restriction to faces including 𝜏 :

𝑋𝜏 = {𝜎 : 𝜎 ∩ 𝜏 = ∅, 𝜎 ∪ 𝜏 ∈ 𝑋 }.
A simplicial complex is said to be a 𝜸-local-spectral expander if
(the graph underlying) every link is a 𝛾-spectral expander.7

Higher order randomwalks are an analog of the standardwalk
on expander graphs that moves between two vertices via an edge.
Kaufman and Mass [41] observed that this process can be applied
at any level of a simplicial complex: one could move between edges
via a triangle, or triangles via a pyramid. Formally, these walks
are defined as a composition of averaging operators, objects that
have become ubiquitous tools in the study of high dimensional
expanders. Denote the space of functions {𝑓 : 𝑋 (𝑘) → R} as 𝐶𝑘 .
For a function 𝑓 ∈ 𝐶𝑘 , the (level 𝑘) Up and Down operators lift
and lower 𝑓 to level 𝑘 + 1 and 𝑘 − 1 respectively by averaging:

𝑈𝑘 𝑓 (𝜏) = E
𝜎⊂𝜏

[𝑓 (𝜎)],

𝐷𝑘 𝑓 (𝜏) = E
𝜎⊃𝜏

[𝑓 (𝜎)] .

It will often be useful to compose the down or up operators multiple
times to move between levels 𝑘 and 𝑖 , we denote this by 𝐷𝑘𝑖 =

𝐷𝑖 ◦ . . . ◦ 𝐷𝑘 and 𝑈 𝑘𝑖 = 𝑈𝑘 ◦ . . . ◦ 𝑈𝑖 . Informally, HD-walks are
simply affine combinations of composed averaging operators. For
instance, the basic composition 𝑁 𝑖

𝑘
= 𝑈 𝑘+𝑖

𝑘
𝐷𝑘+𝑖
𝑘

, called a canonical
walk, is the random process which moves between two 𝑘-faces via
a shared (𝑘 + 𝑖)-face.

3 RESULTS

We now move to an informal description of our results. Formal
versions and proofs of all results are available in the full version of
the paper at https://arxiv.org/abs/2111.09444.

We view our work as having three main contributions. First,
we introduce and develop a new theory of Fourier analysis on
high dimensional expanders. This includes a new explicit Fourier
decomposition, as well as a number of natural generalizations of

7A graph is a 𝛾 -spectral expander if the second largest eigenvalue of its weighted
adjacency matrix (also called the random walk matrix) is at most 𝛾 in absolute value.
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Fourier-analytic ideas such as influence and the noise operator to
simplicial complexes. Second, we prove that our Fourier-analytic de-
composition satisfies a hypercontractive inequality for the special
subclass of pseudorandom functions, and use this fact to charac-
terize the small set expansion of HD-walks and give a version of
Bourgain’s Theorem (an analog of KKL on product spaces) on HDX.
Finally, en route to our hypercontractivity theorem, we introduce
a new method of localization on high dimensional expanders of
independent interest that enables local-to-global analysis of higher
order moments.

3.1 The Bottom-Up Decomposition

We start with a discussion of our new explicit Fourier-analytic de-
composition. All previously known Fourier bases on local-spectral
expanders [19, 45] are linear algebraic in nature, and have no known
closed form. While these decompositions certainly have their place
and are sufficient for a number of interesting applications [2, 7, 19],
they often fall short when finer-grained calculation is required.
To alleviate this issue, we introduce a new combinatorial decom-
position on simplicial complexes that is an analog of the classic
orthogonal (sometimes called Efron-Stein) decomposition on prod-
uct spaces.

Definition 3.1 (Bottom-Up Decomposition). Let 𝑋 be a 𝑑-

dimensional pure simplicial complex and 𝑓 ∈ 𝐶𝑘 any function. For

all 0 ≤ 𝑖 ≤ 𝑘 and 𝜏 ∈ 𝑋 (𝑖), define the 𝑖th level function(s) to be:

𝑔↑𝑖 (𝜏) =
∑︁

𝜎⊆𝜏
(−1) |𝜏\𝜎 | E

𝑋𝜎

[𝑓 ], 𝑓↑𝑖 =
(

𝑘

𝑖

)

𝑈 𝑘𝑖 𝑔↑𝑖 .

One can check that 𝑓 =

𝑘
∑

𝑖=0
𝑓↑𝑖 .

Here,𝑔↑𝑖 (𝜏) should be thought of as the contribution to 𝑓 coming
from 𝜏 (where contributions from 𝜎 ⊊ 𝜏 have been removed by in-
clusion/exclusion). The Fourier level 𝑓↑𝑖 is then defined by summing
over these contributions. It is worth noting that the Bottom-Up
Decomposition also has a simple recursive form:

𝑔↑𝑖 = 𝐷
𝑘
𝑖 𝑓 −

𝑖−1
∑︁

𝑗=0

(

𝑖

𝑗

)

𝑈 𝑖𝑗𝑔↑𝑗 .

In fact, it should be noted that while the consideration of this basis
is new over general simplicial complexes, the above recursive form
was first studied for the special case of the complete complex by [52].
There, the authors took advantage of the complex’s near-product
structure to show that the decomposition gives an (approximate)
Fourier basis close to the eigendecomposition of 𝑓 with respect to
the well-studied Johnson graphs. We prove that the assumption
of near-product structure is actually unnecessarily strongÐit is
enough for the underlying complex to be sufficiently expanding.

Theorem 3.2 (Bottom-Up Properties). Let 𝑋 be a two-sided

𝛾-local-spectral expander, and𝑀 an HD-walk. Then for any 𝑓 ∈ 𝐶𝑘 ,
and 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 :

(1) ⟨𝑓↑𝑖 , 𝑓↑𝑗 ⟩ ≈ 0

(2) ∥ 𝑓 ∥22 ≈
𝑘
∑

𝑖=0





𝑓↑𝑖






2

2

(3) ∃𝜆𝑖 s.t.𝑀𝑓↑𝑖 ≈ 𝜆𝑖 𝑓↑𝑖

Theorem 3.2 is similar to an analogous result for the HD-Level-
Set Decomposition in [19, Theorem 1.3]. For the moment, it suffices
to note that their decomposition also breaks 𝑓 into 𝑘 + 1 Fourier

levels, which we similarly denote by 𝑓 =

𝑘
∑

𝑖=0
𝑓↓𝑖 . It turns out that the

similarities between the HD-Level-Set and Bottom-Up Decomposi-
tions are no accidentÐthe two decompositions are actually close in
ℓ2-norm.

Theorem 3.3 (Bottom-Up Approximates HD-Level-Set). Let

𝑋 be a two-sided 𝛾-local-spectral expander and 𝑓 ∈ 𝐶𝑘 . Then the

Bottom-Up and HD-Level-Set Decomposition are close in ℓ2-norm:




𝑓↑𝑖 − 𝑓↓𝑖






2

2
≤ 2𝑂 (𝑘)𝛾 ∥ 𝑓 ∥22 .

Similarly,
�

�⟨𝑓↑𝑖 , 𝑓↑𝑖 ⟩ − ⟨𝑓↓𝑖 , 𝑓↓𝑖 ⟩
�

� ≤ 2𝑂 (𝑘)𝛾 ∥ 𝑓 ∥22 .

The main advantage of the Bottom-Up Decomposition then lies
in its simple explicit and recursive forms. In the full paper, we
show how these properties are useful for analyzing finer-grained
structure like restriction that are often key to classical Fourier-
analytic arguments. It is unknown how to analyze such properties
for prior linear algebraic decompositions, and determining whether
the latter share similar structure at this level remains an interesting
open problem.

3.2 Hypercontractivity

Now that we have introduced our relevant Fourier-analytic decom-
position, we turn our attention to the study of hypercontractivity.
Hypercontractivity is one of the most powerful tools in boolean
function analysis and is crucial to proving many of area’s key
results (e.g. KKL [40], FKN [33], Majority is Stablest [58], sharp
threshold theorems [31], etc.). Informally, hypercontractivity can
be thought of as a niceness condition on łlow-degreež functions.
We’ll start by considering a simple variant often called the Bonami
or Bonami-Beckner lemma [12], which states that a łdegree-𝑖ž func-
tion 𝑝 should satisfy:

∥𝑝 ∥4 ≤ 2𝑂 (𝑖) ∥𝑝 ∥2 .
Classically, we might think of 𝑝 as being a degree-𝑖 polynomial,
corresponding to the 𝑖th Fourier level of a boolean function. The
corresponding statement in our context is therefore that the 𝑖th
level of the Bottom-Up Decomposition should satisfy an analogous
inequality:





𝑓↑𝑖






4
≤ 2𝑂 (𝑖) 



𝑓↑𝑖






2
. (2)

Unfortunately, it is well known that Equation (2) cannot hold in our
setting, even over the complete complex. However, it is possible
that the inequality could hold for natural subclasses of functions.
Indeed, such a phenomenon is known to occur on general product
distributions [50], where pseudorandom functions satisfy a form
of Equation (2).

Definition 3.4 (Pseudorandomness). Let 𝑋 be a simplicial

complex and 𝑓 ∈ 𝐶𝑘 . We say 𝑓 is (𝜀, 𝑖)-pseudorandom if it is sparse

in every 𝑖-link in the following two senses:

(1) For all 𝜏 ∈ 𝑋 (𝑖):
�

�

�

�

E
𝑋𝜏

[𝑓 ]
�

�

�

�

≤ 𝜀 ∥ 𝑓 ∥∞
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(2) For all 𝜏 ∈ 𝑋 (𝑖):
⟨𝑓 |𝜏 , 𝑓 |𝜏 ⟩ ≤ 𝜀 ∥ 𝑓 ∥2∞

While the use of ∥ 𝑓 ∥∞ here may initially seem unnatural, it is
in fact the appropriate scaling factor on a bounded-degree complex
(at least up to constants). Namely since restrictions are of constant
size, doubling the largest value in 𝑓 leads to a (1 + 𝛿) multiplicative
increase in density on links including that face for some constant
𝛿 > 0.

In applications, we will often only care about non-negative func-
tions, in which case the second condition can be removed com-
pletely (as it is implied by the first). We note that functions sat-
isfying Definition 3.4 are also sometimes called global since they
are not concentrated in any local structure [50, 55]. We call them
pseudorandom in keeping with prior literature on the Johnson
and Grassmann graphs [52, 54], and because they cannot be distin-
guished from an (𝜀-sparse) random function by examining density
inside links. Finally, note that Definition 3.4 requires 𝑓 to be sparse.
We conjecture that our results should hold in the dense regime as
well, and discuss this further in Section 4.

Hypercontractivity for restricted subclasses is still a very pow-
erful tool. Keevash, Lifshitz, Long, and Minzer’s (KLLM) result
[50], for instance, led to the resolution of Majority is Stablest in
the 𝑝-biased setting [55], and the resolution of several conjectures
in extremal combinatorics as well [51]. While previous results to
this effect were restricted by their reliance on product structure
or strong symmetry, we show such assumptions are not necessary
and prove an analogous form of hypercontractivity for HDX.

Theorem 3.5 (Hypercontractivity on HDX). Let 𝑋 be a suf-

ficiently strong two-sided 𝛾-local-spectral expander and 𝑓 ∈ 𝐶𝑘 an

(𝜀, 𝑖)-pseudorandom function. Then the following hypercontractive

inequality holds:

E[𝑓 4↑𝑖 ] ≤ 2𝑂 (𝑖)𝜀E[𝑓 2↑𝑖 ] ∥ 𝑓 ∥
2
∞ + 𝑐𝑘𝛾1/2𝜀 ∥ 𝑓 ∥22 ∥ 𝑓 ∥

2
∞ ,

where 𝑐𝑘 ≤ min{2𝑂 (𝑘) , 𝑘𝑂 (𝑖) }.

Crucially Theorem 3.5 is independent of 𝑘 for small enough 𝛾 .
This means our bounds remain meaningful even when 𝑘 grows
large (roughly speaking, one should think of the bound as being
non-trivial in the regime where 𝑘 ≪ log( |𝑋 (1) |)).8 This was a
crucial property in the analogous result on the Grassmann in the
proof of the 2-2 Games Conjecture [54].

Our overall framework for proving Theorem 3.5 roughly follows
Khot, Minzer, Moshkovitz, and Safra’s [52] strategy for the complete
complex. However, even with analogous results for the Bottom-Up
Decomposition in hand, most of their techniques fail in our setting
due to local-spectral expanders’ distinct lack of product structure.
In fact, Theorem 3.5 gives the first general class of hypercontractive
objects beyond product spaces, and combined with known bounded
degree constructions of local-spectral expanders [44, 57], the first
example over any sparse domain at all. In Section 3.4, we’ll discuss
how we tackle these traditionally hard-to-handle structures with
the introduction of a new notion of average-case independence that
relates closely to local-spectral expansion. Our method actually

8In reality, there is a more subtle trade-off here between the expansion parameters,
degree, and dimension of the complex. The stated relation is for the complete complex
where one optimizes expansion at the cost of degree.

allows for analysis well beyond the 4th moment, and can also be
used to extend Theorem 3.5 to 2-to-2𝑞 hypercontractivity (where
the 4-norm is replaced by a higher 2𝑞-norm). We focus on the 2-to-4
case in this work for simplicity.

Before moving on to applications of Theorem 3.5, it is worth
discussing another typical form of hypercontractivity and how it
translates to the setting of simplicial complexes. Hypercontractivity
is frequently expressed in terms of an object called the noise oper-
ator. On the hypercube, the noise operator 𝑇𝜌 acts as an averaging
process on boolean strings which replaces each coordinate with a
random bit with probability 1−𝜌 . In this context, hypercontractivity
states that 𝑇𝜌 should act as a smoothing operator in the following
sense:





𝑇𝜌 𝑓






4
≤ ∥ 𝑓 ∥2 (3)

for some constant 𝜌 . Despite the fact that coordinates do not exist
on a simplicial complex, there is still a natural analog of 𝑇𝜌 where
each vertex in a 𝑘-face is removed with probability 1−𝜌 , and is then
re-randomized over relevant 𝑘-faces. We formalize this procedure
in terms of the averaging operators.

Definition 3.6 (Noise Operator). Let 𝑋 be a 𝑑-dimensional

pure simplicial complex. The noise operator 𝑇𝑘𝜌 (𝑋 ) : 𝐶𝑘 → 𝐶𝑘 at

level 𝑘 ≤ 𝑑 of the complex is:

𝑇𝑘𝜌 (𝑋 ) =
𝑘
∑︁

𝑖=0

(

𝑘

𝑖

)

(1 − 𝜌)𝑖𝜌𝑘−𝑖𝑈 𝑘
𝑘−𝑖𝐷

𝑘
𝑘−𝑖 .

We write just 𝑇𝜌 when clear from context.

When applied to the hypercube complex,9 this natural analog
returns exactly the standard boolean noise operator𝑇𝜌 . Combining
standard arguments with the spectral properties of the Bottom-Up
Decomposition, we can also prove a variant of Equation (3) for
pseudorandom functions on HDX. To state this result, it will be
useful to have a notion of degree: as on the hypercube, we say the
degree of a function 𝑓 is the largest 𝑖 such that 𝑓↑𝑖 is non-zero.

Corollary 3.7. Let 𝑋 be a sufficiently strong two-sided 𝛾-local-

spectral expander and 𝑓 ∈ 𝐶𝑘 a degree 𝑖 , (𝛿, 𝑖)-pseudorandom func-

tion for 𝛿 ≤ 𝜀 ∥ 𝑓 ∥22 /∥ 𝑓 ∥
2
∞. Then for some constant 𝜌 = Θ(1):




𝑇𝜌 𝑓






4
≤ 𝜀1/4 ∥ 𝑓 ∥2 .

3.3 Applications

A classical application of hypercontractivity is to give what is
known as a łlevel-𝑖 inequalityž that bounds low-level weight of a
boolean function. We can use Theorem 3.5 to give an analog on
HDX for pseudorandom functions.

Theorem 3.8 (Level-𝑖 ineqality). Let 𝑋 be a two-sided 𝛾-local-

spectral expander with 𝛾 sufficiently small and 𝑓 ∈ 𝐶𝑘 an (𝜀, 𝑖)-
pseudorandom boolean function of density 𝛼 . Then the weight on 𝑓↑𝑖
is bounded by:

⟨𝑓↑𝑖 , 𝑓↑𝑖 ⟩ ≤ 2𝑂 (𝑖)𝜀1/3𝛼.

9The hypercube complex has vertex set [𝑛] × {0, 1}, where the first entry stands for
a coordinate and the second entry a value. The top level 𝑋 (𝑛) consists of all binary
strings and is exactly the hypercube.
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Level-𝑖 inequalities have a plethora of applications in boolean
Fourier analysis. We’ll look at the analog of two classical applica-
tions: one to small-set expansion, and the other to the structure of
functions with low influence. Starting with the former, let’s recall
the basic definition of edge-expansion.

Definition 3.9. Let𝑀 be a walk on the 𝑘th level of a simplicial

complex 𝑋 . The (edge) expansion of a subset 𝑆 ⊆ 𝑋 (𝑘) is the average
probability of leaving 𝑆 in a single step of the walk:

Φ(𝑆) = E
𝑣∼𝑆

[𝑀 (𝑣, 𝑋 (𝑘) \ 𝑆)],

where 𝑀 (𝑣, 𝑋 (𝑘) \ 𝑆) is the probability the walk leaves 𝑆 starting

from 𝑣 .

Informally, a walk is called a small-set expander if all small subsets
expand. Traditionally, the level-𝑖 inequality on the discrete hyper-
cube is used to show that the noisy hypercube graph is a small-set
expander. The analogous result on simplicial complexes, however,
isn’t true: HD-walks (which generalize graphs like the noisy hy-
percube) have well-known examples of small non-expanding sets:
links [7, 52]. Using Theorem 3.8, we can prove a converse to this
result: any non-expanding set must be concentrated in a link.

Theorem 3.10 (Characterizing non-expansion). For every

0 < 𝛿 < 1, there exists some 𝜀 > 0 and 𝑟 ∈ N such that for all large

enough 𝑘 the following holds. For any HD-walk10 on a sufficiently

strong two-sided local-spectral expander 𝑋 and any subset 𝑆 ⊆ 𝑋 (𝑘),
if 𝑆 has expansion at most Φ(𝑆) ≤ 𝛿 , then 𝑆 is concentrated in a

low-level link:

∃𝑖 ≤ 𝑟, 𝑠 ∈ 𝑋 (𝑖) : |𝑋𝑠 ∩ 𝑆 ||𝑋𝑠 |
≥ 𝜀

Expansion is also closely related to awell-studied Fourier-analytic
quantity called total influence. On the boolean hypercube, the
total influence of a function measures its total variability across
each coordinate:

𝐼 [𝑓 ] =
𝑛
∑︁

𝑖=1

Pr
𝑥∼{0,1}𝑛

[𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑒𝑖 )]

where 𝑒𝑖 is the 𝑖th standard basis vector. One of the most celebrated
results in the analysis of boolean functions is the KKL Theorem
[40], which states that any function with low total influence must
have an influential coordinate. In domains beyond the hypercube
(such as product spaces), total influence is usually instead written
equivalently as:

𝐼 [𝑓 ] = ⟨𝑓 , 𝐿𝑓 ⟩
where 𝐿 is the (un-normalized) Laplacian operator. While the
KKL Theorem does not hold over arbitrary product spaces,11 a
useful analog known as łBourgain’s Sharp Threshold Theoremž
[31, Appendix] does. Bourgain’s Theorem states that if a boolean
function has small total influence, there must exist a link (on the
hypercube a subcube) in which the function is much denser than
expected.

10Formally, this statement only holds for HD-walks such as 𝑁Θ(𝑘 )
𝑘

which exhibit
sufficiently fast eigenvalue decay. We give a more general formulation in the full paper
that holds for all HD-walks.
11More accurately, it does hold but decays with the minimum probability of any
marginal, becoming trivial e.g. for the 𝑝-biased cube for small enough 𝑝 .

We prove an analogous result for HDX. The Laplacian formu-
lation of total influence has a natural generalization on simplicial
complexes:

𝐼𝑋 [𝑓 ] = ⟨𝑓 , 𝑘 (𝐼 −𝑈𝑘−1𝐷𝑘 ) 𝑓 ⟩
that returns the standard definition over the hypercube complex.
Using Theorem 3.8, we prove that any function with low total
influence must be concentrated in a link.

Theorem 3.11 (Bourgain’s Theorem for HDX). Let 𝑋 be a

sufficiently strong two-sided 𝛾-local-spectral expander, and 𝑓 ∈ 𝐶𝑘 a

boolean function. Then for any 0 ≤ 𝐾 ≤ 𝑘 , if 𝐼 [𝑓 ] ≤ 𝐾Var(𝑓 ), there
exists 𝑖 ≤ 𝐾 and an 𝑖-face 𝜏 such that the link of 𝜏 is dense:

E
𝑋𝜏

[𝑓 ] ≥ 2−𝑂 (𝐾) .

Note that Theorem 3.11 is actually a bit weaker than Bourgain’s
Theorem in the sense that it only promises a link that is much
denser than average when the function 𝑓 is sparse. We conjecture
that this result should hold in the dense regime as well (see Section 4
for details). On the other hand, unlike Bourgain’s Theorem (which

has a density increase of 2−𝑂 (𝐾2) rather than 2−𝑂 (𝐾) for general
functions), our result is tight.12

Proposition 3.12 (Bourgain’s Theorem Lower Bound). Let

𝑐 ≥ 1 be any constant and 𝐾 > 1 an integer. For all 𝐾 ≪ 𝑘 ≪ 𝑛,

there exists a Boolean function 𝑓 ∈ 𝐶𝑘 on the 𝑘-dimensional complete

complex on 𝑛 vertices satisfying:

(1) The influence of 𝑓 is small:

𝐼 [𝑓 ] ≤ 𝐾Var(𝑓 ) .

(2) For every 𝑖 ≤ 𝑐𝐾 , all 𝑖-links are sparse:

∀𝑖 ≤ 𝑐𝐾, 𝜏 ∈ 𝑋 (𝑖) : E
𝑋𝜏

[𝑓 ] ≤ 2−Ω (𝐾) .

3.4 Localization (Average Independence)

Our hypercontractive inequality is derived from a new method of
localization on high dimensional expanders of independent interest.
Localization itself is of course not newÐindeed such techniques
have recently become synonymous with HDX. However, most prior
work in the literature focuses on the localization of second moments,
whereas hypercontractivity requires the analysis of higher moments.
Traditionally, analysis beyond the second moment is difficult on
HDX due to an inherent lack of product structure. We show that
this can often be circumvented by a new method of decorrelating
variables.

Theorem 3.13. Let𝑋 be a𝑑-dimensional two-sided𝛾-local-spectral

expander and 𝑓 ∈ 𝐶𝑘 . Then for any 𝑗 ≤ 𝑑 − 𝑘 and 𝜏 ∈ 𝑋 ( 𝑗), the
global and localized expectation of 𝑓 over 𝑋𝜏 differ by an operator

with small spectral norm:

E
𝑋𝜏 (𝑘)

[𝑓 ] − E
𝑋 (𝑘)

[𝑓 ] = Γ𝑓 (𝜏)

where Γ : 𝐶𝑘 → 𝐶 𝑗 satisfies | |Γ | | ≤ 𝑂𝑘,𝑗 (𝛾).

12A similar tight version of Bourgain’s Theorem for sparse functions on the 𝑝-biased
cube was proved by [50].
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We emphasize that the first expectation in this definition is given
by restricting rather than localizing 𝑓 . In other words we are averag-
ing over 𝑘-faces in the link𝑋𝜏 (which are (𝑘+ 𝑗)-faces in the original
complex) rather than over 𝑘-faces in the original complex 𝑋 that
contain 𝜏 (as in say Definition 3.4). This latter notion of localization
is also very important in analysis of HDX. Theorem 3.13 is proved
through the machinery of swap walks, introduced independently
by Alev, Jeronimo, and Tulsiani [2], and Dikstein and Dinur [18].
These walks, which crucially exhibit a very good spectral gap, have
related applications in analyzing agreement tests [18], approxima-
tion algorithms [2], codes [1, 39], and most recently constructions
of group-independent co-systolic expanders [43].

Theorem 3.13 should really be thought of as saying that, on av-
erage, 𝑓 can be decorrelated from łirrelevantž 𝑗-faces that don’t
appear in the input. This is particularly useful when analyzing ob-
jects like HDX with high correlation. To understand the technique
a bit more concretely, let’s look at a basic example application.

Let 𝑋 be a 𝛾-local-spectral expander. We will often be interested
in analyzing certain expected products on 𝑋 . For instructive pur-
poses, let’s take a look at an example of such a product with just
two instances of some 𝑔 ∈ 𝐶2:

E
𝑎∼𝑋 (1)

E
𝑏∼𝑋𝑎 (1)

E
𝑐∼𝑋𝑎𝑏 (1)

[

𝑔(𝑎, 𝑏)𝑔(𝑎, 𝑐)
]

(4)

= E
𝑎∼𝑋 (1)

E
𝑏∼𝑋𝑎 (1)

[

𝑔(𝑎, 𝑏) E
𝑐∼𝑋𝑎𝑏 (1)

[𝑔(𝑎, 𝑐)]
]

. (5)

Notice that if wewereworking over a product space, the distribution
of 𝑐 ∼ 𝑋𝑎𝑏 (1) would be the same as the distribution of 𝑐 ∼ 𝑋𝑎 (1).
This allows us to significantly simplify the above:

E
𝑎∼𝑋 (1)

E
𝑏∼𝑋𝑎 (1)

[

𝑔(𝑎, 𝑏) E
𝑐∼𝑋𝑎𝑏 (1)

[𝑔(𝑎, 𝑐)]
]

= E
𝑎∼𝑋 (1)

[

E
𝑏∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑏)] E
𝑐∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑐)]
]

= E
𝑎∼𝑋 (1)

[

E
𝑏∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑏)]2
]

.

On the other hand in an HDX (especially one of bounded degree),
this could be far from true since 𝑏 and 𝑐 can be highly correlated.
Theorem 3.13 provides a simple technique for circumventing this
issue. Let 𝑔 |𝑎 be the restriction of 𝑔 to 𝑎, that is 𝑔|𝑎 (𝑏) = 𝑔(𝑎, 𝑏).
Theorem 3.13 promises that

E
𝑐∼𝑋𝑎𝑏 (1)

[𝑔(𝑎, 𝑐)] = E
𝑐∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑐)] + Γ𝑔|𝑎 (𝑏),

where ∥Γ∥ ≤ 𝑂 (𝛾). This allows us to recover the same form as
above up to 𝑂 (𝛾) error:

E
𝑎∼𝑋 (1)

[

E
𝑏∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑏)] E
𝑐∼𝑋𝑎𝑏 (1)

[𝑔(𝑎, 𝑐)]
]

= E
𝑎∼𝑋 (1)

[

E
𝑏∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑏)]2
]

+ E
𝑎∼𝑋 (1)

[

E
𝑏∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑏) · Γ𝑔(𝑏)]
]

≤ E
𝑎∼𝑋 (1)

[

E
𝑏∼𝑋𝑎 (1)

[𝑔(𝑎, 𝑏)]2
]

+𝑂𝑔 (𝛾),

where we have ignored some terms in 𝑔 for simplicity and the
last step follows from an application of Cauchy-Schwarz and the
spectral norm.

We emphasize that while Equation (5) in particular could also
have been analyzed through a more direct application of the swap

walk, such techniques fail when additional copies of 𝑔 are added.
Since there are 𝑗 copies of 𝑔 in analysis of the 𝑗th moment, this
means the traditional HDX tool kit cannot go beyond the second
moment. On the other hand, our technique is applied individually
to each copy of 𝑔, so it is essentially irrelevant how many times it
appears in the product.

4 DISCUSSION

Before getting into the details and formalization of the above, we
take a moment to give a more careful treatment of some interesting
open problems and related work.

4.1 Open Problems

Hypercontractivity, both on the cube and on extended domains, has
led to an astounding number of applications since its introduction
some 50 years ago. We recover just a small sample of these classical
applications in our work, and believe the theory will give rise to
further results in the analysis of boolean functions. However, rather
than surveying a list of classical results one might wish to extend
(we refer the reader to O’Donnell’s book [59] for this), we’ll instead
focus on three open problems we feel are most directly raised by
our work.

Perhaps the most obvious direction left open is to extend hyper-
contractivity to the dense regime. While our definition of pseudo-
randomness implicitly assumes the underlying function is sparse,
we conjecture that all of our results should hold under a weaker
notion of pseudorandomness that drops this assumption.

Definition 4.1 (Pseudorandomness (Dense Regime)). Let 𝑋

be a simplicial complex and 𝑓 ∈ 𝐶𝑘 a boolean function. We say 𝑓 is

(𝜀, 𝑖)-pseudorandom if its local and global average are close on every

𝑖-link:

∀𝜏 ∈ 𝑋 (𝑖) :
�

�E
𝑋𝜏

[𝑓 ] − E[𝑓 ]
�

� ≤ 𝜀.

While the stronger notion we use in this work is certainly suffi-
cient for some applications (e.g. characterizing expansion, noise-
sensitivity) and is line with previous work [50, 52, 54], it does seem
to fall short in other areas. A good example of this is our variant
of Bourgain’s Theorem. While our version only promises the exis-
tence of a dense link, the original result on product spaces actually
promises a link with higher than average density (albeit by a factor

of 2−𝑂 (𝐾2) instead of 2−𝑂 (𝐾) ), which could be recovered by prov-
ing hypercontractivity for the above definition. More generally,
proving hypercontractivity for this dense variant opens the door
to a broader spectrum of applications than the sparse regime alone
can handle.

The second problem we’d like to discuss is more focused on the
theory of high dimensional expanders itself. As mentioned in the
introduction, local-spectral expansion can be extended well beyond
simplicial complexes to many natural poset structures including
the Grassmann poset [19, 48], where hypercontractivity was crucial
to resolving the 2-2 Games Conjecture [54]. The spectral and ℓ2-
structure of these expanding posets (eposets) is well understood
[2, 7, 19], and essentially has no dependence on the underlying
poset structure.13 In stark contrast, our results break down over

13Different poset parameters result in different eigenvalues, but the structure is other-
wise the same.
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general eposets at several key points. In fact, it seems likely that
the Bottom-Up Decomposition is not even a Fourier basis (fails to
satisfy Theorem 3.2) over general eposets, since the proof relies
heavily on simplicial structure. On the other hand, variants of
hypercontractivity are known for some special eposets such as
the Grassmann poset. The key difference in these cases is that the
definition of pseudorandomness necessarily changes. This raises a
natural question: do all eposets satisfy hypercontractivity for some
notion of pseudorandomness, or are structures like the Grassman
poset and simplicial complexes łspecialž? We conjecture that the
latter is the case, and that these objects represent a new, stronger
class of spectral high dimensional expanders.

Our third proposed problem is not raised quite as directly by
this work, but is hard to ignore in light of recent breakthroughs
in approximate sampling via HDX [3, 5, 6, 11, 14ś16, 27, 37, 56].
Hypercontractivity is classically connected to the Log-Sobolev in-
equality, which gives strong control over the mixing time of its
associated random walk. Applied to the hypercube, for instance,
this connection improves the standard spectral mixing bound from
𝑂 (𝑛2) to the optimal Θ(𝑛 log(𝑛)) [17]. Recent analysis of entropic
notions of high dimensional expansion and a modified Log-Sobolev

inequality have led to a slew of analogous improvements on impor-
tant sampling problems [4, 11, 16]. These results, however, usually
only apply to dense objects and need stronger assumptions. Given
these connections, it is natural to ask whether our theory of hyper-
contractivity can improve mixing times for general local-spectral
expanders in some analogous fashion.

4.2 Related Work

Hypercontractivity on Extended Domains: Nearly 20 years after
its introduction, Kahn, Kalai, and Linial [40] revolutionized the
study of boolean functions with hypercontractivity. Not long after,
a significant interest grew in the development and application of
hypercontractivity beyond the hypercube, with a particular focus on
product distributions and especially the 𝑝-biased hypercube [13, 30,
32, 62]. These works offered a general theory of hypercontractivity
for such domains, but their strength depended on the underlying
distributions in the product space. This issue was addressed to an
extent in work of Friedgut and Bourgain [31], and later Hatami
[36], who showed analogues to the KKL theorem in product spaces
for certain pseudorandom functions, but it was not until the recent
work of Keevash, Lifshitz, Long, andMinzer [50] (and independently
O’Donnell and Zhao [63]) that a true hypercontractive inequality
was developed in this setting. This offered the missing piece for
a number of classical applications including a tight variant of the
KKL Theorem (for monotone functions) [50], Majority is Stablest
[55], as well as a number of interesting applications to extremal
combinatorics [51].

Another line of work has examined hypercontractivity on what
are often called łexoticž domains: specific objects beyond products
such as the slice [52], multislice [29, 61], Grassmannian [54] (or
similarly the degree-two short code [9]), and symmetric group
[28]. Like KLLM’s improved result for product distributions, in
unbalanced settings these examples are only hypercontractive for

pseudorandom functions.14 The main application of this line of
work has been to agreement testing and hardness of approximation.
In particular, hypercontractivity for the Grassmannian was used
to prove the soundness of an agreement tester in the ł1% regimež
needed for the proof of the 2-2 Games Conjecture [9, 24, 25, 52ś54].
It is worth noting that agreement testing theorems are also known
for local-spectral expanders [18, 23, 42] (indeed the objects were
originally introduced in this context). These results, however, lie in
the ł99% regime,ž so it is interesting to ask whether our theory of
hypercontractivity can be used to build a bounded degree agreement
tester in the more difficult 1% regime.

Finally, we should note that our overarching proof structure
for hypercontractivity builds on KMMS’ work on the slice (i.e. the
complete complex). Their techniques, however, rely heavily on the
fact that the slice is close in ℓ1-distance to a product. This is far
from true on local-spectral expanders, especially those of bounded
degree which may essentially be as far as possible from products. As
previously discussed, this lack of structure is a challenging barrier
broken for the first time in this work (and independently in [35]).

Fourier Analysis on HDX:. Fourier analysis on HDX was orig-
inally studied by Diksein, Dinur, Filmus, and Harsha [19], who
introduced the HD-Level-Set Decomposition, analyzed its spec-
tral properties, and used it to prove an FKN Theorem for HDX. A
similar decomposition was also proposed around the same time
by Kaufman and Oppenheim [45], though their work was more
focused on understanding the spectral structure of higher order
random walks than on developing a theory of Fourier analysis. In
the years since, the HD-Level-Set Decomposition has seen some
further development [2, 7, 47], and the nascent theory has helped
build efficient approximation algorithms for certain 𝑘-CSPs [2] and
unique games [7], but the restriction to second moment methods
seems to have limited its use otherwise. Towards breaking this
same barrier, Gur, Lifshitz, and Liu [35] have also (independently)
developed a similar theory of hypercontractivity on local-spectral
expanders. While their work certainly shares some connections to
ours, its main proof techniques differ substantially and we believe
the two works are of independent interest.
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