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Abstract. We introduce a new iterative amalgamated free product construction of II1 factors,
and use it to construct a separable II1 factor which does not have property Gamma and is not
elementarily equivalent to the free group factor L(Fn), for any 2 ≤ n ≤ ∞. This provides the first
explicit example of two non-elementarily equivalent II1 factors without property Gamma. Moreover,
our construction also provides the first explicit example of a II1 factor without property Gamma
that is also not elementarily equivalent to any ultraproduct of matrix algebras. Our proofs use a
blend of techniques from Voiculescu’s free entropy theory and Popa’s deformation/rigidity theory.

1. Introduction

The study of the continuous model theory of II1 factors was initiated by Farah, Hart and Sherman
in [FHS14], who adapted the notion of elementary equivalence (requiring that the objects considered
satisfy the same first-order sentences) to the context of II1 factors. By the continuous version of the
Keisler-Shelah theorem, two II1 factors M,N are elementarily equivalent if and only if they admit
isomorphic ultrapowers, MU ∼= NV , for some ultrafilters U ,V on arbitrary sets [FHS14, HI02].
Ultrapowers of II1 factors have been a major tool in operator algebras since the works of McDuff
[McD70] and Connes [Con76] in the 1970s. In spite of this, proving that two given II1 factors have
no isomorphic ultrapowers, and so are not elementarily equivalent, remains a challenging task.

As shown in [FHS14] (see also [FGL06]), for separable II1 factors, Murray and von Neumann’s
property Gamma [MvN43] and McDuff’s property [McD70] are axiomatizable and thus are remem-
bered by ultrapowers. This implies that the hyperfinite II1 factor R, the free group factor L(F2)
and any separable non-McDuff II1 factor with property Gamma (see [DL69]) are not elementarily
equivalent. It was then realized by Goldbring and Hart that a II1 factor introduced in [ZM69]
provides a fourth elementary equivalence class (see [GH17]). However, besides these examples, it
was unclear how to find any additional elementary equivalence classes of II1 factors. This problem
was solved by Boutonnet and two of the authors in [BCI17] who proved that the continuum of
non-isomorphic separable II1 factors (Mα)α∈{0,1}N constructed by McDuff in [McD69] are pairwise

non elementarily equivalent. More precisely, the main result of [BCI17] shows that Mα and Mβ do
not admit isomorphic ultrapowers, whenever α ̸= β. Subsequently, explicit sentences witnessing
that Mα and Mβ are not elementarily equivalent were given in [GH17,GHT18].

The proofs of the main result of [BCI17] and in fact of all of the existing results providing non-
elementarily equivalent II1 factors are based on analyzing central sequences. As a result, it remained
a fundamental open question to find any non-elementarily equivalent II1 factors that do not have
property Gamma and thus admit no non-trivial central sequences.

We settle this question in the present work. A main novelty of our approach, that allows us to
bypass the above difficulty, is the use of 1-bounded entropy from Voiculescu’s free probability theory.
For a finite tuple X of self-adjoint operators in a tracial von Neumann algebra (N, τ), one has the
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1-bounded entropy h(X), implicit in Jung’s work [Jun07] and defined explicitly by Hayes [Hay18],
see Subsection 2.2. This quantity, unlike Voiculescu’ free entropy dimension δ0(X) [Voi94], is known
to be an invariant of the von Neumann algebra generated by X as shown in [Hay18, Theorem A.9].
Hence, we have a well-defined notion of 1-bounded entropy h(N) for a finitely generated tracial von
Neumann algebra (N, τ). Moreover, h(N) extends to arbitrary, possibly non-separable, tracial von
Neumann algebras (N, τ) by [Hay18, Definition A.2].

The main result of this paper is the following:

Theorem A. There exists a separable II1 factor M which does not have property Gamma and is
not elementarily equivalent to any tracial von Neumann algebra (N, τ) satisfying h(N) > 0. For
instance, M is not elementarily equivalent to L(F2).

Moreover, for any ultrafilters U ,V on sets I, J , respectively, there does not exist an embedding of
MU into NV that contains the diagonal inclusion of N .

Examples of tracial von Neumann algebras (N, τ) with h(N) > 0 include the interpolated free group
factors L(Ft), for all 1 < t ≤ ∞, and, more generally, any free product N1 ∗ N2 of two Connes-
embeddable diffuse tracial von Neumann algebras (N1, τ1) and (N2, τ2). (Moreover, h(N) = ∞ for
such N ; for this and additional examples, see Fact 2.7). By Theorem A, M is not elementarily
equivalent to any such N , including L(F2). This gives the first explicit example of two non-
elementarily equivalent non-Gamma II1 factors, thus settling a problem posed at a 2018 workshop
at the American Institute of Mathematics [AIM, Problem 1.3], see also [IP] and [Pet, Problem U.2].

It has been speculated for some time that free probability theory is likely to shed light on the model-
theoretic study of II1 factors, see for instance Farah’s ICM survey [Far14, Section 5] and [FGSW].
Offering positive evidence in this direction, Theorem A represents the first application of free
probability to the model theory of II1 factors.

Now we describe the key facets of our construction that allows us to prove Theorem A. The II1 factor
from Theorem A is built via a new iterative construction involving amalgamated free products (see
Section 4). By using techniques from Popa’s deformation/rigidity theory, notably [IPP08], and the
notion of property (T), we are able to guarantee that M is indeed non-Gamma. The main property
of our construction is presented in our second main theorem below.

Theorem B. There exists a separable II1 factor M without property Gamma which satisfies the
following. For every countably cofinal ultrafilter U on a set I and u1, u2 ∈ U(MU ) with u21 = u32 = 1
and {u1}′′ ⊥ {u2}′′, there exist Haar unitaries v1, v2 ∈MU such that [u1, v1] = [u2, v2] = [v1, v2] = 0.

Two von Neumann subalgebras P,Q of a tracial von Neumann algebra (M, τ) are called orthogonal
(written P ⊥ Q) if τ(xy) = τ(x)τ(y), for every x ∈ P, y ∈ Q. For the notion of a countably cofinal
ultrafilter, see Definition 5.2. Here we only note that every free ultrafilter on N is countably cofinal.

The construction in Theorem B is designed to imply the following estimate for the 1-bounded
entropy, which we present as our next main theorem.

Theorem C. Let M be any II1 factor satisfying the properties of Theorem B. Then h(MU ) ≤ 0,
for every ultrafilter U on a set I.

The above estimate allows us to prove the desired non-isomorphism of ultrapowers. Indeed, let M
be as in Theorem B. If (N, τ) is a tracial von Neumann algebra which is elementarily equivalent
to M , then MU ∼= NV , for some ultrafilters U ,V. Properties of the 1-bounded entropy give that
h(N) ≤ h(NV) (see Facts 2.3 and 2.4). The conclusion of Theorem A then follows immediately.
We refer the reader to Remark 5.9, pointed out to us by I. Goldbring and D. Jekel, for an explicit
sequence which differentiates the elementary classes of M and N .
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Note that if M is a II1 factor with property Gamma, then h(MU ) ≤ 0, for every ultrafilter U on a
set I. Prior to the writing of this paper no examples of non-Gamma II1 factors which satisfy this
inequality were known. Hence, Theorem C is also of independent interest.

A II1 factor is called pseudocompact if it is elementarily equivalent to a matrix ultraproduct (see
[FHS14, Section 5]). Pseudocompact factors cannot have property Gamma by [FH11, Section 4]
and [FHS14, Theorem 5.1]. By combining Theorem C with recent work of Jekel [Jek22] on matrix
ultraproducts we obtain the first example of a non-Gamma II1 factor which is not pseudocompact.

Corollary D. There exists a separable II1 factor M without property Gamma which is not ele-
mentarily equivalent to

∏
U Mkn(C), for any sequence (kn) ⊂ N and any free ultrafilter U on N.

Remark 1.1. The Connes Embedding Problem (CEP) asks if every separable II1 factor embeds
into RU , where U is a free ultrafilter on N [Con76]. A negative answer to the CEP has been
announced in the preprint [JNV+]. AssumingM0 is a non-Connes-embeddable separable II1 factor,
then M =M0 ∗L(Z) is a non-Gamma separable II1 factor which is still not embeddable. Any such
M is neither elementarily equivalent to any embeddable non-Gamma II1 factor (e.g., L(F2)) nor
pseudocompact. Moreover, assuming a negative answer to the CEP, [GH, Corollary 5.5] implies the
existence of infinitely many elementary equivalence classes of non-Gamma II1 factors. In contrast,
our construction of a non-Gamma II1 factor which is not elementarily equivalent to L(F2) and not
pseudocompact is explicit and does not depend on the answer to the CEP, nor does it use techniques
from [JNV+]. We note that it is open whether the II1 factor we construct is Connes-embeddable. As
such, it remains an open question to find examples of Connes-embeddable non-Gamma II1 factors
which are not elementarily equivalent.

Comments on the proofs of Theorems B and C. The proof of Theorem B relies on a new
construction of II1 factors which is of independent interest and is presented in Section 4. This
associates, via a 2-step amalgamated free product procedure, to every II1 factor M1 and unitaries
u1, u2 ∈ M1, a tracial von Neumann algebra M2 generated by M1 and Haar unitaries v1, v2 ∈ M2

satisfying [u1, v1] = [u2, v2] = [v1, v2] = 0. When {u1}′′ ⊥ {u2}′′, we use deformation/rigidity
results from [IPP08] to deduce that M2 is a II1 factor. Moreover, under this assumption, we show
that any irreducible subfactor Q ⊂M1 is still irreducible in M2, see Theorem 4.2.

In Section 5, assuming that M1 has property (T) and iterating the above construction, we get an
increasing sequence of II1 factors (Mn)n≥1 whose inductive limit M := (∪n≥1Mn)

′′ is non-Gamma
and has the following property. For a countable dense set of unitaries u1, u2 ∈M with u21 = u32 = 1
and {u1}′′ ⊥ {u2}′′ there are Haar unitaries v1, v2 ∈ M such that [u1, v1] = [u2, v2] = [v1, v2] = 0.
Using a result which allows us to lift unitaries u1, u2 ∈ MU with u21 = u32 = 1 and {u1}′′ ⊥ {u2}′′
(see Lemma 3.1) we conclude that MU satisfies the conclusion of Theorem B. The restriction to
unitaries u1 and u2 of orders 2 and 3 is due to the fact that Lemma 3.1 only applies in this case.

The statement of Theorem B is partially inspired by [Hay18, Corollary 4.8]. This shows that if
a diffuse tracial von Neumann algebra (M, τ) has property (C′) introduced in [GP17, Definition
3.6], then h(M) ≤ 0. In particular, [Hay18, Corollary 4.8] implies that h(M) ≤ 0, for any diffuse
von Neumann algebra (M, τ) that is generated by u1, · · · , uk ∈ U(M) so that there exist pairwise
commuting Haar unitaries v1, · · · , vk ∈ U(MU ) with [ui, vi] = 0, for any 1 ≤ i ≤ k. Property (C′)
is an asymptotic commutativity property which weakens Popa’s property (C) [Pop84]. The latter,
itself a weakening of property Gamma, was shown to fail for L(Fn), 2 ≤ n ≤ ∞, in [Dyk97].

To outline the proof of Theorem C, let M be as in Theorem B and U be a countably cofinal
ultrafilter on a set I. Using an observation made in the proof of [Hay18, Corollary 4.8] (see Fact
2.9) we derive that h({u1, u2}′′ : MU ) ≤ 0, for any u1, u2 ∈ U(MU ) with u21 = u32 = 1 and
{u1}′′ ⊥ {u2}′′. Here, h(N : M) denotes the 1-bounded entropy of N in the presence of M , see
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Subsection 2.2. On the other hand, MU can be generated by a family of subalgebras of the form
{u1, u2}′′, where u1, u2 ∈ U(MU ) satisfy u21 = u32 = 1 and {u1}′′ ⊥ {u2}′′, all containing a fixed
diffuse subalgebra. Using the behavior of the 1-bounded entropy with respect to joins (see Facts
2.6 and 2.5), we conclude that h(MU ) ≤ 0, for any countably cofinal ultrafilter U . Since h(M) ≤ 0
and MU ∼=M for any ultrafilter U that is not countably cofinal, Theorem C follows.

Acknowledgements: We thank Isaac Goldbring, David Jekel, Jesse Peterson, Sorin Popa and
Stefaan Vaes for helpful comments.

2. Preliminaries

2.1. Tracial von Neumann algebras. Let (M, τ) be a tracial von Neumann algebra, i.e., a pair
consisting of a von Neumann algebra M and a faithful normal tracial state τ :M → C. We denote
by U(M) the group of unitaries of M and by Msa the set of self-adjoint elements of M . Given a
self-adjoint set S ⊂M , von Neumann’s bicommutant theorem implies that S′′ is the smallest unital
von Neumann subalgebra of M containing S. For von Neuman subalgebras (Mα) of M , we will use
the notation ∨αMα for (∪αMα)

′′.

For an ultrafilter U on a set I, we denote byMU the tracial ultraproduct: the quotient ℓ∞(I,M)/J
by the closed ideal J ⊂ ℓ∞(I,M) consisting of x = (xn) with lim

n→U
∥xn∥2 = 0. We have a natural

diagonal inclusion M ⊂MU given by x 7→ (xn), where xn = x, for all n ∈ I. A separable II1 factor
M has property Gamma if M ′ ∩MU ̸= C1, for a free ultrafilter U on N. For more details on tracial
ultraproducts, we refer the reader to [BO08, Appendix E] and [ADP, Section 5].

Two tracial von Neumann algebras (M1, τ1) and (M2, τ2) are said to be elementarily equivalent
if there exist ultrafilters U ,V on arbitrary sets I, J such that MU

1
∼= MV

2 . This is the semantic
definition of elementary equivalence. The model theoretic (sometimes called syntactic) definition
for elementary equivalence will not be stated in this paper, as it is equivalent to the semantic
definition by deep results of Keisler-Shelah adapted to the continuous setting, see [FHS14, Section
2] and [HI02, Theorem 10.7].

A key tool in our work is the amalgamated free product construction for tracial von Neumann
algebras. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a common von Neumann
subalgebra B such that τ1|B = τ2|B. We denote by M =M1 ∗B M2 the amalgamated free product
with its canonical trace τ . See [Pop93] and [VDN92] for more details on the construction.

To prove that the II1 factors we construct do not have property Gamma, we will use property (T)
and Popa’s intertwining techniques.

A II1 factor has property (T) [CJ85] (see also [Pop06a]) if for every ε > 0, there are F ⊂M finite and
δ > 0 such that for any HilbertM -M -bimoduleH and unit vector ξ ∈ H with maxx∈F ∥xξ−ξx∥ ≤ δ,
there exists η ∈ H satisfying ∥η − ξ∥ ≤ ε and xη = ηx, for every x ∈M . Let Γ be an icc countable
group with property (T); for instance, take Γ = SL3(Z) by [Kaž67]. Then M = L(Γ) is a II1 factor
with property (T), see [CJ85, Theorem 2] and [Pop86, Theorem 4.1.7].

In this paper, we will use the well-known fact that II1 factors with property (T) have weak spectral
gap (in the sense of [Pop12]) in any inclusion:

Proposition 2.1. Let M be a II1 factor and M1 ⊂ M be a subfactor with property (T). Then
M ′

1 ∩MU = (M ′
1 ∩M)U , for any ultrafilter U on a set I.

Conversely, if the equality M ′
1 ∩MU = (M ′

1 ∩M)U holds for every II1 factor M containing M1 and
every ultrafilter U on N, then M1 must have property (T), as shown recently in [Tan].
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Theorem 2.2 (see [Pop06b]). Let (M, τ) be a separable tracial von Neumann algebra and let
P ⊂ pMp,Q ⊂M be von Neumann subalgebras. Then the following conditions are equivalent:

(1) There exist projections p0 ∈ P, q0 ∈ Q, a ∗-homomorphism θ : p0Pp0 → q0Qq0 and a
non-zero partial isometry v ∈ q0Mp0 such that θ(x)v = vx, for all x ∈ p0Pp0.

(2) There is no sequence un ∈ U(P ) satisfying ∥EQ(x
∗uny)∥2 → 0, for all x, y ∈ pM .

If one of these equivalent conditions holds, we write P ≺M Q, and say that a corner of P embeds
into Q inside M .

2.2. 1-bounded entropy. We recall some background for 1-bounded entropy theory (see [Hay18],
[Jun07]) and direct the reader to [HJNS21, Section 2.3] and [HJKE21, Sections 2.2 and 2.3] for a
more detailed exposition. For a tracial von Neumann algebra (M, τ) and X ∈Md

sa, the law of X is
the linear functional ℓX : C⟨t1, . . . , td⟩ → C given by ℓX(f) = τ(f(X)). Let Σd,R be the set of all
linear maps ℓ : C⟨t1, . . . , td⟩ → C satisfying that there exists a finite von Neumann algebra (M, τ)
and X ∈Md

sa such that ℓ = ℓX and ∥x∥ ≤ R for all x ∈ X. We equip Σd,R with the weak∗ topology.

We describe the orbital version of 1-bounded entropy (see Definition A.2 in [Hay18]). Let (M, τ) be
a diffuse tracial von Neumann algebra, and X,Y ⊂Msa finite such that ∥x∥ ≤ R for all x ∈ X ∪Y .
Following [Voi94], for each weak∗ neighborhood O of ℓX⊔Y in Σd,R and n ∈ N, we define

Γ
(n)
R (X : Y ;O) = {A ∈ Mn(C)Xsa : ∃B ∈ Mn(C)Ysa such that ℓA⊔B ∈ O, ∥Ax∥, ∥By∥ ≤ R, ∀x ∈ X, y ∈ Y }.

Given d, n ∈ N, ε > 0 and Ω,Ξ ⊆ Mn(C)d, then Ξ is said to (ε, ∥ · ∥2)-cover Ω if for every A ∈ Ω,
there is B ∈ Ξ with ∥A − B∥2 < ε. Define the covering number Kε(Ω, ∥ · ∥2) of Ω ⊆ Mn(C)d as
the minimal cardinality of a set that (ε, ∥ · ∥2)-covers Ω. We say that Ξ orbitally (ε, ∥ · ∥2)-covers
Ω if for every A ∈ Ω, there is a B ∈ Ξ and an n× n unitary matrix V so that ∥A− V BV ∗∥2 < ε.
Define the orbital covering number Korb

ε (Ω, ∥ · ∥2) as the minimal cardinality of a set that orbitally
(ε, ∥ · ∥2)-covers Ω.
Let X0, Y0 ⊂ Msa not necessarily finite, satisfying X ′′

0 ⊂ Y ′′
0 and ∥x∥ ≤ R for all x ∈ X0 ∪ Y0. Let

X,Y be finite subsets of X0, Y0 respectively. For a weak∗-neighborhood O of ℓX⊔Y , we define

hε(X : Y ;O) := lim sup
n→∞

1

n2
logKorb

ε (Γ
(n)
R (X : Y ;O)),

hε(X : Y ) := inf
O∋ℓX⊔Y

hε(O),

hε(X0 : Y0) := sup
X⊂finiteX0

inf
Y⊂finiteY0

hε(X : Y )

h(X0 : Y0) := sup
ϵ>0

hε(X0 : Y0)

Note that h(X1 : Y1) = h(X2 : Y2) if X ′′
1 = X ′′

2 and Y ′′
1 = Y ′′

2 by [Hay18, Theorem A.9]. Hence,
given a von Neumann subalgebra N ⊂ M , we unambiguously write h(N : M) (and call it the
1-bounded entropy of N in the presence of M) to be h(X : Y ) for some generating sets X of N and
Y of M . We write h(M) = h(M :M) and call it the 1-bounded entropy of M .

For the purposes of this article we recall the following facts about h:

Fact 2.3. (see [HJKE21, 2.3.3]) h(N1 : M1) ≤ h(N2 : M2) if N1 ⊂ N2 ⊂ M2 ⊂ M1 and N1 is
diffuse.

Fact 2.4. (see [Hay18, Proposition 4.5]) h(N :M) = h(N :MU ) if N ⊂M is diffuse, and U is an
ultrafilter on a set I. (Note that [Hay18, Proposition 4.5] asserts this fact for free ultrafilters U .
The fact is trivially true also for non-free (i.e., principal) ultrafilters.)
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Fact 2.5. (see [Hay18, Lemma A.12]) h(N1 ∨ N2 : M) ≤ h(N1 : M) + h(N2 : M) if N1, N2 ⊂ M
and N1 ∩N2 is diffuse. In particular, h(N1 ∨N2) ≤ h(N1) + h(N2).

Fact 2.6. (see [Hay18, Lemma A.10]) Assume that (Nα)α is an increasing chain of diffuse von
Neumann subalgebras of M . Then h(

∨
αNα :M) = supα h(Nα :M).

By [Jun07, Corollary 3.5] and [Hay18, Proosition A.16], h(N) = ∞ whenever (N, τ) is a tracial
von Neumann algebra admitting a finite generating set X ⊂ Nsa with δ0(X) > 1, where δ0 is
Voiculescu’s modified free entropy dimension (see Section 6 of [Voi96]).

Fact 2.7. The following tracial von Neumann algebras (N, τ) satisfy h(N) > 0. The first five
examples all arise from identifying generating sets X satisfying δ0(X) > 1, and thus h(N) = ∞.

(1) (see [Jun07, Lemma 3.7])) N1 ∗ N2 where (N1, τ1) and (N2, τ2) are Connes-embeddable
diffuse tracial von Neumann algebras.

(2) The free perturbation algebras of Voiculescu (see Theorem 4.1 in [Bro05]).
(3) Many examples of amalgamated free products N1 ∗B N2 where B is amenable (see Section

4 of [BDJ08] for precise examples).
(4) (see [CdSH+22]) Graph products of finite dimensional tracial von Neumann algebras over

trees where the cardinality of the vertex set is greater than or equal to 4.
(5) (see [Shl09], Theorem 3) Von Neumann algebras of Connes-embeddable nonamenable groups

Γ admitting non inner cocycles c : Γ → CΓ.
(6) (see [Hay20], [BC], [HJKE22]) Nonamenable von Neumann subalgebras of L(Ft) for t > 0.

The following recent result of Jekel provides another family of examples:

Fact 2.8. (see [Jek22, Theorem 1.1]) Suppose that h(N) > 0. Let {nk}∞k=1 be an increasing
sequence of natural numbers and U be a free ultrafilter on N. Let M =

∏
U Mnk

(C). Then there
exists an embedding N ↪→ M such that h(N : M) > 0. In particular h(M) > 0.

The following fact follows easily from Fact 2.5. This observation appears in the proof of Corollary
4.8 in [Hay18]. For completeness, we include a proof here.

Fact 2.9. Assume that u1, u2 ∈ U(M) such that there are Haar unitaries v1, v2 ∈ M satisfying
[v1, u1] = [v2, u2] = [v1, v2] = 0. Then h({u1, u2}′′ :M) ≤ 0.

Proof. Since {u1, v1}′′, {v1, v2}′′, {v2, u2}′′ are abelian, we get

h({u1, v1}′′) = h({v1, v2}′′) = h({v2, u2}′′) = 0.

Since {v1}′′ and {v2}′′ are diffuse, Fact 2.5 implies that

h({u1, u2, v1, v2}′′) = h({u1, v1}′′
∨

{v1, v2}′′
∨

{v2, u2}′′) ≤ 0.

Hence, using Fact 2.3 we see that

h({u1, u2}′′ :M) ≤ h({u1, u2}′′ : {u1, u2, v1, v2}′′) ≤ h({u1, u2, v1, v2}′′) ≤ 0,

which proves the fact. □

3. A lifting lemma

The goal of this section is to establish the following lifting lemma:
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Lemma 3.1. Let I be a set, U an ultrafilter on I and (Mn)n∈I be a family of II1 factors. Consider
projections p, q1, q2, q3 ∈

∏
U Mn such that q1 + q2 + q3 = 1 and {p}′′ ⊥ {q1, q2, q3}′′.

Then we can represent p = (pn) and qi = (qi,n), where pn, qi,n ∈ Mn are projections such that
q1,n + q2,n + q3,n = 1 and {pn}′′ ⊥ {q1,n, q2,n, q3,n}′′, for every n ∈ I.

Lemma 3.1 is an immediate consequence of the following perturbation lemma.

Lemma 3.2. For every ε > 0, there exists δ = δ(ε) > 0 such that the following holds.

Let M be a II1 factor and e, f1, f2, f3 ∈ M be projections such that f1 + f2 + f3 = 1 and we have
|τ(efi)− τ(e)τ(fi)| ≤ δ, for every 1 ≤ i ≤ 3. Then there exist projections p, q1, q2, q3 ∈M such that
q1 + q2 + q3 = 1, ∥p− e∥1 ≤ ε, ∥qi − fi∥1 ≤ ε and τ(pqi) = τ(p)τ(qi), for every 1 ≤ i ≤ 3.

Note that if p, q are projections in a II1 factorM , then ∥p−q∥2 = ∥p(p−q)+(p−q)q∥2 ≤ 2∥p−q∥1.
This implies that the statement of Lemma 3.2 still holds if we replace ∥ · ∥1 by ∥ · ∥2. Using this
observation, it is standard to derive Lemma 3.1 from Lemma 3.2.

The proof of Lemma 3.2 is based on the next two lemmas.

Lemma 3.3. Let (M, τ) be a diffuse tracial von Neumann algebra, δ > ε > 0 and x = x∗ ∈M with
|τ(x)| ≤ ε and ∥x∥1 > δ. Then there is a projection p ∈M such that τ(xp) = 0 and τ(p) > δ−ε

δ+ε .

Proof. Let x = y − z be the decomposition of x into its positive and negative parts and q ∈ M be
the support projection of y. Then y ∈ qMq and z ∈ (1− q)M(1− q). If τ(x) = 0, there is nothing
to prove. We may assume that τ(x) > 0, since the case τ(x) < 0 is analogous.

Since τ(y) − τ(z) = τ(x) ≤ ε and τ(y) + τ(z) = ∥x∥1 > δ, letting s = δ−ε
δ+ε ∈ (0, 1), it follows that

τ(y)s < τ(z). Let y′ ∈ qMq be a self-adjoint operator with finite spectrum such that

(3.1) 2∥y′ − y∥1 < τ(z)− τ(y)s.

Since M is diffuse and y′ has finite spectrum, we can find an increasing net of projections (et)t∈[0,1]
in qMq such that e0 = 0, e1 = q, τ(et) = τ(q)t and τ(y′et) = τ(y′)t, for every t ∈ [0, 1]. Then for
every t ∈ [0, 1], we have that

|τ(yet)− τ(y)t| ≤ |τ(yet)− τ(y′et)|+ |(τ(y)− τ(y′))t| ≤ 2∥y′ − y∥1,

and thus τ(yet) ≤ τ(y)t+ 2∥y′ − y∥1.

Combining this inequality for t = s with (3.1) gives that τ(yes) < τ(z). As τ(ye1) = τ(y) > τ(z)
and the map t 7→ τ(yet) is continuous, we can find t ∈ (s, 1) such that τ(yet) = τ(z).

Finally, let p = et + (1 − q). Then we have τ(xp) = τ(yp) − τ(zp) = τ(yet) − τ(z) = 0 and
τ(p) = τ(et) + τ(1− q) = tτ(q) + τ(1− q) ≥ t > s, which finishes the proof. □

Lemma 3.4. Let ε, δ ≥ 0 such that ε < δ2 and (M, τ) be a diffuse tracial von Neumann algebra.
Let p, f1, f2, f3 ∈ M be projections such that f1 + f2 + f3 = 1, |τ(pfi) − τ(p)τ(fi)| ≤ ε and
∥fi(p− τ(p))fi∥1 > δ, for every 1 ≤ i ≤ 2.

Then there exist projections q1, q2, q3 ∈ M such that q1 + q2 + q3 = 1, τ(pqi) = τ(p)τ(qi) and
∥qi − fi∥1 < 4ε

δ2
, for every 1 ≤ i ≤ 3.

Proof. Let 1 ≤ i ≤ 2 and define xi = fi(p − τ(p))fi. Then we have xi = x∗i ∈ fiMfi and
|τ(xi)| = |τ(pfi) − τ(p)τ(fi)| ≤ ε. Since ∥xi∥1 > δ and ∥xi∥1 ≤ τ(fi)∥p − τ(p)∥ ≤ τ(fi), we get
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that τ(fi) > δ. Thus, | τ(xi)
τ(fi)

| ≤ ε
δ and ∥xi∥1

τ(fi)
≥ ∥xi∥1 > δ. Altogether, by applying Lemma 3.3 to

xi ∈ fiMfi, we find a projection qi ∈ fiMfi such that

(3.2) τ(xiqi) = 0 and
τ(qi)

τ(fi)
>
δ − ε

δ

δ + ε
δ

=
1− ε

δ2

1 + ε
δ2
> 1− 2ε

δ2
.

Using (3.2) we get that τ((p− τ(p))qi) = τ(xiqi) = 0 and thus τ(pqi) = τ(p)τ(qi). Moreover,

∥qi − fi∥1 = τ(fi)− τ(qi) <
2ε

δ2
τ(fi) ≤

2ε

δ2
.

Let q3 = 1− q1 − q2 and f3 = 1− f1 − f2. Then τ(pq3) = τ(p)− τ(pq1)− τ(pq2) = τ(p)(1− τ(q1)−
τ(q2)) = τ(p)τ(q3). Moreover, ∥q3 − f3∥1 = ∥(q1 + q2)− (f1 + f2)∥1 ≤ ∥q1 − f1∥1 + ∥q2 − f2∥1 < 4ε

δ2
.

This finishes the proof of the lemma. □

Proof of Lemma 3.2. Assume that the conclusion of Lemma 3.2 fails. Then there is ε > 0 such that
for every n ∈ N we can find a II1 factor (Mn, τn) and projections en, f1,n, f2,n, f3,n ∈Mn satisfying
the following: f1,n + f2,n + f3,n = 1, |τn(enfi,n) − τn(en)τn(fi,n)| ≤ 1

n , for every 1 ≤ i ≤ 3, and
∥pn−en∥1+∥q1,n−f1,n∥1+∥q2,n−f2,n∥1+∥q3,n−f3,n∥1 > ε, for all projections pn, q1,n, q2,n, q3,n ∈Mn

such that q1,n + q2,n + q3,n = 1 and τn(pnqi,n) = τn(pn)τn(qi,n), for every 1 ≤ i ≤ 3.

Let U be a free ultrafilter on N. Let τ be the canonical trace of
∏

U Mn given by τ(x) = lim
n→U

τn(xn),

for every x = (xn) ∈
∏

U Mn. Then p = (en), q1 = (f1,n), q2 = (f2,n), q3 = (f3,n) ∈
∏

U Mn are
projections satisfying that q1 + q2 + q3 = 1 and {p}′′ ⊥ {q1, q2, q3}′′.
We will get a contradiction by analyzing two cases:

Case 1. The set {1 ≤ i ≤ 3 | qi(p− τ(p))qi = 0} has at most one element.

Without loss of generality, assume that qi(p− τ(p))qi ̸= 0, for all 1 ≤ i ≤ 2.

For n ∈ N and 1 ≤ i ≤ 2, define δi = ∥qi(p − τ(p))qi∥1, δi,n = ∥fi,n(en − τn(en))fi,n∥1 and
κi,n = |τn(enfi,n) − τn(en)τn(fi,n)|. Then δi > 0, lim

n→U
δi,n = δi and 0 ≤ κi,n ≤ 1

n , for every n ∈ N.

Let δ = min{δ1, δ2}. Then the set J of n ∈ N such that δi,n >
δ
2 and κi,n < δ2i,n, for every 1 ≤ i ≤ 2,

belongs to U .
By Lemma 3.4, for every n ∈ J , we find projections qi,n ∈ Mn such that q1,n + q2,n + q3,n = 1,

τn(enqi,n) = τn(en)τn(qi,n) and ∥qi,n − fi,n∥1 <
4κi,n

δ2i,n
< 16

δ2n2 , for every 1 ≤ i ≤ 2. As J is

infinite, we can find n ∈ J such that 16
δ2n2 < ε

3 , for every 1 ≤ i ≤ 2. Put pn = en. Then
∥pn − en∥1 + ∥q1,n − f1,n∥1 + ∥q2,n − f2,n∥1 + ∥q3,n − f3,n∥1 < ε, contradicting the first paragraph
of the proof.

Case 2. The set {1 ≤ i ≤ 3 | qi(p− τ(p))qi = 0} has at least two elements.

Without loss of generality, assume that qi(p− τ(p))qi = 0, for every 1 ≤ i ≤ 2.

We claim that Q := {p, q1, q2, q3}′′ is a type I von Neumann algebra. Let 1 ≤ i ≤ 2. Since

qipqi = τ(p)qi, we get that vi := τ(p)−
1
2 qip is a partial isometry. Thus, pi := v∗i vi = τ(p)−1pqip

is a projection. Recall that any von Neumann algebra generated by two projections is of type I,
being a direct sum of type I1 and I2 algebras. Since pQp = {pq1p, pq2p, pq3p}′′ = {p1, p2, p}′′ and
p1, p2 ∈ p(

∏
U Mn)p are projections, pQp is of type I. Since qi((1−p)−τ(1−p))qi = qi(τ(p)−p)qi = 0,

for every 1 ≤ i ≤ 2, we also get that (1−p)Q(1−p) is of type I. The last two facts imply the claim.

Next, endow Q ⊂
∏

U Mn with the restriction of τ to Q. Since Q is of type I, it is hyperfinite. If
n ∈ N, then using that Mn is a II1 factor we can find a normal ∗-homomorphism πn : Q → Mn

such that τn(πn(x)) = τ(x), for every x ∈ Q. Then the normal ∗-homomorphism π : Q →
∏

U Mn
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given by π(x) = (πn(x)) satisfies that τ(π(x)) = lim
n→U

τn(πn(x)) = τ(x), for every x ∈ Q. As

is well-known (see, e.g, [HS18, Theorem 1.1]), since Q is hyperfinite, any two trace-preserving ∗-
homomorphism from Q to

∏
U Mn are unitarily conjugate. Thus, we can find un ∈ U(Mn), for every

n ∈ N, such that x = (unπn(x)u
∗
n), for every x ∈ Q. In particular, p = (pn) and qi = (qi,n), where

pn = unπn(p)u
∗
n and qi,n = unπn(qi)u

∗
n, for every n ∈ N and 1 ≤ i ≤ 3. Then q1,n + q2,n + q3,n = 1,

for every n ∈ N, and lim
n→U

(∥pn−en∥1+∥q1,n−f1,n∥1+∥q2,n−f2,n∥1+∥q3,n−f3,n∥1) = 0. Moreover,

τn(pnqi,n) = τn(πn(pqi)) = τ(pqi) = τ(p)τ(qi) = τn(πn(p))τn(πn(qi)) = τn(pn)τn(qi,n),

for every n ∈ N and 1 ≤ i ≤ 3. Altogether, this also contradicts the first paragraph of the proof. □

4. A construction of II1 factors

In this section, we introduce a new construction of II1 factors which we will use iteratively to build
the II1 factor in Theorem B.

Definition 4.1. Let (M, τ) be a tracial von Neumann algebra and A1, A2 ⊂ M be von Neumann
subalgebras. We define a tracial von Neumann algebra Φ(M,A1, A2) as follows. Put B1 = B2 =
L(Z) and define

Φ(M,A1) :=M ∗A1 (A1⊗B1) and

Φ(M,A1, A2) := Φ(M,A1) ∗(A2
∨

B1) ((A2 ∨B1)⊗B2).

Given u1, u2 ∈ U(M), we will use the notation Φ(M,u1, u2) := Φ(M, {u1}′′, {u2}′′).

More generally, given von Neumann subalgebras A1, · · ·Ak ⊂ M one can define Φ(M,A1, · · · , Ak)
inductively by letting B1 = · · · = Bk = L(Z) and for every 1 ≤ i ≤ k

Φ(M,A1, · · · , Ai) := Φ(M,A1, · · · , Ai−1) ∗(Ai
∨

B1
∨
···

∨
Bi−1) ((Ai ∨B1 ∨ · · · ∨Bi−1)⊗Bi).

Here, we focus on the case k = 2 which suffices for the purpose of proving Theorem B. The main
result of this section gives necessary conditions which guarantee that Φ(M,A1, A2) is a II1 factor.
Furthermore, we prove:

Theorem 4.2. Let (M, τ) be a tracial von Neumann algebra and A1, A2 ⊂ M be von Neumann
subalgebras such that A1 ⊥ A2 and M ⊀M Ai, for every i = 1, 2. Put P = Φ(M,A1, A2).

Then P is a II1 factor containing Haar unitaries v1, v2 ∈ P so that v1 ∈ A′
1 ∩ P, v2 ∈ A′

2 ∩ P and
[v1, v2] = 0. Moreover, if Q ⊂ M is a von Neumann subalgebra such that Q ⊀M Ai, for every
1 ≤ i ≤ 2, then Q′ ∩ P ⊂M .

In the proof of Theorem B, we will use the following immediate corollary of Theorem 4.2

Corollary 4.3. Let (M, τ) be a tracial von Neumann algebra having no type I direct summand.
Let u1, u2 ∈ U(M) such that {u1}′′ ⊥ {u2}′′ and put P = Φ(M,u1, u2).

Then P is a II1 factor containing Haar unitaries v1, v2 ∈ P so that [u1, v1] = [u2, v2] = [v1, v2] = 0.
Moreover, if Q ⊂M is a von Neumann subalgebra such that Q ⊀M {ui}′′, for every 1 ≤ i ≤ 2, then
Q′ ∩ P ⊂M .

Since M has no type I direct summand, M ⊀M {ui}′′, for every 1 ≤ i ≤ 2, and thus Corollary 4.3
follows from Theorem 4.2.
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Remark 4.4. Let us argue that the condition that {u1}′′ ⊥ {u2}′′ in Corollary 4.3 is necessary
in order to get that M is a II1 factor. Thus, the condition that A1 ⊥ A2 in Theorem 4.2 is also
necessary. In the context of Corollary 4.3, assume that M is generated by u2 and E{u1}′′(u2).

Denote N := Φ(M, {u1}′′) = M ∗{u1}′′ ({u1}′′⊗L(Z)) and let v1 ∈ L(Z) be a generating Haar

unitary. By [IPP08, Theorem 1.1] we get that L(Z)′ ∩N = {u1}′′⊗L(Z). This gives that

EL(Z)′∩N (u2) = E{u1}′′⊗L(Z)(u2) = E{u1}′′(u2).

On the other hand, EL(Z)′∩N (u2) is the ∥ · ∥2-limit of the sequence ( 1n
∑n

k=1 v
k
1u2v

∗
1
k)n and thus

belongs to {u2, v1}′′. The last two facts together imply that E{u1}′′(u2) ∈ {u2, v1}′′. Since M is
generated by u2 and E{u1}′′(u2), we get that M ⊂ {u2, v1}′′. Since N is generated by M and v1,

we get that {u2, v1}′′ = N . Thus, Φ(M,u1, u2) = N⊗L(Z) is not a factor, so the conclusion of
Corollary 4.3 does not hold.

Now, the existence of u1, u2 ∈ U(M) such that {u2,E{u1}′′(u2)}′′ =M , can be checked whenever M
is generated by two unitaries u1, ũ2 such that {u1}′′ ⊥ {ũ2}′′ (e.g., ifM = L(Γ), for any 2-generated
group Γ). To see this, write ũ2 = exp(ih), where h ∈ {ũ2}′′ is a self-adjoint element, let n ∈ N
such that τ(exp( ihn )) ̸= 0 and define u2 = u1 exp(

ih
n ). Then E{u1}′′(u2) = τ(exp( ihn ))u1 and thus

{u2,E{u1}′′(u2)}′′ = {u1, exp( ihn )}
′′ = {u1, ũ2}′′ =M .

The proof of Theorem 4.2 relies on the main technical result of [IPP08]. To recall the latter result,
let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a common von Neumann subalgebra
B such that τ1|B = τ2|B. Let M = M1 ∗B M2 be the amalgamated free product with its canonical
trace τ . By [PV10, Section 5.1], for 0 < ρ < 1 we have a unital tracial completely positive map
mρ : M → M such that mρ(b) = b, for every b ∈ B, and mρ(x1x2 · · ·xn) = ρnx1x2 · · ·xn, for every
xi ∈Mij ⊖B, where ij ∈ {1, 2}, for every 1 ≤ j ≤ n, and ij ̸= ij+1, for every 1 ≤ j ≤ n− 1. Then

(4.1) lim
ρ→1

∥mρ(x)− x∥2 = 0, for every x ∈M .

The following is the main technical result of [IPP08], formulated here as in [PV10, Theorem 5.4],
see also [Hou09, Section 5].

Theorem 4.5. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a common von
Neumann subalgebra B such that τ1|B = τ2|B. Let M =M1 ∗B M2 be the amalgamated free product
with its canonical trace τ . Let Q ⊂ pMp be a von Neumann subalgebra. Assume that there are
0 < ρ < 1 and c > 0 such that ∥mρ(u)∥2 ≥ c, for every u ∈ U(Q).

Then Q ≺M M1 or Q ≺M M2.

As τ(mρ2(u)u
∗) = ∥mρ(u)∥22 ≥ c2, for every u ∈ U(Q), [PV10, Theorem 5.4] implies Theorem 4.5.

Lemma 4.6. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a common von
Neumann subalgebra B such that τ1|B = τ2|B. Let M =M1 ∗B M2 be the amalgamated free product
with its canonical trace τ . For i ∈ {1, 2}, let Ai ⊂ Mi be a von Neumann subalgebra with Ai ⊥ B.
Let Q ⊂M1 be a von Neumann subalgebra such that Q ≺M A1 ∨A2 and Q ⊀M1 B.

Then Q ≺M1 A1.

Proof. Denote A = A1 ∨ A2. We first claim that A1 and A2 are freely independent inside M and
thus A = A1 ∗A2. Let aj ∈ Aij ⊖C1 for ij ∈ {1, 2}, for every 1 ≤ j ≤ n, where ij ̸= ij+1, for every
1 ≤ j ≤ n − 1. Since Ai ⊥ B, for every i ∈ {1, 2}, we get that EB(aj) = 0, for every 1 ≤ j ≤ n.
This implies that τ(a1a2 · · · an) = 0, proving the claim.
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Since Q ≺M A, we can find projections q ∈ Q, p ∈ A, a nonzero partial isometry v ∈ pMq and
∗-homomorphism φ : qQq → pAp such that φ(x)v = vx, for every x ∈ qQq. Moreover, we may
assume that the support projection of EA(vv

∗) is equal to p.

Claim 4.7. φ(qQq) ≺A A1 or φ(qQq) ≺A A2.

Proof of Claim 4.7. Since mρ is a unital tracial completely positive map, using (4.1) and [Pop06a,
Corollary, Section 1.1.2] we deduce that

(4.2) sup
x∈(M)1

∥mρ(xv)−mρ(x)v∥2 → 0 and sup
x∈(M)1

∥mρ(vx)− vmρ(x)∥2 → 0, as ρ→ 1.

Now, if x ∈ M1, then the definition of mρ implies that mρ(x) = EB(x) + ρ(x − EB(x)) and thus
∥mρ(x)− x∥2 = (1− ρ)∥x− EB(x)∥2 ≤ (1− ρ)∥x∥2. In particular, since Q ⊂M1, we derive that

(4.3) sup
x∈(qQq)1

∥mρ(x)− x∥2 → 0, as ρ→ 1.

By combining (4.2) and (4.4) and using that φ(x)v = vx, for every x ∈ qQq, it follows that
supx∈(qQq)1 ∥mρ(φ(x))v − vx∥2 → 0, as ρ → 1. Therefore, we can find 0 < ρ < 1 such that

∥mρ(φ(x))v − vx∥2 < ∥v∥2/2, for every x ∈ (qQq)1. This implies that

∥mρ(φ(u))∥2 ≥ ∥mρ(φ(u))v∥2 > ∥v∥2/2, for every u ∈ U(qQq).
In other words, ∥mρ(y)∥ > ∥v∥2, for every y ∈ U(φ(qQq)). Note that the restriction of mρ to A
is equal to the map mρ on A associated with the free product decomposition A = A1 ∗ A2. Since
φ(qQq) ⊂ pAp, we can apply Theorem 4.5 to get the claim. □

By Claim 4.7, we have that φ(qQq) ≺A Ai, for some i ∈ {1, 2}. Since the support projection
of EA(vv

∗) is equal to p, [Vae08, Remark 3.8] implies that Q ≺M Ai. Finally, since qQq ⊂ M1,
Ai ⊂Mi and Q ⊀M1 B, applying [IPP08, Theorem 1.1] gives that i = 1 and Q ≺M1 A1. □

Proof of Theorem 4.2. Let P = Φ(M,A1, A2) = N ∗(A2∨B1) ((A2∨B1)⊗B2), where B1 = B2 = L(Z)
and N = Φ(M,A1) = M ∗A1 (A1⊗B1). Let v1 ∈ B1 and v2 ∈ B2 be generating Haar unitaries.
Since [A1, B1] = [A2, B2] = [B1, B2] = {0}, we get that v1 ∈ A′

1 ∩ P, v2 ∈ A′
2 ∩ P and [v1, v2] = 0.

Next, we prove the moreover assertion. Let Q ⊂ M be a von Neumann subalgebra such that
Q ⊀M Ai, for every 1 ≤ i ≤ 2. Since N = M ∗A1 (A1⊗B1), A2 ⊥ A1, B1 ⊥ A1 and Q ⊀M A1, by
Lemma 4.6 we conclude that

(4.4) Q ⊀N A2 ∨B1.

Since P = N ∗(A2∨B1) ((A2 ∨B1)⊗B2), using (4.4) and applying [IPP08, Theorem 1.1] we get that

Q′ ∩P ⊂ N . Since N =M ∗A1 (A1⊗B1) and Q ⊀M A1, applying [IPP08, Theorem 1.1] again gives
that Q′ ∩N ⊂M . Altogether, we get that Q′ ∩ P ⊂M , which proves the moreover assertion.

Since M ⊀M Ai, for every 1 ≤ i ≤ 2. By applying the moreover assertion to Q = M , we get that
M ′ ∩ P ⊂M , hence Z(P ) = P ′ ∩M ⊂ Z(M). Thus, if M is a II1 factor, then P is a II1 factor.

In the general case, we first note that [IPP08, Theorem 1.1] gives that B′
1 ∩M = A1 and B′

2 ∩M =
(B′

2 ∩ N) ∩ M = (A2 ∨ B1) ∩ M . Thus, Z(P ) = P ′ ∩ M ⊂ A1 ∩ (A2 ∨ B1). We claim that
A1 ⊥ (A2 ∨ B1). Assuming the claim, it follows that A1 ∩ (A2 ∨ B1) = C1 and so P is a II1
factor. To justify the claim and finish the proof, denote M1 =M,M2 = A1⊗B1, C1 = A2, C2 = B1

and B = A1. Thus, N = M1 ∗B M2 and the claim is equivalent to B ⊥ (C1 ∨ C2). Let x ∈ B
and y ∈ C1 ∨ C2 of the form y = y1y2 · · · yn, where yj ∈ Cij ⊖ C1 for some ij ∈ {1, 2}, for every
1 ≤ j ≤ n, such that ij ̸= ij+1, for every 1 ≤ j ≤ n− 1. Since Ci ⊥ B, for every 1 ≤ i ≤ 2, we get
that EB(yj) = 0 and thus yj ∈ Mij ⊖ B, for every 1 ≤ j ≤ n. Moreover, EB(xy1) = xEB(y1) = 0
and thus xy1 ∈ Mi1 ⊖ B. This implies that τ(xy) = τ((xy1)y2 · · · yn) = 0. Since C1 and C2 are
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freely independent, as shown in the proof of Lemma 4.6, the linear span of elements y ∈ C1 ∨C2 of
the above form is dense in (C1∨C2)⊖C1. Thus, we get that B ⊥ (C1∨C2), proving the claim. □

5. Proofs of main results

This section is devoted to the proofs of our main results.

5.1. Proof of Theorem B. We start by constructing the II1 factor from Theorem B by iterating
the construction from Section 4.

For a II1 factor M , we denote by V(M) the set of pairs (u1, u2) ∈ U(M) × U(M) such that
u21 = u32 = 1 and {u1}′′ ⊥ {u2}′′. We endow U(M)× U(M) with the product ∥ · ∥2-topology.

Definition 5.1. Let M1 be a II1 factor. We construct a new II1 factor M which contains M1

and arises as the inductive limit of a sequence (Mn)n∈N of II1 factors satisfying Mn ⊂ Mn+1, for
every n ∈ N. Let σ = (σ1, σ2) : N → N × N be a bijection such that σ1(n) ≤ n, for every n ∈ N.
Assume that M1, . . . ,Mn have been constructed, for some n ∈ N. Let {(un,k1 , un,k2 )}k∈N ⊂ V(Mn)
be a ∥ · ∥2-dense sequence. We define

Mn+1 := Φ(Mn, u
σ(n)
1 , u

σ(n)
2 ).

Note thatMn+1 is well-defined since σ1(n) ≤ n and thus (u
σ(n)
1 , u

σ(n)
2 ) ∈ V(Mn). ThenMn ⊂Mn+1

and Corollary 4.3 implies that Mn+1 is a II1 factor. Thus, M defined as follows is a II1 factor:

M := (∪n∈NMn)
′′.

Convention. For the rest of this section, (Mn)n∈N and M denote the II1 factors introduced in
Definition 5.1.

Definition 5.2. An ultrafilter U on a set I is called countably cofinal if there exists a sequence
{An}n∈N ⊂ U with ∩nAn = ∅.

Proposition 5.3. Let u1, u2 ∈ U(MU ) such that u21 = u32 = 1 and {u1}′′ ⊥ {u2}′′, where U is a
countably cofinal ultrafilter on a set I.

Then there exist Haar unitaries v1, v2 ∈MU such that [u1, v1] = [u2, v2] = [v1, v2] = 0.

Proof. Let p, q1, q2, q3 ∈MU be projections such that u1 = 2p− 1 and u2 = q1 + ζq2 + ζ2q3, where
ζ = exp(2πi3 ). We may clearly assume that u1 ̸= ±1, so that p ̸= 0, 1.

Since M = (∪n∈NMn)
′′ and U is cofinal, [BCI17, Lemma 2.2] gives that p, q1, q2, q3 ∈

∏
n∈U Mkn ,

for some (kn)n∈I ⊂ N. Moreover, the proof of [BCI17, Lemma 2.2] provides a function f : I → N
such that lim

n→U
f(n) = +∞.

Since {p}′′ ⊥ {q1, q2, q3}′′, by Lemma 3.1, we can represent p = (pn) and qi = (qi,n), where
pn, qn,i ∈ Mkn are projections such that q1,n + q2,n + q3,n = 1 and {pn}′′ ⊥ {q1,n, q2,n, q3,n}′′, for
every n ∈ I. Let u1,n = 2pn − 1 and u2,n = q1,n + ζq2,n + ζ2q3,n. Then u1 = (u1,n) and u2 = (u2,n).
Since {u1,n}′′ = {pn}′′ ⊥ {q1,n, q2,n, q3,n}′′ = {u2,n}′′, we get (u1,n, u2,n) ∈ V(Mkn), for every n ∈ I.

Since {(ukn,j1 , ukn,j2 )}j∈N is dense in V(Mkn), we can find jn ∈ N such that

(5.1) ∥u1,n − ukn,jn1 ∥2 + ∥u2,n − ukn,jn2 ∥2 ≤
1

f(n)
, for every n ∈ I.
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For n ∈ I, let ln ∈ N such that σ(ln) = (kn, jn). Then Mσ(ln)+1 = Φ(Mσ(ln), u
kn,jn
1 , ukn,jn2 ). Thus,

by Corollary 4.3, we can find Haar unitaries v1,n, v2,n ∈ U(Mσ(ln)+1) ⊂ U(M) such that

(5.2) [ukn,ln1 , v1,n] = [ukn,ln2 , v2,n] = [v1,n, v2,n] = 0, for every n ∈ I.

Finally, let v1 = (v1,n), v2 = (v2,n) ∈ U(MU ). Then v1, v2 are Haar unitaries and as lim
n→U

f(n) = +∞,

(5.1) and (5.2) together imply that [u1, v1] = [u2, v2] = [v1, v2] = 0. □

In order to prove Theorem B, we also need to find instances which guarantee that M is full. This
happens if M1 has property (T):

Proposition 5.4. Assume that M1 has property (T). Then M does not have property Gamma.

Proof. Let n ∈ N. Recall that Mn+1 = φ(Mn, u
σ(n)
1 , u

σ(n)
2 ) and M1 ⊂Mn. Since M1 is a II1 factor,

we have that M1 ⊀Mn {uσ(n)1 }′′ and M1 ⊀Mn {uσ(n)2 }′′. By applying Corollary 4.3 we derive that
M ′

1 ∩Mn+1 = M ′
1 ∩Mn. Thus, we get that M ′

1 ∩Mn = Z(M1) = C1. Since this holds for every
n ∈ N, we deduce that M ′

1 ∩M = C1. Finally, since M1 has property (T), by Proposition 2.1, we
have that M ′

1 ∩MU = (M ′
1 ∩M)U = C1, where U is a free ultrafilter on N. Hence, M ′ ∩MU = C1

and so M does not have property Gamma. □

Proof of Theorem B. Let M1 be a II1 factor with property (T), e.g., take M1 = L(SL3(Z)). Let M
be constructed as in Definition 5.1. The conclusion follows from Propositions 5.3 and 5.4. □

5.2. Proof of Theorem C and its corollaries. In this subsection, we prove that the II1 factor
M from Theorem B also satisfies the conclusion of Theorems C and A and Corollary D. To this
end, we first show the following:

Corollary 5.5. Let p, q1, q2, q3 ∈ MU be projections such that q1 + q2 + q3 = 1, where U is a
countably cofinal ultrafilter on a set I. Assume that {p}′′ ⊥ {q1, q2, q3}′′.
Then h({p, q1, q2, q3}′′,MU ) ≤ 0.

Proof. Define u1, u2 ∈ U(MU ) by u1 = 2p− 1 and u2 = q1 + ζq2 + ζ2q3, where ζ = exp(2πi3 ). Then

u21 = u32 = 1 and {u1, u2}′′ = {p, q1, q2, q3}′′. Thus, by combining Lemma 2.9 and Proposition 5.3
we get that h({p, q1, q2, q3}′′ :M) = h({u1, u2}′′ :M) ≤ 0. □

To prove that h(MU ) ≤ 0, we will need an additional lemma:

Lemma 5.6. Let (A, τ) be a diffuse tracial von Neumann algebra and x ∈ A such that x = x∗ and
τ(x) = 0. Let F be the set of projections p ∈ A such that τ(xp) = 0. Then F ′′ = A.

Proof. We first prove the conclusion under the assumption that A is abelian. Let x = y − z be the
decomposition of x into positive and negative parts. Let q and r be the support projections of y
and z, respectively. Since 0 = τ(x) = τ(y)− τ(z), we get that τ(y) = τ(z).

Let e ∈ Aq be a projection. Since A is diffuse and τ(ye) ≤ τ(y) = τ(z) = τ(zr), we can find a
projection f ∈ Ar such that τ(zf) = τ(ye). Then we have that e − f ∈ F . Since ef = 0, we get
that e+f = (e−f)2 ∈ F ′′ and thus e ∈ F ′′, for every projection e ∈ Aq. Thus, Aq ⊂ F ′′. Similarly,
we conclude that Ar ⊂ F ′′. Since x(1− q − r) = 0, we also have that A(1− q − r) ⊂ F ′′. Since A
is abelian, it follows that A ⊂ F ′′ and thus F ′′ = A.

For general A, let B ⊂ A be a diffuse abelian von Neumann subalgebra. Note that τ(EB(x)) = 0
and that if p ∈ B is a projection with τ(EB(x)p) = 0, then τ(xp) = τ(EB(x)p) = 0 and so p ∈ F .
By applying the above proof to B and EB(x) ∈ B, we conclude that B ⊂ F ′′. Since this holds for
every diffuse abelian von Neumann subalgebra B ⊂ A, we conclude that F ′′ = A. □
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Theorem 5.7. h(MU ) ≤ 0, for any ultrafilter U on any set I.

Proof. If U is not countably cofinal, then MU = M by [BCI17, Lemma 2.3]. Thus, if V is a free
ultrafilter on N, then Facts 2.3 and 2.4 give that h(MU ) = h(M) = h(M : MV) ≤ h(MV). This
implies that in order to prove the conclusion, we may assume that U is countably cofinal.

Assume that U is a countable cofinal ultrafilter and denote P = MU . Since P is a II1 factor, we
can find a unital, trace-preserving embedding of S := L(Z/2Z ∗ Z/2Z) into P . Let p, q ∈ S be two
projections with τ(p) = τ(q) = 1

2 which generate the two canonical copies of L(Z/2Z) inside S.

Then ∥q(2p− 1)q∥2 =
√
τ(q(2p− 1)q(2p− 1)) = 1

2 and similarly ∥(1− q)(2p− 1)(1− q)∥2 = 1
2 . Let

x = (1− q)(2p− 1)(1− q) ∈ (1− q)P (1− q). Then x = x∗, τ(x) = 0 and x ̸= 0. We define F to be
the set of projections r ∈ (1− q)P (1− q) such that τ(xr) = 0.

For r ∈ F we define Sr := {p, q, r, 1− q− r}′′. Then τ((2p− 1)q) = 0, τ((2p− 1)r) = τ(xr) = 0 and
τ((2p− 1)(1− q− r)) = τ(2p− 1)− τ((2p− 1)q)− τ((2p− 1)r) = 0. Thus, {p}′′ ⊥ {q, r, 1− q− r}′′.
Altogether, we can apply Corollary 5.5 to deduce that

(5.3) h(Sr : P ) ≤ 0, for every r ∈ F .

Since S ⊂ Sr, for all r ∈ F , and S is diffuse, combining Facts (2.5) and (2.6) with (5.3) we get that

(5.4) h(
∨
r∈F

Sr : P ) ≤ 0.

On the other hand, by Lemma 5.6 we have that F ′′ = (1− q)P (1− q). This implies that

(5.5)
∨
r∈F

Sr = S
∨

(1− q)P (1− q).

Combining (5.4) and (5.5) we get h(S
∨
(1 − q)P (1 − q) : P ) ≤ 0. Similarly, h(S

∨
qPq : P ) ≤ 0.

Using again that S is diffuse, Fact 2.5 implies that h(S
∨
qPq

∨
(1 − q)P (1 − q) : P ) ≤ 0. Since

the projections q and 1− q are equivalent in S, we get that S
∨
qPq

∨
(1− q)P (1− q) = P , which

implies the desired conclusion that h(P ) = h(P : P ) ≤ 0. □

Although this is not needed to derive our main results, we mention an easy consequence of the
previous proof which seems of independent interest:

Corollary 5.8. Let M be a II1 factor such that h(M) > 0. Let Γ = Z/2Z ∗ Z/3Z. Then there
exists a homomorphism π : Γ → U(M) such that h(π(Γ)′′ :M) > 0.

Proof. AsM is a II1 factor, we can find a unital, trace-preserving embedding of S := L(Z/2Z∗Z/2Z)
into M . Let p, q ∈ S be two projections with τ(p) = τ(q) = 1

2 which generate the two canonical
copies of L(Z/2Z) inside S. Since h(M) > 0 and S

∨
qMq

∨
(1 − q)M(1 − q) = M , Fact 2.5 gives

that h(S
∨
qMq) > 0 or h(S

∨
(1 − q)M(1 − q)) > 0. Assume, without loss of generality, that

h(S
∨
qMq) > 0. Given a projection r ∈ qMq, let Sr = {p, r, q − r, 1 − q}′′. Since S

∨
qMq is

generated by {Sr | r ∈ qMq projection}, Fact 2.5 implies that h(Sr : M) > 0, for some projection
r ∈ qMq. Since clearly Sr = π(Γ)′′, for a homomorphism π : Γ → U(M), the conclusion follows. □

Proof of Theorem C. Let M1 be a II1 factor with property (T), e.g., take M = L(SL3(Z)). Let M
be constructed as in Definition 5.1. By Theorem 5.7 and Proposition 5.4 we get that h(MU ) ≤ 0,
for every ultrafilter U , and M does not have property Gamma. □
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Proof of Theorem A. Let M be as in Theorem C. Suppose that for some ultrafilters U ,V on sets
I, J , there exists an embedding of MU into NV that contains the diagonal inclusion of N . By
combining Theorem C and Facts 2.4 and 2.3 we get the following chain of inequalities:

0 < h(N) = h(N : NV) ≤ h(N :MU ) ≤ h(MU :MU ) = h(MU ) ≤ 0,

which is a contradiction. □

Proof of Corollary D. LetM be as in Theorem C. For a sequence (kn) ⊂ N and free ultrafilter U on
N with lim

n→U
kn = +∞, let M =

∏
U Mkn(C). Then Fact 2.8 implies that h(M) > 0. By Theorem

A, we deduce that M is not elementarily equivalent to M. □

The following remark was communicated to us separately by I. Goldbring and D. Jekel.

Remark 5.9. We give an explicit sentence distinguishing up to elementary equivalence any II1
factor M satisfying the properties of Theorem B and any tracial von Neumann algebra (N, τ) with
h(N) > 0, in particular L(F2). This follows readily from Lemma 3.2. For unitaries u1, u2, v1, v2 ∈
M , we define the formulae

ϕ(u1, u2) = ∥u21 − 1∥2 + ∥u32 − 1∥2 + |τ(u1u2)− τ(u1)τ(u2)|+ |τ(u1u22)− τ(u1)τ(u
2
2)|

ψ(u1, u2, v1, v2) = ∥u1v1− v1u1∥2+ ∥u2v2− v2u2∥2+ ∥v1v2− v2v1∥2+
∑

k∈Z\{0}

2−k(|τ(vk1 )|+ |τ(vk2 )|).

Note that ϕ(u1, u2) = 0 means that u21 = u32 = 1 and {u1}′′ ⊥ {u2}′′. We also note that D. Jekel
observed that Lemma 3.2 implies that the set {u1, u2 ∈ U(M) | ϕ(u1, u2) = 0} is a definable set
over the theory of II1 factors.

Theorem B shows that M satisfies supu1,u2∈U(M),ϕ(u1,u2)=0

(
infv1,v2∈U(M) ψ(u1, u2, v1, v2)

)
= 0. In

combination with Lemma 3.2, we derive the existence of a function δ : [0,∞) → [0,∞) such that
δ(0) = 0, δ((0,∞)) ⊂ (0,∞) and for all ε > 0, the following implication holds for u1, u2 ∈ U(M):
if ϕ(u1, u2) < δ(ε), then ϕ′(u1, u2) := infv1,v2∈U(M) ψ(u1, u2, v1, v2) < ε. Moreover, δ is independent
of the II1 factor M , and can be taken to be continuous and strictly increasing. Then we have
that δ(ϕ′(u1, u2)) ≤ ϕ(u1, u2), for every u1, u2 ∈ U(M), and we can thus write the distinguishing
sentence as follows:

sup
u1,u2∈U(M)

max(0, δ(ϕ′(u1, u2))− ϕ(u1, u2)).

In fact, it is easy to see that a II1 factor M satisfies this sentence if and only if it satisfies the
conclusion of Theorem B.
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Funkcional. Anal. i Priložen. 1 (1967), 71–74. MR 0209390
[McD69] Dusa McDuff, Uncountably many II1 factors, Ann. of Math. (2) 90 (1969), 372–377. MR 259625



AN EXOTIC II1 FACTOR WITHOUT PROPERTY GAMMA 17

[McD70] , Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461.
MR 281018

[MvN43] F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808.
MR 9096

[Pet] Jesse Peterson, Open problems in operator algebras, available at
https://math.vanderbilt.edu/peters10/problems.html.

[Pop84] Sorin Popa, On derivations into the compacts and some properties of type II1 factors, Spectral theory
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