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ABSTRACT. We introduce a new iterative amalgamated free product construction of II; factors,
and use it to construct a separable II; factor which does not have property Gamma and is not
elementarily equivalent to the free group factor L(F,), for any 2 < n < co. This provides the first
explicit example of two non-elementarily equivalent 11, factors without property Gamma. Moreover,
our construction also provides the first explicit example of a II; factor without property Gamma
that is also not elementarily equivalent to any ultraproduct of matrix algebras. Our proofs use a
blend of techniques from Voiculescu’s free entropy theory and Popa’s deformation/rigidity theory.

1. INTRODUCTION

The study of the continuous model theory of 1I; factors was initiated by Farah, Hart and Sherman
in [FHS14], who adapted the notion of elementary equivalence (requiring that the objects considered
satisfy the same first-order sentences) to the context of II; factors. By the continuous version of the
Keisler-Shelah theorem, two I factors M, N are elementarily equivalent if and only if they admit
isomorphic ultrapowers, MY = NV for some ultrafilters I,V on arbitrary sets [FHS14, HI02].
Ultrapowers of II; factors have been a major tool in operator algebras since the works of McDuff
[McD70] and Connes [Con76] in the 1970s. In spite of this, proving that two given II; factors have
no isomorphic ultrapowers, and so are not elementarily equivalent, remains a challenging task.

As shown in [FHS14] (see also [FGLO06]), for separable II; factors, Murray and von Neumann’s
property Gamma [MvN43] and McDuff’s property [McD70] are axiomatizable and thus are remem-
bered by ultrapowers. This implies that the hyperfinite II; factor R, the free group factor L(Fs)
and any separable non-McDuff II; factor with property Gamma (see [DL69]) are not elementarily
equivalent. It was then realized by Goldbring and Hart that a II; factor introduced in [ZM69]
provides a fourth elementary equivalence class (see [GH17]). However, besides these examples, it
was unclear how to find any additional elementary equivalence classes of I1; factors. This problem
was solved by Boutonnet and two of the authors in [BCI17] who proved that the continuum of
non-isomorphic separable I1; factors (Ma)qeqo,13n constructed by McDuff in [McD69] are pairwise
non elementarily equivalent. More precisely, the main result of [BCI17] shows that M, and Mz do
not admit isomorphic ultrapowers, whenever a # 3. Subsequently, explicit sentences witnessing
that M, and Mg are not elementarily equivalent were given in [GH17, GHT18].

The proofs of the main result of [BCI17] and in fact of all of the existing results providing non-
elementarily equivalent II; factors are based on analyzing central sequences. As a result, it remained
a fundamental open question to find any non-elementarily equivalent II; factors that do not have
property Gamma and thus admit no non-trivial central sequences.

We settle this question in the present work. A main novelty of our approach, that allows us to
bypass the above difficulty, is the use of 1-bounded entropy from Voiculescu’s free probability theory.
For a finite tuple X of self-adjoint operators in a tracial von Neumann algebra (N, 7), one has the
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1-bounded entropy h(X), implicit in Jung’s work [Jun07] and defined explicitly by Hayes [Hay18],
see Subsection 2.2. This quantity, unlike Voiculescu’ free entropy dimension do(X) [Voi94], is known
to be an invariant of the von Neumann algebra generated by X as shown in [Hay18, Theorem A.9].
Hence, we have a well-defined notion of 1-bounded entropy A(N) for a finitely generated tracial von
Neumann algebra (N, 7). Moreover, h(NN) extends to arbitrary, possibly non-separable, tracial von
Neumann algebras (N, 7) by [Hayl18, Definition A.2].

The main result of this paper is the following:

Theorem A. There exists a separable Iy factor M which does not have property Gamma and is
not elementarily equivalent to any tracial von Neumann algebra (N,T) satisfying h(N) > 0. For
instance, M is not elementarily equivalent to L(Fy).

Moreover, for any ultrafilters U,V on sets I, J, respectively, there does not exist an embedding of
MY into NV that contains the diagonal inclusion of N.

Examples of tracial von Neumann algebras (N, 7) with A(N) > 0 include the interpolated free group
factors L(TFy), for all 1 < t < oo, and, more generally, any free product Ny * Na of two Connes-
embeddable diffuse tracial von Neumann algebras (N1, 71) and (N2, 72). (Moreover, h(N) = oo for
such N; for this and additional examples, see Fact 2.7). By Theorem A, M is not elementarily
equivalent to any such N, including L(F2). This gives the first explicit example of two non-
elementarily equivalent non-Gamma II; factors, thus settling a problem posed at a 2018 workshop
at the American Institute of Mathematics [AIM, Problem 1.3], see also [IP] and [Pet, Problem U.2].

It has been speculated for some time that free probability theory is likely to shed light on the model-
theoretic study of II; factors, see for instance Farah’s ICM survey [Farl4, Section 5] and [FGSW].
Offering positive evidence in this direction, Theorem A represents the first application of free
probability to the model theory of 11y factors.

Now we describe the key facets of our construction that allows us to prove Theorem A. The II; factor
from Theorem A is built via a new iterative construction involving amalgamated free products (see
Section 4). By using techniques from Popa’s deformation/rigidity theory, notably [IPP08], and the
notion of property (T), we are able to guarantee that M is indeed non-Gamma. The main property
of our construction is presented in our second main theorem below.

Theorem B. There exists a separable 1l factor M without property Gamma which satisfies the
following. For every countably cofinal ultrafilter U on a set I and uy,us € U(MY) with ul =uj =1
and {u1}" L {us}", there exist Haar unitaries vi,va € MY such that [u1,v1] = [uz2, va] = [v1,v2] = 0.

Two von Neumann subalgebras P, @ of a tracial von Neumann algebra (M, 7) are called orthogonal
(written P L Q) if 7(xy) = 7(x)7(y), for every = € P,y € ). For the notion of a countably cofinal
ultrafilter, see Definition 5.2. Here we only note that every free ultrafilter on N is countably cofinal.

The construction in Theorem B is designed to imply the following estimate for the 1-bounded
entropy, which we present as our next main theorem.

Theorem C. Let M be any II; factor satisfying the properties of Theorem B. Then h(MY) <0,
for every ultrafilter U on a set I.

The above estimate allows us to prove the desired non-isomorphism of ultrapowers. Indeed, let M
be as in Theorem B. If (N, 7) is a tracial von Neumann algebra which is elementarily equivalent
to M, then MY =2 NV, for some ultrafilters U, V. Properties of the 1-bounded entropy give that
h(N) < h(NVY) (see Facts 2.3 and 2.4). The conclusion of Theorem A then follows immediately.
We refer the reader to Remark 5.9, pointed out to us by I. Goldbring and D. Jekel, for an explicit
sequence which differentiates the elementary classes of M and N.
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Note that if M is a II; factor with property Gamma, then h(MY) < 0, for every ultrafilter & on a
set I. Prior to the writing of this paper no examples of non-Gamma II; factors which satisfy this
inequality were known. Hence, Theorem C is also of independent interest.

A TI; factor is called pseudocompact if it is elementarily equivalent to a matrix ultraproduct (see
[FHS14, Section 5]). Pseudocompact factors cannot have property Gamma by [FH11, Section 4]
and [FHS14, Theorem 5.1]. By combining Theorem C with recent work of Jekel [Jek22] on matrix
ultraproducts we obtain the first example of a non-Gamma II; factor which is not pseudocompact.

Corollary D. There exists a separable Iy factor M without property Gamma which is not ele-
mentarily equivalent to [[,, My, (C), for any sequence (k,) C N and any free ultrafilter U on N.

Remark 1.1. The Connes Embedding Problem (CEP) asks if every separable II; factor embeds
into RY, where U is a free ultrafilter on N [Con76]. A negative answer to the CEP has been
announced in the preprint [JNVT]. Assuming M is a non-Connes-embeddable separable II; factor,
then M = My +L(Z) is a non-Gamma separable I1; factor which is still not embeddable. Any such
M is neither elementarily equivalent to any embeddable non-Gamma II; factor (e.g., L(IF2)) nor
pseudocompact. Moreover, assuming a negative answer to the CEP, [GH, Corollary 5.5] implies the
existence of infinitely many elementary equivalence classes of non-Gamma II; factors. In contrast,
our construction of a non-Gamma II; factor which is not elementarily equivalent to L(F2) and not
pseudocompact is explicit and does not depend on the answer to the CEP, nor does it use techniques
from [JNV*]. We note that it is open whether the II; factor we construct is Connes-embeddable. As
such, it remains an open question to find examples of Connes-embeddable non-Gamma II; factors
which are not elementarily equivalent.

Comments on the proofs of Theorems B and C. The proof of Theorem B relies on a new
construction of II; factors which is of independent interest and is presented in Section 4. This
associates, via a 2-step amalgamated free product procedure, to every II; factor M; and unitaries
ui, ug € My, a tracial von Neumann algebra Ms generated by M7 and Haar unitaries vy, vy € Mo
satisfying [ui,v1] = [ug,v2] = [v1,v2] = 0. When {u;}” L {u2}’, we use deformation/rigidity
results from [IPP08] to deduce that Ms is a II; factor. Moreover, under this assumption, we show
that any irreducible subfactor ) C M; is still irreducible in Ms, see Theorem 4.2.

In Section 5, assuming that M; has property (T) and iterating the above construction, we get an
increasing sequence of II; factors (M,,),>1 whose inductive limit M := (Up>1M,,)" is non-Gamma
and has the following property. For a countable dense set of unitaries uj,us € M with u? = ug =1
and {u1}” L {ug}” there are Haar unitaries v1,vy € M such that [uj,v1] = [ug,v2] = [v1,v2] = 0.
Using a result which allows us to lift unitaries ui,up € MY with u? = u3 = 1 and {u;}” L {uz}”
(see Lemma 3.1) we conclude that MY satisfies the conclusion of Theorem B. The restriction to
unitaries u; and ug of orders 2 and 3 is due to the fact that Lemma 3.1 only applies in this case.

The statement of Theorem B is partially inspired by [Hayl8, Corollary 4.8]. This shows that if
a diffuse tracial von Neumann algebra (M, 7) has property (C’) introduced in [GP17, Definition
3.6], then A(M) < 0. In particular, [Hayl8, Corollary 4.8] implies that h(M) < 0, for any diffuse
von Neumann algebra (M, 7) that is generated by wy,--- ,ur € U(M) so that there exist pairwise
commuting Haar unitaries vy, --- v, € U(MY) with [u;,v;] = 0, for any 1 < i < k. Property (C’)
is an asymptotic commutativity property which weakens Popa’s property (C) [Pop84]. The latter,
itself a weakening of property Gamma, was shown to fail for L(F,), 2 < n < oo, in [Dyk97].

To outline the proof of Theorem C, let M be as in Theorem B and U be a countably cofinal
ultrafilter on a set I. Using an observation made in the proof of [Hayl18, Corollary 4.8] (see Fact
2.9) we derive that h({ug,uz}” : M%) < 0, for any ui,us € U(MY) with u? = w3 = 1 and
{u1}” L {us2}”. Here, h(N : M) denotes the 1-bounded entropy of N in the presence of M, see



4 IONUT CHIFAN, ADRIAN IOANA, AND SRIVATSAV KUNNAWALKAM ELAYAVALLI

Subsection 2.2. On the other hand, MY can be generated by a family of subalgebras of the form
{u1,uz}’, where ui,uy € U(MY) satisfy u? = u3 = 1 and {u1}” L {uz}”, all containing a fixed
diffuse subalgebra. Using the behavior of the 1-bounded entropy with respect to joins (see Facts
2.6 and 2.5), we conclude that h(MY) < 0, for any countably cofinal ultrafilter 2. Since h(M) < 0
and MY =2 M for any ultrafilter I/ that is not countably cofinal, Theorem C follows.

Acknowledgements: We thank Isaac Goldbring, David Jekel, Jesse Peterson, Sorin Popa and
Stefaan Vaes for helpful comments.

2. PRELIMINARIES

2.1. Tracial von Neumann algebras. Let (M, 7) be a tracial von Neumann algebra, i.e., a pair
consisting of a von Neumann algebra M and a faithful normal tracial state 7 : M — C. We denote
by U(M) the group of unitaries of M and by Mg, the set of self-adjoint elements of M. Given a
self-adjoint set S C M, von Neumann’s bicommutant theorem implies that S” is the smallest unital
von Neumann subalgebra of M containing S. For von Neuman subalgebras (M, ) of M, we will use
the notation VoM, for (UsMg)".

For an ultrafilter I/ on a set I, we denote by MY the tracial ultraproduct: the quotient £>°(I, M)/J
by the closed ideal J C ¢*°(I, M) consisting of =z = (z,) with lin%{ |zn|l2 = 0. We have a natural
n—

diagonal inclusion M C MY given by = + (z,,), where x,, = z, for all n € I. A separable II; factor
M has property Gamma if M’ N MY # C1, for a free ultrafilter & on N. For more details on tracial
ultraproducts, we refer the reader to [BO08, Appendix E| and [ADP, Section 5.

Two tracial von Neumann algebras (Mj, 1) and (Ms, 12) are said to be elementarily equivalent
if there exist ultrafilters ¢,V on arbitrary sets I,.J such that MY = MJY. This is the semantic
definition of elementary equivalence. The model theoretic (sometimes called syntactic) definition
for elementary equivalence will not be stated in this paper, as it is equivalent to the semantic
definition by deep results of Keisler-Shelah adapted to the continuous setting, see [FHS14, Section
2] and [HI02, Theorem 10.7].

A key tool in our work is the amalgamated free product construction for tracial von Neumann
algebras. Let (M, 1) and (M2, m2) be tracial von Neumann algebras with a common von Neumann
subalgebra B such that 71 p = 72)5. We denote by M = M; xp M> the amalgamated free product
with its canonical trace 7. See [Pop93] and [VDN92| for more details on the construction.

To prove that the II; factors we construct do not have property Gamma, we will use property (T)
and Popa’s intertwining techniques.

A TI, factor has property (T) [CJ85] (see also [Pop06al) if for every € > 0, there are F' C M finite and
d > 0 such that for any Hilbert M-M-bimodule H and unit vector { € H with max,ep ||[z§—Ez|| < 4,
there exists n € H satisfying ||n — || < e and xn = nz, for every x € M. Let I be an icc countable
group with property (T); for instance, take I' = SL3(Z) by [Kaz67]. Then M = L(T") is a II; factor
with property (T), see [CJ85, Theorem 2| and [Pop86, Theorem 4.1.7].

In this paper, we will use the well-known fact that II; factors with property (T) have weak spectral
gap (in the sense of [Popl2]) in any inclusion:

Proposition 2.1. Let M be a I, factor and My C M be a subfactor with property (T). Then
M N MY = (M] N MM, for any ultrafilter U on a set I.

Conversely, if the equality M{ N MY = (M{ N M) holds for every II; factor M containing M; and
every ultrafilter &/ on N, then M; must have property (T), as shown recently in [Tan].
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Theorem 2.2 (see [Pop06b]). Let (M,T) be a separable tracial von Neumann algebra and let
P CpMp,QQ C M be von Neumann subalgebras. Then the following conditions are equivalent:

(1) There exist projections po € P,qo € Q, a *-homomorphism 6 : poPpy — qoQqo and a
non-zero partial isometry v € qoMpgy such that 0(x)v = vz, for all x € poPpo.
(2) There is no sequence u, € U(P) satisfying |Eg(x*uny)|2 — 0, for all x,y € pM.

If one of these equivalent conditions holds, we write P <j; @), and say that a corner of P embeds
into Q inside M.

2.2. 1-bounded entropy. We recall some background for 1-bounded entropy theory (see [Hay18§],
[Jun07]) and direct the reader to [HINS21, Section 2.3] and [HJKE21, Sections 2.2 and 2.3] for a
more detailed exposition. For a tracial von Neumann algebra (M, 7) and X € M2, the law of X is
the linear functional £x : C(t1,...,tq) — C given by {x(f) = 7(f(X)). Let ¥4 r be the set of all
linear maps ¢ : C(t1,...,tq) — C satisfying that there exists a finite von Neumann algebra (M, 1)

and X € M2 such that ¢ = £x and ||z|| < R for all z € X. We equip X4 g with the weak* topology.

We describe the orbital version of 1-bounded entropy (see Definition A.2 in [Hay18]). Let (M, 1) be
a diffuse tracial von Neumann algebra, and X,Y C Mg, finite such that ||z|| < R for allz € X UY.
Following [Voi94], for each weak* neighborhood O of £xy in ¥4z and n € N, we define

(X . Y;0) = {4 € M,(C)X : 3B € M,,(C)Y, such that La,p € O,||A.|, | Byl < R,Vz € X,y € Y}

Given d,n € N, ¢ > 0 and ,Z C M, (C)4, then Z is said to (e, || - ||2)-cover Q if for every A € Q,
there is B € = with ||A — Bl|2 < e. Define the covering number K.(Q, || - |l2) of @ C M, (C)¢ as

the minimal cardinality of a set that (e, || - [|2)-covers 2. We say that Z orbitally (e, || - ||2)-covers
Q if for every A € Q, there is a B € E and an n X n unitary matrix V so that |A — VBV*||s < e.
Define the orbital covering number Ko™ (€, || -||2) as the minimal cardinality of a set that orbitally
(e, - |]2)-covers €.

Let X, Yy C M, not necessarily finite, satisfying X{ C Yy and ||z|| < R for all x € Xy UYp. Let
X, Y be finite subsets of Xy, Yy respectively. For a weak*-neighborhood O of ¢x_y, we define

he(X 1 Y;0) == limsup iz log K& (T (X - v, 0)),
n

n—o0
he(X :Y):= inf h, ,
( ) Oalg(uy (O)
he(Xo:Yy) := sup inf R (X:Y)

XCﬁniteXU YCﬁniteYO
h(Xo : Yo) := sup he(Xo : Yp)
e>0
Note that h(X; : Y1) = h(Xy : Yo) if X = X/ and Y{" = Yy by [Hay18, Theorem A.9]. Hence,
given a von Neumann subalgebra N C M, we unambiguously write h(N : M) (and call it the

1-bounded entropy of N in the presence of M) to be h(X :Y) for some generating sets X of N and
Y of M. We write h(M) = h(M : M) and call it the 1-bounded entropy of M.

For the purposes of this article we recall the following facts about h:

Fact 2.3. (see [HJKEQL 233]) h(Nl : Ml) < h<N2 : Mg) if N C Ny C My C My and N7 is
diffuse.

Fact 2.4. (see [Hay18, Proposition 4.5]) h(N : M) = h(N : M") if N C M is diffuse, and i is an
ultrafilter on a set I. (Note that [Hayl8, Proposition 4.5] asserts this fact for free ultrafilters U.
The fact is trivially true also for non-free (i.e., principal) ultrafilters.)
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Fact 2.5. (see [Hayl8, Lemma A.12]) A(N1V No : M) < h(Ny : M) + h(Ny : M) if Ny,No C M
and Ny N Ny is diffuse. In particular, h(Ny V N3) < h(N71) + h(N3).

Fact 2.6. (see [Hayl8, Lemma A.10]) Assume that (N,)o is an increasing chain of diffuse von
Neumann subalgebras of M. Then h(\/, No : M) = sup, h(Nqy : M).

By [Jun07, Corollary 3.5] and [Hayl8, Proosition A.16], h(N) = oo whenever (N, 7) is a tracial
von Neumann algebra admitting a finite generating set X C Ng, with do(X) > 1, where g is
Voiculescu’s modified free entropy dimension (see Section 6 of [Voi96)).

Fact 2.7. The following tracial von Neumann algebras (N, 7) satisfy h(N) > 0. The first five
examples all arise from identifying generating sets X satisfying dp(X) > 1, and thus hA(N) = oco.

(1) (see [Jun07, Lemma 3.7])) Ny x No where (Ny,71) and (N2, 72) are Connes-embeddable
diffuse tracial von Neumann algebras.

(2) The free perturbation algebras of Voiculescu (see Theorem 4.1 in [Bro05]).

(3) Many examples of amalgamated free products Ni *p No where B is amenable (see Section
4 of [BDJO08] for precise examples).

(4) (see [CASH'22]) Graph products of finite dimensional tracial von Neumann algebras over
trees where the cardinality of the vertex set is greater than or equal to 4.

(5) (see [Shl09], Theorem 3) Von Neumann algebras of Connes-embeddable nonamenable groups
I' admitting non inner cocycles ¢ : I' — CI".

(6) (see [Hay20], [BC|, [HJKE22]) Nonamenable von Neumann subalgebras of L(FF;) for ¢ > 0.

The following recent result of Jekel provides another family of examples:

Fact 2.8. (see [Jek22, Theorem 1.1]) Suppose that h(N) > 0. Let {n;};2, be an increasing
sequence of natural numbers and U be a free ultrafilter on N. Let M = [[,; M, (C). Then there
exists an embedding N < M such that h(N : M) > 0. In particular h(M) > 0.

The following fact follows easily from Fact 2.5. This observation appears in the proof of Corollary
4.8 in [Hay18]. For completeness, we include a proof here.

Fact 2.9. Assume that u;,us € U(M) such that there are Haar unitaries v1,vy € M satisfying
[v1,u1] = [v2,us] = [v1,v2] = 0. Then h({ui,us}” : M) <0.

Proof. Since {uy,v1}’,{v1,v2}", {va,us}’ are abelian, we get
h({ur,v1}") = h({v1, v2}") = h({vz, u}") = 0.
Since {v1}” and {ve}” are diffuse, Fact 2.5 implies that

h({u1,ug,v1,v2}") = h({ur, v} \[{v1, v2}" \[{v2, u2}") < 0.

Hence, using Fact 2.3 we see that
h({ur,ug}" : M) < h({ur,u2}” : {ur, ug, v1,v2}") < h({u1,uz,v1,v2}") <0,
which proves the fact. O
3. A LIFTING LEMMA

The goal of this section is to establish the following lifting lemma:
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Lemma 3.1. Let I be a set, U an ultrafilter on I and (My)ner be a family of II) factors. Consider
projections p,q1, 42,93 € [[yy My such that ¢1 + g2 + g3 =1 and {p}" L {q1,q2,q3}".

Then we can represent p = (pn) and q¢; = (Gin), where pp,qin € My are projections such that
din + q2.n + 43n = 1 and {pn}” 1 {QI,na q2.n, q3,n}”7 fO’f’ every n el.

Lemma 3.1 is an immediate consequence of the following perturbation lemma.

Lemma 3.2. For every ¢ > 0, there exists 6 = 6(¢) > 0 such that the following holds.

Let M be a II; factor and e, f1, fo, f3 € M be projections such that fi1 + fo + f3 = 1 and we have
|T(efi) —T(e)T(fi)| <9, for every 1 < i < 3. Then there exist projections p, q1,q2,q3 € M such that
a+a@t+a=1p—cli<e llg— filh <e and 7(pg;) = 7(p)7(q:), for every 1 <i < 3.

Note that if p, ¢ are projections in a ITy factor M, then |[p—qll2 = [[p(p—q) + (p—q)qll2 < 2|lp—ql|1-
This implies that the statement of Lemma 3.2 still holds if we replace || - || by || - [[2. Using this
observation, it is standard to derive Lemma 3.1 from Lemma 3.2.

The proof of Lemma 3.2 is based on the next two lemmas.

Lemma 3.3. Let (M, 1) be a diffuse tracial von Neumann algebra, 6 > e > 0 and x = * € M with
|7(z)| < e and ||z||y > 0. Then there is a projection p € M such that T(xzp) = 0 and 7(p) > g%ri.

Proof. Let x = y — z be the decomposition of x into its positive and negative parts and ¢ € M be
the support projection of y. Then y € ¢Mgq and z € (1 —q)M (1 — q). If 7(x) = 0, there is nothing
to prove. We may assume that 7(z) > 0, since the case 7(z) < 0 is analogous.

Since 7(y) — 7(z) = 7(x) < e and 7(y) + 7(2) = ||z|[1 > 9, letting s = g%z € (0,1), it follows that
7(y)s < 7(z). Let y' € ¢Mgq be a self-adjoint operator with finite spectrum such that

(3.1) 2y’ = ylh < 7(2) = 7(y)s.

Since M is diffuse and g’ has finite spectrum, we can find an increasing net of projections (et)efo]
in ¢gMq such that eg = 0,e1 = ¢, 7(e;) = 7(¢)t and 7(y'er) = 7(y')t, for every t € [0,1]. Then for
every t € [0, 1], we have that

7 (yed) — Tt < I7(ye) — 7 e)| + (7 (y) — 7))l < 2[ly = ylh,
and thus 7(ye;) < 7(y)t + 2|y’ — yl1-

Combining this inequality for ¢ = s with (3.1) gives that 7(yes) < 7(2). As 7(ye1) = 7(y) > 7(2)
and the map t — 7(ye;) is continuous, we can find ¢ € (s,1) such that 7(ye;) = 7(2).

Finally, let p = e; + (1 — ¢). Then we have 7(xp) = 7(yp) — 7(2p) = 7(yer) — 7(2) = 0 and
T(p) =71(er) + 7(1 — q) = t7(q) + 7(1 — q) >t > s, which finishes the proof. O

Lemma 3.4. Let ¢,8 > 0 such that ¢ < 6% and (M, 1) be a diffuse tracial von Neumann algebra.
Let p, f1, fo, fs € M be projections such that f1 + fo + f3 = 1, |[7(pfi) — 7(p)7(fi)] < € and
1fi(p — 7)) fillx > 8, for every 1 <i < 2.

Then there exist projections qi,q2,q3 € M such that g1 + g2 + q3 = 1,7(pg;) = 7(p)7(q;) and
lgi — filli < 3. for every 1 <i < 3.

Proof. Let 1 < i < 2 and define z; = fi(p — 7(p))fi. Then we have z; = 2} € f;Mf; and
IT(z:)] = |7(pfi) — 7(p)7(fi)| < e. Since [lz;][1 > ¢ and [|zs][1 < 7(fi)llp — )| < 7(fi), we get
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that 7(f;) > . Thus, \:&‘“ < & and ””"E'Hl |zilli > 6. Altogether, by applying Lemma 3.3 to
x; € fiM f;, we find a projection q; € fiM f; such that

. 5 —
() >
7(fi)
Using (3.2) we get that 7((p — 7(p))¢:) = 7(zig;) = 0 and thus T(pqi) = 7(p)7(q:). Moreover,

2
lgi = fillh = 7(fi) = 7(@:) < z7(fi) < 52

Let g3 =1—q1 —qo and f3 = 1— f1 — f. Then 7(pgs3) = T(P) —7(pq1) — 7(pg2) = 7(p)(1 — 7(q1) —

7(q2)) = 7(p)7(g3). Moreover, [lgz — f3ll = (g1 + q2) — (fr + f2) 1 < llax = filli + llg2 = fali < 55
This finishes the proof of the lemma. ([

:1_%>1—2£.
1+ 5 62

(3.2) T(ziq;) =0 and

S| [A| ™

Proof of Lemma 3.2. Assume that the conclusion of Lemma 3.2 fails. Then there is € > 0 such that
for every n € N we can find a II; factor (M, 7,) and projections ey, fin, fo.n, f3.n € My, satisfying
the following: fi, + fon + fan = 1, |ma(enfin) — alen)mn(fin)| < %, for every 1 <4 < 3, and
||pn*6n||1+||q1,n*f1,n||1+||q2,n*f2,n”1+||q3,n* j i din;92n,493,n € Mn
such that Qi+ qn+ G0 =1 and Tn(ani n) = Tn(pn)Tn(Qi n) for every 1 < < 3.

Let U be a free ultrafilter on N. Let 7 be the canonical trace of [[,, M), given by 7(x) = lingl Tn(Zn),
n—

for every r = (xn) € HZ/{ Mn Then p = (en)7q1 = (fl,n)7q2 = (fZ,n)uCI?) = (f3,n) S Hz,{ Mn are
projections satisfying that ¢1 + ¢2 + g3 = 1 and {p}"’ L {q1,q2,q3}".

We will get a contradiction by analyzing two cases:
Case 1. The set {1 <i <3| qi(p—7(p))¢; = 0} has at most one element.
Without loss of generality, assume that ¢;(p — 7(p))g; # 0, for all 1 < i < 2.

For n € Nand 1 < i < 2, define §; = |¢i(p — 7(p))qill1,0in = ||fin(en — Tn(en))finli and
Kin = |Tn(enfin) — Tn(en)Tn(fin)|. Then & > 0, lim din =0; and 0 < K, < %, for every n € N.

Let 06 = min{d1, d2}. Then the set J of n € N such that din > 5 S and Kin < 52

i forevery 1 <i <2,
belongs to U.

By Lemma 3.4, for every n € J, we find projections ¢;, € M, such that ¢, + qn + @30 = 1,
AKin

Tn(enin) = Tn(en)Tn(gin) and ||gin — finlh < 6.2’ < 521n2, for every 1 < i < 2. As J is

infinite, we can find n € J such that 52162 < 5, for every 1 < ¢ < 2. Put p, = e,. Then

o — enllh + llg1n — finllt + a2 — fonlli + lg3n — f3nlli < €, contradicting the first paragraph
of the proof.

Case 2. The set {1 <i <3| qi(p—7(p))g; = 0} has at least two elements.

Without loss of generality, assume that ¢;(p — 7(p))q; = 0, for every 1 <i < 2.
We claim that @ := {p,qi1,¢2,q93}" is a type I von Neumann algebra. Let 1 < ¢ < 2. Since

qipqi = 7(p)q;, we get that v; := T(p)féqz‘p is a partial isometry. Thus, p; := viv; = 7(p) pgip
is a projection. Recall that any von Neumann algebra generated by two projections is of type I,
being a direct sum of type I; and Iy algebras. Since pQp = {pq1p, pg2p, pgsp}’ = {p1,p2,p}" and

p1,p2 € p([ I, Mn)p are projections, pQp is of type I. Since ¢;((1—p)—7(1—p))g; = ¢;(7(p)—p)g; = 0,
for every 1 < i < 2, we also get that (1 —p)Q(1—p) is of type L. The last two facts imply the claim.

Next, endow @ C [];, M,, with the restriction of 7 to Q. Since @ is of type I, it is hyperfinite. If
n € N, then using that M, is a II; factor we can find a normal *-homomorphism =, : Q — M,
such that 7, (m,(z)) = 7(z), for every x € Q. Then the normal *-homomorphism 7 : Q — [];, M,
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given by 7(x) = (m,(x)) satisfies that 7(w(x)) = lin&Tn(wn(:E)) = 7(x), for every z € Q. As
n—

is well-known (see, e.g, [HS18, Theorem 1.1]), since @ is hyperfinite, any two trace-preserving -
homomorphism from @ to [[,, M,, are unitarily conjugate. Thus, we can find w,, € U(M,,), for every
n € N, such that x = (u,m,(z)u}), for every z € Q. In particular, p = (p,) and ¢; = (i), where
Pn = unmp(p)us and ¢; p = upmn(gi)u;,, for every n € Nand 1 <i <3. Then ¢1,, + 20 + @30 = 1,
for every n € N, and 1 (s — ealy + 910~ finlli+ .0~ foals + 45— fonll) = 0. Morcover

Tn(Pndin) = T(mn(pai)) = 7(pgi) = 7(p)7(@:) = (T (p)) 0 (Tn(2:)) = 7o (Pr) T (i),
for every n € Nand 1 < i < 3. Altogether, this also contradicts the first paragraph of the proof. [J

4. A CONSTRUCTION OF II; FACTORS

In this section, we introduce a new construction of II; factors which we will use iteratively to build
the II; factor in Theorem B.

Definition 4.1. Let (M, 7) be a tracial von Neumann algebra and A;, Ay C M be von Neumann
subalgebras. We define a tracial von Neumann algebra ®(M, A, As) as follows. Put B; = By =
L(Z) and define

D(M,Ay) := M %4, (A1®B;) and
(I)(M, Aq, AQ) = (I)(M, Al) *(Ay\/ By) ((AQ V B1)®Bz).
Given ui,ug € U(M), we will use the notation ®(M,uy,us) := ®(M, {ur}’, {ua}”).
More generally, given von Neumann subalgebras Ay, --- Ay C M one can define (M, Ay, -, Ag)
inductively by letting By = --- = By, = L(Z) and for every 1 <i <k
O(M, Ay, Ai) = ®(M, Ay, s A1) %4,y BL V-V Bioy) ((AiV BLV -V Bi1)®@B;).
Here, we focus on the case k = 2 which suffices for the purpose of proving Theorem B. The main

result of this section gives necessary conditions which guarantee that ®(M, A1, As) is a II; factor.
Furthermore, we prove:

Theorem 4.2. Let (M,7) be a tracial von Neumann algebra and Ay, Ay C M be von Neumann
subalgebras such that Ay L As and M Ay A;, for every i =1,2. Put P = ®(M, A;, Ag).

Then P is a IL factor containing Haar unitaries vi,vy € P so that v € A} N P,vg € A, NP and
[v1,v2] = 0. Moreover, if Q C M is a von Neumann subalgebra such that Q Ay A;, for every
1<i<2, then@Q@ NP CM.

In the proof of Theorem B, we will use the following immediate corollary of Theorem 4.2

Corollary 4.3. Let (M, 1) be a tracial von Neumann algebra having no type I direct summand.
Let uy,ug € U(M) such that {ui}” L {ug}” and put P = ®(M,uy,us).

Then P is a II; factor containing Haar unitaries vi,ve € P so that [uy,v1] = [ug, va] = [v1,v2] = 0.
Moreover, if Q@ C M is a von Neumann subalgebra such that Q 4Anr {w;}’, for every 1 <i <2, then
Q'NPcC M.

Since M has no type I direct summand, M Ap; {u;}”, for every 1 <i < 2, and thus Corollary 4.3
follows from Theorem 4.2.
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Remark 4.4. Let us argue that the condition that {u;}” L {us}” in Corollary 4.3 is necessary
in order to get that M is a II; factor. Thus, the condition that A; | As in Theorem 4.2 is also
necessary. In the context of Corollary 4.3, assume that M is generated by ug and Eg, » (ug).
Denote N := ®(M,{u1}") = M *g30 ({u1}"®L(Z)) and let v; € L(Z) be a generating Haar
unitary. By [IPP08, Theorem 1.1] we get that L(Z)' N N = {u;}""®L(Z). This gives that

Ep@ynn(u2) = By yigrz) (U2) = By (u2).

On the other hand, Ep,zyny(u2) is the || - ||o-limit of the sequence (1377 vfugvi*), and thus
belongs to {ug,v1}"”. The last two facts together imply that Eg, 1/ (u2) € {ug,v1}". Since M is
generated by uz and Ey, 1/ (u2), we get that M C {ug,v1}”. Since N is generated by M and vy,
we get that {ug,v1}’ = N. Thus, ®(M,u;,us) = NRL(Z) is not a factor, so the conclusion of
Corollary 4.3 does not hold.

Now, the existence of u1,us € U(M) such that {uz, Egy, 1 (u2)}’ = M, can be checked whenever M
is generated by two unitaries g, ug such that {u;}” L {us}” (e.g., if M = L(T'), for any 2-generated
group I'). To see this, write uz = exp(ih), where h € {uz}” is a self-adjoint element, let n € N
such that T(exp(%)) # 0 and define ug = ug exp(%). Then Eg, v (u2) = T(exp(%))ul and thus

{uz, B,y ()} = {ur, exp(2)}" = {ur, 1} = M.

The proof of Theorem 4.2 relies on the main technical result of [IPP08]. To recall the latter result,
let (M1, 71) and (M2, 72) be tracial von Neumann algebras with a common von Neumann subalgebra
B such that TI|B = T2|B- Let M = Mj xg Ms be the amalgamated free product with its canonical
trace 7. By [PV10, Section 5.1], for 0 < p < 1 we have a unital tracial completely positive map
m, : M — M such that m,(b) = b, for every b € B, and m,(z1z2 - x,) = p"x122 - - - &y, for every
r; € M;; © B, where i; € {1,2}, for every 1 < j <n, and ij # ij11, for every 1 < j <n — 1. Then

(4.1) lim ||m,(x) — z|]2 = 0, for every x € M.
p—1

The following is the main technical result of [IPP08], formulated here as in [PV10, Theorem 5.4],
see also [Hou09, Section 5].

Theorem 4.5. Let (My,7) and (M, 12) be tracial von Neumann algebras with a common von
Neumann subalgebra B such that T \gp = T2g. Let M = My xp My be the amalgamated free product
with its canonical trace 7. Let Q C pMp be a von Neumann subalgebra. Assume that there are
0<p<1andc>0 such that |[m,(u)|l2 > ¢, for every u € U(Q).

Then Q <y M1 or Q <ar Mo.

As 7(my2 (u)u*) = ||lm,(u)||3 > ¢, for every u € U(Q), [PV10, Theorem 5.4] implies Theorem 4.5.

Lemma 4.6. Let (My,71) and (Ma,12) be tracial von Neumann algebras with a common von
Neumann subalgebra B such that T \gp = Tog. Let M = My xp Mj be the amalgamated free product
with its canonical trace T. For i € {1,2}, let A; C M; be a von Neumann subalgebra with A; 1 B.
Let Q) C My be a von Neumann subalgebra such that QQ <pr A1V Az and Q 4, B.

Then Q <, Aj.

Proof. Denote A = A1V As. We first claim that A; and Ay are freely independent inside M and
thus A = Ay x Ag. Let a; € A;; ©Cl1 for i; € {1,2}, for every 1 < j < n, where i; # i;,1, for every
1 <j<n-—1. Since A; L B, for every i € {1,2}, we get that Ep(a;) = 0, for every 1 < j < n.
This implies that 7(ajas - - - a,) = 0, proving the claim.
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Since @@ <u A, we can find projections ¢ € Q,p € A, a nonzero partial isometry v € pMg and
«-homomorphism ¢ : ¢Qq — pAp such that ¢(z)v = vx, for every z € ¢Qq. Moreover, we may
assume that the support projection of E4(vv*) is equal to p.

Claim 4.7. ¢(qQq) <4 A1 or ¢(qQq) <4 As.

Proof of Claim 4.7. Since m,, is a unital tracial completely positive map, using (4.1) and [Pop06a,
Corollary, Section 1.1.2] we deduce that
(4.2) sup ||mp(zv) —my(x)vl2 =0 and sup |m,(vxr) —vm,(z)|2 =0, asp— 1.

xG(M)l IE(M)1
Now, if € My, then the definition of m, implies that m,(z) = Eg(z) + p(x — Eg(z)) and thus
|lm,(z) —z|l2 = (1 — p)||lz —Ep(z)|2 < (1 — p)||z||2. In particular, since @ C M, we derive that
(4.3) sup |mp(z) —z|2 =0, asp—1.

z€(qQq)1

By combining (4.2) and (4.4) and using that ¢(z)v = vz, for every x € ¢Qq, it follows that
SUDge(40q), [Mp(w(2))v — vxl]2 — 0, as p — 1. Therefore, we can find 0 < p < 1 such that
lm,(¢(z))v —vzll2 < ||v|l2/2, for every x € (¢Qg)1. This implies that

[y (p(w))l2 = [[my ((w))vlla > [[o]l2/2, for every u € U(qQq).

In other words, |m,(y)| > |[v|2, for every y € U(p(qQq)). Note that the restriction of m, to A
is equal to the map m, on A associated with the free product decomposition A = Ay * As. Since
v(qQq) C pAp, we can apply Theorem 4.5 to get the claim. O

By Claim 4.7, we have that ¢(qQq) <a A;, for some i € {1,2}. Since the support projection
of E4(vv*) is equal to p, [Vae08, Remark 3.8] implies that @ <j; A;. Finally, since ¢Qq C My,
A; C M; and Q Anr, B, applying [IPP08, Theorem 1.1] gives that ¢ = 1 and Q <7, A;. O

Proof of Theorem 4.2. Let P = ®(M, A1, A2) = N*(4,yp,) ((A2V B1)®B2), where By = By = L(Z)
and N = ®(M, A1) = M x4, (A1®B;). Let v1 € By and vy € By be generating Haar unitaries.
Since [Ay, By] = [Ag, Bo] = [B1, Ba] = {0}, we get that v; € A{ N P,vy € A, NP and [v1,v2] = 0.

Next, we prove the moreover assertion. Let ) C M be a von Neumann subalgebra such that
Q Aum A;, for every 1 <i < 2. Since N = M x4, (A1®DBy), A2 L Ay, By L Ay and Q 4p Aq, by
Lemma 4.6 we conclude that

(4.4) Q AN A2V By.

Since P = N *(4,vp,) (A2 V B1)®B3), using (4.4) and applying [IPP08, Theorem 1.1] we get that
Q' NP C N. Since N = M x4, (A1®B1) and Q Ay A1, applying [IPP08, Theorem 1.1] again gives
that @' NN C M. Altogether, we get that Q' N P C M, which proves the moreover assertion.

Since M £ps A;, for every 1 < i < 2. By applying the moreover assertion to Q = M, we get that
M'NP C M, hence Z(P)=P' NM C Z(M). Thus, if M is a II; factor, then P is a II; factor.

In the general case, we first note that [IPP08, Theorem 1.1] gives that B{NM = A; and B4NM =
(BbNN)NM = (AyV Bi) N M. Thus, Z(P) = PPN M C A1 N (A2 V By). We claim that
Ay L (Ag V Bp). Assuming the claim, it follows that A; N (A2 V By) = C1 and so P is a II;
factor. To justify the claim and finish the proof, denote M1 = M, My = A1®B1, C1 = Ay, Co = By
and B = A;. Thus, N = M; *p M> and the claim is equivalent to B L (Cy vV C3). Let 2 € B
and y € C1 V Oy of the form y = y1y2 - - - yn, where y; € C;; © C1 for some i; € {1,2}, for every
1 < j <, such that i; # ij41, for every 1 < j <n — 1. Since C; L B, for every 1 <1i < 2, we get
that Ep(y;) = 0 and thus y; € M;; © B, for every 1 < j < n. Moreover, Eg(zy1) = zEg(y1) = 0
and thus zy; € M;, © B. This implies that 7(xy) = 7((xy1)y2---yn) = 0. Since C; and Cy are
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freely independent, as shown in the proof of Lemma 4.6, the linear span of elements y € C; V Cy of
the above form is dense in (C7V C3) ©C1. Thus, we get that B L (C;V C3), proving the claim. O

5. PROOFS OF MAIN RESULTS

This section is devoted to the proofs of our main results.

5.1. Proof of Theorem B. We start by constructing the II; factor from Theorem B by iterating
the construction from Section 4.

For a II; factor M, we denote by V(M) the set of pairs (u1,us) € U(M) x U(M) such that
u? =ud =1and {ur}’ L {uz}”. We endow U(M) x U(M) with the product | - ||2-topology.

Definition 5.1. Let M; be a II; factor. We construct a new II; factor M which contains M;
and arises as the inductive limit of a sequence (M, ),en of II; factors satisfying M,, C M4, for
every n € N. Let 0 = (01,02) : N = N x N be a bijection such that o1(n) < n, for every n € N.

Assume that Mj,..., M, have been constructed, for some n € N. Let {(u?’k,ug’k)}kej\r C V(M,)
be a || - ||o-dense sequence. We define

My = @(Mn,uclf(n),ug(n)).

Note that M, is well-defined since o1(n) < n and thus (uclr(n)mg(n)) € V(M,,). Then M,, C M1,
and Corollary 4.3 implies that M,y is a II; factor. Thus, M defined as follows is a II; factor:

M = (UneNMn>/,-

Convention. For the rest of this section, (M, ),en and M denote the II; factors introduced in
Definition 5.1.

Definition 5.2. An ultrafilter ¢ on a set [ is called countably cofinal if there exists a sequence
{An}nen C U with N, A, = 0.

Proposition 5.3. Let ui,uz € U(MY) such that u? = u3 = 1 and {u1}" L {ua}", where U is a
countably cofinal ultrafilter on a set I.

Then there exist Haar unitaries vy, vy € MY such that [uy,v1] = [ug, va] = [v1,ve] = 0.

Proof. Let p,q1,q2,q3 € MY be projections such that u; = 2p — 1 and uy = q1 + (2 + (2¢3, where
¢ = exp(%). We may clearly assume that u; # 41, so that p # 0, 1.

Since M = (UpenM,,)"” and U is cofinal, [BCI17, Lemma 2.2] gives that p,q1,q2,¢3 € [I,,ciy Mk
for some (kp)ner C N. Moreover, the proof of [BCI17, Lemma 2.2] provides a function f: I — N
such that hng{ f(n) = +o0.

n—

Since {p}” L {q1,q2,q3}", by Lemma 3.1, we can represent p = (p,) and ¢; = (gi,), where
Pn:ni € My, are projections such that qi, + g2 + g3 = 1 and {pn}’ L {q1.n, @20, a3,0}" for
every n € I. Let uy, = 2p, — 1 and u2n, = q1.n + (q2.n + (*q3.n- Then uy = (u1,) and ug = (uz,y,).
Since {u1n}" = {pn}" L {q1n, @2, @30} = {uan}”’, we get (uin,u2,) € V(My,), for every n € I.

Since {(ulf"’j, ugn’j)}jeN is dense in V(Mj, ), we can find j, € N such that

(5.1) llwim — u]f”’jan + [Juz,n — ug"’j"HQ < , for every n € I.

b
f(n)
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For n € I, let I, € N such that (l,) = (kn,jn). Then My, )11 = ®(Myq,),uy™", ub™). Thus,
by Corollary 4.3, we can find Haar unitaries vy ,,, v, € U(My(,)41) C U(M) such that

(5.2) [ulf”’l”,vl,n] = [ug"’l”,vgm] = [U1n, V2] =0, for every n € I.

Finally, let vy = (v1.,),v2 = (v2.n,) € U(MY). Then vy, vy are Haar unitaries and as lini{ f(n) = +o0,
n—

(5.1) and (5.2) together imply that [u1,v1] = [ug, v2] = [v1,v2] = 0. O

In order to prove Theorem B, we also need to find instances which guarantee that M is full. This
happens if M; has property (T):

Proposition 5.4. Assume that My has property (T). Then M does not have property Gamma.

Proof. Let n € N. Recall that M, 11 = go(Mn,uf(n),ug(n)) and M7 C M,,. Since M is a II; factor,
we have that My 4, {u‘f(n)}” and My £, {ug(")}” . By applying Corollary 4.3 we derive that
M{ N M,41 = M{ N M,. Thus, we get that M| N M, = Z(M;) = C1. Since this holds for every
n € N, we deduce that M{ N M = C1. Finally, since M; has property (T), by Proposition 2.1, we
have that M{ N MY = (M| N M)¥ = C1, where U is a free ultrafilter on N. Hence, M’ N MY = C1

and so M does not have property Gamma. ]

Proof of Theorem B. Let M; be a II; factor with property (T), e.g., take My = L(SL3(Z)). Let M
be constructed as in Definition 5.1. The conclusion follows from Propositions 5.3 and 5.4. g

5.2. Proof of Theorem C and its corollaries. In this subsection, we prove that the II; factor
M from Theorem B also satisfies the conclusion of Theorems C and A and Corollary D. To this
end, we first show the following:

Corollary 5.5. Let p,q1,q2,q3 € MY be projections such that q1 + qz + q3 = 1, where U is a
countably cofinal ultrafilter on a set I. Assume that {p}" L {q1,q2,q3}".

Then h({pv q1, qQ7Q3}H> Mu) <0.

Proof. Define u1,us € U(MY) by u; = 2p — 1 and ug = q1 + (g2 + (2q3, where ¢ = exp(%). Then
u? = ud =1 and {uy,u2}’ = {p,q1,q2,93}". Thus, by combining Lemma 2.9 and Proposition 5.3

we get that h({p, g1, g2, 3}" : M) = h({ur, us)" : M) < 0. O

To prove that h(MY) < 0, we will need an additional lemma:

Lemma 5.6. Let (A, 7) be a diffuse tracial von Neumann algebra and x € A such that v = x* and
7(x) = 0. Let F be the set of projections p € A such that T(xp) = 0. Then F" = A.

Proof. We first prove the conclusion under the assumption that A is abelian. Let x = y — z be the
decomposition of x into positive and negative parts. Let ¢ and r be the support projections of y
and z, respectively. Since 0 = 7(z) = 7(y) — 7(2), we get that 7(y) = 7(2).

Let e € Aq be a projection. Since A is diffuse and 7(ye) < 7(y) = 7(2) = 7(2r), we can find a
projection f € Ar such that 7(zf) = 7(ye). Then we have that e — f € F. Since ef = 0, we get
that e+ f = (e— f)? € F” and thus e € F”, for every projection e € Aq. Thus, Ag C F”. Similarly,
we conclude that Ar C F”. Since (1 — ¢ —r) = 0, we also have that A(1 —¢—r) C F”. Since A
is abelian, it follows that A C F” and thus 7’ = A.

For general A, let B C A be a diffuse abelian von Neumann subalgebra. Note that 7(Eg(z)) =0
and that if p € B is a projection with 7(Eg(x)p) = 0, then 7(zp) = 7(Ep(x)p) = 0 and so p € F.
By applying the above proof to B and Ep(z) € B, we conclude that B C F”. Since this holds for
every diffuse abelian von Neumann subalgebra B C A, we conclude that F” = A. O
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Theorem 5.7. h(MY) <0, for any ultrafilter U on any set I.

Proof. If U is not countably cofinal, then MY = M by [BCI17, Lemma 2.3]. Thus, if V is a free
ultrafilter on N, then Facts 2.3 and 2.4 give that h(MY) = h(M) = h(M : MY) < h(MY). This
implies that in order to prove the conclusion, we may assume that U is countably cofinal.

Assume that I/ is a countable cofinal ultrafilter and denote P = MY. Since P is a II; factor, we
can find a unital, trace-preserving embedding of S := L(Z/2Z % Z/2Z) into P. Let p,q € S be two
projections with 7(p) = 7(¢q) = 3 which generate the two canonical copies of L(Z/2Z) inside S.

Then [|q(2p —1)gll2 = /7(a(2p — 1)g(2p — 1)) = 5 and similarly [(1 —¢)(2p —1)(1 —g)||l2 = 5. Let
r=(1-¢)(2p—1)(1—¢q) € (1—-q)P(1 —gq). Then x = z*,7(z) = 0 and = # 0. We define F to be
the set of projections r € (1 — ¢)P(1 — q) such that 7(zr) = 0.

For r € F we define S, := {p,q,7,1 —q—r}". Then 7((2p—1)q) =0, 7((2p—1)r) = 7(xr) = 0 and

((2p—-1)A-q-r)=72p-1)=7(2p—1)q) —7((2p—1)r) = 0. Thus, {p}" L {g,r,1—q—r}".
Altogether, we can apply Corollary 5.5 to deduce that

(5.3) h(S, : P) <0, for every r € F.
Since S C Sy, for all r € F, and S is diffuse, combining Facts (2.5) and (2.6) with (5.3) we get that
(5.4) h(\/ S::P)<o.
reF
On the other hand, by Lemma 5.6 we have that 7" = (1 — ¢)P(1 — ¢). This implies that
(5.5) \/ S =8\/(1-qP(1—q).
reF

Combining (5.4) and (5.5) we get h(S\/(1 —q)P(1 —¢q) : P) <0. Similarly, h(S\/ ¢Pq: P) < 0.
Using again that S is diffuse, Fact 2.5 implies that h(S\ ¢Pq\/(1 — ¢)P(1 —q) : P) < 0. Since
the projections g and 1 — ¢ are equivalent in S, we get that S'\/ ¢Pq\/(1 — q)P(1 — q) = P, which
implies the desired conclusion that h(P) = h(P : P) < 0. O

Although this is not needed to derive our main results, we mention an easy consequence of the
previous proof which seems of independent interest:

Corollary 5.8. Let M be a I, factor such that h(M) > 0. Let I' = Z/2Z  Z/3Z. Then there
exists a homomorphism w : I' — U(M) such that h(m(T')" : M) > 0.

Proof. As M is a Il factor, we can find a unital, trace-preserving embedding of S := L(Z/2Z+Z/27)
into M. Let p,q € S be two projections with 7(p) = 7(q) = % which generate the two canonical
copies of L(Z/27Z) inside S. Since h(M) > 0 and S\ ¢Mq\/(1 — q)M (1 — q) = M, Fact 2.5 gives
that h(S'\/ ¢Mq) > 0 or h(S\/(1 —¢)M(1 — q)) > 0. Assume, without loss of generality, that
h(S\ ¢Mgq) > 0. Given a projection r € g¢Mgq, let S, = {p,r,q —r,1 — ¢q}"". Since S/ ¢Mgq is
generated by {S, | r € ¢Mgq projection}, Fact 2.5 implies that h(S, : M) > 0, for some projection
r € ¢gMgq. Since clearly S, = 7(T")”, for a homomorphism 7 : T' — U(M), the conclusion follows. [

Proof of Theorem C. Let M; be a II; factor with property (T), e.g., take M = L(SL3(Z)). Let M
be constructed as in Definition 5.1. By Theorem 5.7 and Proposition 5.4 we get that k(M%) <0,
for every ultrafilter U, and M does not have property Gamma. O
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Proof of Theorem A. Let M be as in Theorem C. Suppose that for some ultrafilters ¢,V on sets
I,J, there exists an embedding of MY into NV that contains the diagonal inclusion of N. By
combining Theorem C and Facts 2.4 and 2.3 we get the following chain of inequalities:

0<h(N)=h(N:NY)<h(N: MY) <h(MY: MY) = h(MY) <0,
which is a contradiction. O

Proof of Corollary D. Let M be as in Theorem C. For a sequence (k) C N and free ultrafilter &/ on
N with lirrb kn = +o0, let M = [];, My, (C). Then Fact 2.8 implies that h(M) > 0. By Theorem
n—

A, we deduce that M is not elementarily equivalent to M. O

The following remark was communicated to us separately by I. Goldbring and D. Jekel.

Remark 5.9. We give an explicit sentence distinguishing up to elementary equivalence any II;
factor M satisfying the properties of Theorem B and any tracial von Neumann algebra (N, 7) with
h(N) > 0, in particular L(Fs). This follows readily from Lemma 3.2. For unitaries u1, ug2,v1,v2 €
M, we define the formulae

$(ur,uz) = Juf = U2 + lJu3 = 1|z + |7 (uruz) — 7(ur)7(u2)| + |7 (urui) — 7(ur)7(u3)]

W(ur, uz,v1,v9) = ugvy — vrus |2 + [[ugve — vouslle + lvive — vovilla + Y 27 (|r () + | (v5)]).
kEZ\{0}

Note that ¢(u1,uz) = 0 means that u? = u3 = 1 and {u;}” L {us}”. We also note that D. Jekel
observed that Lemma 3.2 implies that the set {u1,us € U(M) | ¢(ui,u2) = 0} is a definable set
over the theory of II; factors.

Theorem B shows that M satisfies supy, u,cu(M),¢(us uz)=0 (inf,, vyeri(ar) ¥ (u1, ug, v1,v2)) = 0. In
combination with Lemma 3.2, we derive the existence of a function 0 : [0,00) — [0, 00) such that
5(0) =0, §((0,00)) C (0,00) and for all € > 0, the following implication holds for ui,us € U(M):
if ¢(u1,uz) < d(e), then ¢'(ur,uz) := infy, 4,cra(nr) ¥ (u1, uz, v1,v2) < €. Moreover, 0 is independent
of the II; factor M, and can be taken to be continuous and strictly increasing. Then we have
that 6(¢'(u1,u2)) < ¢(u1,us2), for every uy,us € U(M), and we can thus write the distinguishing
sentence as follows:
sup  max(0, (¢’ (u1,u2)) — d(u1,uz)).
u,u2€U(M)

In fact, it is easy to see that a II; factor M satisfies this sentence if and only if it satisfies the
conclusion of Theorem B.
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