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Abstract

Learning and equilibrium computation in games are fundamental problems across computer science and economics,
with applications ranging from politics to machine learning. Much of the work in this area revolves around a simple
algorithm termed randomized weighted majority (RWM), also known as “Hedge” or “Multiplicative Weights Update,”
which is well known to achieve statistically optimal rates in adversarial settings (Littlestone and Warmuth ’94, Freund
and Schapire ’99). Unfortunately, RWM comes with an inherent computational barrier: it requires maintaining and
sampling from a distribution over all possible actions. In typical settings of interest the action space is exponentially
large, seemingly rendering RWM useless in practice.

In this work, we refute this notion for a broad variety of structured games, showing it is possible to efficiently
(approximately) sample the action space in RWM in polylogarithmic time. This gives the first efficient no-regret
algorithms for problems such as the (discrete) Colonel Blotto game, matroid congestion, matroid security, and basic
dueling games. As an immediate corollary, we give a polylogarithmic time meta-algorithm to compute approximate
Nash Equilibria for these games that is exponentially faster than prior methods in several important settings. Further,
our algorithm is the first to efficiently compute equilibria for more involved variants of these games with general sums,
more than two players, and, for Colonel Blotto, multiple resource types. Our results also greatly generalize earlier
work on efficient RWM-based techniques for exponential strategy sets from (Cesa-Bianchi and Lugosi ’09).
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1 Introduction
Online learning and equilibrium computation in games has long played a major role in our understanding of human
behavior and general multi-agent systems, with applications ranging all the way from politics [BBD+19, KR12] and
national defense [Tam11] to complexity theory [DGP09, Rub16] and machine learning [FS96, FS99, AB21]. Perhaps
the most celebrated line of work in this area is the introduction and analysis of randomized weighted-majority (RWM)
and its ‘mixed’ variant (Optimistic) Hedge [LW94, FS96, RS13, DFG21]. These powerful algorithms allow players to
engage in repeated gameplay without regret, in the sense that the overall loss experienced by any player is not much
more than that of the best fixed strategy, even against an arbitrary, adaptive adversary. Such a guarantee is not only
powerful in its own right, but is also known to converge quickly to equilibria when performed by all players in repeated
rounds of play [CBL06].

Randomized weighted majority is a surprisingly simple algorithm given its powerful guarantees. In each round
of a repeated game, a player following RWM samples a strategy s with probability proportional to its (exponentiated)
historical loss ℓ(s):

(1.1) Pr[Player chooses s] ∝ βℓ(s)

for some specified ‘learning rate’ β ∈ (0, 1). RWM is also well studied in the setting where the player ‘plays’ the
distribution itself (typically called a mixed strategy), and experiences its expected loss. This variant, called Hedge, is
perhaps the best studied algorithm in all of learning in games [FS96, CBL06].

Unfortunately, while RWM and Hedge are statistically optimal [LW94, FS96], they come with an inherent
computational barrier: both techniques crucially rely on tracking a distribution over all possible actions. Since the
number of actions is typically exponential in the relevant parameters of the game (e.g. in the famous Colonel Blotto
problem), this seems to render both Hedge and RWM completely infeasible.

It turns out, however, that this intuition is not entirely correct. In many important settings the distributions that arise
from RWM are highly structured, and while it still may not be possible to efficiently output the distribution itself as in
Hedge, it is sometimes possible to efficiently sample from it. It is known, for instance, that RWM can be implemented in
polylogarithmic time when actions are given by the k-edges of a complete hypergraph and rewards decompose linearly
over vertices [WK08]. This raises an important question:

When is it possible to efficiently sample in Randomized Weighted Majority?

Toward this end, we introduce a natural generalization of the complete hypergraph setting we call linear hypergraph
games, where actions are given by k-edges of an arbitrary hypergraph, and the reward of any edge similarly decomposes
as a sum over individual reward functions on its vertices (see Section 2.2 for more detail). This simple definition captures
a surprising number of settings studied in the literature including resource allocation problems like Colonel Blotto
[Bor53], along with other widely-studied settings such as congestion [Ros73], security [Tam11, ADH+19, Sze17, BB19],
and basic dueling games [IKL+11, ADH+19].

In this work, we show it is indeed possible to efficiently (approximately) sample from RWM over several important
subclasses of linear hypergraph games including Colonel Blotto and its variants, matroid congestion [VA06], matroid
security [Tam11, ADH+19, Sze17, BB19], and basic dueling games [IKL+11, ADH+19]. This leads to the first
algorithms for no-regret learning in these settings that are polylogarithmic in the size of the state space, and thereby
the first polylogarithmic time algorithms for (approximate) equilibrium computation. On top of giving an exponential
improvement over prior results, this also constitutes the first efficient algorithm for equilibrium computation whatsoever
in several more involved settings such as dice games, Colonel Blotto with multiple resources, and for multiplayer and
general-sum variants of all games we consider. We informally summarize the main results in Table 1.

Our techniques are largely based on two main paradigms: dynamic programming, and Monte Carlo Markov
Chains (MCMC). Generalizing seminal work on learning k-sets and other structured concepts [WK08, KWK+10], we
show that the distributions arising from RWM on linear hypergraph games correspond to well-studied structure in
approximate sampling and statistical physics called external fields. In resource allocation games like Colonel Blotto
that are played over (ordered) fixed-size partitions of n, we exploit this structure to build a dynamic program that
approximately computes the normalization factor of Equation (1.1) (often called the partition function). On the other
hand, in settings like matroid congestion and security, we rely on deep results from the MCMC-sampling literature
showing that any hypergraph that is a sufficiently good high dimensional expander can be sampled under arbitrary
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external fields [ALOV19, AASV21, AJK+21]. To the authors’ knowledge, these are the first applications of approximate
sampling techniques to game theory.

Game Known runtime (exact) Our runtime (apx.)

(Discrete) Colonel Blotto n13k14 [ADH+19] k4 log4(n)L7
max

Dice NA k4 log4(n)
Matroid Security n4k2 [BB19] k3 log3(n)L4

max
Matroid Congestion nk [ARV08] k4 log3(n)L4

max

Table 1: Rough asymptotic runtimes for equilibrium computation in contrast to previous methods with two players. The
approximation factor is set to O(1) along with some other game specific parameters (See Definition 3.5 for details).

1.1 Results We briefly review the theory of games, equilibria, and no-regret learning before discussing our results in
more formality. Games are mathematical objects that model (possibly non-cooperative) interaction between rational
agents. A (simultaneous) game consists of a set of actions Ai for each player, and reward functions Ri mapping action
tuples to rewards (real numbers). Players seek to maximize their own reward, and optimal play is typically characterized
by Nash equilibria: randomized strategies such that no player can improve by deviating. By the historic result of
[Nas51], every finite game has at least one NE. As they are not always efficiently computable [DGP06], one often
instead hopes to understand weaker notions such as Coarse Correlated Equilibria (CCE), where the strategies of different
players are chosen in coordination with one another (see Section 2.1).

There is a deep connection between equilibrium computation and no-regret learning in games. We consider the
typical adaptive online setting in which, in each round, a learner chooses an action and receives an adversarially selected
loss that may depend on the learner’s previous actions (see [CBL06, Chapter 4]). An algorithm is said to have “no-regret”
when the expected loss suffered by the learner in sequential rounds grows sublinearly compared to the loss of the best
fixed action in hindsight. No-regret learning is itself a powerful tool, as it allows for optimal play against sub-optimal
opponents (unlike equilibria which only model the setting where all agents play optimally). Furthermore, it is well
known that any no-regret algorithm1 leads to approximate equilibrium computation with similar runtime simply by
simulating the algorithm for all players for sufficiently many rounds. RWM, for instance, is well-known to satisfy the
following (optimal) regret guarantee.

LEMMA 1.1. (RWM IS NO-REGRET [CBL06, LEMMA 4.1]) The regret of RWM over T rounds, N actions, and
with rewards in [−Lmax,Lmax], satisfies

RegT ≤ O
(
Lmax

√
T log(N)

)
,

against any adaptive adversary (with high probability).

In fact, it is important to note in our setting that essentially all guarantees of RWM also hold in the approximate regime,
where the learner only δ-approximately samples from the distribution in Equation (1.1) in each round (in Total Variation
distance). We call such algorithms δ-approximate RWM (δ-RWM). It is not hard to show that δ-RWM also satisfies the
above regret guarantees for small enough δ (see Lemma 2.1). We now cover four of the main settings in which we give
new algorithms for no-regret learning and equilibrium computation through efficient implementatin of δ-RWM: Colonel
Blotto, Matroid Security, Matroid Congestion, and Dueling games. We note that all results are given in the algebraic
computation model for simplicity (where algebraic operations such as addition and subtraction are considered to be unit
time), but can easily be moved to the standard bit model with no substantial loss in running time (see Appendix B).

1Formally we may need to require that a players strategy depends only on the opponents history and not their own [CBL06]. This is satisfied by
all algorithms considered in this work.
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1.1.1 The Colonel Blotto Game The Colonel Blotto game was originally described by Borel in 1921 [Bor53] and
formalizes how warring colonels should distribute soldiers over different battlefields. In the most general version of this
game, two colonels have n1 and n2 soldiers that they must assign to k different battlefields, each with a non-negative
integer weight. A colonel wins a battle (receiving its weight in reward) if they assign more armies to that battle than
their opponent. Each colonel seeks to maximize the total weight of battles won in a single assignment.

Despite its breadth of applications and simplicity to state, the first polynomial time algorithm to compute optimal
strategies for this game was only developed recently in [ADH+19]. This breakthrough result deservedly received
significant media attention [Ins16, Mew16], but struggled to see any practical use due to an infeasible O(n13k14) running
time (where n = max{n1,n2}). To this day, this is the only known algorithm to provably compute exact optimal
strategies for the (discrete) Colonel Blotto game with arbitrary parameters in polynomial time. Though some progress
has been made towards more practical algorithms in different settings [BDD+17], even these methods cannot handle
parameters beyond a few hundred troops [VLS18].

Indeed, solving the Colonel Blotto problem is now only more relevant than it was in 1921, with practical applications
in a large swath of market competitions including advertising and auctions [Rob06], budget allocation [Kva07], elections
[LP02], and even ecological modeling [GP09]. We give the first no-regret learning algorithm for the Colonel Blotto
games under the most general setting [KR21], where rewards are heterogeneous across battles and players and different
players are allowed different troop capacities. Moreover, our algorithm runs in time polylogarithmic in the state space,
making it extremely efficient in the regime where n≫ k (i.e. there are many more troops than battlefields).

THEOREM 1.1. (BLOTTO WITHOUT REGRET (INFORMAL COROLLARY 4.1)) In a Colonel Blotto game, for a
player with n soldiers, k battlefields, and maximum reward bounded by Lmax, δ-RWM can be implemented over
T rounds of play in time:

Õ
(
T3Lmaxk log(n)δ−1

)
,

and is no-regret. In the regime where n = O(k2), we give a faster algorithm running in time Õ(Tnk).

Theorem 1.1 is the first no-regret algorithm for Colonel Blotto in online adaptive settings, and also gives the fastest
known algorithms to compute (approximate) Nash equilibria provided the game is zero-sum, and approximate coarse
correlated equilibrium in general sum settings with many players. We state the theorem for the two-player zero-sum
setting here.

COROLLARY 1.1. (EQUILIBRIUM COMPUTATION FOR BLOTTO (INFORMAL COROLLARY 4.2)) Let
n = max(n1,n2), where n1,n2 are the soldier counts for the two player Colonel Blotto game. Let Lmax be
maximum reward of the game. There exists an algorithm to compute an ε-approximate Nash equilibrium for the
two-player Colonel Blotto Game in time

Õ
(
L7

maxk4 log4(n)ε−6
)

with high probability. When n = O(k2), we give a faster algorithm running in time Õ(nk2L2
maxε

−2).

Not only is this algorithm exponentially faster than any prior work in most relevant scenarios (namely when n≫ k), it
is also the first known method for computing CCE for multiplayer Blotto at all. Even more generally, our algorithm
extends to a number of other variants of Blotto (or ‘resource allocation’ problems) such as Dice games and settings with
multiple types of troops known as the Multi-resource Colonel Blotto problem [BDD+17] (though in this latter setting
we lose the logarithmic dependence on n). We cover these further applications in Section 4.3 and Section 4.4.

1.1.2 Congestion Games Another natural example is a congestion game, a class introduced by Rosenthal [Ros73] to
model resource competition among greedy players. In a congestion game, m players compete to select from a set of
n resources and receive rewards depending on how many players chose a particular resource. Classical examples of
congestion games include routing traffic (pick the least congested route) and variants of the famed El Farol Bar Problem
[Art94] (players aim to choose a bar that is neither too under nor over-crowded).

Unlike Blotto, equilibrium computation is known to be hard for congestion games, namely (PPAD ∩ PLS)-complete
[BR21]. However, this can be circumvented when the underlying strategy spaces are sufficiently combinatorially
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structured. It has long been known, for instance, that a Nash equilibrium can be found in time Õ(m2nqk) via iterated
best-response when all strategies are given by the bases of a rank-k matroid2 over n resources of q types [ARV08].
We show matroid congestion games are similarly well-behaved under RWM, and provide a near-optimal no-regret
algorithm in both a computational and statistical sense.

THEOREM 1.2. (CONGESTION WITHOUT REGRET (INFORMAL COROLLARY 3.1)) LetI = {{Ai}
m
i=1, c} be a conges-

tion game over a size-n ground set Ω with q resource types where each Ai is the set of bases of a rank-k matroid. Then
δ-RWM can be implemented for T rounds in time

Õ
(
kT log(n) log(δ−1)(q + kmT)

)
,

and is no-regret.

To our knowledge, this is the first efficient no-regret algorithm for matroid congestion. Moreover, in the setting
where there are polylog(n) resource types, the algorithm leads to exponentially faster (approximate) equilibrium
computation than the typical best response strategy (albeit for CCE rather than Nash).

COROLLARY 1.2. (EQUILIBRIUM COMPUTATION FOR CONGESTION (INFORMAL COROLLARY 3.2)) Let I =
{(Ai,Ri)m

i=1} be a congestion game over a size-n ground set Ω with q resource types where each Ai is the set of
bases of a rank-k matroid. Then there exists an algorithm to compute an ε-CCE in time

Õ
(
m2L4

maxk4 log3(n)ε−4 + qmL2
maxk2 log2(n)ε−2

)
with high probability.

1.1.3 Security Games While slightly less intuitive, games modeling security also fit within the resource allocation
paradigm. Security games are a basic two-player setting modeling the behavior of a limited-resource player defending
n targets, and an adversarial attacker. Each target in the game has a cost to defend, and a “k-resource” defender may
choose a (possibly restricted) k-set to defend. Similarly, each target has a cost to attack, and the attacker chooses a
single element, receiving a reward depending on whether or not the selected target was defended by the opponent.
Depending on the cost/reward structure, security games model several real-world scenarios, ranging from allocating
defensive resources at military checkpoints to choosing a path to transmit critical resources (in the latter the attacker
actually wins if they attack a ‘defended’ node). Indeed, security games have actually seen significant use in critical
real-life infrastructure such as checkpoint placements at LAX and US Coast Guard and Federal Air Marshal Service
patrol schedules [Tam11].

Given their practical importance, it is no surprise equilibrium computation is well-studied in the security game
setting [Tam11, ADH+19, Sze17, BB19], and polynomial time algorithms are known in several settings, notably
including when allocation constraints are given by matroid bases [Sze17, BB19]. Unfortunately, as is the case
in previous work on Blotto, known algorithms are not practically useful and have large polynomial factors in the
number of targets. We take a major step toward resolving this issue by showing δ-RMW can be implemented in time
polylogarithmic in n, an exponential improvement over prior techniques [Tam11, Sze17, BB19].

THEOREM 1.3. (SECURITY WITHOUT REGRET (INFORMAL COROLLARY 3.3)) Let I a security game over the
bases of a rank-k matroid over n targets with q distinct defender costs. Then δ-RMW can be implemented for T
rounds in time

Õ(kT log(n) log(δ−1)(q + T)),

and is no-regret.

COROLLARY 1.3. (EQUILIBRIUM COMPUTATION FOR SECURITY (INFORMAL COROLLARY 3.4)) Let I be a se-
curity game over the bases of a rank-k matroid over n targets with q distinct attacker and defender costs. Then it is
possible to compute an ε-CCE in time

Õ
(
L4

maxk3 log3(n)ε−4 + qL2
maxk2 log2(n)ε−2

)
.

If the game is zero-sum, the resulting strategy is ε-Nash.

2Matroid bases can be thought of as a generalization of the combinatorial properties enjoyed by spanning trees, see Section 3.1 for details.
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1.1.4 Dueling Games Finally, we make a slight departure from the resource allocation framework to consider the
popular class of dueling games studied in [IKL+11, ADH+19]. Dueling games model competitive optimization between
two players over a randomized set of events. We will focus our attention on one of the simplest dueling games called
ranking duel (also known as the ‘Search Engine game’) where two players compete to rank n elements over a known
distribution µ, and win a round if they rank x ∼ µ higher than the opponent. This classically models the problem of
search engines competing to optimize a page ranking given a known distribution over searches.

Equilibrium computation is well-studied in dueling games, and algorithms are known in a few settings via a mix
of bilinear embedding techniques and reduction to non-competitive optimization [IKL+11, ADH+19]. As in previous
settings, however, the algorithms are too slow to be of practical use. In contrast, we focus our attention only on the
basic ranking duel, but give both a faster algorithm and a novel no-regret guarantee over the original space.

THEOREM 1.4. (DUELING WITHOUT REGRET (INFORMAL COROLLARY 3.5)) LetI be an instance of ranking duel.
Then δ-RMW can be implemented for T rounds in time

Õ(T2n7 log(δ−1)),

and is no-regret.

COROLLARY 1.4. (EQUILIBRIUM COMPUTATION FOR RANKING DUEL (INFORMAL COROLLARY 3.6)) Let I be
an instance of ranking duel. Then it is possible to compute an ε-CCE in time

Õ(n9ε−4).

If the game is zero-sum, the resulting strategy is ε-Nash.

While a running time of O(n9) can hardly be claimed as practical, the broader technique used in this result has the
eventual possibility of running in near-linear time. We discuss this further in Section 1.3.

1.2 Techniques At their core, our results all stem from the ability to approximately sample distributions arising from
randomized weighted majority on various linear hypergraph games. Recall that RWM maintains a mixed strategy,
which we denote as the RWM distribution, whose probabilities are proportional to their (exponentiated) total historical
loss (negative reward):

(1.2) ∀x ∈ Ai : Pr(x) ∝ βℓ
T(x)

where ℓT(x) is the total loss experienced by pure strategy x up to round T. As discussed earlier in the section, we typically
cannot hope to maintain this distribution explicitly, but it may still be possible to sample from it in polylogarithmic time.
Furthermore, while sampling such a distribution exactly is a challenging task (and very few such algorithms are known),
approximate sampling is perfectly sufficient in our setting. Indeed, our approximate variant δ-RWM satisfies essentially
the same guarantees as RWM itself.

LEMMA 1.2. (δ-RWM IS NO-REGRET (LEMMA 2.1)) δ-RWM over N actions has

Reg(T) ≤ O
(
Lmax

√
T log N + δLmaxT

)
expected regret, where Lmax is the maximum loss experienced by any action.

As discussed at the start of Section 1, no-regret algorithms like RWM are classically used to compute equilibria of the
base game by simulating repeated play across all players. While much of the current literature centers around the Hedge
algorithm that ‘plays’ an entire mixed strategy in each round, classical (and therefore approximate) RWM still leads to
equilibrium computation with high probability, by the classic result that no-regret implies equilibrium computation
[FS99].

LEMMA 1.3. (APPROXIMATE RWM→ EQUILIBRIA (INFORMAL COROLLARY 2.1)) Let I be an m-player game
where each player has at most N strategies. Let {(x(t)

1 , . . . , x
(t)
m )}Tt=1 be the strategies arising from T rounds of δ-

approximate RWM. There exist universal constants C > 0 such that for T = C · L2
maxε

−2
· log(N) rounds, and

approximation parameter δ ≤ ε/(CLmax), these strategies constitute an ε-CCE with high probability (Nash if the game
is two-player zero-sum).
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As a result, efficient no-regret learning and equilibrium computation truly reduces to the existence of an efficient
approximate sampling scheme for distributions arising in the execution of (δ-approximate) RWM. Of course, this is
easier said than done. While approximate sampling is easier than its exact variant, it is still a challenging problem,
even over structured domains. Using a mixture of novel sampling techniques and reductions to known methods in the
literature, we show it is indeed possible to efficiently sample from RWM across a wide variety of structured games. Our
strategies fall into two main paradigms: dynamic programming (DP), and Monte Carlo Markov Chains (MCMC).

1.2.1 Sampling via Dynamic Programming We start with the former: sampling in basic resource allocation settings
via dynamic programming. At its most general, resource allocation problems are played over (possibly constrained)
fixed size partitions of n. The discrete Colonel Blotto game on n troops and k battlefields is the simplest example of
this problem, where the strategy space corresponds to the set of all k-size (ordered) partitions of n (i.e. assignments
x1, . . . , xk such that

∑
xi = n). In this section, we will focus only on the Colonel Blotto problem—general resource

allocation follows from very similar arguments (see Section 4 for details).
Our goal is now to design an algorithm for approximately sampling distributions over strategies of the Colonel

Blotto game that arise from RWM. In this setting, it will actually be easier to solve an equivalent problem, computing
the normalizing factor of Equation (1.2), otherwise known as the partition function:

fk(n) =
∑

x1+...+xk=n

βℓ(x) =
∑

x1+...+xk=n

k∏
h=1

βℓh(xh),

where ℓh(xh) is the historical losses from the h-th battlefield over previous rounds of play if one were to place xh soldiers
on that battlefield. Notice that once we know the value of fk′ (n′) for all k′ ≤ k and n′ ≤ n, it is actually possible to
exactly sample from Equation (1.2) (and therefore implement RWM). In particular, one does this simply by sequentially
sampling the number of troops to put in each battlefield conditional on prior choices in the following manner:

Pr[x1 = y] ∝ βℓ1(y)
· fk−1(n − y) for the first battlefield,

Pr
[
xh+1 = y|x1···h

]
∝ βℓh+1(y)

· fk−h−1

n −

 h∑
j=1

x j

 − y

 for the remaining battlefields.

One can easily check the joint distribution arising from this procedure is exactly the RWM distribution.
Thus we have reduced our problem to computing the partition functions fk′ (n′). This can be done by a simple

dynamic programming argument, and in particular by noticing that:

fk′ (n′) =
n′∑

i=0

βℓk′ (i) · fk′−1 (n′ − i) .(1.3)

Since filling each entry fk′ (n′) takes time at most O(n) given that fh−1 is pre-computed, we can fill the entire DP table
in time O(n2k).3

While this procedure already gives the first no-regret learning algorithm for Blotto in the adversarial setting and
by far the fastest known equilibrium computation, one can still hope to do much better. Indeed, it is known that there
exist ε-Nash Equilibrium with support that is logarithmic in the size of the state-space [LY94], so there is hope in
building a polylogarithmic time algorithm (equivalently, a polynomial time algorithm in the description complexity
of the equilibria). We show this is indeed possible by building an approximation scheme for the above DP. The key
is to observe that the partition functions fk′ (n′) are bounded and monotonic. Roughly speaking, this means f can be
approximated within multiplicative (1 ± ε) factors by a piece-wise function with only poly(k log(n)/ε) pieces (which is
polylogarithmic in the size of the state space).

By carefully computing and maintaining approximate versions of the partition function, we can run a modified
variant of the same dynamic program that computes approximations for all nk partition functions fk′ (n′) (despite their

3We note that this can actually be improved to near-linear in n using the Fast Fourier Transform.
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sizes, these can indeed be presented in only poly(k log(n)) bits due to being piece-wise). Once we have approximately
computed the partition functions, it is easy to show that a similar sampling scheme as discussed for the exact case gives
an efficient approximate sampling scheme for RWM running in poly(k log(n)/ε) time. Combined with Lemma 1.2 and
Lemma 1.3, this results in the first polylogarithmic time algorithm for no-regret learning and (approximate) equilibrium
computation for Colonel Blotto (Theorem 1.1 and Corollary 1.1), as well as for a number of related resource allocation
variants discussed later in the paper (e.g. multi-resource Blotto and Dice games).

1.2.2 MCMC-methods While dynamic programming is a powerful algorithmic method for structured computation,
there are many combinatorial settings common to games we cannot hope to handle via such techniques. Building
an analogous exact-counting based DP for games over bipartite matchings or matroids, for instance, would give
efficient algorithms for classical #P-hard problems such as the permanent and counting matroid bases [CPV95]. On
the other hand, we do actually know of approximation algorithms for these problems based on a powerful tool called
MCMC-sampling [JSV04, ALOV19].

MCMC-sampling is an elegant method for approximately sampling from a distribution µ with exponential size
support usually traced back to Ulam and Von Neumann in the 1940s (see e.g. [Eck87]). The idea is simple. Imagine we
can construct a Markov chain (random process) M satisfying the following three conditions:

1. The stationary distribution of M is µ

2. A single step of M can be implemented efficiently

3. M converges quickly to its stationary distribution.

Approximate sampling would then simply boil down to finding a starting configuration and running the chain until it is
within δ of stationary (this typically takes around O(log(N/δ)) samples for a good chain).

Unsurprisingly, while MCMC-sampling itself is a simple technique, the design and analysis of Markov chains is a
difficult task, and general recipes for their construction are known in very few scenarios. One particularly well-studied
setting in the literature that arises from simulation problems in statistical physics are external fields. Given a hypergraph
Ω ⊂

([n]
k
)
, the distribution arising from external field w ∈ Rn

+ simply assigns each k-set a probability proportional to the
product of its fields:

Ωw(s) ∝
∏
v∈s

w(v).

External fields often correspond to particularly natural problems, and are well-studied in the literature. In a recent
breakthrough series of works, for instance, it was shown that approximate sampling under external fields is possible
whenever the underlying state-space is a good enough high dimensional expander [KO20, AL20, ALOV19, AJK+21].4

This is particularly relevant to our setting since it is a simple observation that the distributions arising from RWM
on a linear hypergraph game are exactly given by the application of an external field over the action space.

OBSERVATION 1.1. (RWM→ EXTERNAL FIELDS (INFORMAL OBSERVATION 3.1)) Let I = {(Ai,Ri)m
i=1} be an m-

player linear hypergraph game. Then for any Ai and any round of play, Player i’s RWM distribution can be written as
the application of an external field w to Ai.

As a result, no-regret learning and equilibrium computation are possible in any linear hypergraph game whose state
space can be sampled under arbitrary external fields. As a short detour, it is worth noting that the result in the previous
section can be phrased as a slight refinement of this statement. At a technical level, our resource allocation algorithm
simply corresponds to an efficient approximate sampling scheme for fixed-size partitions of n under monotonic external
fields (corresponding to the fact that assigning more troops to a battlefield always results in at least as many victories).

Many well-studied games in the literature have state spaces where efficient approximate sampling schemes under
external fields exist. In this work we focus mostly on games played on matroids (e.g. matroid congestion, security),
and dueling games arising from bipartite matchings such as ranking duel. Both settings have well-known sampling
schemes over external fields [ALOV19, CGM19, JSV04], which leads to our results for Congestion, Security, and
Dueling games (Theorems 1.2,1.3, 1.4 and Corollaries 1.2,1.3, 1.4 respectively).

4More formally, when the space satisfies a property known as ‘fractional log-concavity.’
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1.3 Discussion In this work, we present two potential paradigms for learning in games via approximate sampling. In
this section we touch on the pros and cons of each method, their likelihood to generalize beyond the settings considered
in this work, and natural open problems.

1.3.1 Dynamic Programming vs MCMC-sampling Broadly speaking, the DP and MCMC approaches we develop
in this work seem to be largely incomparable. Dynamic programming works well in relatively unconstrained resource
allocation problems, where recursive structure allows for inductive computation of the partition function. On the other
hand, typical MCMC methods (which are usually local in nature) actually fail drastically in this sort of setting due to
the need for global coordination. One natural example of this issue appears in the Colonel Blotto game. Imagine a
scenario where Colonel A has k more troops than Colonel B, then there always exists a configuration where A wins
every battle by assigning one more troop in each battlefield than B. Finding this sort of optimum, however, requires
coordinated planning across battlefields. Typical MCMC methods like Glauber dynamics (see Section 3) only look at a
few battlefields at a time, and therefore struggle to converge to such solutions. Simulations confirm this intuition—even
for small n and k Glauber dynamics seem to exhibit very poor mixing on distributions arising in RWM.

On the other hand, as we mentioned in the previous section, our dynamic programming approach has a significant
issue in any setting with non-trivial combinatorial structure. In particular, because the underlying method relies on
exactly computing the partition function, constructing any such method for a problem like matroid games is #P-hard. On
the other hand, local chains such as the Glauber Dynamics mix extremely fast in these settings, providing near-optimal
algorithms.

Of course, neither of these arguments rules out either approach. It is possible there exist successful MCMC methods
for Blotto that are more global in nature—indeed the main insight leading to the resolution of approximate permanent
was exactly such a Markov chain that avoided these issues [JSV04]. On the other hand, there may exist DP-based
approaches that do not go through computing the partition function. Understanding in which scenarios these two or
other potential sampling methods may apply remains an interesting and important open problem if we wish to extend
efficient learnability in games beyond the few structured settings considered in this work.

1.3.2 Further Open Problems Our work gives the first no-regret learning guarantees and polylogarithmic equilibrium
computation for several well-studied settings in game theory, but there is still much to be done. Perhaps the most
obvious open directions involve improving the computational efficiency (and therefore practicality) of our algorithms.
The polynomial dependencies of our algorithm would be universally improved if we can show that the δ-approximate
optimistic variant of RWM achieves Õ(1) regret in games like its deterministic counter-part, Optimistic Hedge [DFG21],
even for polynomial approximation δ.

QUESTION 1.1. (OPTIMISTIC-RWM) Does δ-RWM with weights {w(t)
i }i,t and optimistic updates

w(t+1)
i ← w(t)

i · β
2ℓ(t)i −ℓ

(t−1)
i achieve polylog(T) regret in games (even for δ = (polylog N)−1)?

These techniques are well known to give a substantial improvement in the exact setting [DFG21], but their analysis
is subtle and may be nontrivial to adapt to the δ-approximate sampling variant we need for efficient computation.

Similarly, our algorithm for dueling games (while faster than prior work in the worst-case), is not practical at O(n9)
running time. One interesting question is whether the MCMC-sampling technique can be improved in this setting using
the fact that the weights arising from RWM are not arbitrary, but exhibit monotonic structure (in the sense that ranking
a page higher is always better). This actually corresponds to a well-studied problem in the sampling and geometry
of polynomials literature (monotone permanent [BHVW11]), but giving an improved sampling algorithm over the
JSV-chain [JSV04] remains an interesting open problem.

QUESTION 1.2. (SAMPLING WITH MONOTONE WEIGHTS) Can a perfect matching in a complete bipartite graph
with n nodes under monotone external fields be sampled in faster than O(n7) time? In near-linear time?

There is certainly hope in this direction, as recent years have seen many breakthroughs towards near-optimal MCMC
methods, including similar linear time guarantees on problems that once seemed infeasible [ALOV19, CGM19, CLV21].

Another natural direction is to try to strengthen the type of equilibria we compute in multiplayer and general-sum
games. Foremost in this direction are the so-called Correlated Equilibria (CE), a substantially stronger notion than CCE
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which allows a player to switch strategies even after they receive instructions from the coordinator. It was recently
shown that a variant of Optimistic Hedge converges quickly to CE in multiplayer, general-sum games [ADF+22]. It is
an open question whether an approximate, sampled variant could do the same. We pose this as the following,

QUESTION 1.3. (CORRELATED EQUILIBRIA WITH RWM) Is there a variant of δ-approximate RWM that converges
to CE and remains efficiently samplable? A variant that achieves Õ(T−1) convergence rate?

Finally, we end with a concrete direction toward answering our original question: when can one efficiently sample
from RWM? We rely in part of this work on a series of breakthroughs in the approximate sampling and high dimensional
expansion literatures [KO20, AL20, ALOV19, AJK+21] leading to a sufficient condition called fractional log-concavity
[AASV21, AJK+21] for sampling hypergraphs under arbitrary external fields (generalizing an earlier result for matroids
[ALOV19]). This is in fact a stronger guarantee than we actually need to ensure efficient sampling for RWM. Not only
are the fields we study typically additionally structured (e.g. monotonic), but we are also okay with some amount of
decay in the mixing time depending (logarithmically) on the field size. Is there a characterization of such objects in
terms of geometry of polynomials or high dimensional expansion?

QUESTION 1.4. Is there a general condition on hypergraphs (e.g. in terms of high dimensional expansion, geometry of
polynomials) that allows for approximate sampling under external fields with polylogarithmic dependence on the worst
field size? What about under structural constraints (e.g. monotonicity)?

1.4 Further Related Work

1.4.1 No-regret learning with structured loss Online learning over exponentially large classes with structured losses
has been considered previously in other contexts (e.g. [Kle05, CHK17, HKW09, KWK+10, ABL14, VLS19]). Much
of this work considers the combinatorial bandit setting [CBL12], which typically competes against a non-adaptive
adversary, but has restricted information. This work introduces the notion of sampling from the MWU distribution
in structured games by constructing a linear embedding and performing MWU explicitly on each dimension (their
ComBand algorithm). We note two distinctions with our current work. First, since the ComBand algorithm focuses
on the partial information setting, the regret guarantee of ComBand has worse dependence on dimension than MWU.
Furthermore, the natural embedding of a linear hypergraph game into binary vectors (which maps a k-set to its
corresponding weight k vector in {0, 1}Ω) typically has dimension linear in n, leading to exponentially worse runtime
compared to our techniques in all of our settings except ranking duel.

There are two additional works which also consider efficient implementation of RWM [WK08, HKW09], but only
for the very special settings of k-sets and permutations (which are generalized by our framework). Also of note is the
later work of [KWK+10], who built a new hedge-based algorithm for these settings called component-hedge that also
gives efficient online learning in a few additional cases (e.g. for spanning trees).

One may also consider a kernelized approach to sampling in RWM [FLLK22]. We note that the kernel approach
(which in particular implies the ability to compute the partition function) cannot be applied efficient in many settings
(e.g. matroids, where this problem is known to be #P-hard). Indeed, it is worth noting that the ability to exactly compute
the partition function implies the ability to exactly sample efficiently (at least in self-reducible settings), so in this sense
requiring efficient kernel computation is strictly stronger than our approach. Further, since the standard embedding
of our setting into a 0/1-polytope has dimension that is linear in n (or more accurately the number of vertices in the
hypergraph), a naive application of a kernelized method leads to bounds that are linear rather than polylogarithmic in n.

1.4.2 Computing equilibra for Colonel Blotto The Colonel Blotto game is one of the most well studied problems
in algorithmic game theory—we restrict our attention here to some of the most notable and relevant results. As
mentioned previously, the first known algorithm to compute exact Nash equilibria strategies for discrete Colonel Blotto
was introduced in [ADH+19], who consider games that are asymmetric across battles and across players (allowing
different troop capacity and rewards across battles and players). This work remains the only known algorithm for exact
equilibrium computation that is polynomial in the number of troops and battlefields, though follow-up work gave a
more practical (but potentially exponential time) algorithm [BDD+17].

Due to the difficulty of understanding the discrete version, a number of works have also considered Colonel Blotto’s
continuous relaxation. It should be noted that the equilibria in the continuous version do not apply to the discrete
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case [PRG22]. The works by [Gro50, GW50, Las02, Tho18, KR21] consider the case that troop counts are identical
(symmetric) for both players. Later, the symmetric case was also studied when Colonels have different values for battles
[KR21]. On the other hand, when the troop counts of the two players differ, constructing/computing equilibria becomes
more complicated. In [Rob06], the author constructs equilibrium strategies explicitly in the case that the rewards for
each battlefield are the same (homogeneous). The authors of [MM15] consider Blotto with heterogeneous rewards and
asymmetric troops counts (but with only two battles). In [SLS14], they consider more than two battles but with strict
assumptions on the battle weights. More recently, the authors in [PRG22] present an efficient algorithm to compute
approximate Nash equilibria in the two-player continuous Colonel Blotto game with asymmetric troop and battle values.

There is also a breadth of work that constructs strategies for approximate and exact equilibrium under constrained
parameter settings of Borel’s two-player discrete version. Beginning with [Har08], the author constructs optimal
strategies explicitly when the troop counts and battle rewards are identical. In [VLS18], the authors give an algorithm
to compute equilibria with fixed approximation (decaying with the number of battles). They also give an algorithm to
compute the best-response strategy to a given distribution over soldiers in each battlefield using dynamic programming.
In [BAEJ20, Tho17], the authors describe equilibria in the symmetric case where the number of soldiers is the same
for both players. Moreover, [BAEJ20] introduces the multiplayer variant. In [VL21], the authors construct equilbria
under particular conditions for an extension of the Colonel Blotto game that accounts for pre-allocations and resource
effectiveness.

2 Preliminaries
All throughout the paper, for integers a ≤ b we denote by [a, b] the set {a, . . . , b} and shorthand [n] = [1,n]. We use the
notations Õ( f ) to hide polylogarithmic dependencies on the argument. Given a finite set Ω, we denote by ∆(Ω) the
(convex) polytope of all distributions defined on Ω. We denote by 2Ω as the power set of Ω, i.e. the set of all subsets of
Ω. Given two finite sets Ω1,Ω2, we denote by Ω1 ×Ω2 as the Cartesian product of the two sets, i.e. (x, y) ∈ Ω1 ×Ω2

if x ∈ Ω1 and y ∈ Ω2. We will use
(Ω

k
)

to denote all size-k subsets of the ground set Ω. Given two integers k,n ∈ Z+,
we will use Pk(n) to represent the set of ordered size-k partition of n.

2.1 Game Theory

DEFINITION 2.1. (MULTIPLAYER SIMULTANEOUS GAME) An m-player Simultaneous Game is a tuple
{{Ai}

m
i=1, {Ri}

m
i=1} where Ai denotes the finite set of actions available for the i-th player and Ri : A1 × · · · × Am 7→ R

denotes the reward function for the i-th player.

Given a set of actions a1, . . . , am, we often write a−i to represent the combined action tuples without ai, i.e.
(a1, . . . , ai−1, ai+1, . . . , am), and Ri(ai, a−i) = Ri(a1, . . . , am) where we have abused notation in the input ordering to
Ri for simplicity of notation.

In a game, a player can choose to play an action, often called a pure strategy, or to draw randomly from a mixed
strategy given by a probability distribution over the set of available actions.

DEFINITION 2.2. (MIXED STRATEGY) Let {{Ai}
m
i=1, {Ri}

m
i=1} be an m-player simultaneous game. For the i-th player,

the set of mixed strategies are all possible probability distributions over the actions Ai. Let si ∈ ∆ (Ai) be
the mixed strategy chosen by the i-th player. Then, the expected reward received by the i-th player is given by
Ea1∼s1,...,am∼sm [Ri(a1, . . . , ai, . . . , am)].

We will also make use of the following notion of a joint strategy.

DEFINITION 2.3. (JOINT STRATEGY) A joint strategy is a distribution σ ∈ ∆ (A1 × · · · × Am). If players were to
participate in a joint strategy, then a central coordinator samples an action tuple a = (a1, . . . , am) ∼ σ, and each player
then plays the action ai correspondingly. As a result, the expected reward of the i-th player is given by Ea∼σRi(a).

For a set of actions a(t)
i for i ∈ [m], and t ∈ [T], we will often write 1

T
∑T

t=1 a(t)
i as the mixed strategy of player i such

that action a(t)
i is played with probability 1/T, and 1

T
∑T

t=1 a(t)
1 ⊗ · · · ⊗ a(t)

m as the joint mixed strategy such that the action
tuple (a(t)

1 , . . . , a
(t)
m ) is played with probability 1/T.

It is well known that if all players play a game optimally, the resulting strategy tuples compose of a Nash Equilibrium
of the game.
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DEFINITION 2.4. (NASH EQUILIBRIUM) In an m-player game {{Ai}
m
i=1, {Ri}

m
i=1}, a tuple of mixed strategies (s1, . . . , sm)

composes an ε-Nash Equilibria (ε-NE) if for all i ∈ [m] it satisfies:

Es1,...,sm [Ri(s1, . . . , si, . . . , sm)] ≥ sup
s′∈∆(Ai)

Es1,...,sm [Ri(s1, . . . , s′, . . . , sm)] − ε,

where the mixed strategies si for i ∈ [m] are mutually independent.

In multiplayer and general-sum games, computating Nash equilibria is challenging. In fact, this problem is known to be
complete for PPAD [DGP06], a complexity class containing many other computationally hard problems. A standard
and arguably more realistic goal is to find the so-called Coarse Correlated Equilibria (CCEs) of the multi-player game,
a relaxation of Nash Equilibrium introduced by Aumann [Aum74].

In a CCE, all players together sample from a joint mixed strategy (in contrast to NE where players independently
sample from their own mixed strategy). Although a player i cannot benefit from switching to any single action s′i before
the joint strategy is sampled, once a strategy si is sampled from a CCE distribution (becoming known to each player), a
player may improve their outcome by deviating (using the fact that her strategy is correlated with other players’). Thus,
CCE apply to situations where a player must commit to their strategy up front and are unable to deviate after sampling.

DEFINITION 2.5. Let I = {(Ai,Ri)m
i=1} be an m-player game. An ε-approximate coarse correlated equilibrium

(ε-CCE) is a joint mixed strategy σ ∈ ∆(A1 × · · · × Am) that satisfies:

∀i ∈ [m], and actions a′i ∈ Ai : Ea∼σRi(a) ≥ Ea∼σRi(a′i , a−i) − ε.

2.2 Linear Hypergraph Game Given a ground set of vertices Ω, a hypergraph H is a collection of subsets of Ω
called hyperedges. If all hyperedges of H are in

(Ω
k
)
, the graph is called k-uniform. In this work we study a special class

of games whose reward functions can be ‘decomposed’ based on the underlying structure of the game’s action space.
More formally, we consider games played over k-uniform hypergraphs whose rewards decompose linearly over vertices.
We denote this class of games as Linear Hypergraph Games.

DEFINITION 2.6. (LINEAR HYPERGRAPH GAMES) Let I = {(Ai,Ri)m
i=1} be an m-player game. We call I a linear

hypergraph game if for all i ∈ [m] there is a groundsetΩi and parameter ki ∈N such that Ai ⊂
(Ωi

ki

)
and a ‘vertex-wise’

reward function RΩi
i : Ωi × A−i such that for all t1, . . . , tn ∈ A1 × . . . × An

Ri(ti, t−i) =
∑
v∈ti

RΩi (v, t−i).

In other words, each element v in the ground setΩi has a certain reward with respect to any choice of the opponents, and
the reward of a k-set is simply the sum of its individual rewards. Many important games that are well-studied in the game
theory literature falls under this category, e.g. Colonel Blotto Games, Security Games, Congestion Games, Dueling
Games, etc. In fact, it should be noted a similar notion has been studied in the online learning setting in [KWK+10],
who develop an efficient no-regret algorithm called Component Hedge for linear losses over basic structures such as the
complete hypergraph, truncated permutations, and spanning trees.

2.3 No-Regret Learning in Games We consider the framework of No-Regret Learning in Games (see [CBL06,
DFG21] and references therein). In this framework, a game is iterated with one or more players implementing a
no-regret learning algorithm to adaptively choose strategies. At the t-th round of the game, each player selects a mixed
strategy s(t)

i , and samples the action a(t)
i ∼ s(t)

i , where the choice of s(t)
i depends only on a(t′)

j for j ∈ [m] and t′ < t.
The goal for each player is to optimize her regret, defined as the following.

DEFINITION 2.7. (REGRET) At the T-th round of the game, the regret for the i-th player is defined as

RegT,i := max
a∗∈Ai

T∑
t=1

Ri(a
(t)
1 , · · · , a

(t)
i−1, a

∗, a(t)
i+1, · · · , a

(t)
m ) −

T∑
t=1

Ri(a
(t)
1 , · · · , a

(t)
m ).
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It is classical result that if all players follow no-regret learning strategies, the overall dynamics quickly converge to a
Nash or Coarse-Correlated Equilibria (CCEs) of the game (see e.g. [FS99, CBL06, OvS13]).

THEOREM 2.1. (NO-REGRET IMPLIES EQUILIBRIUM COMPUTATION [FS99]) Suppose m players are playing un-
der the No-Regret Learning in Games framework. Let σ∗ := 1

T
∑T

t=1 a(t)
1 ⊗ · · · ⊗ a(t)

m be the average mixed joint strategies

played by the i-th player over T rounds. Then, σ∗ forms an T−1 max
(
RegT,1, · · · ,RegT,m

)
-approximate CCE of the

game, where R(T)
i is the regret for the i-th player at the T-th round. When m = 2 and the game is zero-sum, the mixed

strategies
(

1
T
∑T

t=1 a(t)
1 ,

1
T
∑T

t=1 a(t)
2

)
constitute a T−1 max

(
RegT,1,RegT,2

)
-approximate Nash Equilibrium.

2.4 Randomized Weighted Majority Algorithm As in online learning, no-regret learning in games studies the
regret of a player against the opponents’ strategies in repeated play with respect to the best single strategy in hindsight.

One of the most frequently used tools in no-regret learning is the randomized weighted majority (RWM) algorithm.
For player i ∈ [m], RWM maintains the mixed strategies from ∆ (Ai) as follows: at the first round, it chooses uniformly
among the actions.

At the (T + 1)-st round, a cumulative reward is computed for each action x ∈ Ai

r(T+1)(x) =
T∑

t=1

Ri(s
(t)
1 , · · · , s

(t)
i−1, x, s

(t)
i+1, · · · , s

(t)
m ),

and RWM chooses the mixed strategy RM(T+1) (β) (which we refer to as the RWM distribution) such that

Pr
[
RM(T+1) (β) = x

]
∝ β−r(T+1)(x).(2.4)

It is well known that if any player samples according to RM(T+1) (β) in each round, her expected regret will be
bounded in the worst case by Oβ,N(

√
T).

In games whose action sets are exponentially large, exactly sampling from the the RWM distribution may be
intractable in relevant cases. Nonetheless, we show that similar regret bounds hold even when one approximately
samples the RWM distributions in each round (the proof is given in Appendix).

DEFINITION 2.8. (APPROXIMATE SAMPLING) We say a randomized algorithm A with output space Ω
δ-approximately samples a distribution µ over Ω if the output ofA is δ-close to µ in TV-distance.

We call any strategy that δ-approximately samples from RM(t) (β) in each of T rounds of repeated play δ-approximate
RWM, and denote this class of algorithms by δ-RWMT

β . It is not hard to show that δ-RWM has near-optimal regret in
the adversarial setting (see Appendix A).

LEMMA 2.1. (δ-RWM IS NO-REGRET) Let I be an m-player game with at most N actions and Lmax reward. If the
i-th player follows δ-RWMT

β in T rounds of play with learning rate β = 1 −
√

log(N)/T and approximation factor

δ ≤
√

log(N)/T,5 then for any η > 0 they experience regret at most

RegT,i ≤ O
(
Lmax

√

T
(√

log N +
√

log(1/η)
))

with probability at least 1 − η.

As an immediate corollary, for any game, if we can approximate sample from the RWM distribution efficiently, we
immediately get an efficient no-regret learner. In addition, connecting it with Theorem 2.1, we also obtain the following
corollary for equilibrium computation with RWM.

COROLLARY 2.1. (EQUILIBRIUM COMPUTATION WITH δ-RWM) Let I = {(Ai,Ri)m
i=1} be an m-player where

|Ai| ≤ N for each i ∈ [m] and reward bounded by Lmax. Suppose the game is played repeatedly for T rounds.

5We are assuming T ≫ log N. Otherwise, the regret bound becomes LmaxT, which can be achieved by any arbitrary sequence of choices.
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If there is an algorithm which can perform δ-RWMT
β for each player i in time fI(T, δ), then there exists an algorithm

which computes an ε-CCE of I (Nash if the game is 2-player zero-sum) with probability at least 1 − η. Moreover, the
algorithm runs in time

O
(
m · fI

(
C · Lmaxε

−2 log(Nm/η),
ε

C · Lmax

))
.

for some universal constant C > 0.

In Sections 3 and 4, we develop two different types of methods of approximate sampling from the RWM distribution
in many well-studied games and discuss their implications. Before moving on, however, it is convenient to briefly
discuss one computational consideration that frequently occurs in efficient implementation of RWM. In particular, it
will often be the case that our algorithm needs to deal with piece-wise constant functions that map from [0,n] to R (e.g.
reward functions in Blotto for each battlefield are 2-piecewise in this sense). To represent such functions, we will use
the following data structure that we refer as a succinct representation.

DEFINITION 2.9. (SUCCINCT DESCRIPTIONS OF PIECEWISE CONSTANT FUNCTIONS) Let f : [0,n] 7→ R be a
q-piecewise constant function. The succinct description of f , denoted as D f , consists of q tuples of the form
(ai, bi, yi) ∈ (Z+,Z+,R) such that for all x ∈ [ai, bi], f (x) = yi and the intervals {[a1, b1] · · · [aq, bq]} partition
[0,n].

We will often write |D f | to denote the number of intervals contained in the succinct description. Finally, note that
assuming access to succinct descriptions does not lose much generality, as given query access to a standard representation
for the monotonic piece-wise function in question (e.g. in the RAM model), it is easy to build a succinct description in
time q log(n) by binary search.

3 Playing Games via MCMC-Sampling
In this section, we develop the connections between linear hypergraph games, the RWM distribution, and efficient
sampling. In doing so, we unlock access to powerful tools from the sampling literature for the first time in the context
of games. This allows for a number of immediate applications including the first no-regret algorithms for well-studied
settings such as matroids.

With this in mind, let’s first recall the basic framework of Monte Carlo Markov Chains: a powerful tool for
approximately sampling from large spaces like the RWM distribution. More formally, consider the following problem:
given a distribution π over a large state space A, we’d like to approximately sample a state from π in polylog(|A|) time.
MCMC-sampling is an elegant approach to this problem in which one defines a Markov chain M on A satisfying the
following three conditions:

1. The stationary distribution of M is π

2. A single step of M can be implemented efficiently

3. M converges quickly to its stationary distribution.

As long as these three conditions hold, it is possible to efficiently sample from π up to any desired accuracy simply by
running the Markov chain from any starting position a few steps and outputting the resulting state. More formally, recall
that the mixing time of a Markov chain M is the number of steps until the resulting distribution is close in TV-distance
to π:

DEFINITION 3.1. (MIXING TIME) The mixing time of a Markov chain M is the worst-case number of steps until the
total variation distance of M is close to its stationary measure:

T(M, δ) B min
t∈N

: ∀πs, TV(Mtπs, π) ≤ δ.

Thus one only needs to run the chain T(M, δ) times (from any starting position) in order to δ-approximately sample
from π.
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While MCMC-sampling is a promising approach, designing efficient Markov chains is typically a challenging task.
However, in structured settings such as linear hypergraph games, the distributions arising from RWM seem to be more
conducive to the approach. In fact, they correspond to well-studied structure in the approximate sampling literature
called external fields.

DEFINITION 3.2. (EXTERNAL FIELD) Let π be a distribution over a k-uniform hypergraph H ⊂
(Ω

k
)
. The distribution

given by π ‘under external field w’ for w ∈ RΩ+ has measure proportional to the product of w across each k-set:

πw(s) ∝ π(s)
∏
v∈s

w(v).

When π is uniform over H, we often just write Hw for πw.

It is a simple observation that the distribution arising from RWM (or indeed any reasonable variant) is exactly given by
the application of an external field to the state space.

OBSERVATION 3.1. (RWM→ EXTERNAL FIELDS) Let I = {(Ai,Ri)m
i=1} be an m-player linear hypergraph game.

Then for any i ∈ [m], RM(T) (β) can be written as the application of an external field w to Ai such that Aw
i has minimum

probability at most β
−2LmaxT

|Ai |
.

Proof. Assume i = 1 without loss of generality (for simplicity of notation). Recall that RWM operates at round T + 1
by exponentiating the total loss over the previous T rounds:

Pr
[
RM(T) (β) = a

]
∝ β

−

T∑
j=1

R1(a,s( j))

where s(1), . . . , s(T)
∈ A−1 are the historical strategies played by players {2, . . . ,n} in rounds one through T. For

simplicity of notation, let ℓ(T)(a) B −
T∑

t=1
R(a, s(t)) be the total loss. We can similarly define this quantity for any element

of the ground set v ∈ Ω as:

ℓ(T)(v) = −
T∑

t=1

RΩ1 (v, s(t)).

Switching the summations, linearity promises we can express ℓT(s) as a sum over ℓT(v):

ℓT(a) =
∑
v∈a

ℓT(v).

As a result, the RWM distribution is proportional to the product of (exponentiated) total loss for each vertex:

Pr(a) ∝
∏
v∈a

βℓ
(T)(v).

This is exactly A1 under the external field w ∈ RΩ+ where w(v) = βℓ
(T)(v). Since the distribution started uniformly over

A1 and is update by at most βLmax in each step, the minimum probability is at worst β
−2Lmax

|A1 |
.

As an immediate corollary, we get an efficient no-regret algorithm for any linear hypergraph game whose state space
can be approximately sampled under arbitrary external fields, a well-studied problem in approximate sampling. In the
remainder of the section, we’ll show how such results lead to new efficient no-regret learning algorithms for many
well-studied settings in game theory.
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3.1 Glauber Dynamics and Fractionally Log-Concave Games The past few years have seen major advances in
approximate sampling various combinatorial objects under external fields [ALOV19, ALO20, AASV21, AJK+21]. The
recent breakthroughs have largely been driven by new analysis techniques for a simple local Markov chain arising from
the study of Ising models in statistical physics called the Glauber Dynamics. Starting from a state σ ∈ H ⊂

(Ω
k
)
, the

(single-site) Glauber Dynamics for a distribution π over Ai are given by the following two-stage procedure:

1. “Down-Step:” Remove a vertex v uniformly at random from σ.

2. “Up-Step:” Sample from π conditional on σ \ v.

It is not hard to show that π is the stationary distribution of this process. The first major breakthrough towards rapid
mixing of Glauber Dynamics was due to Anari, Liu, Oveis-Gharan, and Vinzant [ALOV19], who used tools developed
in the high dimensional expansion literature [KO20] to prove rapid-mixing of Glauber Dynamics on a broad class of
combinatorial objects called matroids.

DEFINITION 3.3. (MATROIDS) Let Ω be a ground set and J a family of subsets of Ω. (Ω,J) is called a matroid if it
satisfies

1. Non-emptiness: J contains at least one subset.

2. Downward-closure: For all S ∈ J and S′ ⊂ S, S′ ∈ J

3. Exchange-property: For all S,S′ ∈ J s.t. |S| > |S′|, there exists x ∈ S s.t. S′ ∪ x ∈ J .

An element S ∈ I is a basis if it is maximal, and the rank of the matroid (denoted r(J)) is the size of its largest basis.

Note that the bases of a matroid make up an r(J)-uniform hypergraph over vertex set Ω. These objects are perhaps
best thought of as generalizing the combinatorial structure seen in spanning trees (which form the bases of a ‘graphic’
matroid). ALOV’s [ALOV19] major breakthrough was to prove rapid mixing of Glauber Dynamics on matroid bases,
a problem known as the Mihail-Vazirani Conjecture (this result was later optimized by Cryan, Guo, and Mousa
[CGM19]). Since matroids maintain their structure under external fields (see e.g. [AJK+21]), this leads to the following
MCMC-algorithm for sampling matroid bases under arbitrary external fields.

THEOREM 3.1. (GLAUBER DYNAMICS ON MATROIDS [AJK+21, THEOREM 5]) Let H be the set of bases of a rank-
k matroid (Ω,J). Let w ∈ RΩ+ be any external field. Then, the single-step Glauber Dynamics on Hw has mixing
time

T(GD, δ) ≤ O
(
k log

(
log(|Ω|/w∗)

δ

))
.

A substantial amount of progress has been made since ALOV and CGM’s works. In fact, recently Anari, Jain,
Koehler, Pham, and Vuong [AJK+21] introduced an even more general class of hypergraphs that can be sampled under
arbitrary external fields called fractionally log-concave hypergraphs.6 All of our results extend to this setting, but to
our knowledge matroids already capture most settings of interest in game theory so we focus just on this case for
concreteness.

Since matroids are typically exponential size in their rank, we will need implicit access in order to build efficient
algorithms. This is typically done through various types of oracle access to the independent sets. For simplicity of
presentation, we will assume access to a contraction oracle, a standard operation on matroids that restricts the object to
independent sets containing some fixed S ∈ J .

DEFINITION 3.4. (CONTRACTION ORACLE) Let (Ω,J) be a rank-k matroid. A rank-r contraction oracle inputs an
independent set S ∈ J of size r, and outputs (query access to) the contracted matroid (Ω,JS), where

JS = {T : T ∪ S ∈ J}.

6Formally this requires a slight generalization known as the q-step Glauber Dynamics.
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Crucially we will only use rank-(k−1) contraction oracles on matroids with rank k (and thus drop rank from the notation
below). This can always be implemented in |Ω| applications of a standard independence oracle (which decides given
S ⊆ Ω whether S ∈ J), but can often be implemented much more efficiently. For instance, it is easy to see in the case
of uniform (unconstrainted) matroids, this can be implemented in O(k) time simply by removing each element of S
from the list.

Before stating the main guarantees for no-regret learning and equilibrium computation, it will be useful to discuss
a few finer-grained properties typical to games on matroids that help parameterize related computation complexities.
First, while not strictly necessary, it will be convenient to restrict our attention to games where the action sets of all
players are given by ki-uniform hypergraphs on some shared groundset Ω, i.e. Ai ⊆

(Ω
ki

)
for all i. Given such a game

I = {(Ai,Ri)m
i=1}, we will typically write k−i = max j,i k j to denote the maximum support of any viable opponent

strategy.
Second, it will be useful to introduce an important property of congestion and security games we call collision-

sensitivity: the vertex-wise reward of an element v ∈ Ω only changes if v is also selected by another opponent.

DEFINITION 3.5. (COLLISION-SENSITIVE GAMES) Let I = {(Ai,Ri)m
i=1} be an m-player linear hypergraph game

where Ai ⊆ 2Ω. We call the rewards of player i ‘collision-sensitive’ if for all v ∈ Ω, the vertex-wise reward of v only
changes if another opponent also selects v:

∀v ∈ Ω and s, s′ ∈ A−i s.t. v < s, s′ : RΩi (v, s) = RΩi (v, s′).

We will write NCi : Ω 7→ R as the function specifying the i-th player’s no-collision reward function for each vertex, i.e.
NCi(x) = RΩi (x, s) for x < s. We say a collision-sensitive reward has support q if the no-collision reward function NCi
for each player takes on at most q values across all vertices v ∈ Ω.

In a sense, collision-sensitivity can be thought of as an independence criterion on the vertices: roughly speaking, actions
taken on v do not effect actions taken on w for w , v. With these definitions out of the way, we can now state our main
guarantees for no-regret learning on matroids.

THEOREM 3.2. (RWM ON MATROIDS) Let I = {(Ai,Ri)m
i=1} be an m-player linear hypergraph game on a size-n

ground set Ω. If Ai is collision-sensitive with support q, then it is possible to implement δ-RWMT
β in time

O
(
kiT(CO + q log(n) +mk−iT log(n)) log

(
ki log(n) + LmaxT log(β−1)

δ

))
,

assuming access to a q-piecewise succinct description of NCi encoded under an ordering ofΩ and a contraction oracle
matching the same ordering.

The proof of Theorem 3.2 is not particularly interesting beyond combining Observation 3.1 and Theorem 3.1 and
involves mostly tedious implementation details of Glauber Dynamics on matroids. We give these details in Appendix C
for completeness.

Before moving on, we briefly note this result is nearly tight in many of the main parameters. For instance, the
dependence on k,m, and n is Õ(mk log(n)),7 which in many cases (e.g. uniform matroid) is the number of bits required
even to express a set of pure strategies for each player. The bound is also linear in q, which is easily seen to be necessary
since one needs to know the q distinct values in order to sample.

Many games in the literature satisfy the conditions of Theorem 3.2. We’ll end this subsection by giving a few
concrete examples. Perhaps the most well-studied variant of these games is a popular setting called congestion games.
Congestion games are a natural model for resource competition where m-players compete to share n resources and
receive rewards dependent on the number of players sharing the same resource.

7This may increase when the support of other players is non-constant. E.g. if all players are playing bases of k-uniform matroids, we require
mk2 log(n)
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DEFINITION 3.6. (CONGESTION GAME) Given a ground set Ω, an m-player congestion game on Ω consists of a
collection {Ai}

m
i=1 and a reward function c : Ω × [m]→ R where each Ai ⊆ 2Ω are the strategies of player i, and the

reward on the actions (s1, . . . , sn) is given by:

Ri(si, s−i) =
∑
e∈si

c(e, |e(s)|)

where e(s) = {si : e ∈ si}.

Congestion games are particularly well-studied on matroid bases, which are the only structure on which best response
is known to converge to Nash in polynomial time. However, to our knowledge Theorem 3.2 provides the first no-regret
algorithm for congestion games.

COROLLARY 3.1. (MATROID CONGESTION WITHOUT REGRET) Let I = {{Ai}
m
i=1, c} be a congestion game where

each Ai is the set of bases of a rank-ki matroid on a ground set Ω of size n satisfying maxi∈[m] ki = k. Suppose
NC(e) = c(e, 1), the no collision reward function, is q-piecewise under some ordering of Ω. Then there is a no-regret
learning algorithm for I with regret:

RegT ≤ O
(
Lmax

√

T ·
(√

k log(n) +
√

log(1/η)
))

with probability at least 1 − η that runs in time

O
(
kT(CO + q log(n) + Tmk log(n)) log

(
LmaxTk log(n)

))
assuming access to a q-piecewise succinct description of NC encoded in some ordering of Ω and a contraction oracle
matching this ordering.

Proof. It is enough to argue the game is linear, as the result then follows immediately from Theorem 3.2. Denote by s
be the strategy tuples chosen by the players. Recall that the reward of any strategy si ∈ Ai ⊂

(Ω
ki

)
in the congestion game

is given by:
R(si, s−i) =

∑
e∈si

c(e, |e(s)|).

c can easily be extended into the desired vertex-wise reward function, so we are done.

COROLLARY 3.2. (EQUILIBRIUM COMPUTATION FOR MATROID CONGESTION) Let I = {{Ai}
m
i=1, c} be a conges-

tion game where each Ai is the set of bases of a rank-ki matroid on a shared ground set Ω of size n satisfying
maxi∈[m] ki = k. Suppose NC(e) = c(e, 1) is q-piecewise under some ordering of Ω. Then it is possible to compute an
ε-CCE with probability at least 1 − η in time

O
(
mL2

maxk2 log(mn/η)ε−2(CO + q log(n) +mL2
maxk2 log2(mn/η)ε−2) log

(
Lmaxk log(mn/η)/ε

))
.

We note that these results also easily generalizes matroid congestion over any FLC, unlike the best response strategy
for computing Nash. Furthermore, we note that Hedge is actually known to converge to better equilibria [KPT09] than
original techniques based on best response, which gives this approach an additional potential advantage.

Another setting particularly well-suited to matroids are security games, which model a variety of attack/defense
scenarios.

DEFINITION 3.7. (SECURITY GAME) A security game I = (Ad,Aa, {r, ζ, c, ρ}) over ground setΩ consists of defender
actions Ad ⊆ 2Ω, attacker actions Aa = Ω, and reward/cost functions r, ζ, c, ρ : Ω → R. Let S ∈ Ad, i ∈ Aa be the
actions taken by the defender and the attacker respectively. The reward matrices are given by:

Rd(S, i) =

r(i) if i ∈ S
c(i) else,

and Ra(S, i) =

ζ(i) if i ∈ S
ρ(i) else.
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Security games can model a couple natural settings dependent on the choice of parameters. One basic setting is where
the defender has k security resources to defend a set of n targets, and ‘wins’ if the attacker chooses a defended target. On
the other hand, the model also captures the complement of this game where the defender chooses k targets to distribute
key resources, and the attacker wins if they intercept this distribution (pick one of the k marked targets). Security games
have broad applicability in practice, and indeed have been used in cases such as assigning security checkpoints at LAX
[Tam11].

Security games are inherently linear in their natural representation and thus admit efficient no-regret algorithms
when the defender’s state-space is a matroid (simulating RWM for the attacker is trivial as it corresponds to a size-|Ω|
multinomial distribution).

COROLLARY 3.3. (SECURITY WITHOUT REGRET) Let I = (Ad,Aa, {r, ζ, c, ρ}) be a security game where Ad are the
bases of a rank-k matroid on the ground set Ω and Aa = Ω. Suppose c, ρ : Ω 7→ R are q-piecewise under some
ordering of Ω. Then there exists a no-regret learning algorithm for I with regret:

RegT ≤ O
(
Lmax

√

T ·
(√

k log(n) +
√

log(1/η)
))

with probability at least 1 − η that runs in time

O
(
kT(CO + q log(n) + T log(n)) log

(
k log(n)TLmax

))
,

assuming access to q-piecewise succinct descriptions for c and ρ encoded in some ordering of Ω and a contraction
oracle matching this ordering.

Proof. Note that the attacker’s strategy consists of bases of just rank-1 matroid so implementing RWM for her is trivial.
We focus on the implementation for the defender side. Again it is enough to show the game is linear. By definition, we
have

RD(S, i) =
∑
j∈S

RΩD( j, i)

where RΩD : [n] × [n]→ R is

RΩD(i, j) =

r(i) if i = j
c(i) else.

As an immediate corollary, we also get fast equilibrium computation.

COROLLARY 3.4. (EQUILIBRIUM COMPUTATION FOR SECURITY) Let I = (Ad,Aa, {r, ζ, c, ρ}) be a security game
where Ad are the bases of a rank-k matroid on the ground set Ω and Aa = Ω. Suppose c, ρ : Ω 7→ R are q-piecewise
under some ordering of Ω. Then it is possible to compute an ε-CCE (Nash if the game is zero-sum) with probability at
least 1 − η in time

O
(
L2

maxk2 log(n/η)ε−2(CO + q log(n) + L2
maxkε−2 log2(n/η)) log

(
k log(n/η)ε−1Lmax

))
,

assuming access to an q-piecewise succinct description for c and ρ encoded under some ordering ofΩ and a contraction
oracle matching this ordering.

We note that this result easily generalizes to settings with multiple attackers or an attacker who chooses targets
corresponding to a matroid basis.

3.2 Dueling Games and the JSV Chain Matroids (or more generally FLC’s) are not the only type of constrained
state space that can be sampled under arbitrary external fields. Indeed, long before these results Jerrum, Sinclair, and
Vigoda [JSV04] famously proved (in work on approximating the permanent) that bipartite matchings have this property
as well. We give an improved version of their result due to Bezáková, Štefankovič, Vazirani, and Vigoda [BŠVV04].
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THEOREM 3.3. (JSV CHAIN) Let (Kn,n,w) be an edge-weighted complete bipartite graph, and consider the
distribution over perfect matchings given by:

Pr(M) ∝
∏
e∈M

we.

It is possible to δ-approximately sample from this distribution in Õ(n7 log 1
δwmin

) time, where wmin is the minimum
weight.

Note one can phrase this result as a sampling algorithm for permutations over external fields, where the state-space
is viewed as a subset of [n]n. Like matroids, bipartite matchings are very natural objects and underlie a fair number
of well-studied games. In this section, we focus on the setting of dueling games. Dueling games model two player
competitive optimization over a shared ground set.

DEFINITION 3.8. (DUELING GAMES) A dueling game I = (Ω, µ,A1,A2) consists of a set Ω, a distribution µ over
Ω, and strategy spaces A1,A2 ⊂ RΩ+ . The reward matrices are given by the probability of ranking x ∼ µ higher than
the opponent:

R1(s, t) = Prx∼µ[s(x) > t(x)] − Prx∼µ[t(x) > s(x)],

and likewise:
R2(s, t) = Prx∼µ[t(x) > s(x)] − Prx∼µ[s(x) > t(x)].

There is no known polynomial time algorithm for computing equilibria of general dueling games. We will give a general
algorithm for a class of dueling games we call unrestricted.

DEFINITION 3.9. (UNRESTRICTED DUELING GAMES) A dueling game I = (Ω, µ,A1,A2) is called un-restricted if
there exist subsets S1,S2 ⊂ R with |S1| = |S2| = |Ω| such that A1 (respectively A2) consists of all possible assignments
of Ω to S1 (respectively S2).

It is not hard to see that unrestricted dueling games are linear over perfect matchings in a complete bipartite graph. As a
result, we can use the JSV-chain to simulate optimistic hedge in polynomial time.

THEOREM 3.4. (SAMPLING UNRESTRICTED DUELING GAMES) Let I = (Ω, µ,A1,A2) be an unrestricted dueling
game where |Ω| = n. Then it is possible to implement δ-RMWT

β in time Õ(T2n7 log(1/δ)).

Proof. We focus on player 1. The result is analogous for player 2. Strategies in an unrestricted dueling game correspond
to perfect matchings in the complete bipartite graph Kn,n, where the LHS corresponds to elements of Ω, and the RHS
corresponds to elements in S1. To fit into our prior framework of linearity and external fields, one may view these
perfect matchings as elements of En (where E is the edge set of Kn,n). Recall that the reward is given by:

R1(s, t) = Prx∼µ[s(x) > t(x)] − Prx∼µ[t(x) > s(x)]

It is not hard to see this is linear over the edges of matching:

R1(s, t) =
∑
e∈s

RΩ1 (e, t)

where RΩ1 : E × A2 → R is given by:

RΩ1 ({v,w}, t) =


µ(v) if w > t(v)
−µ(v) if w < t(v)
0 else

As a result, Observation 3.1 implies that RWM is given by the application of an external field over the edges of perfect
bipartite matchings, which is exactly the distribution considered in Theorem 3.3. All that is left is to efficiently build
access to the weights of the underlying bipartite graph, which is a small onetime cost that is asymptotically dominated
by even the mixing time of the JSV chain. As a result, it is enough to run Theorem 3.3 T times, which gives the resulting
runtime bound.
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We note that this result can easily be generalized to a slightly larger class of games where |S1| and |S2| may be larger
thanΩ, and specific edges in the bipartite representation may be disallowed (i.e. we might add the constraint that x ∈ Ω
can never be given rank 1). Such strategies correspond to sampling matchings on a generic bipartite graph (rather than
Kn,n), and no-regret learning can can also be performed by the JSV-chain.

Finally, we’ll look at a classic dueling game that fit into the unrestricted framework: ranking duel. Ranking duel
(or the ‘search engine game’) is a game where two players compete to choose the best ranking of n items. One of these
items is pulled from a known distribution, and the player who ranked it higher wins.

Ranking duel is an unrestricted game where S1,S2 = [n] and the action spaces A1,A2 = Sn, i.e. permutations of n.
As a result Theorem 3.4 immediately implies an efficient algorithm for sampling in δ-RWM.

COROLLARY 3.5. (RANKING DUEL WITHOUT REGRET) Let I = ([n], µ,Sn,Sn) be an instance of ranking duel.
Then there exists an algorithm with regret:

RegT ≤ O
(√

T ·
(√

k log(n) +
√

log(1/η)
))

with probability at least 1 − η that runs in time Õ(T2n7).

As a corollary we get the fastest known equilibrium computation for ranking duel,

COROLLARY 3.6. (EQUILIBRIUM COMPUTATION FOR RANKING DUEL) Let I = ([n], µ,Sn,Sn) be an instance of
ranking duel. Then there exists an algorithm computing an ε-CCE (Nash if the game is zero-sum) with probability at
least 1 − η in time Õ(n9 log(1/η)/ε4)

Unfortunately, while the JSV-chain is an improvement over previous extended linear programming approaches to
dueling games [IKL+11, ADH+19], n9 can hardly be called a practical running time. In fact, it should be noted there is
a faster known no-regret algorithm for perfect bipartite matchings called PERMELEARN that runs in O(Tn4) time.

Thus Theorem 3.4 is perhaps more interesting from the perspective of the method than the result itself. Designing
faster and simpler Markov chains for sampling bipartite matchings has long been a favorite open problem in the sampling
community. Our setting gives a nice intermediate version of this problem, as the matching problems arising from
unrestricted dueling games have particularly nice structure. In particular, they correspond to monotonic weightings, in
the sense that for every fixed vertex v on the LHS on the graph, the edge weight of w(v, i) ≥ w(v, j) if i ≥ j. Matchings
with monotonic weights are actually well-studied in the literature, including the resolution of the monotone column
permanent conjecture [BHVW11] and rapid mixing of the switch chain8 for binary monotonic weights [DJM17].
However despite these related results, a fast algorithm for sampling general bipartite matchings with monotonic weights
remains an interesting open problem, and the application to practical no-regret algorithms for dueling games gives yet
another motivation for its study.

4 Playing Games via DP-Sampling
While MCMC-sampling is a powerful tool, standard techniques like Glauber Dynamics may not perform well in settings
that require global coordination across coordinates. In this section, we develop a new sampling technique toward this
end based on Dynamic Programming, taking advantage of the fact that many settings of interest, such as Colonel Blotto,
additionally exhibit certain recursive structure. In particular, we consider a large class of problems called Resource
Allocation Games that broadly generalize the Colonel Blotto game.

Resource Allocation Game. In a resource allocation game, each player assigns fungible items to some number of
battlefields. Namely, for the i-th player, the action space Ai is the set of ordered size ki partition of ni for ki,ni ∈ Z+.
9 One can see the action space is indeed a hypergraph where the vertices correspond to pairs (h, x) interpreted as
“assigning x items to the h-th battlefield”, and a strategy is simply a subset of vertices (1, x1), · · · , (k, xk) satisfying∑k

h=1 xh = n. Let the variables xi,h denote the number of items assigned by the i-th player to the h-th battlefields and

8The switch chain is in essence the 2-step Glauber Dynamics on the view of matchings as a subset of En.
9While we define actions as all k-partitions of [n], our algorithm also applies to action spaces that are subsets of these partitions with arbitrary

assignment constraints on each battlefield (i.e., of the form, at most m items can be assigned to battle j).
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A−i := A1 × · · · × Ai−1 × Ai+1 × · · · × Am denote the set of action tuples from players other than player i. The reward
structure of a resource allocation game is defined by a set of battlefield reward functions ri,h : [0,n] × A−i 7→ R for
each player i ∈ [m] and battlefield h ∈ [ki]. Let a−i ∈ A−i be the actions picked by players other than player i. The total
reward received by the i-th player is given by the sum of rewards over individual battles:

Ri(xi,1, · · · , xi,h, a−i) =
ki∑

h=1

ri,h(xi,h, a−i).

Additionally, let ri,h,a−i : [0,n] 7→ R be the restriction of ri,h after fixing the strategies of the other players i.e.
ri,h,a−i (x) = ri,h(x, a−i). We say the resource allocation game is q-piecewise and monotonic if for every i ∈ [m], h ∈ [ki],
and a−i ∈ A−i, ri,h,a−i is a q-piecewise constant and monotonically increasing function.

In the remainder of this section, we discuss how one achieves no-regret learning for the first player (the algorithm
for the other players is analogous). For this purpose, we will drop the subscript indicating the player number and let
n = n1, k = k1, rh = r1,h, a = a−1.

RWM Distributions. To achieve no-regret learning, we will need to approximately sample from the distributions
arising from running the RWM algorithm on Resource Allocation Games. Assume that the players have played the
game for T rounds. Let a(t)

∈ A−1 be the action tuples observed from all but the first player at the t-th round. For an
action x ∈ A1 that assigns xh items to the h-th battlefield, RWM will set its weight wT(x) as

wT(x) = β
∑k

h=1
∑T

t=1 rh(xh,a(t)) ,(4.5)

where β ∈ [1/2, 1) is the learning rate. For simplicity, we will define the cumulative battlefield reward function (negated
to simplify the syntax appearing after)

ℓ(T+1)
h (xh) = −

T∑
t=1

r j(xh; a(t)),(4.6)

so the weight for strategy x can alternatively be written as
∏k

h=1 β
ℓ(t+1)

h (xh).We remark that, if the resource allocation
game is monotonic and q piecewise, ℓ(T+1)

j (·) is also monotonically increasing and a ((q − 1) · t + 1)-piecewise constant
function. Though the domain of ℓ j is of size n+1, the property allows us to represent it succinctly in space O(qt), which
is critical when we try to design algorithms whose runtime depends on n polylogarithmically. In this section, we focus
on how one could design algorithms to efficiently sample from RM(T) (β) approximately given succinct descriptions of
the functions rh,a(t) for all h ∈ [k] and t ∈ T (recall that rh,a(t) is the restriction of the battlefield reward function rh after
fixing the other players’ actions). This allows us to implement δ-RWM in polylogarithmic time.

THEOREM 4.1. (RWM IN RESOURCE ALLOCATION GAME) Let I = {(Ai,Ri)m
i=1} be an m-player monotonic, q-

piecewise resource allocation game where A1 = Pk(n) for n, k ∈ Z+. Suppose the reward of the first player is bounded
by Lmax. Then it is possible to implement δ-RWMT

β in time

O(Tk) ·
(

min
(
T2Lmax log(1/β)/δ · ζ1

(
log T + log ζ2

)
· log n ,n log n

)
+min(Tq,n)

)
.

where ζ1 := min
(
Lmax log(1/β)/δ, q

)
, ζ2 := max

(
Lmax log(1/β)/δ, q

)
, assuming access to a Tq-piecewise succinct

description of ℓ(t)h defined in Equation (4.6) for all h ∈ [k], t ∈ [T].

As corollaries of the above theorem, we obtain efficient no-regret learners and algorithms for computing CCEs in
Resource Allocation Games.

In the remainder of this section, we present the sampling algorithm whose analysis leads to the proof of Theorem 4.1,
and discuss a number of applications to games in the literature including Colonel Blotto and its variants.
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4.1 Sampling via estimation of partition function We will focus for the moment on how one could sample from the
RWM distribution just in round T. For that purpose, we often omit the superscript T for the function ℓ(T)

h (Equation (4.6))
for simplicity. To sample with a dynamic program, we define the partition function for an RWM distribution in resource
allocation.

Partition Function The partition function fh : [0] ∪Z+ 7→ R+ for h ∈ [k] is defined as the sum of partial weights
of all strategies that allocate y soldiers in the subgame induced on the first h battles. Namely,

fh(y) =
∑

x1+···+xh=y

h∏
i=1

βℓi(xi).(4.7)

It has long been known that efficient algorithms for computing the partition function of a self-reducible problem imply
efficient (approximate) samplers for the problem’s solution space [JVV86]. As one can see, computing the partition
function fh in our setting simply corresponds to counting the number of (weighted) size h partitions of y, which is
exactly such a self-reducible problem. Consequently, if one has the values for the partition functions precomputed, one
can use them to sample from the RWM distribution efficiently. We provide the detailed sampling procedure below for
completeness.

In particular, this is done by sampling the number of items to put in each battlefield sequentially, conditioned
appropriately on prior choices. One puts x1 ∈ {0, . . . ,n} soldier to the first battlefield with probability

Pr[x1 = y] ∝ βℓ1(y)
· fk−1(n − y).(4.8)

To sample from the (h + 1)-th battlefield conditioned on the fact that one has put x1, . . . , xh soldiers in battles 1 . . . h, it
is enough to sample according to the distribution

Pr
[
xh+1 = y|x1...h

]
∝ βℓh+1(y)

· fk−h−1

n −

 h∑
j=1

x j

 − y

 .(4.9)

The probabilities defined according to Equations (4.8), (4.9) yields exactly the RWM distribution, but computing
the partition function exactly can be quite costly. For this purpose, we consider the notion of δ-approximations
(multiplicative) of functions.

DEFINITION 4.1. (δ-APPROXIMATION) Given f : [0,n] 7→ R+ and f̂ : [0,n] 7→ R+, we say f̂ is a δ-approximation
of f if for all x ∈ [0,n] we have

(
1 − δ

)
f (x) ≤ f̂ (x) ≤

(
1 + δ

)
f (x).

Fortunately, with δ/(Ck)-approximations of the partition functions for some sufficiently large constant C, one can still
perform δ-approximate sampling from the RWM distribution (See proof of Lemma 4.1).

Another important observation for achieving efficient (approximate) sampling is that ℓh, the reward function for
each battlefield, is a piece-wise constant function. Hence, further optimization is possible if the approximations used for
each partition function is also piece-wise constant (and this is indeed the case as we will see shortly). The pseudo-code
for the sampling algorithm that takes as input the succinct descriptions of the (approximate) partition functions and the
reward functions is given below.
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Require: Succinct descriptions D f̂h for h ∈ [k] ; succinct description Dgh of the function gh(x) = βℓh(x).
1: Initialize the number of unused soldiers u = n.
2: Initialize an empty assignment description S.
3: for h = 1 . . . k do
4: Compute the succinct description Dκh of the function κh : [0,u] 7→ R+ defined as

κh(i) := gh(i) · f̂k−h (u − i) .(4.10)

▷ |Dκh | = |Dgh | + |D f̂h | and Dκh can be computed in time linear with respect to the description length.

5: {Compute intervals}
6: for (ai, bi, yi) ∈ Dκh do
7: Compute the cumulative weight of constant intervals.

νi := yi · (bi − ai + 1).(4.11)

8: {Sample an interval}
9: Sample j ∈ 1 . . . |Dκh | according to the weight vector ν.

10: {Sample soldiers used in battle h}
11: Sample zh uniformly for {a j, a j + 1, . . . b j − 1, b j} where [a j, b j] is the j-th constant interval in Dκh .

12: Add zh to the strategy S description.
13: u← u − zh.
14: return S.

LEMMA 4.1. Let I = {(Ai,Ri)m
i=1} be an m-player monotonic, q-piecewise resource allocation game where Ai = Pki (ni)

for ni, ki ∈ Z+. At the t-th round, for each h ∈ [k], let f̂h be δ/(2k)-approximations of the partition function defined in
Equation (4.7), and let gh(x) = βℓh(x). Assume one is given the succinct descriptions D f̂h and Dgh . Then, there exists an
algorithm Partition-Sampling which performs δ-approximate sampling from RM(T) (β) in time

k ·O
(
p +min

(
Tq,n

)
+ log n

)
where p := max |D f̂h |.

Proof. If we were to perform the sampling process with fh instead of f̂h, we would get exactly the distribution RM(t) (β).
This follows from repeated applications of Bayes’ rule and that we are sampling the correct conditional distribution.
Namely,

Pr
[
x1 = y1, . . . , xk = yk

]
=

k∏
h=1

Pr
[
xh = yh | xh′ = yh′ ,∀h′ < h

]
To make sure that we are performing δ-approximate sampling overall, it suffices if we perform δ/k approximate

sampling for each conditional distribution (each battlefield). To perform exact sampling, one needs to compute the
weight

κ∗h(i) := gh(i) · fk−h−1(u − i).

Since for every h ∈ [k] we have f̂h are δ/(2k) approximations of fh, we also have κh is δ/(2k) approximations of κ∗h,
which implies that

(1 − δ/(2k))
n∑

i=0

κ∗h(i) ≤
n∑

i=0

κh(i) ≤ (1 + δ/(2k))
n∑

i=0

κ∗h(i).
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It then follows that the distribution defined by κ∗h and κh differs by at most δ in total variation distance.
To analyze the runtime, we note that for each battlefield, we first compute the succinct description Dκh defined

in Equation (4.10). Since it is the point-wise multiplication between gh, which is min(Tq,n)-piecewise constant,
and f̂k−h−1, which is p-piecewise constant, κh will be p +min(Tq,n) piecewise constant. To construct the succinct
description of Dκh , one maintains two pointers a = 0, b = u and keeps track of the interval from Dgh that a is in and the
interval from D f̂h that b is in. Then, one shifts a forward and b backward to seek for constant intervals of Dκh . It is easy
to see the runtime of the construction is linear with respect to |Dκh |. Then, computing νi requires scanning through the
succinct description of Dκh once. After that, we first sample from a multinomial distribution with support at most p,
which takes time O(p). Then, we sample from a uniform distribution with support at most n, which takes time O(log n).
Adding everything together then gives our final runtime.

4.2 Computing the Partition Function We now move to showing how to (approximately) compute the partition
function. As a warmup, we will first show how this can be done exactly via dynamic programming. In particular, we
want to fill a k × n table such that the (h, y) entry corresponds to the value fh(y).

PROPOSITION 4.1. The values fh(y) for all h ∈ [k] and y ∈ [0,n] can be computed in time O
(
nk log n

)
.

Proof. Notice that we have the following recursion

fh(y) =
y∑

x=0

βℓh(x)
· fh−1

(
y − x

)
.(4.12)

fh is exactly the convolution of βℓh(·) and fh−1. Using Discrete Fast Fourier Transform, fh can be evaluated in time
O(n log n) ([Bri88]). Hence, in total, the entire DP table can be filled in time O(nk log n).

Next, we will discuss how one can develop faster algorithms when n is substantially larger than k,T, and Lmax. Our
main technical result is an algorithm to pre-compute the partition functions “approximately” whose runtime depends on
n polylogarithmically.

PROPOSITION 4.2. There exists an algorithm Approx-DP which constructs f̂1, · · · , f̂k such that f̂i is a δ-approximation
of the partition function fi pointwisely, and runs in time

O
(
kT2Lmax log(1/β)/δ · ζ1

(
log T + log ζ2

)
· log n

)
.

where ζ1 := min
(
Lmax log(1/β)/δ, q

)
, ζ2 := max

(
Lmax log(1/β)/δ, q

)
.

This seems a bit surprising as there are in total k · (n + 1) values that we need to pre-compute ( fh(y) for all h ∈ [k] and
y ∈ [0,n]). However, notice that we are only interested in computing approximations to these values. And, as each fh is
itself a monotonically increasing function, we can approximate it with a sufficiently simple piece-wise function.

FACT 4.1. Given a monotonically increasing function f : [0,n] 7→ R+, it can be δ-approximated by a function that is
d-piecewise constant where d = Θ(log(maxx f (x)/minx f (x))/δ).

Hence, the algorithm Approx-DP does not need to output the entire k × (n+ 1) tables specifying the partition functions.
Rather it can just construct the succinct descriptions of a series of functions f̂1, · · · , f̂k such that f̂i is a δ-approximation
of fi. By Claim 4.1, we can indeed find such f̂i that are Θ(log(βTLmax )/δ) = Θ(TLmax log(1/β)/δ) piecewise constant.
As the first building block of the Approx-DP, we demonstrate the routine which, given query access to an unknown
monotonically increasing function, constructs a piecewise constant approximation of the function.

LEMMA 4.2. Given a monotonically increasing function f : [0,n] 7→ R+ and query access to f , there exists an
algorithm Piecewise-Approximate which outputs a piecewise function f̂ satisfying that

• f̂ is d-piecewise constant for d = Θ(log(maxx f (x)/minx f (x))/δ).
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• (1 − δ) · f (x) ≤ f̂ (x) ≤ f (x).

• the algorithm runs in time O
(
log n · d ·Q

)
.

where Q is the cost of making a single query to f .

Proof. The algorithm proceeds by iteratively finding the longest interval from a starting point such that the function
values at the endpoints are within a (1 + δ)-factor of each other, and then letting f̂ on this interval be the constant
function given by the value of f on the right endpoint. By the monotonicity of f , it is easy to see that f̂ is indeed a
δ-approximation of f on this interval. The algorithm then repeats this process starting from the next value on which f̂ is
not yet defined and repeats until f̂ has been defined on the entire domain.

Since the function values of f increase by at least a factor of (1 + δ) between each interval and the last, the total
number of intervals is at most d = Θ(log(maxx f (x)/minx f (x))/δ).

Algorithm 1 Piecewise-Approximate

Require: Query access to f : [0,n] 7→ R+; Approximation accuracy δ.
1: D← {}, a← 0.
2: while a ≤ n do
3: Binary Search to find the largest b such that f (b) ≤ f (a) · (1 + δ).
4: Add (a, b, f (a)) to D. (setting f̂ (x) to f (a) for all a ≤ x ≤ b.)
5: a← b + 1.
6: return D.

With this in mind the construction of the series of piecewise constant approximation functions f̂1, · · · , f̂k
becomes clear: one initializes f̂1 = Piecewise-Approximate( f1) and then defines f̂h recursively as f̂h =
Piecewise-Approximate( f ′h) where f ′h(y) =

∑y
x=0 f̂h−1(x) · gh(y − x). Recall that the routine Piecewise-Approximate

requires query access to the input function. Hence, we need to show how one could implement query access to f1 and
f ′h for h ∈ [k] efficiently (independent of n). The former is easy given the succinct description of f1 since f1 = βℓ1(x) is a
T · q piecewise constant function. To realize the latter, we use the fact that f ′h is the convolution of f̂h and gh which
are both piecewise constant functions. In particular, we give the following routine which efficiently implements query
access to convolutions of piecewise constant functions.

Algorithm 2 Convolution-Query

Require: Succinct descriptions D f ,Dg of two piece-wise constant functions f , g; Query point x.
1: Preprocess D f to extend each tuple into the form (ai, bi, yi, si) where si :=

∑
j<i(b j − a j + 1) · y j.

2: Let

F(z) =


∑z

i=0 f (i) for i ≥ 0 ,
0 otherwise.

3: res← 0.
4: for each interval (ai, bi, yi) ∈ Dg do
5: res += (F(x − ai) − F(x − bi − 1)) · yi.
6: return res.

We note that the pre-processing incurs a one-time cost for each new function f and does not need to be performed
for different queries with respect to the same function f . We also note F(z) can be evaluated by first binary search the
first index j such that for (a j, b j, y j, s j) ∈ D f we have b j ≥ z. Then use the equality F(z) = s j + (z − a j) · y j.
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LEMMA 4.3. Assume one is given the succinct description D f ,Dg of two functions f , g : [0,n] 7→ R+. Let
( f ⋆ g)(x) =

∑x
i=0 f (i) · g(x − i). Suppose |D f | = p f and |Dg| = pg with p f < pg. There exists an algorithm

Convolution-Query that takes O(p f + pg) time to preprocess D f ,Dg and then takes O
(
p f · log pg

)
time to return query

access ( f ⋆ g)(x) for each x ∈ [0,n].

Proof. In the pre-processing step, for each tuple (ai, bi, yi) ∈ D f , we add an extra number si which denotes the prefix-
sum of all elements before the interval [ai, bi]. This can be done easily by scanning through the tuples of succinct
description in order in one pass. Then, if one want to query the prefix sum F(z), one can just find out which interval z
falls into by binary search and then computes in constant time with si.

Then, using the fact that g is piecewise constant, we can rewrite the convolution query ( f ⋆ g)(x) as

x∑
i=0

f (x − i) · g(i) =
|Dg |∑
i=1

yi ·

 x−ai∑
j=x−bi−1

f ( j)

 =
|Dg |∑
i=1

yi ·

(
F(x − ai) − F(x − bi − 1)

)
.

where (ai, bi, yi) are tuples in Dg. Since evaluating each query to F takes at most O(log |D f |) time (for binary search),
the above expression can be evaluated in time O

(
|Dg| log |D f |

)
.

We are now ready to present the pseudocode and analysis of Approx-DP, whose analysis then lead to the proof of
Proposition 4.2.

Algorithm 3 Approx-DP

Require: For each h ∈ [k], succinct description Dgh of the function gh(x) = β−ℓh(x); number of goods n; number of
battlefields k; approximation error δ.

1: Initialize f̂1 as g1.
D f̂1 ← Piecewise-Approximate

(
g1, δ/(4k)

)
.

2: for h = 2 · · · k do
3: Consider the function

f ′h(y) =
y∑

x=0

f̂h−1(x) · gh(y − x) =
y∑

x=0

f̂h−1(x) · βℓh(y−x).(4.13)

4: Set f̂h to be the piecewise approximation of f ′h .

D f̂h ← Piecewise-Approximate
(

f ′h , δ/(4k)
)
.

5: return D f̂h for h ∈ [k].

We note that the query access to g1 is by simply reading from the succinct description Dg1 . Further, query access to
f ′h(y) is implemented by routine Convolution-Query(D f̂h−1

,Dgh , y) (see the Appendix for its pseudocode and runtime).

Proof. [Proof of Proposition 4.2] We will show via induction that each f̂h is monotonically increasing and f̂h an
(h · δ/k)-approximation of the original function fh. Consider the function f ′h defined in Equation (4.13). Since both
f̂h−1(x) and β−ℓh(x) are monotonically increasing, their convolution f ′h is also monotonically increasing. Besides, by our
inductive hypothesis, f̂h−1 is an ((h−1) ·δ/k)-approximation of fh−1, implying that f ′h is an ((h−1) ·δ/k)-approximation
of fh. By Lemma 4.2, f̂h is a (δ/k)-approximation of f ′h , and consequently a (h · δ/k)-approximation of fh.

The runtime of the algorithm is dominated by the (k − 1) times we call the routine Piecewise-Approximate in
Line 4. Notice that maxx fh(x)/minx fh(y) can be at most β−ℓ(x) where ℓ(x) is at most TLmax. As we have argued, each
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f ′h is always a δ-approximation of fh, which implies that maxx f ′h(x)/minx f ′h(y) is at most exp(2 · log(1/β)TLmax).
Therefore, each f̂h is a O(log(1/β)TLmax) constant function.

Piecewise-Approximate uses the routine Convolution-Query as its query access to the input function f ′h .
By Lemma 4.3, Convolution-Query incurs a one-time cost of O(TLmax log(1/β)/δ + Tq) to preprocess the
succinct descriptions of gh(x) = βℓh(x) and f̂h−1. Then, each query takes time O

(
T · ζ1 ·

(
log T + log ζ2

))
. where

ζ1 := min
(
Lmax log(1/β)/δ, q

)
, ζ2 := max

(
Lmax log(1/β)/δ, q

)
. By Lemma 4.2, each call to Piecewise-Approximate

then takes time
O

(
T2Lmax log(1/β)/δ · ζ1

(
log T + log ζ2

)
· log n

)
.

The overall runtime just multiplies the entire expression by k.

Combining Lemmas 4.1,4.1, and Lemma 4.2, we then obtain an efficient algorithm for δ-RWM in Resource Allocation
Games, which concludes the proof of Theorem 4.1.

4.3 Applications of the meta algorithm In this section, we describe the main applications of our sampling algorithm.
Colonel Blotto Game A well-studied example of the resource allocation game is the Colonel Blotto Game. In the

game, m players try to assign {ni}
m
i=1 troops to k different battlefields. For the i-th battlefield, the player who places more

soldiers wins the battle and earn a reward of wi ∈ Z+ (ties are broken e.g. lexicographically).10 This can be viewed as a
resource allocation game where the reward function r j is simply the threshold function r j(x) = w j · 1(x > y) where y is
the maximum number of soldiers placed by the other players. It is easy to see that r j is monotonically increasing and
2-piecewise constant. Hence, Theorem 4.1 immediately gives an efficient no-regret learning algorithm for the Colonel
Blotto Game.

COROLLARY 4.1. (COLONEL BLOTTO WITHOUT REGRET) Let I be an m-player Colonel Blotto Game where the
i-th player tries to assign ni soldiers to k battlefields satisfying ni ≤ n. Then there is a no-regret learning algorithm for
I with regret:

RegT ≤ O
(
Lmax

√

T ·
(√

k log(n) +
√

log(1/η)
))

with probability at least 1 − η that runs in time

Tk ·O
(

min
(
n log n,T2Lmax log(TLmax) log n

)
+m

)
.

Proof. By Lemma 2.1, to achieve no-regret learning in T rounds, we simply need to perform δ-approximate sampling
from the RWM distributions with learning rate log(1/β), where δ =

√
k log n/T and β = 1 −

√
k log n/T. For

T ≥ C · k log n for a sufficiently large constant, we have log(1/β) = O(
√

k log n/T). Hence, log(1/β)/δ = O(1). To
show that we can perform the sampling process efficiently, we will apply Theorem 4.1 with q = 2 since Colonel Blotto
is a resource allocation game whose reward function is always 2-piecewise. To do so, we need to construct and maintain
the succinct descriptions of the cumulative battlefield reward function ℓ(t)h required by the sampling algorithm. Let a(t)

j,h
be the number of soldiers that the j-th player assigns to the h-th battlefield at the t-th round. Then, for the first player,
we essentially have

ℓ(t)h (x) = wh ·

t−1∑
t′=1

1

{
x > max

j=2···m
a(t′)

j,h

}
.

After observing the assignments from other players at round t, one first computes the maximum ν(t)
h = max j=2···m a(t)

j,h,

which can be done in O(m) time. After that, one essentially adds ℓ(t−1)
h with the threshold function 1

{
x > ν(t)

h

}
, which

takes time O(min(T,n)), which is strictly dominated by the sampling time. Overall, the update just adds an additive
factor of O(Tkm) in total.

10In the zero-sum variant the other player also loses wi.
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This immediately gives an algorithm for computing ε-approximate CCEs in the Colonel Blotto Game (or Nash Equilibria
when m = 2). Namely, we simulate no-regret playing for all m players simultaneously for T = C · kL2

maxε
−2 log(mn/η)

many rounds.

COROLLARY 4.2. (EQUILIBRIUM COMPUTATION FOR COLONEL BLOTTO GAMES) Let I be an m-player Colonel
Blotto Game where the i-th player tries to assign ni soldiers to k battlefields satisfying ni ≤ n. There exists an algorithm
to compute an ε-approximate CCE (Nash if the game is two-player zero-sum) with probability at least 1 − η in time

m ·O
(

min
(
nk2L2

maxε
−2 log(m/η) · log2 n , k4L7

maxε
−6 log4(n) · log3(m/η) · log

(
kLmaxε

−1 log(mn/η)
) )

+mk2ε−2L2
max log(mn/η)

)
.

In the regime where n is far greater than k, ε, and Lmax, this gives an exponential improvement over prior algorithms
[ADH+19] (at the cost of being approximate rather than exact).

Dice Game Dice Games are a randomized variant of Blotto first proposed in [DSDMDB06] where m-players11

construct and roll dice, with the highest roller winning the game. These games are another natural instance of resource
allocation. More formally, in the dice game each of m-playes has a ki-sided die and ni points to distribute. The i-th
player builds their die by assigning a number of dots to each face such that the sum is exactly ni (where ki,ni ∈ Z+).
Note that the action space Ai is then exactly the set of ordered partitions Pki (ni). The rewards are determined by “rolling”
the m dice simultaneously; the player with the highest roll wins. In other words, for each player a face is selected
uniformly at random and independently, and the player with more dots on the chosen faces wins and earns a reward of
1. The reward function is given by the expected reward of this process.

Let xi,h be the number of dots that the i-th player placed on the h-th face of her die for i ∈ [m] and h ∈ ki, and
denote by Xi the random variable representing the number of dots obtained by player i after rolling. The expected utility
for the first player is given by

Pr[X1 > max(X2, · · · ,Xm)] =
1
k1

k1∑
h=1

Pr[x1,h > max(X2, · · · ,Xm)]

=
1
k1

k1∑
h=1

m∏
i=2

Pr[x1,h > Xi].

=
1
k1

k1∑
h=1

m∏
i=2

1
ki

ki∑
h′=1

1(x1,h > xi,h′ ).

Let k = maxi ki. It is not hard to see that 1
ki

∑ki
h′=1 1(x1,h > xi,h′ ) is an O(k)-piecewise monotonic function and∏m

i=2
1
ki

∑ki
h′=1 1(x1,h > xi,h′ ) is an O(mk) piecewise monotonic function. Hence, this is indeed a O(mk)-piecewise

monotonic resource allocation game. Applying our meta-algorithm immediately gives the following results on no-regret
learning and equilibrium computation in dice games.

COROLLARY 4.3. (NO-REGRET LEARNING IN DICE GAMES) Let I = {(Ai,Ri)m
i=1} be an m player dice game such

that maxi ki ≤ k and max ni ≤ n. Then there is a no-regret learning algorithm for I with regret

RegT ≤ O
(
Lmax

√

T ·
(√

k log(n) +
√

log(1/η)
))

with probability at least 1 − η, and runs in time

Tk ·O
(

min
(
T2
· log(Tm) · log n,n log n

)
+ Tkm

)
.

11The original dice game is defined for two players. This can be nonetheless generalized naturally to an m-player setting.
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Proof. Similar to the proof of Theorem 4.1, we will apply Theorem 4.1 with q := mk and Lmax = 1. The main step is to
maintain the succinct description of ℓ(t)h . In dice games, the cumulative reward functions ℓ(t)h for all faces are identical
and take the form

ℓ(t)(x) =
t−1∑
t′=1

1
k1

m∏
i=2

1
ki

ki∑
h=1

1(x > x(t′)
i,h ).

After observing the actions x(t)
i,h for i ∈ [m], h ∈ [ki] at the t-th round, we first compute the functions ν(t)

i (x) =
1
ki

∑ki
h=1 1(x > x(t)

i,h), which are all at most k-piecewise. This requires sorting x(t)
i,1, · · · x

(t)
i,ki

, which takes time at most

O(k log k). As a result, constructing all ν(t)
2 , · · · ν

(t)
m takes time in total O(mk log k). Then, we will point-wisely multiply

all ν(t)
i together. One can proceed in a divide and conquer manner: in the first pass, multiply together ν(t)

i in groups
of two, in the second pass, multiply together ν(t)

i in groups of four and continues until all ν(t)
i are multiplied together.

There will be log m passes and the computation cost for each pass is at most O(mk). Hence, the process takes time
O(mk log m) in total. Then, we add the resulting function to ℓ(t−1), which incurs another cost of O(Tkm). Hence, in
total, (assuming log m < T), it takes time O(Tkm) to update ℓ(t) at one round.

COROLLARY 4.4. (EQUILIBRIUM FOR DICE GAMES) Let I = {(Ai,Ri)m
i=1} be a dice game with n =

max(n1, . . . ,nm), and k = max(k1, . . . , km). There exists an algorithm to compute an ε-CCE (Nash if the game
is two-player zero-sum) with probability at least 1 − η in time

m ·O
(

min
(
nk2ε−2 log(m/η) · log2 n, k4ε−6 log4(n) · log3(m/η) · log(kε−1m log(n/η))

)
+mk4ε−4 log2(mn/η)

)
.

4.4 Multi-resource allocation games A natural generalization of the resource allocation game is when each player
has multiple resource types. This occurs naturally in many settings: a Colonel in Blotto, for instance, might have access
to multiple unit types including troops, tanks, and planes (this variant was introduced in [BDD+17]). One would expect
that the reward functions should vary depending on which types of units the Colonel chooses.

More formally, in the multi-resource allocation game, the i-th player has Bi types of fungible items. We denote
by ni,b the number of type-b items that the i-th player possesses. Her strategy is an allocation of these items to ki
battlefields. We denote Xi,b,h as the number of type b items that the i-th player assigns to the h-th battlefield. Similar to
the single-resource allocation game, for each player i and each battlefield h, there is a battlefield reward function

ri,h : ([0,ni,1]) × · · · × ([0,ni,B]) × A−i 7→ R ,

where we recall A−i is the set of strategy tuples from the players other than i. Let S ∈ A−i be the strategies used by the
other players, the total reward for the i-th player on strategy X = {Xi,b,h} is given by summing over the rewards on each
individual battlefield:

Ri(X,S) =
ki∑

h=1

ri,h
(
Xi,1,h, · · · ,Xi,b,h,S

)
.

We now prove a variant of Theorem 4.1 for the multi-resource setting.

THEOREM 4.2. (RWM IN MULTI-RESOURCE ALLOCATION GAME) Let I = {(Ai,Ri)m
i=1} be an m-player multi-

resource allocation game where Ai = Pki (ni,1) × · · · × Pki (ni,B) for n1, · · · nB, k ∈ Z+. Suppose the reward of the first
player is bounded by Lmax, maxi∈[m],b∈[B] ni,b = n, maxi∈[m] ki = k. Then it is possible to implement (exact) RMWT

β in
time

O
(
TkB(n + 1)2B +mTk2B · (n + 1)B

)
.

assuming query access to ri,h : ([0,ni,1]) × · · · × ([0,ni,B]) × A−i 7→ R.
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Proof. We proceed to analyze the partition function of the RWM distribution. As usual, we will conduct the analysis
from the first player’s perspective and drop the subscript used to index the player. Suppose the game is played for
T rounds and the observed actions from the other players’ are S(1), · · · ,S(T). Then, similar to Equation (4.6), for an
assignment x ∈ Ai, we will define the cumulative reward

ℓ(T+1)
h (X1,h, · · · ,Xb,h) =

T∑
t=1

rh

(
X1,h, · · · ,XB,h,S(t)

)
.

For simplicity, we will abbreviate (X1,h, · · · ,Xb,h) as X∗,h. Then, we have the weight for the action x is simply

wT(X) =
k∏

h=1

βℓ
(T+1)
h (X∗,h).

After dropping the superscript marking the rounds, accordingly, the partition function is now fh : ([0,n])B
7→ R+ for

h ∈ [k] defined as

fh(y) =
∑

X∈Xy

k∏
h=1

βℓh(X∗,h) ,

where Xy = {X ∈ (Z+)B×k
|∀b ∈ [B] ,

∑k
h=1 Xb,h = yb}. We still have the recursion

fh(y) =
∑
z∈Zy

fh(y − z) · βℓh(z) ,(4.14)

whereZy = {z ∈ ([0,n])B
|∀b , zb ≤ yb}.

Compared to the single-resource allocation game, there are O
(
k · (n + 1)B

)
partition function values we need to

compute. Using dynamic programming and the recursion stated in Equation (4.14), each of them now takes time at
most O

(
B(n + 1)B

)
. Hence, filling the entire DP table takes time O

(
kB · (n + 1)2B

)
.

After that, we likewise sample the assignment for each battlefield sequentially. We will write n = (n1, · · · ,nB).
For the first battlefield, we sample

Pr[X∗,1 = y] ∝ βℓ1(y)
· fk−1

(
n − y

)
.

To sample from the (h + 1)-st battlefield, one sample according to the distribution

Pr
[
X∗,h+1 = y|X∗,1···h

]
∝ βℓh+1(y)

· fk−h−1

n −

 h∑
j=1

X∗, j

 − y

 .
The domain size of the distributions we sample from is O

(
(n + 1)B

)
. To compute the probabilities of each element

takes O(B) times. Hence, the sampling time for one battlefield is O
(
B · (n + 1)B

)
. Hence, the runtime of the sampling

process is dominated by that of computing the partition functions.
Finally, we discuss how we maintain the function ℓ(t)h at round t. To do that, we gather the strategy S(t) observed

at the t-th round from other players and then query rh(z,S(t)) for each z ∈ ([0,n])B, and add that to ℓ(t−1)
h (z). Each

query takes time O(mBk) (to write down the input). In total, maintaining ℓ(t)h in T rounds takes time O(mTk2B(n + 1)B).
Adding this together with the time for computing the partition function then gives our final runtime.

As an immediate application, we get no-regret learning and equilibrium computation for the multi-resource allocation
games such as the multi-resource Colonel Blotto problem.
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COROLLARY 4.5. (MULTI-RESOURCE WITHOUT REGRET) Let I = {(Ai,Ri)m
i=1} be an m-player multi-resource

allocation game where Ai = Pki (ni,1) × · · · × Pki (ni,B) for n1, · · · nB, k ∈ Z+. Suppose the reward of the first player
is bounded by Lmax, maxi∈[m],b∈[B] ni,b = n, maxi∈[m] ki = k. Then there is a no-regret learning algorithm for I with
regret:

RegT ≤ O

Lmax
√

T ·


√√√ B∑

b=1

log(nB) +
√

log(1/η)




with probability at least 1 − η that runs in time

O
(
TkB(n + 1)2B +mTk2B · (n + 1)B

)
assuming query access to ri,h : ([0,ni,1]) × · · · × ([0,ni,B]) × A−i 7→ R.

COROLLARY 4.6. (EQUILIBRIUM COMPUTATION FOR MULTI-RESOURCE ALLOCATION GAMES) Let
I = {(Ai,Ri)m

i=1} be an m-player multi-resource allocation game where Ai = Pki (ni,1) × · · · × Pki (ni,B) for
n1, · · · nB, k ∈ Z+. Suppose the reward of the first player is bounded by Lmax, maxi∈[m],b∈[B] ni,b = n, maxi∈[m] ki = k.
There exists an algorithm to compute an ε-approximate CCE (Nash if two-player zero-sum) with probability at least
1 − η in time

O
(
m(n + 1)2Bk2B2L2

maxε
−2 log(mn/η) +m2(n + 1)Bk3B2L2

maxε
−2
· log(mn/η)

)
assuming query access to ri,h : ([0,ni,1]) × · · · × ([0,ni,B]) × A−i 7→ R.
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A No-regret Learning and Equilibrium Computation
LEMMA A.1. (LEMMA 4.1 FROM [CBL06] REPHRASED) Let I = {(Ai,Ri)m

i=1} be an m-player game played
repeatedly for T rounds. Denote s(t)

i as the mixed strategy chosen by the i-th player, and a(t)
i ∼ s(t)

i as the action
sampled. Assume the i-th player follows an algorithm which computes s(t)

i solely based on a(t′)
j for t′ < t and j ∈ [m]\{i}.

Furthermore, suppose the following is true

sup
b(t)

j ∈A j for t∈[T], j,i

E

max
e∈Ai

T∑
t=1

Ri(e, b
(t)
−i) −

T∑
t=1

Ri(a
(t)
i , b

(t)
−i)

 ≤ B.

Then, for all δ ∈ (0, 1), with probability at least 1 − δ, it holds

max
e∈Ai

T∑
t=1

Ri(e, a
(t)
−i) −

T∑
t=1

Ri(a
(t)
i , a

(t)
−i) ≤ B + Lmax

√
T/2 log(1/δ).

at the end of the repeated play for the i-th player.

Proof. [Proof of Lemma 2.1] If one follows exactly from the Randomized Weighted Majority algorithm, one has the
guarantee that

sup
b(t)

j ∈A j for t∈[T], j,i

Ea(t)
i ∼RM(t)

i (β)

max
e∈Ai

T∑
t=1

Ri(e, b
(t)
−i) −

T∑
t=1

Ri(a
(t)
i , b

(t)
−i)

 ≤ Lmax
√

T log N.

In reality, since we are performing κ-approximate sampling, we have TV
(
RM(t)

i

(
β
)
, s(t)

i

)
≤ κ. Since the reward of the

game is bounded by Lmax, we have

sup
b(t)

j ∈A j for t∈[T], j,i

Ea(t)
i ∼s(t)

i

max
e∈Ai

T∑
t=1

Ri(e, b
(t)
−i) −

T∑
t=1

Ri(a
(t)
i , b

(t)
−i)

 ≤ Lmax
√

T log N + κ · Lmax · T.

Then, by Lemma A.1, it then holds

1
T

max
e∈Ai

T∑
t=1

Ri(e, a
(t)
−i) −

1
T

T∑
t=1

Ri(a
(t)
i , a

(t)
−i) ≤ Lmax

√
log N/T + κ · Lmax + Lmax

√
log(1/δ)/(2T).

with probability at least 1 − δ. Setting T = L2
maxε

−2 log(N/δ) and κ = min(1/2, ) then gives the average regret is
bounded by O(ε).

Proof. [Proof of Corollary 2.1] By Lemma 2.1, if we set T = C ·
(
L2

maxε
−2 log(Nm/η)

)
, δ = ε/(CLmax) for a sufficient

large constant and simulate the repeated game playing for T rounds where each player makes her decision based on
δ-RWM, the regret of the i-th player is bounded by ε with probability at least 1 − δ/m. By union bound, this holds for
all players simultaneously. Ths results then follows from Theorem 2.1.

B Bit-complexity and Stability of Numeric Operations
To avoid un-necessary technical details of the bit-complexities of numbers and time complexities of algebraic operations,
the algorithmic results in the main body of this work are stated in the Algebraic Computation Model. In particular, we
assume additions, subtractions, multiplications, divisions, exponentiation and comparisons can be carried between real

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3852

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 7

7.
13

8.
16

.2
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



numbers in constant time, and that the computing device has query access to the digits of the real numbers. We remark
that, for all the games we study, if the rewards are rational numbers with bounded bit complexities, our algorithms
can all be implemented exactly in the RAM computation model with their runtime increased by at most polynomial
factors. Unsurprisingly, if one is more careful with the numeric precision needed and maintains only multiplicative
approximations of each algebraic operations, our algorithms can be implemented in the RAM model losing only
poly-logarithmic factors. In this section, we discuss some standard techniques to this end for the reader interested in
any implementation of our algorithms.

We first discuss how we represent and perform algebraic operations on numbers whose absolute values are
exponentially large or small. While writing these numbers down exactly is costly, for the purpose of δ-approximate
sampling, it is actually sufficient t keep poly(δ) multiplicative approximations of these numbers. Fortunately, these
approximations can indeed be represented much more succinctly using the scientific notations. For convenience,
for a number a ∈ R+, we will call ã a δ-approximation of a if we have (1 − δ)a ≤ ã ≤ (1 + δ)a and a one-sided
δ-approximation if we have (1 − δ)a ≤ ã ≤ a.

FACT B.1. Given a ∈ R+ satisfying exp(−q) ≤ a ≤ exp(q) for q ∈ Z+, let ã be a written in scientific form keeping
Θ(log(1/δ)) many significant figures. Then, ã is a one-sided δ-approximation of a and can be represented using
Θ(log(δ−1) + log q) many bits.

Instead of performing exact arithmetic computations, we can perform ‘approximate’ arithmetic operations on real
numbers in all our algorithms.

CLAIM B.1. Let a, b ∈ R+ be two numbers in scientific notations with s significant figures.

• one-sided δ-approximation of additions and multiplications can be performed in time O(s) and O(s log s)
respectively.

• δ-approximation of division can be performed in time O(s + log(1/δ)).

• Given 1 ≤ α ≤ 2 that has s significant figures and i ∈ Z+ ∪ {0}, a one-side δ-approximation of αi can be
computed in time O(s · log2 i · log(δ−1)).

Proof. The first two claims follow from the definition of (one-sided) δ-approximation. We proceed to show that one
can perform approximate exponentiation efficiently. In particular, we argue that αi can be computed fairly accurately
via fast exponentiation while keeping C · log(i/δ) significant figures throughout the computation for some large enough
constant C. By doing so, we can make sure the approximation to α is a one-sided ξ-approximation where ξ = δ/ic

for some large enough constant c. Consequently, the approximation of β j for any j ∈ [i] that is a power of 2 is within
(1 ± 4log2(i)

· ξ). It then follows αi can be approximated within (1 ± ξ ·O(log i) · 4log2(i)) = (1 ± δ) when c is sufficiently
large.

Unsurprisingly, the output of applying a series of arithmetic operations will be within multiplicative factors of the result
obtained by replacing each operation with its approximate counterpart.

FACT B.2. Given a variable y that is the result of V arithmetic operations including Addition, Multiplication and
Division on the inputs x1, · · · , xn ∈ R+ in scientific notations with s significant figures, let ŷ be the variable obtained by
replacing all the arithmetic operations with their δ/(10V)-approximate counterparts for small enough δ. Then, ŷ will
be a δ-approximation of y. Moreover, if only additions and multiplications are used, the approximation is one-sided i.e.
ŷ ≤ y.

Careful readers may find that subtraction is excluded when we discuss approximate algebraic operations in Claim B.1.
For two numbers a, b ∈ R+ and â, b̂ be their δ approximations counterparts, â − b̂ may be wildly different from a − b
when a is substantially larger than b. Yet, subtraction between real numbers is indeed used in two different places.
Firstly, subtractions occur in Discrete Fourier Transform, which is used in Proposition 4.2 to compute the convolution
between functions. The numeric stability of DFT varies among different implementations and depends on a number of
subtle factors (See [Sch96]). If numeric stability indeed becomes an issue in the actual implementation, one can fallback
to evaluate the convolution in the brute-force manner, which increases the complexity from O(nk log n) to O(n2k).
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Another place where subtractions are used is in Algorithm 2 to compute range sum of piece-wise function efficiently.
As such, we need a numerically more stable technique for performing range sum query in place of the prefix sum
technique. In particular, given the succinct description of a q-piecewise constant function f : {0} ∪ [n] 7→ R+ and
δ ∈ (0, 1) beforehand, we want to perform some preprocessing in time q · polylog(n, q, δ−1) and then answer a series of
queries of the form

∑b
i=a f (i) within (1 ± δ) multiplicative factors in time polylog(n, q, δ−1).

CLAIM B.2. Given the succinct description D f of a q-piecewise constant function f : {0} ∪ [n] 7→ R where the
function values contain at most s significant figures, there exists an algorithm Range-Sum-Query which performs
some preprocess in time O(qs) + polylog(q, δ−1,n), and can compute one-sided δ-approximation to query of the form∑b

i=a f (i) in time polylog(n, q, δ−1).

Proof. Let D f = {(a1, b1, y1), · · · (aq, bq, yq)}. In the preprocessing step, we first compute the range sum of all intervals
[ai, bi] (approximately). Denote the results as an array [s1, · · · , sq]. Then, we build a segment tree with the array, where
nodes store the approximate range sum of intervals of lengths that are powers of 2. This takes O(q log(q)) arithmetic
operations. The data structure then allows us to answer

∑b
i=a si with O(log(q)) arithmetic operations with enough

accuracy. Then, when we receives a query
∑b

i=a f (i). We first binary search for the intervals of f that a, b fall into
respectively. Next, one uses the pre-built segment tree to answer the range sum of any intervals that are strictly contained
in [a, b] and then adds the sum of remaining elements. It is then not hard to see that the pre-processing step takes time
at most O(qs) + polylog(q, δ−1,n), and answering each query takes time polylog(q, δ−1,n).

Lastly, we discuss the building block of sampling: sampling from multinomial distributions. Typically, our
algorithm computes a vector w1, · · · ,wn and then samples from the multinomial distribution X where Pr[X = i] ∝ wi.
This is simple in the Algebraic computation model as one can easily reduce this to sampling from uniform distributions
over real intervals (which can be done at assumed unit cost). In particular, one first computes the prefix sum W1, · · ·Wn.
Then, one samples z from the uniform distribution over the interval [0,Wn] and returns j for W j−1 < z < W j. This
clearly takes at most time O(n). In the bit-complexity model, we can nonetheless achieve approximate sampling from
arbitrary multinomial distributions with similar runtime.

CLAIM B.3. Given a weight vector (w1, · · · ,wn) in scientific notations with s significant figures, δ-approximate
sampling from the multinomial distribution X such that Pr[X = i] ∝ wi can be done in time Õ(n · (log(δ−1) + s)).

Proof. After reading the input, one first truncates to make sure each wi has at most O(log(n/δ)) many significant
figures as that is already enough for the specified ‘sampling accuracy’. After that, all arithmetic operations will be
carried out with their c · δ/n approximations for some sufficiently small constant c. In the next step, one normalizes the
weight vector and rounds each wi to their nearest multiple of c · δ/n. Doing so changes the distribution by at most c · δ
in total variation distance. One can then multiply all wi by a factor of n/(c · δ) to make everything an integer. Finally,
one can do the same thing as sampling in the Algebraic computation model: computing the prefix sums and reducing
the problem to sampling from uniform distributions, now over integer intervals. The integers in the interval can be at
most n2/(c · δ) so the runtime is dominated by the preliminary computations performed.

We note that in many cases we actually require a slightly more complicated sampling procedure where we
wish to sample from a q-piecewise support-n multinomial with q ≪ n. This can be done similarly in time
Õ((q + log(n))(log(δ−1) + s)) by first sampling one of the q piecewise intervals by the above technique, then sampling
uniformly within the interval.

C Implementing Glauber Dynamics
This section is devoted to proving Theorem 3.2, which we repeat here for convenience.

THEOREM C.1. (RWM ON MATROIDS) Let I = {(Ai,Ri)m
i=1} be an m-player game on a size-n ground set Ω. If Ai

consists of the bases of a rank-k matroid, is linear, and is collision-sensitive with support q, then it is possible to
implement δ-RWMT

β in time

O
(
kiT(CO + q log(n) +mk−iT log(n)) log

(
ki log(n) + LmaxT log(β−1)

δ

))
,
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assuming access to a q-piecewise succinct description of NCi encoded under an ordering ofΩ and a contraction oracle
matching the same ordering.

Proof. Since Ai is given by the bases of a rank-k matroid, the single-step Glauber Dynamics on Ωw mix in time

T(GD(Ωw), δ) ≤ O
(
k log

(
log(|Ai|/w∗)

δ

))
for any external field w ∈ RΩ+ . In our setting, we have that |Ai| ≤ nk, and w∗ ≥ βLmaxT, and the process needs to be
repeated once per round bringing the complexity to:

O
(
kT log

(
k log(n) + LmaxT log(β−1)

δ

))
times the implementation time of a single step of Glauber dynamics.

It is left to bound this cost. To implement a step of GD in the t-th round of optimistic hedge, we first remove a
uniformly random element from our current basis, then re-sample from the conditional distribution. The first step can
easily be implemented in O(log(k)) time. The latter step requires more care. Let ê denote the (k − 1)-size set resulting
from the down-step of the walk. Query the contraction oracle on ê and call the resulting set Se ⊂ E. Notice that by
definition, the conditional measure of any x ∈ Se is proportional to β−rt(x) where

rt(x) =
t∑

j=1

RΩi (x, s( j)).

Thus to perform the conditional sampling efficiently, it is sufficient to compute the external field for each element in Se
and sample from the corresponding multinomial distribution.

While implementing this naively would require time at least |Se| to check the weight of each element in the
conditional distribution, this can be circumvented via our assumption that our game is collision-sensitive with bounded
support. In particular, assume for the moment we have access to a succinct description for the vertex-wise total rewards
rt(v) that is (q + tmk−i)-piecewise, and that the output of the contraction oracle respects the order of the description (we
will argue this can be constructed efficiently shortly). As a result, the total rewards in Se are (q + tmk−i)-piecewise as
well. This means that using query access to CO,12 we can build a succinct description for total rewards on the elements
in |Se| (labeled by their index in CO). Sampling from the corresponding multinomial distribution in the algebraic
computation model then takes O((q + tmk−i)) time, and one can then feed the sampled index into CO to receive the
correct vertex. Altogether, a single step of GD can therefore be implemented in O(CO + (q + tmk−i) log(n)) time
assuming access to the appropriate description of total rewards.

Finally, we argue we can construct and maintain the succinct descriptions of the vertex-wise reward functions
over T rounds efficiently. Recall we start with an q-piecewise succinct description for the no-collision vertex-wise
reward values. In each round, at most mk−i new elements of Ω are introduced into the history, and since the game is
collision-sensitive the resulting succinct description of rewards is at most (q + tmk−i)-piecewise in the t-th round as
desired. The computational cost stems from noting that it is actually sufficient just to update the rewards for vertices
which have appeared in the opponent history (and the number of rounds in which it has appeared). During look-up,
computing the total reward for any vertex v that has appeared t times can be computed in O(1) time by simply adding
the stored value (T − t)Ri(v, s) for any s = v. The cost of building the succinct description is therefore asymptotically
dominated by the sampling procedure above, which gives the final complexity.

12Formally we are also assuming here one has query access to the size of the output of the contraction oracle. Note this can be easily implemented
in polylog(n) time even if one does not assume such access.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3855

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 7

7.
13

8.
16

.2
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	Results
	The Colonel Blotto Game
	Congestion Games
	Security Games
	Dueling Games

	Techniques
	Sampling via Dynamic Programming
	MCMC-methods

	Discussion
	Dynamic Programming vs MCMC-sampling
	Further Open Problems

	Further Related Work
	No-regret learning with structured loss
	Computing equilibra for Colonel Blotto


	Preliminaries
	Game Theory
	Linear Hypergraph Game
	No-Regret Learning in Games
	Randomized Weighted Majority Algorithm

	Playing Games via MCMC-Sampling
	Glauber Dynamics and Fractionally Log-Concave Games
	Dueling Games and the JSV Chain

	Playing Games via DP-Sampling
	Sampling via estimation of partition function
	Computing the Partition Function
	Applications of the meta algorithm
	Multi-resource allocation games

	No-regret Learning and Equilibrium Computation
	Bit-complexity and Stability of Numeric Operations
	Implementing Glauber Dynamics



