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This paper highlights a tension between semiparametric efficiency and bootstrap
consistency in the context of a canonical semiparametric estimation problem, namely
the problem of estimating the average density. It is shown that although simple plug-
in estimators suffer from bias problems preventing them from achieving semipara-
metric efficiency under minimal smoothness conditions, the nonparametric bootstrap
automatically corrects for this bias and that, as a result, these seemingly inferior
estimators achieve bootstrap consistency under minimal smoothness conditions. In
contrast, several “debiased” estimators that achieve semiparametric efficiency under
minimal smoothness conditions do not achieve bootstrap consistency under those
same conditions.

1. INTRODUCTION

Peter Phillips is a towering figure in econometrics. Among other things, his
pathbreaking work on nonstationary time series (e.g., Phillips (1987) and Phillips
and Perron (1988) in the case of unit-root autoregression and Phillips and Durlauf
(1986) and Phillips and Hansen (1990) in the case of cointegration) has forcefully
demonstrated that estimators can be useful without having limiting distributions
that are “simple.”’In this paper, we show that a similar phenomenon occurs in a
seemingly very different setting, namely a canonical semiparametric estimation
problem in a model with independent and identically distributed (i.i.d.) data.

The specific semiparametric estimation problem we consider is the problem
of estimating the average density of a continuously distributed random vector
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(of which we have a random sample of observations). In that setting, a well-
known apparent shortcoming of simple “plug-in” estimators is that they have
biases that are avoidable and potentially nonnegligible. In particular, the biases in
question prevent the plug-in estimators from achieving semiparametric efficiency
under minimal smoothness conditions. In recognition of this, several methods of
“debiasing” have been proposed and have been found to be successful insofar
as they give rise to estimators that do achieve semiparametric efficiency under
minimal smoothness conditions. (The particular examples given in this paper were
obtained by applying and combining ideas from Hall and Marron (1987), Bickel
and Ritov (1988), and Powell, Stock, and Stoker (1989).)

Recognizing that construction of an estimator is often a means to the end
of conducting inference, a natural question is whether existing average density
estimators permit valid inference to be conducted under minimal smoothness
conditions. In this paper, we answer a specific version of the latter question by
investigating whether average density estimators achieve bootstrap consistency
under minimal smoothness conditions. Looking at estimators through the lens
of the bootstrap is of interest for several reasons, most notably because one can
answer questions motivated by inference considerations without having to make
additional (and potentially arbitrary) assumptions about the behavior of standard
errors (i.e., estimators of nuisance parameters). In other words, because bootstrap
consistency (or lack thereof) can be interpreted as a property of an estimator, it
has the potential to shed new light on the relative merits of competing estimators.
In this paper, we show that average density estimation provides an example where
this potential is realized.

To be specific, whereas several distinct approaches to debiasing achieve semi-
parametric efficiency under minimal smoothness conditions, we find that many of
the estimators produced by these approaches fail to achieve bootstrap consistency
under minimal smoothness conditions. In contrast, in spite of failing to achieve
semiparametric efficiency under minimal smoothness conditions, simple plug-in
estimators achieve bootstrap consistency under minimal smoothness conditions.
In other words, we find that plug-in estimators enjoy certain nontrivial advantages
over some of their debiased counterparts.

The paper proceeds as follows. Section 2 presents the setup and introduces
the formal questions we set out to answer. Studying the most prominent average
density estimators, Sections 3 and 4 are concerned with efficiency and boot-
strap consistency, respectively. Alternative bootstrap procedures are discussed
in Section 5, whereas alternative estimators are analyzed in Section 6. Finally,
Section 7 offers concluding remarks, and the Appendix collects proofs of our main
results.

2. SETUP

Suppose X1, ...,X, are i.i.d. copies of a continuously distributed random vector
X € R with an unknown density fy. Assuming f; is square integrable, a widely
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studied estimand in this setting is

6o = E[fo(X)],

the average density. Influential work on estimating 6, includes Hall and Marron
(1987), Bickel and Ritov (1988), and Ritov and Bickel (1990); see also Giné
and Nickl (2008a) and the references therein. In econometrics, estimators of 6
are often viewed as prototypical examples of two-step semiparametric estimators
(in the terminology of Newey and McFadden (1994)) and therefore provide a
natural starting point when attempting to shed light on the properties of two-step
semiparametric estimators.

In what follows, we shall explore the extent to which certain prominent esti-
mators of 6y enjoy one (or both) of two desirable properties. The first of these
properties is a very conventional one, namely (semiparametric) efficiency. It is
well known (e.g., Pfanzagl, 1982, Exam. 9.5.2; Ritov and Bickel, 1990 ) that if f;
is bounded, then the efficient influence function L is well defined and given by

Lo(x) = 2{fo(x) — 6o}

Accordingly, an estimator An = én(Xl, ...,X,) of 6y is said to be efficient if it
satisfies

N 1
(B, — ) = 7 1;HLO(X,») +op(1). €V

Our analysis will proceed under the following condition on the density.

Condition D For some s > d/4 with 2s ¢ N, f is bounded and belongs to the
Besov space BS__(RY).

As alluded to earlier, the assumption that f; is bounded serves the purpose of
ensuring that

o5 = V[Lo(X)],

the semiparametric variance bound implied by (1), is well defined and finite. As
pointed out by Bickel and Ritov (1988) and Ritov and Bickel (1990), however,
some (additional) assumptions are required on the part of f; for semiparametric
efficiency to be achievable. For our purposes, it is convenient and turns out to be
sufficient to assume that f; is smooth in the sense that it belongs to B, (RY), as
that assumption will enable us to employ results from Giné and Nickl (2008b)
when showing asymptotic negligibility of certain remainder terms. In particular,
and as further discussed below, the magnitude “smoothing” bias of the kernel-
based estimators under consideration in this paper turns out to depend on f; through
the smoothness of the function f* given by

) = /R , Ffow)fo(x+u)du.
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Condition D is convenient, because it follows from Giné and Nickl (2008b, Lem.
12) that foA belongs to the Holder space C*(R?) whenever f; is bounded and
belongs to B}, (R%) with 25 ¢ N. The second property of interest is (nonparamet-
ric) bootstrap consistency. In the setting of this paper, the most attractive definition

of that property is the following. Letting X7 ..., X, denote a random sample
from the empirical distribution of Xj,...,X,, and letting é:f = én(XT’n, .. ,X;‘;n)
denote the natural bootstrap analog of 6,, the bootstrap is said to be consistent
if

sup |P[v/n(6, — 60) < 1= P;[/n(@; —6,) < 11| = op(1), 2
teR

where P} denotes a probability computed under the bootstrap distribution condi-
tional on the data.

To motivate interest in (2), recall that the (nominal) level 1 — « bootstrap
confidence interval for 6y based on the “percentile method” (in the terminology
of van der Vaart (1998)) is given by

A

Clilia = [é,l _51:,17&/2 , 0, —q;a/z], g, ,=inf{geR: PZ[é: —é,, <ql>a}.
This interval is said to be consistent if

lim P[6peCI®,_J=1—a 3

n— 00 nl-e
and to be efficient if its end points satisfy
1

O, —q" —6p) =
O, —q;; . —00) NG

D LX) — o @og+op(l), acia/2,1-a/2},

1<i<n

C))

where ®(-) is the standard normal cumulative distribution function. In addition to
being “heuristically necessary, the bootstrap consistency property (2) turns out to
be sufficient for (3) and (4) in the cases of interest in this paper. In turn, the property
(4) implies (by the duality between hypothesis tests and confidence intervals) that
efficient two-sided tests of simple hypotheses about ) can be based on CI} | _,
whenever the interval is efficient. In other words, the property (2) has strong
and obvious implications for inference, and although those implications may
seem more important than bootstrap consistency per se, much of our subsequent
discussion of the bootstrap focuses on (2) for specificity because that property
seems more “fundamental” than (3) and (4) in the sense that it is not directly
associated with a particular inference method.

At any rate, because the properties of é: and CI”

n1_q are governed solely by
(the density fy and) the functional form gf é,,, the properties (2)-(4) can all be
interpreted as properties of the estimator 6,, and one of the main purposes of this
paper is to explore the relationship between those properties and the more familiar

(efficiency) property (1).
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The (nominal) level 1 —« bootstrap confidence interval for 6) based on “Efron’s
percentile method” (in the terminology of van der Vaart (1998)) is given by

Cli]—a = [9,, +‘]:A,a/2 s On +‘I;, l—a/Z]'

Suppose (2) holds. Then, Cli |_q 18 consistent if also (1) holds. On the other hand,
and in contrast to C Ii | 1t turns out that in the cases of interest, in this paper, the
interval CI |, is inconsistent when (1) fails. Partly, for this reason, we focus on
intervals based on the percentile method.

Suppose (1) holds. Letting 63 denote an estimator of 002, a natural (nominal)

level 1 — « confidence interval motivated by the distributional approximation
ﬁ(é,, —6y) ~ N(0, &,12) is the “Normal” interval given by

CE 1y = [ = @71 =a/26,/Vn, b= &7 @/2)8,/ ).

This interval is consistent if 62 is consistent. The bootstrap consistency property
(2) is neither necessary nor sufficient for the “bootstrap variance consistency”

property
8,12‘* :nV[éﬂXl,...,Xn] —p og. )

Following Bickel and Freedman (1981), one way of ensuring that bootstrap
variance consistency is implied by bootstrap consistency is to employ the Mallows
metric d, when defining bootstrap consistency. The examples studied herein have
the feature that (5) can hold even if (2) (and therefore also convergence in the
Mallows metric) fails. Partly, for this reason, it seems more attractive (to us at least)
to define bootstrap consistency as in (2), hereby treating bootstrap consistency and
bootstrap variance consistency as distinct (i.e., nonnested) properties.

3. AVERAGE DENSITY ESTIMATORS: EFFICIENCY

Our discussion of efficiency (or otherwise) of average density estimators 6, will
be based on the natural decomposition of the estimation error 6,, — 6 into its bias
and “noise” components E[0,] — 6y and 6, — E[6,]. If these components satisfy

VA(E[B,]1—6p) = o(1) (6)
and

~ ~ 1
Vn(é, —E6,]) = 7 ;nmxi) +op(1), )

respectively, then (1) holds. Moreover, if (7) holds, then the easy-to-interpret
bias condition (6) is necessary and sufficient for (1). The latter observation is
particularly useful for our purposes, as it turns out that the estimators of interest
satisfy (7) under very mild conditions.
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The simplest average density estimator is arguably the kernel-based “plug-in”
estimator

" 1 A
GYLAD = ; Z ﬁl(Xl)’

1<i<n

where, for some kernel K and some bandwidth #,, ]A‘,l denotes the kernel density

estimator
o 1 1 X
fo) = ;;nma—xj), K,(x) = h_dK<h_>

When developing results for GA,?D and other estimators, we impose the following
standard condition on the kernel, in which || - ||, denotes the £,-norm and u' is
shorthand for i} ---u¥ when u= (uy,...,ug) € RYand = (I, ...,1z) € Z%.

Condition K For some P > d/2,K is even and bounded with

/ IK )] (14 l|ull})du < oo
Rd

and

) |1 if =0,
/l;duK(u)du—{ 0 ifleZ% and 0 < ||I]|; < P.

The constant P in Condition K is the order of the kernel. Condition K therefore
implies that K is a higher-order kernel when d > 4. As usual, we employ higher-
order kernels in order to ensure that the magnitude of the smoothing bias of f‘,, is
sufficiently small.

Under Conditions D and K, the density estimator fn is consistent (pointwise)
provided the bandwidth satisfies the following condition.

Condition B~ As n — 00,h, — 0 and nh¢ — oo.
More importantly, Condition B~ implies that the average density estimator é,fD
satisfies (7) under Conditions Dand K.! Asa consequence, under Conditions D, K,
and B, the estimator éﬁD is efficient if and only if it satisfies the bias condition (6).
Using the representation 6y = f;*(0), the bias of éfD can be shown to admit the
approximation

K(0)

AAD ~
E[6,"]—6 ~ nhi

+ fR dK(t)[foA (hat) — £ (0)]dt, ®)

where the approximation error is of order n~!, the first term is a “leave-in” bias
term (in the terminology of Cattaneo, Crump, and Jansson (2013)), and the second

lConversely, Condition B~ is minimal in the sense that the methods of Cattaneo, Crump, and Jansson (2014b) can
be used to show that (7) can fail if Condition B~ is violated.
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term is a smoothing bias term. As previously mentioned, the function fj* belongs
to the Holder space C?(R) under Condition D. Using this fact, it follows from
a routine calculation (e.g., Tsybakov, 2009, Prop. 1.2) that if Conditions D and K
are satisfied and if s, — 0, then

/ ) KO (hat) —f£(0)1dt = O(H2), S =min(P/2,s).
R

As a consequence, under Conditions D and K, the estimator é,?D is efficient
provided Condition B~ is strengthened to the following condition.

Condition B* As n — oo,nh?S — 0 and nh?? — oc.

Existence of a bandwidth sequence satisfying Condition B requires that the
parameter s governing the smoothness of fj satisfies s > d/2, a stronger condition
than the (minimal) condition s > d/4 included in Condition D.

This shortcoming of éffD is attributable to its leave-in bias, as it is the presence of
the leave-in bias that requires a strengthening of the lower bound on the bandwidth
from nh? — oo to nh2 — oo. Of course, the leave-in bias of §2P is easily
avoidable. One option is to employ a kernel satisfying K(0) = 0. Recognizing
that all standard kernels have K(0) #~ 0, a more natural option is to use the “bias-
corrected” version of 2P given by

K(0)

OfD-BC _ QI?D -—.
nhé

By construction, the bias of this estimator satisfies

B 51—t~ [ KOUS ()~ Ol = 002

R4
so under Conditions D and K, the bias condition (6) is satisfied by 62>~ provided
nh*S — 0, implying in turn that >°~B€ is asymptotically efficient under Conditions
D and K provided the bandwidth satisfies the following condition, which requires
no additional smoothness (as measured by the value of s) relative to Condition D.

Condition B As n — oo, nh*S — 0 and nh? — oo.

The leave-in bias of é,fD is proportional to 1/(nh¢). Equipped with only that
knowledge, the method of generalized jackknifing constructs a debiased version
of 0P as a weighted sum of two (or more) versions of G2 implemented using
different values of the bandwidth, where the weights are judiciously chosen
to remove the leave-in bias. To give the simplest example, let é,f‘D(h) denote
the version of éﬁD associated with the bandwidth 4. Then, for any ¢ # 1, the
“generalized jackknife” version of 92 obtained by combining §2° = 2 (h,,) and
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62°(ch,) is given by

(AD-GT _ 1 §AD _ ! _C o

" e R (ha)-

Like 62°, the estimator G2°~7 satisfies (7) under Conditions D, K, and B~.
Moreover, because

K(0)

E[62° (ch,)] — 60 ~ T

/ KOIf (chat) fo (0)]dt,

the bias condition (6) is satisfied by éffD‘GJ under Condition B.

Finally, as its name suggests, the leave-in bias can also be avoided by employing
“leave-out” estimators of fy. A generic average density estimator based on leave-
out density estimators is of the form

éﬁiD—LO Z f,LO(X)

1<l<n

where O is a kernel density estimator constructed using observations belonging
to a set that does not include X;. Relative to §2°-3 and §2°~%7, an attractive feature
of 92270 is that it can be constructed without knowledge of the functional form
of the leave-in bias. For concreteness, we shall develop results for 62°-%° only
in the (leading) special case where the sample Xj, ..., X, is partitioned into B, €
{2, ...,n} disjoint blocks of (approximately) equal size and - is constructed using
observatlons from all blocks except the one to which the 1th observation belongs.
To be specific, we assume that /- is of the form

1([iBu/n] # [jBn/n1)

LO iion =
fHow) = Z%J@X) i S W([iBy/n] # [kBy/n])’

1<j<n

When B, = n, ]ACIL,? is the ith “leave-one-out” estimator of f, and the estimator
é,f‘D'LO reduces to the estimator introduced in Hall and Marron (1987) and further
studied by Gin€ and Nickl (2008a) (among many others). At the opposite extreme,
when B, is kept fixed, the estimator 62°~© is a “cross-fit” estimator (using a B,-
fold nonrandom partition of {1, ...,n}) in the terminology of Newey and Robins
(2018).

Regardless of the choice of B,, under Conditions D, K, and B~, the estimator
62010 js similar to 2P B¢ and §2P~67 insofar as it satisfies (7) and has

E[62P2°] — 6 ~ / KOUL (hat) —F20))dt = O(HS),
Rd
implying in particular that §2P-1°
K, and B.
The following result collects and summarizes the main findings of this section.

is asymptotically efficient under Conditions D,
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THEOREM 1. Suppose Conditions D, K, and B are satisfied. Then, é,fD -BC
62057 and 2P~ satisfy (1). If Condition B is strengthened to Condition B,
then éfD satisfies (1).

Remark. Because éj‘D is a linear functional of fn, the generalized jackknife

estimator 2°~%7 can be interpreted as a version of the plug-in estimator §2° based
on a modified kernel: Defining

Kok ()]
we have

Anr. 1 A
95@ GJ _ ; anGJ(Xi)’

KGJ (.X) —

1<i<n
where
2AD-GJ GJ GJ GJ
FAD8T (x) = ZK (x— K% (x) = th (hn)'

l</<n

The modified kernel satisfies K°7(0) = 0, so this interpretation provides an
explanation of the fact that éﬁD’GJ satisfies (6) under Condition B. A similar
interpretation is not available for generalized jackknife versions of estimators that
are nonlinear functionals of f,; examples of such estimators are given by énISD'GJ
and 6F*"%7 studied in Section 6.

4. AVERAGE DENSITY ESTIMATORS: BOOTSTRAP CONSISTENCY

Letting X1 o -+ +» X, denote a random sample from the empirical distribution of
X1, ...,X,, the natural bootstrap analogs of the estimators studied in the previous
section are given by

A A 1
= YR o= Y KX

1<t<n 1<j<n

éAD—BC,* _ éAD,* _ K(O)

n - hd )

n n

ARD-GJ, * 1 ARD, * Cd ARD, *

A e
and

AAD-LO, Lo, LO
OrPr0 = Zf, X, FW = winKa(x—X7,),
1<t<n 1<j<n

https://doi.org/10.1017/50266466621000530 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466621000530

EFFICIENCY AND BOOTSTRAP CONSISTENCY 1149

respectively, where 622 *(ch,,) denotes the version of §2P+* associated with the
bandwidth ch,. The main goal of this section is to explore the extent to which
these estimators enjoy the bootstrap consistency property (2) under Conditions D,
K, and B.

If én is efficient in the sense that it satisfies (1), then ﬁ(én —6y) ~ N0, 002),
implying in particular that the bootstrap consistency property (2) admits the
following characterization:

V(@ —8,) ~p N(0,00), )

where ~»p denotes conditional weak convergence in probability.

Similarly to the analysis of the previous section, it seems natural to base
verification of (9) on a decomposition of the bootstrap estimation error 9 —6,
into its bias and noise components E*[0*] — 6, and 6 — E*[0*], where E*[.] =
E[-|X1, ..., X,]. The resulting sufficient condition for (9) is given by the pair

VAEL01—6,) = op(1) (10)
and
V(@ —EX07]) ~p N(0,07), (11)

where (10) is the natural bootstrap analog of (6), (11) is a bootstrap version of the
main distributional implication of (7), and where (10) is necessary and sufficient
for (9) when (11) holds.

In perfect analogy with (7), it turns out that (11) holds under very mild
bandwidth conditions. Indeed, under Conditions D and K, the estimators
GBD* (AD-BC.* GRD-GI % and GAD-LO.* 4| satisfy (11) whenever Condition B~
holds.” As a consequence, the question once again becomes whether the estimators
have biases that are sufficiently small. Under Conditions D, K, and B~, the
bootstrap bias of H2P+* satisfies

KO) 150 KO

e R L

+0p(n™"). (12)
Therefore, the bias condition (10) is satisfied by §2P* provided nh> — oco. In
other words, GA,?D'* satisfies (2) (and therefore also (3) and (4)) under Conditions
D, K, and BT.

More surprisingly, perhaps, although the estimator is efficient under
Conditions D, K, and B, stronger conditions are required for its bootstrap analog
é,f‘D’BC' * to satisfy (2). This is so because

AAD-BC
9}1

K(0)
nhd

Ez[é’?D—Bc,*] QAD BC E*[QAD *] éfD:

13)

2Conversely, Condition B~ is minimal in the sense that the methods of Cattaneo, Crump, and Jansson (2014a) can
be used to show that (11) can fail if Condition B~ is violated.
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under Conditions D, K, and B. A similar remark applies to §2P"L°, as its bootstrap
analog satisfies

~ A KO
EZ[QfD—LO,*] QAD LO eAD an—Lo: n;d)+op(n—l/2)

n

under Conditions D, K, and B.
On the other hand, because

1 K@ 14 1 K
B 10,7 (ch)] =6 (chn) = — Q——@”(k) KO | 00,
nhd nhe
the bootstrap analog of 2P~ satisfies

E:[é,?D-GJ,*] QAD GJ 0[p>(n )’

so this estimator satisfies (2) under Conditions D, K, and B.

It turns out that OA,?D' * satisfies (2)—(4) under conditions that are weaker than the
conditions under which GA,?D is efficient. In generic notation, suppose the estimators
6, and é;f satisfy (7) and (11), respectively. Then, (2) is still sufficient for (3) and (4)
to hold. Moreover, as also observed by Cattaneo and Jansson (2018), the bootstrap
consistency condition (2) itself is satisfied under the following generalization of
the bias conditions (6) and (10):

VA0 —6,) = /n(E[6,] — o) + op(1). (14)

Now, as discussed above, the estimators éfD and éfD' * satisfy (7) and (11),
respectively, under Conditions D, K, and B. Under the same conditions, it follows
from (8) and (12) that (14) is satisfied.

The following result collects and summarizes the main findings of this section.

THEOREM 2. Suppose Conditions D, K, and B are satisfied. Then é,f‘D * and
6AP-G* satisfy (2). If Condition B is strengthened to Condition B*, then §2P~B¢:*
and é,f‘D’LO'* satisfy (2).

Comparing Theorems 1 and 2, we see that efficiency is neither necessary
nor sufficient for bootstrap consistency. In fact, the results indicate that there
can be a tension between efficiency and bootstrap consistency in semiparametric
settings. What seems most noteworthy to us is that whereas “debiased” estimators
such as §*~B¢ and @2°~"° may appear to be superior to the simple plug-in
estimator éj}D insofar as they achieve efficiency under weaker (indeed, minimal)
conditions, the ranking gets reversed when the estimators are looked at through
the lens of the bootstrap. As pointed out by Chen, Linton, and Van Keilegom
(2003) and Cheng and Huang (2010), bootstrap-based inference is particularly
attractive in semiparametric settings. The results above demonstrate by example
that efficiency-based rankings of estimators can be quite misleading in cases where
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construction of an estimator is simply a means to the end of conducting bootstrap-
based inference.

For the estimators under consideration in Theorems 1 and 2 (and elsewhere
in this paper), perhaps the easiest way to explain the tension between efficiency
and bootstrap consistency is the following. Under mild conditions (namely, under
Conditions D, K, and B7), the estimators are efficient if they satisfy (6) and
the nonparametric bootstrap is consistent if (14) is satisfied. Both (6) and (14)
are bias conditions, but clearly neither condition implies the other in general.
As exemplified by §20+* 6RP~BC:* and §2D-LO.*  the bootstrap bias E*[6] —
é,, tends to be nonnegligible (i.e., it is not necessarily op(1)) when only mild
smoothness conditions are imposed. Because the conditions (6) and (14) are
mutually exclusive whenever the bootstrap bias is nonnegligible, two distinct
conclusions can be drawn. First, bootstrap consistency typically fails for efficient
estimators. That observation is arguably the main finding of this paper, and
we have deliberately chosen to document the finding by means of the simplest
possible example(s). Second, nonparametric bootstrap consistency can hold for
inefficient estimators as long as the source of the inefficiency is bias. This is
precisely what happens for éfD, and, in fact, it turns out that the finding that
bootstrap consistency holds for plug-in estimators even if they are not efficient
generalizes well beyond the setting of this paper (for details, see Cattaneo and
Jansson, 2018).

As conjectured by the Co-Editor, the estimators 920 , §3~BC §2P-6F and §AD-10
can all be shown to satisfy the bootstrap variance consistency property (5) under
Conditions D, K, and B. The estimators éfD'BC, éfD'GJ, and é,fD'LO therefore enjoy
the property that the intervals Clli |_o based on the bootstrap variance estimator are
consistent (indeed, efficient) under Conditions D, K, and B.

An important source of the bootstrap consistency result for é,fD is the ability
of the bootstrap to automatically perform a bias correction when approximating
the distribution of §P — g,. The same mechanism can be exploited for estimation
purposes: Setting o = 1, the interval CIS’ |_o, becomes a singleton and can therefore
be interpreted as a bootstrap-based estimator of dy. As a by-product of our results

about é,?D, it can be shown that the resulting estimator

2020 —inf{g e R: P[P0 * < g] > 1/2)

n

is efficient under Conditions D, K, and B.

The bootstrap analog of éfD employs a density estimator fj that uses the
same bandwidth £, as is used when constructing o Doing so is important for
the purposes of obtaining the bootstrap consistency result for é,fD. Indeed, if f‘j
were defined using a possibly different bandwidth /) (say), then the bootstrap
consistency result under Condition B can fail unless 4} /h, —p 1. On the other
hand, the flavor of the bootstrap results about §2°~5¢, 9AP-L0  and §2P-67 does not
change if a different bandwidth is used when defining their bootstrap analogs.
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Remark. In important special cases (such as when 6, equals 2P *, GAD-BC, *
or the leave-one-out version of éj\D’LO'*), the fact that E* [éj] — 6, tends to be
nonnegligible can be interpreted as a manifestation of the following generic fact
about U-statistics: If X7 R ,X,f,n denotes a random sample from the empirical
distribution of Xi,...,X,, and if x : R” — R is permutation symmetric in its
arguments, then

E*[Z/{: n] = Vk,m
where
2\ !
w,=(1) X k(Xen)
]Si],...,irfl’l,i1<~~<l,-
is the rth-order U-statistic (with kernel k) constructed from X1 n,...,X;;n and
where
Ven=n" Y «k(Xi.....X;)
1<iy,...,ir<n
is the rth-order V-statistic (with kernel «) constructed from X, ...,X,. In other

words, under the nonparametric bootstrap distribution, the expected value of a U-
statistic is given by the corresponding V-statistic. Whenever r > 2, the statistic V,
contains “diagonal” terms (i.e., terms of the form « (Xil, ... ,X,»,) with overlapping
subscripts i1, ...,,) not present in the U-statistic

-1
n
Z/{K,n: <r> Z K(X,'l,...,X,'r).

1<iy,....ip<mij<--<ir
1 1

It is the presence of such diagonal terms that gives rise to a potentially nonneg-
ligible bias in the bootstrap distribution of estimators that involve U-statistics of
order 2 (or greater). Indeed, it is precisely this phenomenon, that is, the source of
the celebrated counterexample (to bootstrap consistency) reported in (Bickel and
Freedman, 1981, pp. 1209-1210).

5. ALTERNATIVE BOOTSTRAP PROCEDURES

In light of Theorem 2, it is of interest to construct bootstrap-based approximations
to the distributions of §2°“B¢ and H*P~I° that are consistent under Conditions
D, K, and B. In generic notation, suppose é = é (X1, ...,X,) is the estimator
Whose distribution we seek to approximate. One option is to find an estimator

=0,(X1,....Xp) (say) whose natural bootstrap analog 9* =0, XT oo X )
satlsﬁes
sup [P[v/n(0, — 6p) < 1] = Py[V/n(@; —0,) <1]| = op(1). (15)
teR
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As we shall see, both 2P and 2P0 Jend themselves well to a construction
of this type. Nevertheless, in some circumstances, it may be equally (if not more)
attractive to achieve consistency by ﬁnding a bootstrap probability measure P

(say) governing the distribution of X7 , .. , such that 6* = 6,(X: T s X )
satisfies

sup PLVn(0, — ) < 11— Pr[/n(@B; —0,) < 11| = op(1). (16)
te

A construction of this type turns out to be useful in the case of the cross-fit version
of HADP-LO
? .
First, consider the problem of approximating the distribution of 62°75¢. It
follows from (13) that a bias-corrected version of §2°"B<* is given by

éAD—BC,* — éAD—BC,* _ K(0)
n " nhd

Rather than showing (15) by analyzing 62°-3¢* directly, we find it more insightful
to obtain the consistency result by means of an argument which highlights and
exploits the relationship between §2°-3¢* and §2°+ *, Heuristically, §2P-BC:*
“should” satisfy (15) under Conditions D, K, and B, because the percentile interval
associated with §2P~BC * is identical to the percentile interval associated with
éj\D' *.3 These heuristics can be made rigorous with the help of the equality

sup [PLYA(E2"2 — 00) < 1]~ P;[Vn(@" ™ - 62075 < 1]
teR

= sup |P[v/n(62° — 6p) < 11— P[/n(0>* —2°) <1]|,
reR

which implies, in particular, thatﬂffD'BC' * satisfies (15) if and only if éfD * satisfies
(2). As a consequence, the fact §2°~B¢* satisfies (15) under Conditions D, K, and
B is simply a restatement of the bootstrap consistency result for 62°-*. Turning

next to G2°"1°, our preferred modification of this estimator is motivated by the
observation that

]P’[fl °(X;) fl O(X)] =1,

where

W@ =Y wiaKax—X), Ky =10x #0)K, (v).

1<j<n

3In generic notation, the percentile interval associated with an estimator 5;‘ is given by

Cly1—a = [én ~ G-/ 6 _[}:.a/Z]' Gro=inflg e R:PLOF —6,) < q] > a).
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An immediate implication of this observation is that

]P)[GAD Lo QAD o] = 1, énAD—LO _ 1 E ]?,L,?(Xz)
n :
l<izn

AAD-LO
911

Nevertheless, unlike itself, the modification éfD'LO has a natural bootstrap

analog

NAD-LO, * __ LO 71O, _ %
On f= Z *( ln f;',n *(X) - Z WijsnK"(x_)(]:kn)’

1<t<n 1<j<n

whose bias is small: Under Conditions D, K, and B,

E*[QAD Lo, ] ZfLo(X) QAD LO+0P(n 1/2) ]?nLo(x)zl Zf(n(x_xj)
n

1<l<n 1<j<n

In fact, it can be shown that (15) is satisfied by éfD'Lo' * under Conditions D, K,
and B.

For cross-fit estimators, an arguably more attractive option is to construct a
bootstrap-based distributional approximation which employs a bootstrap proba-
bility measure that is itself of cross-fit (i.e., split sample) type. To illustrate the
idea, we consider the simplest special case. When B, = 2, the estimator éffD'Lo
reduces to

érz:xD—CF Z fz (X)

1<z<n
where

mZLn/2J+1§anKn(x_)(vj’)v iE{l,..., Ln/ZJ},
o) =

] Disiein KnG =X, i€ {ln/21+ 1, n).

The B, = 2 version of the “cross fit bootstrap” is defined as follows. Conditional
on Xi,...,X,, let X7 , be mutually independent with X7 X

Ln> e Ln e ln/2],n
being a random sample from the empirical distribution of Xj,..., X,/ and
Xlu2)41,m0 -+ Xy, being a random sample from the empirical distribution of

Xin2141, - - - Xy Then,

AAD-CF, % CF*
R W

1<z<n
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is the corresponding cross-fit bootstrap version of 62°~°F, where

A TTA] o +i<ien KnG=X7),ie (L. [n/2]),
Jin @ =
] il KnG=X7)0 i€ {ln/2)+ 1, .. n).

The bootstrap distribution of 62°~CF+* is correctly centered in the sense that
IE;[@A,?D'CF'*] = éﬁD'CF, where E*[-] denotes the expected value computed under
the cross-fit bootstrap distribution. In fact, the bootstrap distribution satisfies (16)
under Conditions D, K, and B.

As pointed out by a referee, yet another way of achieving consistency on the
part of a bootstrap-based distributional approximation is to center the distribution
of é,‘[ at an estimator 6, satisfying

sup [PLV/n(0, — 60) < 1 — B[l —0,) < 11| = op(1). a7
teR

Because the estimators under consideration here all satisfy (7) and (11), the
following analog of (14) is sufficient for (17):

VA0 = 6,) = /n(E[6,] —6p) + op(1).

As already mentioned in connection with (14), the displayed condition is satisfied

by 6, = 6, in the case of GA,?D. For the other estimators (i.e., for éfD‘BC, éj\D'GJ,
and 6P 19), because they satisfy the bias condition (6), the displayed condition is

satisfied by én =E; [é;f].

6. ALTERNATIVE ESTIMATORS

This section considers two alternative classes of estimators. The first class is
motivated by the integrated squared density representation

6o = f fo(x)?dx,
Rd

an interesting feature of which is that it involves a nonlinear functional of f;. The
second class is motivated by the representation

60 = 2E[fo(X)] - / fo P dx,
]Rd

an interesting feature of which is that it is “locally robust”/*“Neyman orthogonal”
(in the terminology of Chernozhukov et al. (2020)).
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6.1. Integrated Squared Density Estimators

A kernel-based plug-in integrated squared density estimator is

énISD = / f,, (x)zdx.
R

Like é,fD, this estimator has a (potentially) nonnegligible bias: Under Conditions
D, K, and B,
o K(u)*du
E[QHISD] _ 00 — ‘[Rd;d) _'_0(’,1*1/2)7
nhd

where the first term is a “nonlinearity” biAas term (in the terminology of CAattaneo
et al. (2013)) attributable to the fact that 6,75 is a nonlinear functional of f,.

The nonlinearity bias of OAJSD is easily avoidable, a simple bias-corrected version
of TSP being

2
(ISD-BC _ HISD _ fRd K(u)“du

n n n hz °
Similarly, because the nonlinearity bias of énISD is proportional to 1/(nh?), the
following generalized jackknife version of HAHISD is an efficient estimator of 6j:

| BN d
QISD _ C—CdGnISD(Chn),

éISD-GJ —
" 1—cd™" 1—

where ¢ # 1 is a user-chosen constant and where énlsr’ (ch,) denotes the version of
615D associated with the bandwidth ch,,.
On the other hand, because the source of the nonlinearity bias of GnISD is different

from the source of the leave-in bias of é,f‘D, there is no particular reason to expect
leave-out estimators of the form

énISD-Lo zl Z / J?iLr?(x)zdx
(et

to have favorable bias properties. Indeed, under Conditions D, K, and B and
assuming B, is proportional to n, we have:*
1 foa K@)*du

B0, ) 6y = ;T o), (18)

4More generally (i.e., whether or not B, is proportional to n), it is shown in the proof of Theorem 3 that the bias
expansion is of the form

I]Rd K(u)2du
=7

E[§;°°7°] -6 g o),
n

where 7, > 1 is bounded.
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so the nonlinearity bias of 6°P"L° is nonnegligible (and no smaller than that of
geo)

Nevertheless, because 6 is a quadratic functional of f;, the method of “doubly
cross-fitting” (in the terminology of Newey and Robins (2018)) can be used to
construct an estimator which is free of nonlinearity bias and can be implemented
without knowledge of the functional form of the nonlinearity bias. One such
estimator is

énIsD—DCF = /dflcz (x)fncz (x) dx,
R

whose bias turns out to be negligible under Conditions D, K, and B.

Under Conditions D, K, and B~ the estimators § P, §1D-BC (ISD-GJ (ISD-LO
and 01SP~PCF all satisfy (7). As a consequence, we obtain the following integrated

squared density counterpart of Theorem 1.

THEOREM 3. Suppose Conditions D, K, and B are satisfied. Then, 6,755,
0.15P-97, and 0.15P~P°F satisfy (1). If Condition B is strengthened to Condition BT,
then 6,15 and 615°71° satisfy (1).

An integrated squared density counterpart of Theorem 2 is also available.
Under Conditions D, K, and B, if 6, € {0]5P,§SP~BC ¢ 1SP-LO (ISD-DCEY " then its
bootstrap analog satisfies (11) and has a bias of the form

A K(u)*d
By10;1 - 6, — KU
nhd

so (14) (and therefore also (2)) is satisfied if (and only if)

R Kw)2d
E[en]—eoz—fR" Wrdu w17,
nhd

+op(n'1),

The latter condition is satisfied by 6P, but violated by §TS°"B¢ and SP~PF, In
the case of énISD'LO, it follows from (18) that the condition is satisfied when B, =n
(i.e., when é,fSD'LO is a leave-one-out estimator), but violated when B, is fixed (i.e.,
when P10 is a cross-fit estimator).

THEOREM 4. Suppose Conditions D, K, and B are satisfied. Then, énISD'*
and GIP57* satisfy (2). If B, = n, then 6F5P°20* satisfies (2). If Condition
B is strengthened to Condition B*, then ISP-BC:* §ISD-LO.%  gpg (TSD-DCF,

satisfy (2).

In important respects, the results reported in Theorems 3 and 4 are in qualitative
agreement with those reported in Theorems 1 and 2. In particular, we find that
in spite of being inefficient, the simple plug-in estimator achieves bootstrap
consistency under conditions that are weaker than those required for efficient
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estimators to achieve bootstrap consistency. The most notable difference between
the integrated squared density and average derivative estimators is probably that
in the case of integrated squared density estimators, the cross-fit estimator is
demonstrably worse than the plug-in estimator, satisfying neither (1) nor (2).

As was the case with the average density estimators, the integrated squared
density estimators can all be shown to satisfy the bootstrap variance consistency
property (5) under Conditions D, K, and B. The estimators §ISP-BC, §ISD-GI
and §SP-°CF therefore enjoy the property that the intervals Cl, ,_, based on the
bootstrap variance estimator are consistent (indeed, efficient) under Conditions D,
K, and B.

For completeness, we conclude this subsection by briefly discussing integrated
squared density versions of (15)—(17). In what follows, suppose Conditions D, K,
and B are satisfied. A bias-corrected version of §TS°"5C* is given by

’

2
(ISD-BC,* _ HISD-BC,* _ fRd K(u)“du
n n nhg

In perfect analogy with éfD'BC'*, this estimator satisfies (15), and the associated
percentile interval is identical to the percentile interval associated with 6P *,
Next,

énISD—Lo,*: Z/szz? *(x)zdx

l<1<n

is an integrated squared density counterpart of §2°~19-* Because ISP H0/* =

OAHISD’LO'*, this estimator satisfies (15) when B, = n, but not when B, is fixed.

On the other hand, the cross-fit bootstrap can be used when B, is fixed. As before,
suppose B, = 2 for specificity. In that case, 6,-°°"1° reduces to

énISD—CF - / (x)zdx,

l<z<n

and it can be shown that

éﬂISD—CF,*: Z/ CF,*(X)de

1<1<n
satisfies (16). Similarly, the distribution of §7S?°°F can be approximated using
QISD DCF, x / 2CF, % (x) CF * ()C) dx
as that estimator satisfies (16). Finally, the property (17) holds for §TSP-BC, §TSP-63,

and GISD DCF \when 6, = IE*[G ] (and for GISD GISD GJ and the leave-one-out
version of QISD LO when 6, = ).
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6.2. Locally Robust Estimators

A locally robust kernel-based plug-in estimator of 6 is

. 2 . . . .
6% = = Z fu (X)) — / fr () dx =262 — 915D,
n - R4
1<i<n

Because O1* is a linear combination of 622 and P, its properties follow directly
from the results obtained in the previous sections, as do the properties of estimators
such as

ALR-BC __ AAHBAD-BC AISD-BC
GIRBC = pghb-EC _ (1

3

ALR-GJ __ AHAD-GJ AISD-GJ
0, =20, -0,

9

and

éLR—Lo — ZéAD—Lo _ éISD—Lo
n n n ’

the cross-fit version of the latter being the only estimator (in this paper) satisfying
both of the defining properties of the “double/debiased machine learning” estima-
tors proposed by Chernozhukov et al. (2018).

Once again, the results are in qualitative agreement with those reported in
Theorems 1 and 2.

THEOREM 5. Suppose Conditions D, K, and B are satisfied. Then, é,fR'BC and
OFR-%7 satisfy (1). If Condition B is strengthened to Condition B, then 6F% and
OFRLO satisfy (1).

THEOREM 6. Suppose Conditions D, K, and B are satisfied. Then, é,{“R'* and
OLR-GT * satisfy (2). If Condition B is strengthened to Condition B*, then ¥ B¢:*
and é,fR’LO'* satisfy (2).

Rather than spelling out those locally robust versions of (15)—(17) that follow
directly from our earlier results, it seems more constructive to mention a feature of
local robustness that is particularly useful for bootstrap purposes. As pointed out
by Belloni et al. (2017), a notable feature of locally robust moment conditions is
that in two-step estimation settings, one does not need to recompute the first step
estimator in each iteration of the bootstrap. In the case of é,I;R, this implies that
(15) can be achieved with the help of

NLR,* __ z 7 oy 7 2
0% == D b /R PACR

I<i<n
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a computationally attractive feature of which is that fn is kept fixed across bootstrap
repetitions. Perhaps more importantly (for our purposes at least), the fact that f,,
is kept fixed actually makes it easier to achieve (15) also in the case of debiased
estimators. For instance,

- 2 5 N 2K(0) — [pa K(u)*d
QYI;Rch,* _z Zﬁ’(X:")_f £ (x)zdx— (0) fRZ (u)~du
n 1<i<n R? nh"

satisfies (15) under Conditions D, K, and B.

7. CONCLUDING REMARKS

Among other things, this paper has demonstrated by example that the nonparamet-
ric bootstrap can fail to provide a consistent approximation to the distribution of
debiased versions of two-step semiparametric estimators. Reasonable people can
disagree about whether this is a shortcoming of the nonparametric bootstrap and/or
popular debiasing methods, but either way this finding has potentially important
implications for econometric practice and it would therefore be of interest to
explore the extent to which similar results are available for estimators other than
those considered in this paper.

In addition to the cautionary tale about debiasing, the paper contains at least
three constructive observations. First, the nonparametric bootstrap variance esti-
mator can be consistent even if the corresponding distributional approximation
is not, so valid confidence intervals can be obtained by combining a (successful)
debiasing method with a standard error computed by means of the nonparametric
bootstrap. Second, the (apparently novel) cross-fit bootstrap consistently estimates
the distribution of cross-fit estimators in all the cases considered. Third, estimators
based on generalized jackknifing are both efficient and satisfy bootstrap consis-
tency under weak conditions. It seems plausible that all three findings generalize
well beyond the average density setting, but it is beyond the scope of this paper to
substantiate that conjecture.

At a more abstract level, this paper highlights the importance of paying careful
attention to first moments (e.g., bias properties) when diagnosing bootstrap suc-
cess. It seems noteworthy that the “heuristically necessary” bias condition (14)
is also sufficient for bootstrap consistency under mild conditions. A similar phe-
nomenon occurs for estimators of maximum score type. For such estimators, Cat-
taneo, Jansson, and Nagasawa (2020) achieved bootstrap consistency effectively
by paying careful attention to the first moment properties of a certain stochastic
process. It would appear that similar heuristics can assist the construction of
valid bootstrap-based distributional approximations in other contexts (e.g., shape-
constrained nonparametric estimation), but again it is beyond the scope of this
paper to substantiate that conjecture.
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APPENDIX

A.1. Hoeffding Decompositions

Each of the estimators studied in this paper has a V-statistic-type representation of the form

A 1
On = YTZ Z V[j,nv

1<i,j<n

where Vj; , depends on X1, ..., X;, only through (X;, X;). The proofs of Theorems 1, 3, and
5 are based on the associated Hoeffding decomposition of 0, — 6p given by

o 1 2
b= =Put— D Lint——= > Win A1)
n 4 nn—1) “~ .
1<i<n 1<i,j<n,i<j

where, defining Vij’ n=Vijn+Vjin)/2
B = Elba1— 60
1)1 1 2 -
=-1{- E[V;; 1—- E[V;; — 6o,
-S4~ 2 ElViil +< n) oD 2 EVaalp—o

1<i<n 1<i,j<n,i<j

Li n = n{E[6,1X;] — E[0,])

1 1 n—1__ _ -
= AViin—EWViall+— 37 2——{ElVylXi —E[Vjj ]},
1<j<n,j#i
nn

-1 A A A A
Wijon = T){E[QnIXhXj] —E[6,1X;] — E[6n]1X;]1 4+ E[6,1}

n—

1 - - - i
. {Vij.n — ElVij, | Xi] = E[Vjj u| X1+ E[ V5 1}

By construction, L;, and W, depend on Xp,...,X, only through X; and (X; X)),
respectively, and satisfy, for each 1 <1i,j <n with i #j,

E[L; n] = E[Wjj n|Xi] = E[Wj; n|Xj] = 0.
Moreover, if the Vj; ,, satisfy Vj; ;, = 8n and E[Vj; ] = Oy, then the bias is of the form
Sn On

Bn=—+6—6——.
n n

If also Vi n = Vji n and E[Vjj 41 X;] = fu(X;), then

n—1 n—1
Lin= 2T{fn(Xi) — 0}, Wij,n = T{Vij‘n —fn(X) _fn(X]) +6n}.

A bootstrap analog of (A.1) will be employed in the proofs of Theorems 2, 4, and 6. To state
it, suppose

A 1
* _ *
en - rTZ Z Vij,n’

1<i,j<n
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where V;I; , depends on X7 ..., X7, only through (X} n,X,* ). Then,

1,

i n 1 2
9,;"—9”:;3;547 > L;.fn+n(n_1) > W o (A.2)

1<i<n 1<i,j<n,i<j

where, defining Vi = (V¥ +Vi )/2,

ijin in " Vjin

Bl =61~ 6,

1 1 kryk 1 2 k7% A
Zﬁ ; Z IEn[vii,n] +<1_;> nn—1) Z En[vij,n] —On,

1<i<n 1<i,j<n,i<j

Lf, =n{E1671X; 1 - Exl0;1)

1 1 n—1 _ _
= Vi BVl — Y 2BV X - BRIV

ii,n ii,n ij,n ij,n
1<j<n,j#i

nn—1) ~ ~ ~ N
Gon = 5 Bl X0, X5 — B0 1, 1 = ERlO7 X7, 1 + Enl6,1)
n—1 - - - _
= —— Vi = BalVy nl X001 = BRIV X7 1+ BRIV 1)
By construction, L}, and Wl?]k. n dependon X7 ... X7, only through X, and (X:H,X;"n),

respectively, and szitisfy, for each 1 <i,j<nwithi#}j,

ERLY ] = ERlWy 17,1 = Eq(W}; X7, 1=0.

i,n ij,n ij,n

Moreover, if the V;;,n satisfy V?;,n =4, and Ei[Vi]’f, W= 0¥, then the bootstrap bias is of the

form

5 o

Bi =+ —bn— .

Ifalso V¥ =V and E}[V* |Xl?fn] :f,f(Xl.’fn), then

ion = Vjin ij,n

n—1 n—1 )
Li, =2 =) =60 Wi, = = Vi, X)) —f O, +65).

ij,n ij,n

A.2. Proof of Theorem 1

The estimators §2P and 2P~ both have Hoeffding decompositions of the form (A.1),
with

Lin=hinlh?Xp)  and Wy, = w0y WiP(X. X)),
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where A; ,, and wj; ,, are (nonrandom) estimator-specific weights, while

LAP (x) = 2(£2P (x) — 6}P},

WP (x1.x0) = Kn(x) —x2) — 1P (x1) — 30 (x2) + 6,77,

where

720 =ik (=01 = [ KGfoa-+ )

080 =E001 = [ AoCon

To be specific, in the case of
6p° = Z == Y KaXi-X)),
1<z<n 1<i,j§n
each of A; , and wyj 5, is given by 1 — n~!, while the weights for
f5P 710 = Z FEOx) = —2 > nwynKn(X; — X))
l<l<n 1<i,j<n

are of the form

Min= D Wine @ = = DG Wi = O+ Wjin) /2.
1<j<n

In both cases, the weights satisty

max (A, — )2 = o(1) (A3)
1<i<n
and

max a)l ,=00). (A4
1<i<j<n A

It therefore follows from simple moment calculations that the estimators satisty (7) if

%E[Wﬁ;\D(Xl,Xz)z] -0 (A.5)
and if
E[{L2P(X) — Lo(X)}%] — 0. (A.6)

Suppose Conditions D and K are satisfied. Then, (A.5) holds if nhg — 00, because then

1 rAD I S Y 2
LB 0100071 = - (IR, 0 — o)1)

1
R { / _/ Kn(u—v) fO(M)fo(V)dudv}
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! 2
~and fRd fRdK(t) To+ ht)fo(v)dtdy

< ld{ sup IK(M)l} { supfo(x)}/ |K (u)|du — 0.
nhy | uerd xeRd R4

Also, because
ELLEP (0 — LoGOY] < 4E [ (3200 — o001 ],

a sufficient condition for (A.6) to hold is that

E[(2200 — o012 ] - 0.

As in Proposition 1(c) of Giné and Nickl (2008b), the displayed condition is satisfied if
hy, — 0. To summarize, each estimator satisfies (7) under Conditions D, K, and B™.

The proof will be completed by giving conditions under which the estimators satisfy (6).
As before, suppose Conditions D and K are satisfied. In the notation introduced above, the
biases of A2P and H2P~LC are given by

K(0) HAD
AD _ AD . n
n = nhg +0n 0o

and

AD-LO __ pAD
n _en — b,

respectively. Following Giné and Nickl (2008a), we base our analysis of the smoothing bias
62D — gy on the representation

630 = f f Kt = o (9o () dudy
R4 JR

- / / K (0o — hut)fp (o)duds
R4 JRA

= [ K0ss oy,

where the last equality uses the fact that K is even. By Lemma 12 of Giné and Nickl (2008b),
the function fOA belongs to the Ho lder space CH(RY). As a consequence, it follows from
standard arguments (e.g., Tsybakov, 2009, Prop. 1.2) that if Condition B is satisfied, then

Op" =60 = /R (KO () =15 O))dt = 001) = o(n™'/2).

In particular, 920~ satisfies (6) under Conditions D, K, and B. Under the same conditions,
9,1?1) is bounded, so

K(0)

nh%

V(EGEP]—6p) = +o(l),

implying in particular that Condition B must be strengthened to Condition B for éﬁD to
satisfy (6) (unless K(0) = 0).
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Finally, the results for #2P-BC and §2P-G7 follow from those for 62P. To be specific,

QA,Z?D’BC differs from QA,Z?D by an additive constant, so it satisfies (7) under Conditions D, K,
and B™. Also, the additive constant is designed to ensure that (6) is satisfied by QA,Z;‘D’BC
under Conditions D, K, and B. Similarly, because

1 o _ 1
l—cd 1-c¢d =~

the estimator 2P 67 satisfies (7) under Conditions D, K, and B™, while the fact that

11 o1
1—cd upd  1—cd n(chy)d

ensures that (6) is satisfied by énAD’GJ under Conditions D, K, and B.

A.3. Proof of Theorem 2

; ARD,
The estimators 6;,

with

and é,Z?D ~LO/* both have Hoeffding decompositions of the form (A.2),
L, =xialp°(XF,)  and Wi, = w,»j,,,ﬁv,%D(x;jn,x;'jn),

where 1; , and w;j, , are the same as those for 62D and 2P0, while

P =2{fa (0 = 6;"),

WP (x1.x2) = Kn(x1 —x2) —fu (x1) = fu(2) + 050

Because the weights satisfy (A.3) and (A.4), it follows from simple moment calculations
that the estimators satisfy

1

V@ —Ex6]) = 7 > ALoX) ) —ExLoX) )1} +op(1) ~p N(0.07)
1<i<n
if
%E;ﬁ[Wﬁ‘D(XT‘n,X;n)Z] —p0 (A7)

and if (A.6) and (A.8) hold, where

EXHERP(XT ) — LaP (XF )1 > 0. (A.8)
Suppose Conditions D and K are satisfied. Then, (A.7) holds if nhz — 00, because then

}E*[VAVAD(X* X5 2] < EE*[K 0F X )]

nonttn 1,n°*2,n —an n\ n 2.n

1
= Y Ka(X;—X))?

1<ij<n
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1 2
== 2 KO+ 3 KaXi—X)?

1<i<n 1<i,j<n,i<j
1 (K©0)\2 1
=f( d) +0p  ~EIK,(X; —X2)°1) = p0,
n nhn n

where the convergence result follows from the proof of Theorem 2. In that same proof, it
was shown that (A.6) holds when A, — 0. Finally, because

A 1 A
ERHERD X ) — L2 )P 1=~ 3 L0 — P (X)),
1<i<n
a sufficient condition for (A.8) to hold is that

ENIEP (X)) — L2P (X1))*] — 0.

It follows from a direct calculation this condition is satisfied when %, — 0 and nhﬂ — 00.
To summarize, each estimator satisfies (11) under Conditions D, K, and B™.

The proof will be completed by giving conditions under which the estimators satisfy (14).
Suppose Conditions D, K, and B are satisfied. By the proof of Theorem 1,

K(0)

nh,2,

Vn(E[GEP] - 69) = +o(1),

and
V(E[GRPE01 —6y) = o(1),

while it follows from (A.2) and Theorem 1 that

K©0) 6} K(©0)

VAERORP ] =070 = i +op(l),
v/ nh,%d " v/ nh%d

and

o U A Jn K(0)
VA(ES[ORP RO H] — 9P RO = /n(BFP — GRPTI0) = —= +op(1).

th
nny

As a consequence, A,,A D/ * satisfies (14) under Conditions D, K, and B, whereas Condition

B must be strengthened to Condition B for 93010 * to satisfy (14) (unless K(0) = 0).

Finally, the results for é,{[\D'BC’ * and éfD'GJ’ * follow from those for é,{[\D’*. To be
specific, é,,AD “BC.* qatisfies (11) under Conditions D, K, and B™, because é,zf Do * does.
Moreover,

N o B S N B}
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so under Conditions D and K, Condition B must be strengthened to Condition BT for
HPPBC ¥ to satisfy (14) (unless K(0) = 0). Similarly, because

1 d

l—cd 1—¢d

the estimator HA,%D'GJ’ * satisfies (11) under Conditions D, K, and B~, while the fact that

11 o1
1—cppd 1 —c n(chy)? h

ensures that (14) is satisfied by QA,Z? D-GJ.* ynder Conditions D, K, and B.

A.4. Proof of Theorem 3

91115D’ QnISDfLO GnISDfCF all

The proof is similar to that of Theorem 1. The estimators , and

have Hoeffding decompositions of the form (A.1), with
Lin=hinky°" X0, Wijn = 0n Wy = (X3, X)),
where 1; ,, and w;j, , are (nonrandom) estimator-specific weights, while

Ly ®P @) = 2{f; %P () = 6;°P),

WESP(xy,x0) = K2 (v —x2) — £ 5P (x1) — £15P (xp) +6,5P,

where

£25P () = EIKY (x— X)] = / dKA(u)fo(eruhn)dus
R
7% =B 001= [ P @i
R

KA () = éKA (i) KA ) =/Rdl((u)l((x+u)du.

To be specific, in the case of

OA,lISsz fn(x)zdx
R4

1 1
[ T me-x0 || X Ka—xp) |de

1<ji<n 1<jp=<n

1 A
= > KR (Xi—X)),

1<i,j<n
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each of A; , and wy; , is given by 1 — n~L. For

~ 1 N
PO == 3 A{dﬁ?f(x)zw

1<i<n

1
== > |12 wipaKaG=Xp) || D wipnKa(r=Xj,) | dx

1<i=n” R [ 1<ji<n 1<jp<n

1
= 2 | 2 Wk | KOG = X)),

1<i,j<n 1<k<n

the weights are given by

Ain = Z Wki,nWkj, n» Wijjn = (n—1) Z Wki,nWkj, n»
1<j k<n,j#i 1<k<n

while the weights for
6 5P = /R R

= 3 whiaKaG=X) [ | Y wjpnKn(x—X;,) | dx

R4 X -
15]]5?1 15]25}1
1 2 A
=— Y [PwiiawealKy X — X))
1<ij<n

can be shown to be given by

Y- n/2
MY <jen W12/ = [2j/n1)
1sp-pcr . nn—1)/2 . )
O = G aD g "/ # T

In all cases, the weights satisfy (A.3) and (A.4), so the estimators satisfy (7) if

lJE[W,}SD(Xl,Xz)ZJ -0 (A.9)
n

and if

E[{LESP (X) — Lo(X)}*] — 0. (A.10)

Proceeding as in the proof of Theorem 1, it can be shown that (A.9) and (A.10) hold under
Conditions D, K, and B™.
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Finally, the biases of 615, §ISP-LO and §ISP-DCF are given by

KA(O) pIsD
ISD S
o0 = — +6,°" —6)— —,
niy

B KA(O) QISD

gSD Lo _ . . +9;1ISD_90_77n n__
nhy n
and
SD-DC S
ISD-DCF _ gISD_ g
respectively, where
1

Nn = - ; )
! 12 Y 1<j<n W[iBn/n] # [jBn/n])
and where

6,50 — 6 = /R KAOU () £ O))de = O) = o(n™1/?)

under Conditions D, K, and B.

As a consequence, énISD‘DCF satisfies (6) under Conditions D, K, and B, whereas
. K20
JaEE -0 = Q4 o),
nh2d
n

so Condition B must be strengthened to Condition B for QA,}SD to satisfy (6). Finally,
7 > 1 is bounded, so Condition B must be strengthened to Condition Bt for §SP-10
to satisfy (6).

Finally, the results for §,"S°~B€ and §,5P~G7 follow from those for ,1SP. To be specific,
6,1SP~BC differs from §,1P by an additive constant, so it satisfies (7) under Conditions D,
K, and B™. Also, the additive constant is designed to ensure that (6) is satisfied by §,1SP~BC
under Conditions D, K, and B. Similarly, because

1 o |

1—cd - cd

the estimator énI SD-GJ gatisfies (7) under Conditions D, K, and B, while the fact that

11 o
1—cd phd  1—cd n(chp)d

ensures that (6) is satisfied by HA,}SD’GJ under Conditions D, K, and B.

A.5. Proof of Theorem 4

H,fSD’*, QnISD—LO, *, and

The proof is similar to that of Theorem 2. The estimators
QnI SD-DCE.* 411 have Hoeffding decompositions of the form (A.2), with

¥ _ 5. 7ISDy* % _ . WISD yx yx
Li*”_kl’nL" (Xi,n)’ le,n_wél,nwn (Xi,nvxj,n),
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where 2; ,, and wj; ,, are the same as those for 9ISP, §ISD-LO and 9 ISP-DCF while

A A A A 1
L0 =2{Pw -6, FPw=. 3 Kpa-X),
1<j<n

WiSP (x1,20) = K5 (v —x2) — 5P (x1) — £ 5P (x) + 6, 5P.

Because the weights satisfy (A.3) and (A.4), it follows from simple moment calculations
that the estimators satisfy

1

@y —Ex05]) = 7 D Lo (X ) —EAlLo(X; )1} 4 0p(1) ~p N (0,04)
1<i<n
if
%E;[W,ESD(XTM,X;")Z] —p0 (A.11)

and if (A.10) and (A.12) hold, where
EAHLISP(XF ) —LESP (X} )} —p 0. (A.12)

Suppose Conditions D and K are satisfied. Then, (A.11) holds if nhg — 00, because then

1 A 1
CEWSP K, X5 )% S S ERK (X, = X))

1w

L A 2
=5 2 Kn(i=X)

1<i,j<n
1 A2, 2 A 2
= > KO + > KrXi—X)
1<i<n 1<i,j<n,i<j
1 {K20) 2 1
== ( . ) +Op <4E[KHA(X1 —X2)2]> —p0.
n nhn n

Also, (A.10) holds when h; — 0. Finally, because

~ 1 ~
ExlLa S (X7 ) = Li*P O D2 = = 3 AL P ) — L2 ()2,
1<i<n

a sufficient condition for (A.12) to hold is that
E[LySP(xp) — Ly SP(x)P] — 0.

It follows from a direct calculation that this condition is satisfied when &, — 0 and nh% —
00. To summarize, each estimator satisfies (11) under Conditions D, K, and B™.
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The proof will be completed by giving conditions under which the estimators satisfy (14).
Suppose Conditions D, K, and B are satisfied. By the proof of Theorem 3,

A
JrEBE—ap) = O 1 o),
nhy,
A
SR —gg) = A2 Q Loy,
nh%d

and
V(B[0P PF] — ) = o(1),
while it follows from (A.2) and Theorem 3 that

K20) 6P K20)

e

[(E [QISD *] QISD

+op(1),

. KA 0 . R éISD
[(E [QISD LO, *] QHISD—LO):TM ( )_i_ﬁ(g’}SD_enISDfLO)_nn ﬁ
nh%d
K2 0)

+op(D),

_W

and

U arar . ran_ K2(0)
\/;l(EZ[QnISD DCF,*]_QnISD DCF):ﬁ(QHISD—GrfSD DCF)= +OIP(])~
nhy;

As a consequence, 9,} SD.* satisfies (14) under Conditions D, K, and B, whereas Condition

B must be strengthened to Condition B for 6, 5P "PCF+ * (o satisfy (14). Finally, if B, = n,
then

n —1
= =14+0(n""),
n—1

éISD_LO * satisfies (14) under Conditions D, K, and B. On the other hand, Condition
B must be strengthened to Condition BT for the cross-fit version of QISD LO* 1o satisty

(14), because if B;; = B, for all n, then

B 21
- — .
Tn B—1

Finally, the results for 9,,ISD BC.* and é,fSD'GJ'* follow from those for é,,ISD’ *. To be
specific, 9 ISD-BC, * catisfies (11) under Conditions D, K, and B™, because 0,,ISD’ * does.
Moreover,

f(E [QISD BC, *] énISD—BC)=\/E(EZ[9"”ISD,*]_énISD)’
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so under Conditions D and K, Condition B must be strengthened to Condition BT for
OnISD_BC' *to satisfy (14) (unless K(0) = 0). Similarly, because

1 o 1
l—cd 1-cd ™~
the estimator é,f SD-GJ. * qatisfies (11) under Conditions D, K, and B™, while the fact that

11 A
1—cd ppd  1—cd n(chp)d

ensures that (14) is satisfied by énI SD-GJ,* ynder Conditions D, K, and B.

A.6. Proof of Theorem 5

It follows from the proofs of Theorems 1 and 3 that the estimators AR, fTR-BC GLR-GJ
and é,%R’LO satisfy (7) under Conditions D, K, and B~ and have biases of the form
1sp _ 2K(0)—K2(0)

LR _ ~pAD —1/2
=28, — = +o(m /%),
n ﬂn n nh%

LR-BC —1/2 LR-GJ —1/2
n =o(n /), 1 =o(n /),

and

; . . K2
yI;‘R LozzﬁﬁD LO _ Y}SD LO:_nn v +0(n 1/2)’

nhy

respectively, under Conditions D, K, and B.

As a consequence, SR "BC and LR -CT satisty (6) under Conditions D, K, and B, whereas
Condition B must be strengthened to Condition B for §FR"LC to satisfy (6). Likewise,
C(indition B must be strengthened to Condition BT for é,%‘R to satisfy (6) unless 2K (0) =
K=(0).

A.7. Proof of Theorem 6

It follows from the proofs of Theorems 2 and 4 that the estimators é,%R’*,é,%R'BC’*,
Q,IfR_GJ’ *, and O%R_LO’ * satisfy (11) under Conditions D, K, and B~. The proof will be
completed by giving conditions under which the estimators satisty (14). Suppose Conditions
D, K, and B are satisfied. By the proof of Theorem 5,

2K (0) — K2 (0)
N nh%d

VR(EBEREC1—6p) = o(1),

V(E[ER] —60) = +o(1),

VREBER T~ 6p) = o(1),
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and
A
VAR~ ) = —am— P+ (),

while it follows from the proofs of Theorems 2 and 4 that

2K(0) — K2 (0)

VAEROER 1= 0FR) = ————— +op(1),
nhy;
J— . 2K(0) — K2 (0)
V(BR[O BCF] = 6REC) = e top (D),
nth
n
V@60 ¥ = 677%7) = op(1),

and

A
KO -K*O)

ﬁ(Ez[é#R—LO,*]_éY%R—LO)z P(1)~

nh%d

As a consequence, GA,?R’* and QA,I,JR’GJ’* satisfy (14) under Conditions D, K, and B,
whereas Condition B must be strengthened to Condition B for Q#R'BC’ * and Q%R'LO’ *
to satisfy (14).
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