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This paper highlights a tension between semiparametric efficiency and bootstrap

consistency in the context of a canonical semiparametric estimation problem, namely

the problem of estimating the average density. It is shown that although simple plug-

in estimators suffer from bias problems preventing them from achieving semipara-

metric efficiency under minimal smoothness conditions, the nonparametric bootstrap

automatically corrects for this bias and that, as a result, these seemingly inferior

estimators achieve bootstrap consistency under minimal smoothness conditions. In

contrast, several “debiased” estimators that achieve semiparametric efficiency under

minimal smoothness conditions do not achieve bootstrap consistency under those

same conditions.

1. INTRODUCTION

Peter Phillips is a towering figure in econometrics. Among other things, his

pathbreaking work on nonstationary time series (e.g., Phillips (1987) and Phillips

and Perron (1988) in the case of unit-root autoregression and Phillips and Durlauf

(1986) and Phillips and Hansen (1990) in the case of cointegration) has forcefully

demonstrated that estimators can be useful without having limiting distributions

that are “simple.”In this paper, we show that a similar phenomenon occurs in a

seemingly very different setting, namely a canonical semiparametric estimation

problem in a model with independent and identically distributed (i.i.d.) data.

The specific semiparametric estimation problem we consider is the problem

of estimating the average density of a continuously distributed random vector
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(of which we have a random sample of observations). In that setting, a well-

known apparent shortcoming of simple “plug-in” estimators is that they have

biases that are avoidable and potentially nonnegligible. In particular, the biases in

question prevent the plug-in estimators from achieving semiparametric efficiency

under minimal smoothness conditions. In recognition of this, several methods of

“debiasing” have been proposed and have been found to be successful insofar

as they give rise to estimators that do achieve semiparametric efficiency under

minimal smoothness conditions. (The particular examples given in this paper were

obtained by applying and combining ideas from Hall and Marron (1987), Bickel

and Ritov (1988), and Powell, Stock, and Stoker (1989).)

Recognizing that construction of an estimator is often a means to the end

of conducting inference, a natural question is whether existing average density

estimators permit valid inference to be conducted under minimal smoothness

conditions. In this paper, we answer a specific version of the latter question by

investigating whether average density estimators achieve bootstrap consistency

under minimal smoothness conditions. Looking at estimators through the lens

of the bootstrap is of interest for several reasons, most notably because one can

answer questions motivated by inference considerations without having to make

additional (and potentially arbitrary) assumptions about the behavior of standard

errors (i.e., estimators of nuisance parameters). In other words, because bootstrap

consistency (or lack thereof) can be interpreted as a property of an estimator, it

has the potential to shed new light on the relative merits of competing estimators.

In this paper, we show that average density estimation provides an example where

this potential is realized.

To be specific, whereas several distinct approaches to debiasing achieve semi-

parametric efficiency under minimal smoothness conditions, we find that many of

the estimators produced by these approaches fail to achieve bootstrap consistency

under minimal smoothness conditions. In contrast, in spite of failing to achieve

semiparametric efficiency under minimal smoothness conditions, simple plug-in

estimators achieve bootstrap consistency under minimal smoothness conditions.

In other words, we find that plug-in estimators enjoy certain nontrivial advantages

over some of their debiased counterparts.

The paper proceeds as follows. Section 2 presents the setup and introduces

the formal questions we set out to answer. Studying the most prominent average

density estimators, Sections 3 and 4 are concerned with efficiency and boot-

strap consistency, respectively. Alternative bootstrap procedures are discussed

in Section 5, whereas alternative estimators are analyzed in Section 6. Finally,

Section 7 offers concluding remarks, and the Appendix collects proofs of our main

results.

2. SETUP

Suppose X1, . . . ,Xn are i.i.d. copies of a continuously distributed random vector

X ∈ R
d with an unknown density f0. Assuming f0 is square integrable, a widely
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studied estimand in this setting is

θ0 = E[f0(X)],

the average density. Influential work on estimating θ0 includes Hall and Marron

(1987), Bickel and Ritov (1988), and Ritov and Bickel (1990); see also Giné

and Nickl (2008a) and the references therein. In econometrics, estimators of θ0
are often viewed as prototypical examples of two-step semiparametric estimators

(in the terminology of Newey and McFadden (1994)) and therefore provide a

natural starting point when attempting to shed light on the properties of two-step

semiparametric estimators.

In what follows, we shall explore the extent to which certain prominent esti-

mators of θ0 enjoy one (or both) of two desirable properties. The first of these

properties is a very conventional one, namely (semiparametric) efficiency. It is

well known (e.g., Pfanzagl, 1982, Exam. 9.5.2; Ritov and Bickel, 1990 ) that if f0
is bounded, then the efficient influence function L0 is well defined and given by

L0(x) = 2{f0(x)− θ0}.

Accordingly, an estimator θ̂n = θ̂n(X1, . . . ,Xn) of θ0 is said to be efficient if it

satisfies

√
n(θ̂n− θ0) = 1√

n

∑

1≤i≤n
L0(Xi)+oP(1). (1)

Our analysis will proceed under the following condition on the density.

Condition D For some s > d/4 with 2s /∈ N,f0 is bounded and belongs to the

Besov space Bs2∞(Rd).

As alluded to earlier, the assumption that f0 is bounded serves the purpose of

ensuring that

σ 2
0 = V[L0(X)],

the semiparametric variance bound implied by (1), is well defined and finite. As

pointed out by Bickel and Ritov (1988) and Ritov and Bickel (1990), however,

some (additional) assumptions are required on the part of f0 for semiparametric

efficiency to be achievable. For our purposes, it is convenient and turns out to be

sufficient to assume that f0 is smooth in the sense that it belongs to Bs2∞(Rd), as

that assumption will enable us to employ results from Giné and Nickl (2008b)

when showing asymptotic negligibility of certain remainder terms. In particular,

and as further discussed below, the magnitude “smoothing” bias of the kernel-

based estimators under consideration in this paper turns out to depend on f0 through

the smoothness of the function f10 given by

f10 (x) =
∫

Rd

f0(u)f0(x+u)du.
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Condition D is convenient, because it follows from Giné and Nickl (2008b, Lem.

12) that f10 belongs to the Hölder space C2s(Rd) whenever f0 is bounded and

belongs to Bs2∞(Rd) with 2s /∈ N. The second property of interest is (nonparamet-

ric) bootstrap consistency. In the setting of this paper, the most attractive definition

of that property is the following. Letting X∗
1,n, . . . ,X

∗
n,n denote a random sample

from the empirical distribution of X1, . . . ,Xn and letting θ̂∗
n = θ̂n(X

∗
1,n, . . . ,X

∗
n,n)

denote the natural bootstrap analog of θ̂n, the bootstrap is said to be consistent

if

sup
t∈R

∣∣∣P[
√
n(θ̂n− θ0) ≤ t]−P

∗
n[

√
n(θ̂∗

n − θ̂n) ≤ t]

∣∣∣ = oP(1), (2)

where P∗
n denotes a probability computed under the bootstrap distribution condi-

tional on the data.

To motivate interest in (2), recall that the (nominal) level 1 − α bootstrap

confidence interval for θ0 based on the “percentile method” (in the terminology

of van der Vaart (1998)) is given by

CI
P
n,1−α =

[
θ̂n−q∗

n,1−α/2 , θ̂n−q∗
n,α/2

]
, q∗

n,a = inf{q ∈ R : P∗
n[θ̂

∗
n − θ̂n ≤ q] ≥ a}.

This interval is said to be consistent if

lim
n→∞

P[θ0 ∈ CI
P
n,1−α] = 1−α (3)

and to be efficient if its end points satisfy

√
n(θ̂n−q∗

n,a− θ0) = 1√
n

∑

1≤i≤n
L0(Xi)−8−1(a)σ0 +oP(1), a ∈ {α/2,1−α/2},

(4)

where 8(·) is the standard normal cumulative distribution function. In addition to

being “heuristically necessary,”the bootstrap consistency property (2) turns out to

be sufficient for (3) and (4) in the cases of interest in this paper. In turn, the property

(4) implies (by the duality between hypothesis tests and confidence intervals) that

efficient two-sided tests of simple hypotheses about θ0 can be based on CI
P
n,1−α

whenever the interval is efficient. In other words, the property (2) has strong

and obvious implications for inference, and although those implications may

seem more important than bootstrap consistency per se, much of our subsequent

discussion of the bootstrap focuses on (2) for specificity because that property

seems more “fundamental” than (3) and (4) in the sense that it is not directly

associated with a particular inference method.

At any rate, because the properties of θ̂∗
n and CI

P
n,1−α are governed solely by

(the density f0 and) the functional form of θ̂n, the properties (2)–(4) can all be

interpreted as properties of the estimator θ̂n, and one of the main purposes of this

paper is to explore the relationship between those properties and the more familiar

(efficiency) property (1).
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The (nominal) level 1−α bootstrap confidence interval for θ0 based on “Efron’s

percentile method” (in the terminology of van der Vaart (1998)) is given by

CI
E
n,1−α =

[
θ̂n+q∗

n,α/2 , θ̂n+q∗
n,1−α/2

]
.

Suppose (2) holds. Then, CI
E
n,1−α is consistent if also (1) holds. On the other hand,

and in contrast to CI
P
n,1−α, it turns out that in the cases of interest, in this paper, the

interval CI
E
n,1−α is inconsistent when (1) fails. Partly, for this reason, we focus on

intervals based on the percentile method.

Suppose (1) holds. Letting σ̂ 2
n denote an estimator of σ 2

0 , a natural (nominal)

level 1 − α confidence interval motivated by the distributional approximation√
n(θ̂n− θ0)

·∼ N (0,σ̂ 2
n ) is the “Normal” interval given by

CI
N
n,1−α =

[
θ̂n−8−1(1−α/2)σ̂n/

√
n , θ̂n−8−1(α/2)σ̂n/

√
n
]
.

This interval is consistent if σ̂ 2
n is consistent. The bootstrap consistency property

(2) is neither necessary nor sufficient for the “bootstrap variance consistency”

property

σ̂ 2,∗
n = nV[θ̂∗

n |X1, . . . ,Xn] →P σ 2
0 . (5)

Following Bickel and Freedman (1981), one way of ensuring that bootstrap

variance consistency is implied by bootstrap consistency is to employ the Mallows

metric d2 when defining bootstrap consistency. The examples studied herein have

the feature that (5) can hold even if (2) (and therefore also convergence in the

Mallowsmetric) fails. Partly, for this reason, it seemsmore attractive (to us at least)

to define bootstrap consistency as in (2), hereby treating bootstrap consistency and

bootstrap variance consistency as distinct (i.e., nonnested) properties.

3. AVERAGE DENSITY ESTIMATORS: EFFICIENCY

Our discussion of efficiency (or otherwise) of average density estimators θ̂n will

be based on the natural decomposition of the estimation error θ̂n − θ0 into its bias

and “noise” components E[θ̂n]− θ0 and θ̂n−E[θ̂n]. If these components satisfy

√
n(E[θ̂n]− θ0) = o(1) (6)

and

√
n(θ̂n−E[θ̂n]) = 1√

n

∑

1≤i≤n
L0(Xi)+oP(1), (7)

respectively, then (1) holds. Moreover, if (7) holds, then the easy-to-interpret

bias condition (6) is necessary and sufficient for (1). The latter observation is

particularly useful for our purposes, as it turns out that the estimators of interest

satisfy (7) under very mild conditions.

https://doi.org/10.1017/S0266466621000530 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000530


EFFICIENCY AND BOOTSTRAP CONSISTENCY 1145

The simplest average density estimator is arguably the kernel-based “plug-in”

estimator

θ̂ADn = 1

n

∑

1≤i≤n
f̂n(Xi),

where, for some kernel K and some bandwidth hn, f̂n denotes the kernel density

estimator

f̂n (x) = 1

n

∑

1≤j≤n
Kn(x−Xj), Kn(x) = 1

hdn
K

(
x

hn

)
.

When developing results for θ̂ADn and other estimators, we impose the following

standard condition on the kernel, in which ‖ · ‖1 denotes the ℓ1-norm and ul is

shorthand for u
l1
1 · · ·uldd when u= (u1, . . . ,ud)

′ ∈ R
d and l= (l1, . . . ,ld)

′ ∈ Z
d
+.

Condition K For some P> d/2,K is even and bounded with
∫

Rd

|K(u)|(1+‖u‖P1 )du< ∞

and
∫

Rd

ulK(u)du=
{

1 if l= 0,

0 if l ∈ Z
d
+ and 0 < ‖l‖1 < P.

The constant P in Condition K is the order of the kernel. Condition K therefore

implies that K is a higher-order kernel when d ≥ 4. As usual, we employ higher-

order kernels in order to ensure that the magnitude of the smoothing bias of f̂n is

sufficiently small.

Under Conditions D and K, the density estimator f̂n is consistent (pointwise)

provided the bandwidth satisfies the following condition.

Condition B− As n→ ∞,hn → 0 and nhdn → ∞.

More importantly, Condition B− implies that the average density estimator θ̂ADn
satisfies (7) under Conditions D and K.1 As a consequence, under Conditions D, K,

and B−, the estimator θ̂ADn is efficient if and only if it satisfies the bias condition (6).

Using the representation θ0 = f10 (0), the bias of θ̂ADn can be shown to admit the

approximation

E[θ̂ADn ]− θ0 ≈ K(0)

nhdn
+

∫

Rd

K(t)[f10 (hnt)− f10 (0)]dt, (8)

where the approximation error is of order n−1, the first term is a “leave-in” bias

term (in the terminology of Cattaneo, Crump, and Jansson (2013)), and the second

1Conversely, Condition B− is minimal in the sense that the methods of Cattaneo, Crump, and Jansson (2014b) can

be used to show that (7) can fail if Condition B− is violated.
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term is a smoothing bias term. As previously mentioned, the function f10 belongs

to the Hölder space C2s(Rd) under Condition D. Using this fact, it follows from

a routine calculation (e.g., Tsybakov, 2009, Prop. 1.2) that if Conditions D and K

are satisfied and if hn → 0, then
∫

Rd

K(t)[f10 (hnt)− f10 (0)]dt = O(h2Sn ), S= min(P/2,s).

As a consequence, under Conditions D and K, the estimator θ̂ADn is efficient

provided Condition B− is strengthened to the following condition.

Condition B+ As n→ ∞,nh4Sn → 0 and nh2dn → ∞.

Existence of a bandwidth sequence satisfying Condition B+ requires that the

parameter s governing the smoothness of f0 satisfies s> d/2, a stronger condition

than the (minimal) condition s> d/4 included in Condition D.

This shortcoming of θ̂ADn is attributable to its leave-in bias, as it is the presence of

the leave-in bias that requires a strengthening of the lower bound on the bandwidth

from nhdn → ∞ to nh2dn → ∞. Of course, the leave-in bias of θ̂ADn is easily

avoidable. One option is to employ a kernel satisfying K(0) = 0. Recognizing

that all standard kernels have K(0) 6= 0, a more natural option is to use the “bias-

corrected” version of θ̂ADn given by

θ̂AD-BCn = θ̂ADn − K(0)

nhdn
.

By construction, the bias of this estimator satisfies

E[θ̂AD-BCn ]− θ0 ≈
∫

Rd

K(t)[f10 (hnt)− f10 (0)]dt = O(h2Sn ),

so under Conditions D and K, the bias condition (6) is satisfied by θ̂AD-BCn provided

nh4Sn → 0, implying in turn that θ̂AD-BCn is asymptotically efficient under Conditions

D and K provided the bandwidth satisfies the following condition, which requires

no additional smoothness (as measured by the value of s) relative to Condition D.

Condition B As n→ ∞,nh4Sn → 0 and nhdn → ∞.

The leave-in bias of θ̂ADn is proportional to 1/(nhdn). Equipped with only that

knowledge, the method of generalized jackknifing constructs a debiased version

of θ̂ADn as a weighted sum of two (or more) versions of θ̂ADn implemented using

different values of the bandwidth, where the weights are judiciously chosen

to remove the leave-in bias. To give the simplest example, let θ̂ADn (h) denote

the version of θ̂ADn associated with the bandwidth h. Then, for any c 6= 1, the

“generalized jackknife” version of θ̂ADn obtained by combining θ̂ADn = θ̂ADn (hn) and
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θ̂ADn (chn) is given by

θ̂AD-GJn = 1

1− cd
θ̂ADn − cd

1− cd
θ̂ADn (chn).

Like θ̂ADn , the estimator θ̂AD-GJn satisfies (7) under Conditions D, K, and B−.
Moreover, because

E[θ̂ADn (chn)]− θ0 ≈ 1

cd
K(0)

nhdn
+

∫

Rd

K(t)[f10 (chnt)− f10 (0)]dt,

the bias condition (6) is satisfied by θ̂AD-GJn under Condition B.

Finally, as its name suggests, the leave-in bias can also be avoided by employing

“leave-out” estimators of f0. A generic average density estimator based on leave-

out density estimators is of the form

θ̂AD-LOn = 1

n

∑

1≤i≤n
f̂ LOi,n (Xi),

where f̂ LOi,n is a kernel density estimator constructed using observations belonging

to a set that does not include Xi. Relative to θ̂AD-BCn and θ̂AD-GJn , an attractive feature

of θ̂AD-LOn is that it can be constructed without knowledge of the functional form

of the leave-in bias. For concreteness, we shall develop results for θ̂AD-LOn only

in the (leading) special case where the sample X1, . . . ,Xn is partitioned into Bn ∈
{2, . . . ,n} disjoint blocks of (approximately) equal size and f̂ LOi,n is constructed using

observations from all blocks except the one to which the ith observation belongs.

To be specific, we assume that f̂ LOi,n is of the form

f̂ LOi,n (x) =
∑

1≤j≤n
wij,nKn(x−Xj), wij,n = 1(⌈iBn/n⌉ 6= ⌈jBn/n⌉)∑

1≤k≤n 1(⌈iBn/n⌉ 6= ⌈kBn/n⌉)
.

When Bn = n, f̂ LOi,n is the ith “leave-one-out” estimator of f0, and the estimator

θ̂AD-LOn reduces to the estimator introduced in Hall and Marron (1987) and further

studied by Giné and Nickl (2008a) (among many others). At the opposite extreme,

when Bn is kept fixed, the estimator θ̂AD-LOn is a “cross-fit” estimator (using a Bn-

fold nonrandom partition of {1, . . . ,n}) in the terminology of Newey and Robins

(2018).

Regardless of the choice of Bn, under Conditions D, K, and B−, the estimator

θ̂AD-LOn is similar to θ̂AD-BCn and θ̂AD-GJn insofar as it satisfies (7) and has

E[θ̂AD-LOn ]− θ0 ≈
∫

Rd

K(t)[f10 (hnt)− f10 (0)]dt = O(h2Sn ),

implying in particular that θ̂AD-LOn is asymptotically efficient under Conditions D,

K, and B.

The following result collects and summarizes the main findings of this section.
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THEOREM 1. Suppose Conditions D, K, and B are satisfied. Then, θ̂AD-BCn ,

θ̂AD-GJn , and θ̂AD-LOn satisfy (1). If Condition B is strengthened to Condition B+,

then θ̂ADn satisfies (1).

Remark. Because θ̂ADn is a linear functional of f̂n, the generalized jackknife

estimator θ̂AD-GJn can be interpreted as a version of the plug-in estimator θ̂ADn based

on a modified kernel: Defining

KGJ(x) = 1

1− cd

[
K(x)−K

(x
c

)]
,

we have

θ̂AD-GJn = 1

n

∑

1≤i≤n
f̂ GJn (Xi),

where

f̂ AD-GJn (x) = 1

n

∑

1≤j≤n
KGJ
n (x−Xj), KGJ

n (x) = 1

hdn
KGJ

(
x

hn

)
.

The modified kernel satisfies KGJ(0) = 0, so this interpretation provides an

explanation of the fact that θ̂AD-GJn satisfies (6) under Condition B. A similar

interpretation is not available for generalized jackknife versions of estimators that

are nonlinear functionals of f̂n; examples of such estimators are given by θ̂ISD-GJn

and θ̂LR-GJn studied in Section 6.

4. AVERAGE DENSITY ESTIMATORS: BOOTSTRAP CONSISTENCY

Letting X∗
1,n, . . . ,X

∗
n,n denote a random sample from the empirical distribution of

X1, . . . ,Xn, the natural bootstrap analogs of the estimators studied in the previous

section are given by

θ̂AD,∗
n = 1

n

∑

1≤i≤n
f̂ ∗n (X∗

i,n), f̂ ∗n (x) = 1

n

∑

1≤j≤n
Kn(x−X∗

j,n),

θ̂AD-BC,∗
n = θ̂AD,∗

n − K(0)

nhdn
,

θ̂AD-GJ,∗
n = 1

1− cd
θ̂AD,∗
n − cd

1− cd
θ̂AD,∗
n (chn),

and

θ̂AD-LO,∗
n = 1

n

∑

1≤i≤n
f̂ LO,∗
i,n (X∗

i,n), f̂ LO,∗
i,n (x) =

∑

1≤j≤n
wij,nKn(x−X∗

j,n),

https://doi.org/10.1017/S0266466621000530 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000530


EFFICIENCY AND BOOTSTRAP CONSISTENCY 1149

respectively, where θ̂AD,∗
n (chn) denotes the version of θ̂AD,∗

n associated with the

bandwidth chn. The main goal of this section is to explore the extent to which

these estimators enjoy the bootstrap consistency property (2) under Conditions D,

K, and B.

If θ̂n is efficient in the sense that it satisfies (1), then
√
n(θ̂n − θ0)  N (0,σ 2

0 ),

implying in particular that the bootstrap consistency property (2) admits the

following characterization:
√
n(θ̂∗

n − θ̂n)  P N (0,σ 2
0 ), (9)

where P denotes conditional weak convergence in probability.

Similarly to the analysis of the previous section, it seems natural to base

verification of (9) on a decomposition of the bootstrap estimation error θ̂∗
n − θ̂n

into its bias and noise components E∗
n[θ̂

∗
n ]− θ̂n and θ̂∗

n −E
∗
n[θ̂

∗
n ], where E

∗
n[·] =

E[·|X1, . . . ,Xn]. The resulting sufficient condition for (9) is given by the pair
√
n(E∗

n[θ̂
∗
n ]− θ̂n) = oP(1) (10)

and
√
n(θ̂∗

n −E
∗
n[θ̂

∗
n ])  P N (0,σ 2

0 ), (11)

where (10) is the natural bootstrap analog of (6), (11) is a bootstrap version of the

main distributional implication of (7), and where (10) is necessary and sufficient

for (9) when (11) holds.

In perfect analogy with (7), it turns out that (11) holds under very mild

bandwidth conditions. Indeed, under Conditions D and K, the estimators

θ̂AD,∗
n ,θ̂AD-BC,∗

n ,θ̂AD-GJ,∗
n , and θ̂AD-LO,∗

n all satisfy (11) whenever Condition B−

holds.2 As a consequence, the question once again becomes whether the estimators

have biases that are sufficiently small. Under Conditions D, K, and B−, the
bootstrap bias of θ̂AD,∗

n satisfies

E
∗
n[θ̂

AD,∗
n ]− θ̂ADn = K(0)

nhdn
− 1

n
θ̂ADn = K(0)

nhdn
+OP(n

−1). (12)

Therefore, the bias condition (10) is satisfied by θ̂AD,∗
n provided nh2dn → ∞. In

other words, θ̂AD,∗
n satisfies (2) (and therefore also (3) and (4)) under Conditions

D, K, and B+.
More surprisingly, perhaps, although the estimator θ̂AD-BCn is efficient under

Conditions D, K, and B, stronger conditions are required for its bootstrap analog

θ̂AD-BC,∗
n to satisfy (2). This is so because

E
∗
n[θ̂

AD-BC,∗
n ]− θ̂AD-BCn = E

∗
n[θ̂

AD,∗
n ]− θ̂ADn = K(0)

nhdn
+OP(n

−1) (13)

2Conversely, Condition B− is minimal in the sense that the methods of Cattaneo, Crump, and Jansson (2014a) can

be used to show that (11) can fail if Condition B− is violated.
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under Conditions D, K, and B. A similar remark applies to θ̂AD-LOn , as its bootstrap

analog satisfies

E
∗
n[θ̂

AD-LO,∗
n ]− θ̂AD-LOn = θ̂ADn − θ̂AD-LOn = K(0)

nhdn
+oP(n

−1/2)

under Conditions D, K, and B.

On the other hand, because

E
∗
n[θ̂

AD,∗
n (chn)]− θ̂ADn (chn) = 1

cd
K(0)

nhdn
− 1

n
θ̂ADn (chn) = 1

cd
K(0)

nhdn
+OP(n

−1),

the bootstrap analog of θ̂AD-GJn satisfies

E
∗
n[θ̂

AD-GJ,∗
n ]− θ̂AD-GJn = OP(n

−1),

so this estimator satisfies (2) under Conditions D, K, and B.

It turns out that θ̂AD,∗
n satisfies (2)–(4) under conditions that are weaker than the

conditions under which θ̂ADn is efficient. In generic notation, suppose the estimators

θ̂n and θ̂∗
n satisfy (7) and (11), respectively. Then, (2) is still sufficient for (3) and (4)

to hold. Moreover, as also observed by Cattaneo and Jansson (2018), the bootstrap

consistency condition (2) itself is satisfied under the following generalization of

the bias conditions (6) and (10):

√
n(E∗

n[θ̂
∗
n ]− θ̂n) =

√
n(E[θ̂n]− θ0)+oP(1). (14)

Now, as discussed above, the estimators θ̂ADn and θ̂AD,∗
n satisfy (7) and (11),

respectively, under Conditions D, K, and B. Under the same conditions, it follows

from (8) and (12) that (14) is satisfied.

The following result collects and summarizes the main findings of this section.

THEOREM 2. Suppose Conditions D, K, and B are satisfied. Then θ̂AD,∗
n and

θ̂AD-GJ,∗
n satisfy (2). If Condition B is strengthened to Condition B+, then θ̂AD-BC,∗

n

and θ̂AD-LO,∗
n satisfy (2).

Comparing Theorems 1 and 2, we see that efficiency is neither necessary

nor sufficient for bootstrap consistency. In fact, the results indicate that there

can be a tension between efficiency and bootstrap consistency in semiparametric

settings. What seems most noteworthy to us is that whereas “debiased” estimators

such as θ̂AD-BCn and θ̂AD-LOn may appear to be superior to the simple plug-in

estimator θ̂ADn insofar as they achieve efficiency under weaker (indeed, minimal)

conditions, the ranking gets reversed when the estimators are looked at through

the lens of the bootstrap. As pointed out by Chen, Linton, and Van Keilegom

(2003) and Cheng and Huang (2010), bootstrap-based inference is particularly

attractive in semiparametric settings. The results above demonstrate by example

that efficiency-based rankings of estimators can be quite misleading in cases where

https://doi.org/10.1017/S0266466621000530 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000530


EFFICIENCY AND BOOTSTRAP CONSISTENCY 1151

construction of an estimator is simply a means to the end of conducting bootstrap-

based inference.

For the estimators under consideration in Theorems 1 and 2 (and elsewhere

in this paper), perhaps the easiest way to explain the tension between efficiency

and bootstrap consistency is the following. Under mild conditions (namely, under

Conditions D, K, and B−), the estimators are efficient if they satisfy (6) and

the nonparametric bootstrap is consistent if (14) is satisfied. Both (6) and (14)

are bias conditions, but clearly neither condition implies the other in general.

As exemplified by θ̂AD,∗
n ,θ̂AD-BC,∗

n , and θ̂AD-LO,∗
n , the bootstrap bias E

∗
n[θ̂

∗
n ] −

θ̂n tends to be nonnegligible (i.e., it is not necessarily oP(1)) when only mild

smoothness conditions are imposed. Because the conditions (6) and (14) are

mutually exclusive whenever the bootstrap bias is nonnegligible, two distinct

conclusions can be drawn. First, bootstrap consistency typically fails for efficient

estimators. That observation is arguably the main finding of this paper, and

we have deliberately chosen to document the finding by means of the simplest

possible example(s). Second, nonparametric bootstrap consistency can hold for

inefficient estimators as long as the source of the inefficiency is bias. This is

precisely what happens for θ̂ADn , and, in fact, it turns out that the finding that

bootstrap consistency holds for plug-in estimators even if they are not efficient

generalizes well beyond the setting of this paper (for details, see Cattaneo and

Jansson, 2018).

As conjectured by the Co-Editor, the estimators θ̂ADn ,θ̂AD-BCn ,θ̂AD-GJn , and θ̂AD-LOn

can all be shown to satisfy the bootstrap variance consistency property (5) under

Conditions D, K, and B. The estimators θ̂AD-BCn ,θ̂AD-GJn , and θ̂AD-LOn therefore enjoy

the property that the intervalsCI
N
n,1−α based on the bootstrap variance estimator are

consistent (indeed, efficient) under Conditions D, K, and B.

An important source of the bootstrap consistency result for θ̂ADn is the ability

of the bootstrap to automatically perform a bias correction when approximating

the distribution of θ̂ADn − θ0. The same mechanism can be exploited for estimation

purposes: Setting α = 1, the intervalCI
P
n,1−α becomes a singleton and can therefore

be interpreted as a bootstrap-based estimator of θ0. As a by-product of our results

about θ̂ADn , it can be shown that the resulting estimator

2θ̂ADn − inf{q ∈ R : P∗
n[θ̂

AD,∗
n ≤ q] ≥ 1/2}

is efficient under Conditions D, K, and B.

The bootstrap analog of θ̂ADn employs a density estimator f̂ ∗n that uses the

same bandwidth hn as is used when constructing f̂n. Doing so is important for

the purposes of obtaining the bootstrap consistency result for θ̂ADn . Indeed, if f̂ ∗n
were defined using a possibly different bandwidth h∗

n (say), then the bootstrap

consistency result under Condition B can fail unless h∗
n/hn →P 1. On the other

hand, the flavor of the bootstrap results about θ̂AD-BCn ,θ̂AD-LOn , and θ̂AD-GJn does not

change if a different bandwidth is used when defining their bootstrap analogs.
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Remark. In important special cases (such as when θ̂n equals θ̂AD,∗
n ,θ̂AD-BC, ∗

n ,

or the leave-one-out version of θ̂AD-LO,∗
n ), the fact that E∗

n[θ̂
∗
n ]− θ̂n tends to be

nonnegligible can be interpreted as a manifestation of the following generic fact

about U-statistics: If X∗
1,n, . . . ,X

∗
n,n denotes a random sample from the empirical

distribution of X1, . . . ,Xn and if κ : Rr → R is permutation symmetric in its

arguments, then

E
∗
n[U

∗
κ,n] = Vκ,n,

where

U
∗
κ,n =

(
n

r

)−1 ∑

1≤i1,...,ir≤n,i1<···<ir

κ

(
X∗
i1,n

, . . . ,X∗
ir,n

)

is the rth-order U-statistic (with kernel κ) constructed from X∗
1,n, . . . ,X

∗
n,n and

where

Vκ,n = n−r
∑

1≤i1,...,ir≤n
κ

(
Xi1, . . . ,Xir

)

is the rth-order V-statistic (with kernel κ) constructed from X1, . . . ,Xn. In other

words, under the nonparametric bootstrap distribution, the expected value of a U-

statistic is given by the corresponding V-statistic. Whenever r ≥ 2, the statistic Vn
contains “diagonal” terms (i.e., terms of the form κ

(
Xi1, . . . ,Xir

)
with overlapping

subscripts i1, . . . ,ir) not present in the U-statistic

Uκ,n =
(
n

r

)−1 ∑

1≤i1,...,ir≤n,i1<···<ir

κ
(
Xi1, . . . ,Xir

)
.

It is the presence of such diagonal terms that gives rise to a potentially nonneg-

ligible bias in the bootstrap distribution of estimators that involve U-statistics of

order 2 (or greater). Indeed, it is precisely this phenomenon, that is, the source of

the celebrated counterexample (to bootstrap consistency) reported in (Bickel and

Freedman, 1981, pp. 1209–1210).

5. ALTERNATIVE BOOTSTRAP PROCEDURES

In light of Theorem 2, it is of interest to construct bootstrap-based approximations

to the distributions of θ̂AD-BCn and θ̂AD-LOn that are consistent under Conditions

D, K, and B. In generic notation, suppose θ̂n = θ̂n(X1, . . . ,Xn) is the estimator

whose distribution we seek to approximate. One option is to find an estimator

θ̃n = θ̃n(X1, . . . ,Xn) (say) whose natural bootstrap analog θ̃∗
n = θ̃n(X

∗
1,n, . . . ,X

∗
n,n)

satisfies

sup
t∈R

∣∣∣P[
√
n(θ̂n− θ0) ≤ t]−P

∗
n[

√
n(θ̃∗

n − θ̂n) ≤ t]

∣∣∣ = oP(1). (15)
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As we shall see, both θ̂AD-BCn and θ̂AD-LOn lend themselves well to a construction

of this type. Nevertheless, in some circumstances, it may be equally (if not more)

attractive to achieve consistency by finding a bootstrap probability measure P
⋆
n

(say) governing the distribution of X⋆
1,n, . . . ,X

⋆
n,n such that θ̂ ⋆

n = θ̂n(X
⋆
1,n, . . . ,X

⋆
n,n)

satisfies

sup
t∈R

∣∣∣P[
√
n(θ̂n− θ0) ≤ t]−P

⋆
n[

√
n(θ̂ ⋆

n − θ̂n) ≤ t]

∣∣∣ = oP(1). (16)

A construction of this type turns out to be useful in the case of the cross-fit version

of θ̂AD-LOn .

First, consider the problem of approximating the distribution of θ̂AD-BCn . It

follows from (13) that a bias-corrected version of θ̂AD-BC,∗
n is given by

θ̃AD-BC,∗
n = θ̂AD-BC,∗

n − K(0)

nhdn
.

Rather than showing (15) by analyzing θ̃AD-BC,∗
n directly, we find it more insightful

to obtain the consistency result by means of an argument which highlights and

exploits the relationship between θ̃AD-BC,∗
n and θ̂AD, ∗

n . Heuristically, θ̃AD-BC,∗
n

“should” satisfy (15) under Conditions D, K, and B, because the percentile interval

associated with θ̃AD-BC,∗
n is identical to the percentile interval associated with

θ̂AD,∗
n .3 These heuristics can be made rigorous with the help of the equality

sup
t∈R

∣∣∣P[
√
n(θ̂AD-BCn − θ0) ≤ t]−P

∗
n[

√
n(θ̃AD-BC,∗

n − θ̂AD-BCn ) ≤ t]

∣∣∣

= sup
t∈R

∣∣∣P[
√
n(θ̂ADn − θ0) ≤ t]−P

∗
n[

√
n(θ̂AD,∗

n − θ̂ADn ) ≤ t]

∣∣∣,

which implies, in particular, that θ̃AD-BC,∗
n satisfies (15) if and only if θ̂AD,∗

n satisfies

(2). As a consequence, the fact θ̃AD-BC,∗
n satisfies (15) under Conditions D, K, and

B is simply a restatement of the bootstrap consistency result for θ̂AD,∗
n . Turning

next to θ̂AD-LOn , our preferred modification of this estimator is motivated by the

observation that

P[f̃ LOi,n (Xi) = f̂ LOi,n (Xi)] = 1,

where

f̃ LOi,n (x) =
∑

1≤j≤n
wij,nK̃n(x−Xj), K̃n(x) = 1(x 6= 0)Kn(x).

3In generic notation, the percentile interval associated with an estimator θ̃∗
n is given by

C̃In,1−α =
[
θ̂n − q̃∗

n,1−α/2 , θ̂n − q̃∗
n,α/2

]
, q̃∗

n,a = inf{q ∈ R : P∗
n[(θ̃

∗
n − θ̂n) ≤ q] ≥ a}.
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An immediate implication of this observation is that

P[θ̃AD-LOn = θ̂AD-LOn ] = 1, θ̃AD-LOn = 1

n

∑

1≤i≤n
f̃ LOi,n (Xi).

Nevertheless, unlike θ̂AD-LOn itself, the modification θ̃AD-LOn has a natural bootstrap

analog

θ̃AD-LO,∗
n = 1

n

∑

1≤i≤n
f̃ LO,∗
i,n (X∗

i,n), f̃ LO,∗
i,n (x) =

∑

1≤j≤n
wij,nK̃n(x−X∗

j,n),

whose bias is small: Under Conditions D, K, and B,

E
∗
n[θ̃

AD-LO,∗
n ]= 1

n

∑

1≤i≤n
f̃ LOn (Xi) = θ̃AD-LOn +oP(n

−1/2), f̃ LOn (x)= 1

n

∑

1≤j≤n
K̃n(x−Xj).

In fact, it can be shown that (15) is satisfied by θ̃AD-LO,∗
n under Conditions D, K,

and B.

For cross-fit estimators, an arguably more attractive option is to construct a

bootstrap-based distributional approximation which employs a bootstrap proba-

bility measure that is itself of cross-fit (i.e., split sample) type. To illustrate the

idea, we consider the simplest special case. When Bn = 2, the estimator θ̂AD-LOn

reduces to

θ̂AD-CFn = 1

n

∑

1≤i≤n
f̂ CFi,n (Xi),

where

f̂ CFi,n (x) =





1
n−⌊n/2⌋

∑
⌊n/2⌋+1≤j≤nKn(x−Xj), i ∈ {1, . . . , ⌊n/2⌋},

1
⌊n/2⌋

∑
1≤j≤⌊n/2⌋Kn(x−Xj), i ∈ {⌊n/2⌋+1, . . . ,n}.

The Bn = 2 version of the “cross-fit bootstrap” is defined as follows. Conditional

on X1, . . . ,Xn, let X⋆
1,n, . . . ,X

⋆
n,n be mutually independent with X⋆

1,n, . . . ,X
⋆
⌊n/2⌋,n

being a random sample from the empirical distribution of X1, . . . ,X⌊n/2⌋ and

X⋆
⌊n/2⌋+1,n, . . . ,X

⋆
n,n being a random sample from the empirical distribution of

X⌊n/2⌋+1, . . . ,Xn. Then,

θ̂AD-CF,⋆
n = 1

n

∑

1≤i≤n
f̂ CF,⋆
i,n (X⋆

i,n)
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is the corresponding cross-fit bootstrap version of θ̂AD-CFn , where

f̂ CF,⋆
i,n (x) =





1
n−⌊n/2⌋

∑
⌊n/2⌋+1≤j≤nKn(x−X⋆

j,n), i ∈ {1, . . . , ⌊n/2⌋},

1
⌊n/2⌋

∑
1≤j≤⌊n/2⌋Kn(x−X⋆

j,n), i ∈ {⌊n/2⌋+1, . . . ,n}.

The bootstrap distribution of θ̂AD-CF,⋆
n is correctly centered in the sense that

E
⋆
n[θ̂

AD-CF,⋆
n ] = θ̂AD-CFn , where E⋆

n[·] denotes the expected value computed under

the cross-fit bootstrap distribution. In fact, the bootstrap distribution satisfies (16)

under Conditions D, K, and B.

As pointed out by a referee, yet another way of achieving consistency on the

part of a bootstrap-based distributional approximation is to center the distribution

of θ̂∗
n at an estimator θ̃n satisfying

sup
t∈R

∣∣∣P[
√
n(θ̂n− θ0) ≤ t]−P

∗
n[

√
n(θ̂∗

n − θ̃n) ≤ t]

∣∣∣ = oP(1). (17)

Because the estimators under consideration here all satisfy (7) and (11), the

following analog of (14) is sufficient for (17):

√
n(E∗

n[θ̂
∗
n ]− θ̃n) =

√
n(E[θ̂n]− θ0)+oP(1).

As already mentioned in connection with (14), the displayed condition is satisfied

by θ̃n = θ̂n in the case of θ̂ADn . For the other estimators (i.e., for θ̂AD-BCn , θ̂AD-GJn ,

and θ̂AD-LOn ), because they satisfy the bias condition (6), the displayed condition is

satisfied by θ̃n = E
∗
n[θ̂

∗
n ].

6. ALTERNATIVE ESTIMATORS

This section considers two alternative classes of estimators. The first class is

motivated by the integrated squared density representation

θ0 =
∫

Rd

f0 (x)2 dx,

an interesting feature of which is that it involves a nonlinear functional of f0. The

second class is motivated by the representation

θ0 = 2E[f0(X)]−
∫

Rd

f0 (x)2 dx,

an interesting feature of which is that it is “locally robust”/“Neyman orthogonal”

(in the terminology of Chernozhukov et al. (2020)).
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6.1. Integrated Squared Density Estimators

A kernel-based plug-in integrated squared density estimator is

θ̂ISDn =
∫

Rd

f̂n (x)
2 dx.

Like θ̂ADn , this estimator has a (potentially) nonnegligible bias: Under Conditions

D, K, and B,

E[θ̂ISDn ]− θ0 =
∫
Rd
K(u)2du

nhdn
+o(n−1/2),

where the first term is a “nonlinearity” bias term (in the terminology of Cattaneo

et al. (2013)) attributable to the fact that θ̂ISDn is a nonlinear functional of f̂n.

The nonlinearity bias of θ̂ISDn is easily avoidable, a simple bias-corrected version

of θ̂ISDn being

θ̂ISD-BCn = θ̂ISDn −
∫
Rd
K(u)2du

nhdn
.

Similarly, because the nonlinearity bias of θ̂ISDn is proportional to 1/(nhdn), the

following generalized jackknife version of θ̂ISDn is an efficient estimator of θ0:

θ̂ISD-GJn = 1

1− cd
θ̂ISDn − cd

1− cd
θ̂ISDn (chn),

where c 6= 1 is a user-chosen constant and where θ̂ISDn (chn) denotes the version of

θ̂ISDn associated with the bandwidth chn.

On the other hand, because the source of the nonlinearity bias of θ̂ISDn is different

from the source of the leave-in bias of θ̂ADn , there is no particular reason to expect

leave-out estimators of the form

θ̂ISD-LOn = 1

n

∑

1≤i≤n

∫

Rd

f̂ LOi,n (x)2dx

to have favorable bias properties. Indeed, under Conditions D, K, and B and

assuming Bn is proportional to n, we have:
4

E[θ̂ISD-LOn ]− θ0 = 1

1−B−1
n

∫
Rd
K(u)2du

nhdn
+o(n−1/2), (18)

4More generally (i.e., whether or not Bn is proportional to n), it is shown in the proof of Theorem 3 that the bias

expansion is of the form

E[θ̂ISD-LOn ]− θ0 = ηn

∫
Rd
K(u)2du

nhdn
+o(n−1/2),

where ηn ≥ 1 is bounded.
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so the nonlinearity bias of θ̂ISD-LOn is nonnegligible (and no smaller than that of

θ̂ISDn ).

Nevertheless, because θ0 is a quadratic functional of f0, the method of “doubly

cross-fitting” (in the terminology of Newey and Robins (2018)) can be used to

construct an estimator which is free of nonlinearity bias and can be implemented

without knowledge of the functional form of the nonlinearity bias. One such

estimator is

θ̂ISD-DCFn =
∫

Rd

f̂ CF1,n (x) f̂ CFn,n (x)dx,

whose bias turns out to be negligible under Conditions D, K, and B.

Under Conditions D, K, and B−, the estimators θ̂ISDn ,θ̂ISD-BCn ,θ̂ISD-GJn ,θ̂ISD-LOn ,

and θ̂ISD-DCFn all satisfy (7). As a consequence, we obtain the following integrated

squared density counterpart of Theorem 1.

THEOREM 3. Suppose Conditions D, K, and B are satisfied. Then, θ̂ISD-BCn ,

θ̂ISD-GJn , and θ̂ISD-DCFn satisfy (1). If Condition B is strengthened to Condition B+,

then θ̂ISDn and θ̂ISD-LOn satisfy (1).

An integrated squared density counterpart of Theorem 2 is also available.

Under Conditions D, K, and B, if θ̂n ∈ {θ̂ISDn ,θ̂ISD-BCn ,θ̂ISD-LOn ,θ̂ISD-DCFn }, then its

bootstrap analog satisfies (11) and has a bias of the form

E
∗
n[θ̂

∗
n ]− θ̂n =

∫
Rd
K(u)2du

nhdn
+oP(n

−1/2),

so (14) (and therefore also (2)) is satisfied if (and only if)

E[θ̂n]− θ0 =
∫
Rd
K(u)2du

nhdn
+o(n−1/2).

The latter condition is satisfied by θ̂ISDn , but violated by θ̂ISD-BCn and θ̂ISD-DCFn . In

the case of θ̂ISD-LOn , it follows from (18) that the condition is satisfied when Bn = n

(i.e., when θ̂ISD-LOn is a leave-one-out estimator), but violated whenBn is fixed (i.e.,

when θ̂ISD-LOn is a cross-fit estimator).

THEOREM 4. Suppose Conditions D, K, and B are satisfied. Then, θ̂ISD,∗
n

and θ̂ISD-GJ,∗
n satisfy (2). If Bn = n, then θ̂ISD-LO,∗

n satisfies (2). If Condition

B is strengthened to Condition B+, then θ̂ISD-BC,∗
n ,θ̂ISD-LO,∗

n , and θ̂ISD-DCF,∗
n

satisfy (2).

In important respects, the results reported in Theorems 3 and 4 are in qualitative

agreement with those reported in Theorems 1 and 2. In particular, we find that

in spite of being inefficient, the simple plug-in estimator achieves bootstrap

consistency under conditions that are weaker than those required for efficient
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estimators to achieve bootstrap consistency. The most notable difference between

the integrated squared density and average derivative estimators is probably that

in the case of integrated squared density estimators, the cross-fit estimator is

demonstrably worse than the plug-in estimator, satisfying neither (1) nor (2).

As was the case with the average density estimators, the integrated squared

density estimators can all be shown to satisfy the bootstrap variance consistency

property (5) under Conditions D, K, and B. The estimators θ̂ISD-BCn , θ̂ISD-GJn ,

and θ̂ISD-DCFn therefore enjoy the property that the intervals CI
N
n,1−α based on the

bootstrap variance estimator are consistent (indeed, efficient) under Conditions D,

K, and B.

For completeness, we conclude this subsection by briefly discussing integrated

squared density versions of (15)–(17). In what follows, suppose Conditions D, K,

and B are satisfied. A bias-corrected version of θ̂ISD-BC,∗
n is given by

θ̃ISD-BC,∗
n = θ̂ISD-BC,∗

n −
∫
Rd
K(u)2du

nhdn
.

In perfect analogy with θ̃AD-BC,∗
n , this estimator satisfies (15), and the associated

percentile interval is identical to the percentile interval associated with θ̂ISD,∗
n .

Next,

θ̃ISD-LO,∗
n = 1

n

∑

1≤i≤n

∫

Rd

f̃ LO,∗
i,n (x)2dx

is an integrated squared density counterpart of θ̃AD-LO,∗
n . Because θ̃ISD-LO,∗

n =
θ̂ISD-LO,∗
n , this estimator satisfies (15) when Bn = n, but not when Bn is fixed.

On the other hand, the cross-fit bootstrap can be used when Bn is fixed. As before,

suppose Bn = 2 for specificity. In that case, θ̂ISD-LOn reduces to

θ̂ISD-CFn = 1

n

∑

1≤i≤n

∫

Rd

f̂ CFi,n (x)2dx,

and it can be shown that

θ̂ISD-CF,⋆
n = 1

n

∑

1≤i≤n

∫

Rd

f̂ CF,⋆
i,n (x)2dx

satisfies (16). Similarly, the distribution of θ̂ISD-DCFn can be approximated using

θ̂ISD-DCF,⋆
n =

∫

Rd

f̂ CF,⋆
1,n (x) f̂ CF,⋆

n,n (x)dx,

as that estimator satisfies (16). Finally, the property (17) holds for θ̂ISD-BCn ,θ̂ISD-GJn ,

and θ̂ISD-DCFn when θ̃n = E
∗
n[θ̂

∗
n ] (and for θ̂ISDn ,θ̂ISD-GJn , and the leave-one-out

version of θ̂ISD-LOn when θ̃n = θ̂n).
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6.2. Locally Robust Estimators

A locally robust kernel-based plug-in estimator of θ0 is

θ̂LRn = 2

n

∑

1≤i≤n
f̂n(Xi)−

∫

Rd

f̂n (x)
2 dx= 2θ̂ADn − θ̂ISDn .

Because θ̂LRn is a linear combination of θ̂ADn and θ̂ISDn , its properties follow directly

from the results obtained in the previous sections, as do the properties of estimators

such as

θ̂LR-BCn = 2θ̂AD-BCn − θ̂ISD-BCn ,

θ̂LR-GJn = 2θ̂AD-GJn − θ̂ISD-GJn ,

and

θ̂LR-LOn = 2θ̂AD-LOn − θ̂ISD-LOn ,

the cross-fit version of the latter being the only estimator (in this paper) satisfying

both of the defining properties of the “double/debiased machine learning” estima-

tors proposed by Chernozhukov et al. (2018).

Once again, the results are in qualitative agreement with those reported in

Theorems 1 and 2.

THEOREM 5. Suppose Conditions D, K, and B are satisfied. Then, θ̂LR-BCn and

θ̂LR-GJn satisfy (1). If Condition B is strengthened to Condition B+, then θ̂LRn and

θ̂LR-LOn satisfy (1).

THEOREM 6. Suppose Conditions D, K, and B are satisfied. Then, θ̂LR,∗
n and

θ̂LR-GJ,∗
n satisfy (2). If Condition B is strengthened to Condition B+, then θ̂LR-BC,∗

n

and θ̂LR-LO,∗
n satisfy (2).

Rather than spelling out those locally robust versions of (15)–(17) that follow

directly from our earlier results, it seems more constructive to mention a feature of

local robustness that is particularly useful for bootstrap purposes. As pointed out

by Belloni et al. (2017), a notable feature of locally robust moment conditions is

that in two-step estimation settings, one does not need to recompute the first step

estimator in each iteration of the bootstrap. In the case of θ̂LRn , this implies that

(15) can be achieved with the help of

θ̃LR,∗
n = 2

n

∑

1≤i≤n
f̂n(X

∗
i,n)−

∫

Rd

f̂n (x)
2 dx,
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a computationally attractive feature of which is that f̂n is kept fixed across bootstrap

repetitions. Perhaps more importantly (for our purposes at least), the fact that f̂n
is kept fixed actually makes it easier to achieve (15) also in the case of debiased

estimators. For instance,

θ̃LR-BC,∗
n = 2

n

∑

1≤i≤n
f̂n(X

∗
i,n)−

∫

Rd

f̂n (x)
2 dx−

2K(0)−
∫
Rd
K(u)2du

nhdn

satisfies (15) under Conditions D, K, and B.

7. CONCLUDING REMARKS

Among other things, this paper has demonstrated by example that the nonparamet-

ric bootstrap can fail to provide a consistent approximation to the distribution of

debiased versions of two-step semiparametric estimators. Reasonable people can

disagree about whether this is a shortcoming of the nonparametric bootstrap and/or

popular debiasing methods, but either way this finding has potentially important

implications for econometric practice and it would therefore be of interest to

explore the extent to which similar results are available for estimators other than

those considered in this paper.

In addition to the cautionary tale about debiasing, the paper contains at least

three constructive observations. First, the nonparametric bootstrap variance esti-

mator can be consistent even if the corresponding distributional approximation

is not, so valid confidence intervals can be obtained by combining a (successful)

debiasing method with a standard error computed by means of the nonparametric

bootstrap. Second, the (apparently novel) cross-fit bootstrap consistently estimates

the distribution of cross-fit estimators in all the cases considered. Third, estimators

based on generalized jackknifing are both efficient and satisfy bootstrap consis-

tency under weak conditions. It seems plausible that all three findings generalize

well beyond the average density setting, but it is beyond the scope of this paper to

substantiate that conjecture.

At a more abstract level, this paper highlights the importance of paying careful

attention to first moments (e.g., bias properties) when diagnosing bootstrap suc-

cess. It seems noteworthy that the “heuristically necessary” bias condition (14)

is also sufficient for bootstrap consistency under mild conditions. A similar phe-

nomenon occurs for estimators of maximum score type. For such estimators, Cat-

taneo, Jansson, and Nagasawa (2020) achieved bootstrap consistency effectively

by paying careful attention to the first moment properties of a certain stochastic

process. It would appear that similar heuristics can assist the construction of

valid bootstrap-based distributional approximations in other contexts (e.g., shape-

constrained nonparametric estimation), but again it is beyond the scope of this

paper to substantiate that conjecture.
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APPENDIX

A.1. Hoeffding Decompositions

Each of the estimators studied in this paper has a V-statistic-type representation of the form

θ̂n = 1

n2

∑

1≤i,j≤n
Vij,n,

where Vij,n depends on X1, . . . ,Xn only through (Xi,Xj). The proofs of Theorems 1, 3, and

5 are based on the associated Hoeffding decomposition of θ̂n− θ0 given by

θ̂n− θ0 = βn+ 1

n

∑

1≤i≤n
Li,n+ 2

n(n−1)

∑

1≤i,j≤n,i<j
Wij,n, (A.1)

where, defining V̄ij,n = (Vij,n+Vji,n)/2,

βn = E[θ̂n]− θ0

= 1

n




1

n

∑

1≤i≤n
E[Vii,n]



+

(
1− 1

n

)



2

n(n−1)

∑

1≤i,j≤n,i<j
E[V̄ij,n]



− θ0,

Li,n = n{E[θ̂n|Xi]−E[θ̂n]}

= 1

n
{Vii,n−E[Vii,n]}+ 1

n−1

∑

1≤j≤n,j6=i
2
n−1

n
{E[V̄ij,n|Xi]−E[V̄ij,n]},

Wij,n = n(n−1)

2
{E[θ̂n|Xi,Xj]−E[θ̂n|Xi]−E[θ̂n|Xj]+E[θ̂n]}

= n−1

n
{V̄ij,n−E[V̄ij,n|Xi]−E[V̄ij,n|Xj]+E[V̄ij,n]}.

By construction, Li,n and Wij,n depend on X1, . . . ,Xn only through Xi and (Xi,Xj),

respectively, and satisfy, for each 1 ≤ i,j≤ n with i 6= j,

E[Li,n] = E[Wij,n|Xi] = E[Wij,n|Xj] = 0.

Moreover, if the Vij,n satisfy Vii,n = δn and E[Vij,n] = θn, then the bias is of the form

βn = δn

n
+ θn− θ0 − θn

n
.

If also Vij,n = Vji,n and E[Vij,n|Xi] = fn(Xi), then

Li,n = 2
n−1

n
{fn(Xi)− θn}, Wij,n = n−1

n
{Vij,n− fn(Xi)− fn(Xj)+ θn}.

A bootstrap analog of (A.1) will be employed in the proofs of Theorems 2, 4, and 6. To state

it, suppose

θ̂∗
n = 1

n2

∑

1≤i,j≤n
V∗
ij,n,
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where V∗
ij,n depends on X

∗
1,n, . . . ,X

∗
n,n only through (X∗

i,n,X
∗
j,n). Then,

θ̂∗
n − θ̂n = β∗

n + 1

n

∑

1≤i≤n
L∗
i,n+ 2

n(n−1)

∑

1≤i,j≤n,i<j
W∗
ij,n, (A.2)

where, defining V̄∗
ij,n = (V∗

ij,n+V∗
ji,n)/2,

β∗
n = E

∗
n[θ̂

∗
n ]− θ̂n

= 1

n




1

n

∑

1≤i≤n
E

∗
n[V

∗
ii,n]



+

(
1− 1

n

)



2

n(n−1)

∑

1≤i,j≤n,i<j
E

∗
n[V̄

∗
ij,n]



− θ̂n,

L∗
i,n = n{E∗

n[θ̂
∗
n |X∗

i,n]−E
∗
n[θ̂

∗
n ]}

= 1

n
{V∗
ii,n−E

∗
n[V

∗
ii,n]}+ 1

n−1

∑

1≤j≤n,j6=i
2
n−1

n
{E∗

n[V̄
∗
ij,n|X

∗
i,n]−E

∗
n[V̄

∗
ij,n]},

W∗
ij,n = n(n−1)

2
{E∗

n[θ̂
∗
n |X∗

i,n,X
∗
j,n]−E

∗
n[θ̂

∗
n |X∗

i,n]−E
∗
n[θ̂

∗
n |X∗

j,n]+E
∗
n[θ̂

∗
n ]}

= n−1

n
{V̄∗
ij,n−E

∗
n[V̄

∗
ij,n|X

∗
i,n]−E

∗
n[V̄

∗
ij,n|X

∗
j,n]+E

∗
n[V̄

∗
ij,n]}.

By construction, L∗
i,n andW

∗
ij,n depend on X

∗
1,n, . . . ,X

∗
n,n only through X

∗
i,n and (X∗

i,n,X
∗
j,n),

respectively, and satisfy, for each 1 ≤ i,j≤ n with i 6= j,

E
∗
n[L

∗
i,n] = E

∗
n[W

∗
ij,n|X

∗
i,n] = E

∗
n[W

∗
ij,n|X

∗
j,n] = 0.

Moreover, if the V∗
ij,n satisfy V

∗
ii,n = δ∗

n and E
∗
n[V

∗
ij,n]= θ∗

n , then the bootstrap bias is of the

form

β∗
n = δ∗

n

n
+ θ∗

n − θ̂n− θ∗
n

n
.

If also V∗
ij,n = V∗

ji,n and E
∗
n[V

∗
ij,n|X

∗
i,n] = f ∗n (X∗

i,n), then

L∗
i,n = 2

n−1

n
{f ∗n (X∗

i,n)− θ∗
n }, W∗

ij,n = n−1

n
{V∗
ij,n− f ∗n (X∗

i,n)− f ∗n (X∗
j,n)+ θ∗

n }.

A.2. Proof of Theorem 1

The estimators θ̂ADn and θ̂AD-LOn both have Hoeffding decompositions of the form (A.1),

with

Li,n = λi,nL
AD
n (Xi) and Wij,n = ωij,nW

AD
n (Xi,Xj),
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where λi,n and ωij,n are (nonrandom) estimator-specific weights, while

LADn (x) = 2{fADn (x)− θADn },

WAD
n (x1,x2) = Kn(x1 − x2)− fADn (x1)− fADn (x2)+ θADn ,

where

fADn (x) = E[Kn(x−X)] =
∫

Rd
K(u)f0(x+uhn)du,

θADn = E[fADn (X)] =
∫

Rd
fADn (x)f0(x)dx.

To be specific, in the case of

θ̂ADn = 1

n

∑

1≤i≤n
f̂n(Xi) = 1

n2

∑

1≤i,j≤n
Kn(Xi−Xj),

each of λi,n and ωij,n is given by 1−n−1, while the weights for

θ̂AD-LOn = 1

n

∑

1≤i≤n
f̂LOi,n (Xi) = 1

n2

∑

1≤i,j≤n
nwij,nKn(Xi−Xj)

are of the form

λi,n =
∑

1≤j≤n
w̄ij,n, ωij,n = (n−1)w̄ij,n, w̄ij,n = (wij,n+wji,n)/2.

In both cases, the weights satisfy

max
1≤i≤n

(λi,n−1)2 = o(1) (A.3)

and

max
1≤i<j≤n

ω2
ij,n = O(1). (A.4)

It therefore follows from simple moment calculations that the estimators satisfy (7) if

1

n
E[WAD

n (X1,X2)
2] → 0 (A.5)

and if

E[{LADn (X)−L0(X)}2] → 0. (A.6)

Suppose Conditions D and K are satisfied. Then, (A.5) holds if nhdn → ∞, because then

1

n
E[WAD

n (X1,X2)
2] ≤ 1

nhdn

{
hdnE[Kn(X1 −X2)

2]
}

= 1

nhdn

{
hdn

∫

Rd

∫

Rd
Kn(u− v)2f0(u)f0(v)dudv

}
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= 1

nhdn

∫

Rd

∫

Rd
K(t)2f0(v+hnt)f0(v)dtdv

≤ 1

nhdn

{
sup
u∈Rd

|K(u)|
}{

sup
x∈Rd

f0(x)

}∫

Rd
|K(u)|du→ 0.

Also, because

E[{LADn (X)−L0(X)}2] ≤ 4E
[
{fADn (X)− f0(X)}2

]
,

a sufficient condition for (A.6) to hold is that

E

[
{fADn (X)− f0(X)}2

]
→ 0.

As in Proposition 1(c) of Giné and Nickl (2008b), the displayed condition is satisfied if

hn → 0. To summarize, each estimator satisfies (7) under Conditions D, K, and B−.

The proof will be completed by giving conditions under which the estimators satisfy (6).

As before, suppose Conditions D and K are satisfied. In the notation introduced above, the

biases of θ̂ADn and θ̂AD-LOn are given by

βADn = K(0)

nhdn
+ θADn − θ0 − θADn

n

and

βAD-LOn = θADn − θ0,

respectively. Following Giné and Nickl (2008a), we base our analysis of the smoothing bias

θADn − θ0 on the representation

θADn =
∫

Rd

∫

Rd
Kn(u− v)f0(v)f0(u)dudv

=
∫

Rd

∫

Rd
K(t)f0(u−hnt)f0(u)dudt

=
∫

Rd
K(t)f10 (hnt)dt,

where the last equality uses the fact thatK is even. By Lemma 12 of Giné and Nickl (2008b),

the function f10 belongs to the Hö lder space C2s(Rd). As a consequence, it follows from

standard arguments (e.g., Tsybakov, 2009, Prop. 1.2) that if Condition B is satisfied, then

θADn − θ0 =
∫

Rd
K(t)[f10 (hnt)− f10 (0)]dt = O(hSn) = o(n−1/2).

In particular, θ̂AD-LOn satisfies (6) under Conditions D, K, and B. Under the same conditions,

θADn is bounded, so

√
n(E[θ̂ADn ]− θ0) = K(0)√

nh2dn

+o(1),

implying in particular that Condition B must be strengthened to Condition B+ for θ̂ADn to

satisfy (6) (unless K(0) = 0).
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Finally, the results for θ̂AD-BCn and θ̂AD-GJn follow from those for θ̂ADn . To be specific,

θ̂AD-BCn differs from θ̂ADn by an additive constant, so it satisfies (7) under Conditions D, K,

and B−. Also, the additive constant is designed to ensure that (6) is satisfied by θ̂AD-BCn
under Conditions D, K, and B. Similarly, because

1

1− cd
− cd

1− cd
= 1,

the estimator θ̂AD-GJn satisfies (7) under Conditions D, K, and B−, while the fact that

1

1− cd

1

nhdn
− cd

1− cd

1

n(chn)d
= 0

ensures that (6) is satisfied by θ̂AD-GJn under Conditions D, K, and B.

A.3. Proof of Theorem 2

The estimators θ̂
AD,∗
n and θ̂

AD-LO,∗
n both haveHoeffding decompositions of the form (A.2),

with

L∗
i,n = λi,nL̂

AD
n (X∗

i,n) and W∗
ij,n = ωij,nŴ

AD
n (X∗

i,n,X
∗
j,n),

where λi,n and ωij,n are the same as those for θ̂ADn and θ̂AD-LOn , while

L̂ADn (x) = 2{f̂n(x)− θ̂ADn },

ŴAD
n (x1,x2) = Kn(x1 − x2)− f̂n(x1)− f̂n(x2)+ θ̂ADn .

Because the weights satisfy (A.3) and (A.4), it follows from simple moment calculations

that the estimators satisfy

√
n(θ̂∗

n −E
∗
n[θ̂

∗
n ]) = 1√

n

∑

1≤i≤n
{L0(X∗

i,n)−E
∗
n[L0(X

∗
i,n)]}+oP(1)  P N (0,σ 2

0 )

if

1

n
E

∗
n[Ŵ

AD
n (X∗

1,n,X
∗
2,n)

2] →P 0 (A.7)

and if (A.6) and (A.8) hold, where

E
∗
n[{L̂ADn (X∗

1,n)−LADn (X∗
1,n)}

2] →P 0. (A.8)

Suppose Conditions D and K are satisfied. Then, (A.7) holds if nhdn → ∞, because then

1

n
E

∗
n[Ŵ

AD
n (X∗

1,n,X
∗
2,n)

2] ≤ 1

n
E

∗
n[Kn(X

∗
1,n−X∗

2,n)
2]

= 1

n3

∑

1≤i,j≤n
Kn(Xi−Xj)

2
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= 1

n3

∑

1≤i≤n
Kn(0)

2 + 2

n3

∑

1≤i,j≤n,i<j
Kn(Xi−Xj)

2

= 1

n

(
K(0)

nhdn

)2

+OP

(
1

n
E[Kn(X1 −X2)

2]

)
→P 0,

where the convergence result follows from the proof of Theorem 2. In that same proof, it

was shown that (A.6) holds when hn → 0. Finally, because

E
∗
n[{L̂ADn (X∗

1,n)−LADn (X∗
1,n)}

2] = 1

n

∑

1≤i≤n
{L̂ADn (Xi)−LADn (Xi)}2,

a sufficient condition for (A.8) to hold is that

E[{L̂ADn (X1)−LADn (X1)}2] → 0.

It follows from a direct calculation this condition is satisfied when hn → 0 and nhdn → ∞.

To summarize, each estimator satisfies (11) under Conditions D, K, and B−.

The proof will be completed by giving conditions under which the estimators satisfy (14).

Suppose Conditions D, K, and B are satisfied. By the proof of Theorem 1,

√
n(E[θ̂ADn ]− θ0) = K(0)√

nh2dn

+o(1),

and

√
n(E[θ̂AD-LOn ]− θ0) = o(1),

while it follows from (A.2) and Theorem 1 that

√
n(E∗

n[θ̂
AD,∗
n ]− θ̂ADn ) = K(0)√

nh2dn

− θ̂ADn√
n

= K(0)√
nh2dn

+oP(1),

and

√
n(E∗

n[θ̂
AD-LO,∗
n ]− θ̂AD-LOn ) =

√
n(θ̂ADn − θ̂AD-LOn ) = K(0)√

nh2dn

+oP(1).

As a consequence, θ̂
AD,∗
n satisfies (14) under Conditions D, K, and B, whereas Condition

B must be strengthened to Condition B+ for θ̂
AD-LO,∗
n to satisfy (14) (unless K(0) = 0).

Finally, the results for θ̂
AD-BC,∗
n and θ̂

AD-GJ,∗
n follow from those for θ̂

AD,∗
n . To be

specific, θ̂
AD-BC,∗
n satisfies (11) under Conditions D, K, and B−, because θ̂

AD,∗
n does.

Moreover,

√
n(E∗

n[θ̂
AD-BC,∗
n ]− θ̂AD-BCn ) =

√
n(E∗

n[θ̂
AD,∗
n ]− θ̂ADn ),
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so under Conditions D and K, Condition B must be strengthened to Condition B+ for

θ̂
AD-BC,∗
n to satisfy (14) (unless K(0) = 0). Similarly, because

1

1− cd
− cd

1− cd
= 1,

the estimator θ̂
AD-GJ,∗
n satisfies (11) under Conditions D, K, and B−, while the fact that

1

1− cd

1

nhdn
− cd

1− cd

1

n(chn)d
= 0

ensures that (14) is satisfied by θ̂
AD-GJ,∗
n under Conditions D, K, and B.

A.4. Proof of Theorem 3

The proof is similar to that of Theorem 1. The estimators θ̂ISDn , θ̂ISD-LOn , and θ̂ISD-CFn all

have Hoeffding decompositions of the form (A.1), with

Li,n = λi,nL
ISD
n (Xi), Wij,n = ωij,nW

ISD
n (Xi,Xj),

where λi,n and ωij,n are (nonrandom) estimator-specific weights, while

LISDn (x) = 2{fISDn (x)− θISDn },

WISD
n (x1,x2) = K1

n (x1 − x2)− fISDn (x1)− fISDn (x2)+ θISDn ,

where

fISDn (x) = E[K1
n (x−X)] =

∫

Rd
K1(u)f0(x+uhn)du,

θISDn = E[fISDn (X)] =
∫

Rd
fISDn (x)f0(x)dx,

K1
n (x) = 1

hdn
K1

(
x

hn

)
, K1(x) =

∫

Rd
K(u)K(x+u)du.

To be specific, in the case of

θ̂ISDn =
∫

Rd
f̂n (x)2 dx

=
∫

Rd


1

n

∑

1≤j1≤n
Kn(x−Xj1)





1

n

∑

1≤j2≤n
Kn(x−Xj2)


dx

= 1

n2

∑

1≤i,j≤n
K1
n (Xi−Xj),
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each of λi,n and ωij,n is given by 1−n−1. For

θ̂ISD-LOn = 1

n

∑

1≤i≤n

∫

Rd
f̂LOi,n (x)2dx

= 1

n

∑

1≤i≤n

∫

Rd


 ∑

1≤j1≤n
wij1,nKn(x−Xj1)





 ∑

1≤j2≤n
wij2,nKn(x−Xj2 )


dx

= 1

n2

∑

1≤i,j≤n


n

∑

1≤k≤n
wki,nwkj,n


K1

n (Xi−Xj),

the weights are given by

λi,n =
∑

1≤j,k≤n,j6=i
wki,nwkj,n, ωij,n = (n−1)

∑

1≤k≤n
wki,nwkj,n,

while the weights for

θ̂ISD-DCFn =
∫

Rd
f̂CF1,n(x)f̂

CF
n,n(x)dx

=
∫

Rd


 ∑

1≤j1≤n
w1j1,nKn(x−Xj1)





 ∑

1≤j2≤n
wnj2,nKn(x−Xj2)


dx

= 1

n2

∑

1≤i,j≤n
[n2w1i,nwnj,n]K

1
n (Xi−Xj)

can be shown to be given by

λi,n = n/2∑
1≤j≤n 1(⌈2i/n⌉ = ⌈2j/n⌉),

ωISD-DCFij,n = n(n−1)/2

(n−⌊n/2⌋)⌊n/2⌋1(⌈2i/n⌉ 6= ⌈2j/n⌉).

In all cases, the weights satisfy (A.3) and (A.4), so the estimators satisfy (7) if

1

n
E[WISD

n (X1,X2)
2] → 0 (A.9)

and if

E[{LISDn (X)−L0(X)}2] → 0. (A.10)

Proceeding as in the proof of Theorem 1, it can be shown that (A.9) and (A.10) hold under

Conditions D, K, and B−.
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Finally, the biases of θ̂ISDn , θ̂ISD-LOn , and θ̂ISD-DCFn are given by

βISDn = K1(0)

nhdn
+ θISDn − θ0 − θISDn

n
,

βISD-LOn = ηn
K1(0)

nhdn
+ θISDn − θ0 −ηn

θISDn

n
,

and

βISD-DCFn = θISDn − θ0,

respectively, where

ηn =
∑

1≤i≤n

1∑
1≤j≤n 1(⌈iBn/n⌉ 6= ⌈jBn/n⌉)

,

and where

θISDn − θ0 =
∫

Rd
K1(t)[f10 (hnt)− f10 (0)]dt = O(hSn) = o(n−1/2)

under Conditions D, K, and B.

As a consequence, θ̂ISD-DCFn satisfies (6) under Conditions D, K, and B, whereas

√
n(E[θ̂ISDn ]− θ0) = K1(0)√

nh2dn

+o(1),

so Condition B must be strengthened to Condition B+ for θ̂ISDn to satisfy (6). Finally,

ηn ≥ 1 is bounded, so Condition B must be strengthened to Condition B+ for θ̂ISD-LOn
to satisfy (6).

Finally, the results for θ̂ISD-BCn and θ̂ISD-GJn follow from those for θ̂ISDn . To be specific,

θ̂ISD-BCn differs from θ̂ISDn by an additive constant, so it satisfies (7) under Conditions D,

K, and B−. Also, the additive constant is designed to ensure that (6) is satisfied by θ̂ISD-BCn
under Conditions D, K, and B. Similarly, because

1

1− cd
− cd

1− cd
= 1,

the estimator θ̂ISD-GJn satisfies (7) under Conditions D, K, and B−, while the fact that

1

1− cd

1

nhdn
− cd

1− cd

1

n(chn)d
= 0

ensures that (6) is satisfied by θ̂ISD-GJn under Conditions D, K, and B.

A.5. Proof of Theorem 4

The proof is similar to that of Theorem 2. The estimators θ̂
ISD,∗
n , θ̂

ISD-LO,∗
n , and

θ̂
ISD-DCF,∗
n all have Hoeffding decompositions of the form (A.2), with

L∗
i,n = λi,nL̂

ISD
n (X∗

i,n), W∗
ij,n = ωij,nŴ

ISD
n (X∗

i,n,X
∗
j,n),
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where λi,n and ωij,n are the same as those for θ̂ISDn , θ̂ISD-LOn , and θ̂ISD-DCFn , while

L̂ISDn (x) = 2{f̂ISDn (x)− θ̂ISDn }, f̂ISDn (x) = 1

n

∑

1≤j≤n
K1
n (x−Xj),

ŴISD
n (x1,x2) = K1

n (x1 − x2)− f̂ISDn (x1)− f̂ISDn (x2)+ θ̂ISDn .

Because the weights satisfy (A.3) and (A.4), it follows from simple moment calculations

that the estimators satisfy

√
n(θ̂∗

n −E
∗
n[θ̂

∗
n ]) = 1√

n

∑

1≤i≤n
{L0(X∗

i,n)−E
∗
n[L0(X

∗
i,n)]}+oP(1)  P N (0,σ 2

0 )

if

1

n
E

∗
n[Ŵ

ISD
n (X∗

1,n,X
∗
2,n)

2] →P 0 (A.11)

and if (A.10) and (A.12) hold, where

E
∗
n[{L̂ISDn (X∗

1,n)−LISDn (X∗
1,n)}

2] →P 0. (A.12)

Suppose Conditions D and K are satisfied. Then, (A.11) holds if nhdn → ∞, because then

1

n
E

∗
n[Ŵ

ISD
n (X∗

1,n,X
∗
2,n)

2] ≤ 1

n
E

∗
n[K

1
n (X∗

1,n−X∗
2,n)

2]

= 1

n3

∑

1≤i,j≤n
K1
n (Xi−Xj)

2

= 1

n3

∑

1≤i≤n
K1
n (0)2 + 2

n3

∑

1≤i,j≤n,i<j
K1
n (Xi−Xj)

2

= 1

n

(
K1(0)

nhdn

)2

+OP

(
1

n
E[K1

n (X1 −X2)
2]

)
→P 0.

Also, (A.10) holds when hn → 0. Finally, because

E
∗
n[{L̂ISDn (X∗

1,n)−LISDn (X∗
1,n)}

2] = 1

n

∑

1≤i≤n
{L̂ISDn (Xi)−LISDn (Xi)}2,

a sufficient condition for (A.12) to hold is that

E[{L̂ISDn (X1)−LISDn (X1)}2] → 0.

It follows from a direct calculation that this condition is satisfied when hn → 0 and nhdn →
∞. To summarize, each estimator satisfies (11) under Conditions D, K, and B−.
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The proof will be completed by giving conditions under which the estimators satisfy (14).

Suppose Conditions D, K, and B are satisfied. By the proof of Theorem 3,

√
n(E[θ̂ISDn ]− θ0) = K1(0)√

nh2dn

+o(1),

√
n(E[θ̂ISD-LOn ]− θ0) = ηn

K1(0)√
nh2dn

+o(1),

and

√
n(E[θ̂ISD-DCFn ]− θ0) = o(1),

while it follows from (A.2) and Theorem 3 that

√
n(E∗

n[θ̂
ISD,∗
n ]− θ̂ISDn ) = K1(0)√

nh2dn

− θ̂ISDn√
n

= K1(0)√
nh2dn

+oP(1),

√
n(E∗

n[θ̂
ISD-LO,∗
n ]− θ̂ISD-LOn ) = ηn

K1(0)√
nh2dn

+
√
n(θ̂ISDn − θ̂ISD-LOn )−ηn

θ̂ISDn√
n

= K1(0)√
nh2dn

+oP(1),

and

√
n(E∗

n[θ̂
ISD-DCF,∗
n ]− θ̂ISD-DCFn ) =

√
n(θ̂ISDn − θ̂ISD-DCFn ) = K1(0)√

nh2dn

+oP(1).

As a consequence, θ̂
ISD,∗
n satisfies (14) under Conditions D, K, and B, whereas Condition

B must be strengthened to Condition B+ for θ̂
ISD-DCF,∗
n to satisfy (14). Finally, if Bn = n,

then

ηn = n

n−1
= 1+O(n−1),

so θ̂
ISD-LO,∗
n satisfies (14) under Conditions D, K, and B. On the other hand, Condition

B must be strengthened to Condition B+ for the cross-fit version of θ̂
ISD-LO,∗
n to satisfy

(14), because if Bn = B, for all n, then

ηn → B

B−1
6= 1.

Finally, the results for θ̂
ISD-BC,∗
n and θ̂

ISD-GJ,∗
n follow from those for θ̂

ISD,∗
n . To be

specific, θ̂
ISD-BC,∗
n satisfies (11) under Conditions D, K, and B−, because θ̂

ISD,∗
n does.

Moreover,

√
n(E∗

n[θ̂
ISD-BC,∗
n ]− θ̂ISD-BCn ) =

√
n(E∗

n[θ̂
ISD,∗
n ]− θ̂ISDn ),
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so under Conditions D and K, Condition B must be strengthened to Condition B+ for

θ̂
ISD-BC,∗
n to satisfy (14) (unless K(0) = 0). Similarly, because

1

1− cd
− cd

1− cd
= 1,

the estimator θ̂
ISD-GJ,∗
n satisfies (11) under Conditions D, K, and B−, while the fact that

1

1− cd

1

nhdn
− cd

1− cd

1

n(chn)d
= 0

ensures that (14) is satisfied by θ̂
ISD-GJ,∗
n under Conditions D, K, and B.

A.6. Proof of Theorem 5

It follows from the proofs of Theorems 1 and 3 that the estimators θ̂LRn ,θ̂LR-BCn ,θ̂LR-GJn ,

and θ̂LR-LOn satisfy (7) under Conditions D, K, and B− and have biases of the form

βLRn = 2βADn −βISDn = 2K(0)−K1(0)

nhdn
+o(n−1/2),

βLR-BCn = o(n−1/2), βLR-GJn = o(n−1/2),

and

βLR-LOn = 2βAD-LOn −βISD-LOn = −ηn
K1(0)

nhdn
+o(n−1/2),

respectively, under Conditions D, K, and B.

As a consequence, θ̂LR-BCn and θ̂LR-GJn satisfy (6) under ConditionsD, K, andB,whereas

Condition B must be strengthened to Condition B+ for θ̂LR-LOn to satisfy (6). Likewise,

Condition B must be strengthened to Condition B+ for θ̂LRn to satisfy (6) unless 2K(0) =
K1(0).

A.7. Proof of Theorem 6

It follows from the proofs of Theorems 2 and 4 that the estimators θ̂
LR,∗
n ,θ̂

LR-BC,∗
n ,

θ̂
LR-GJ,∗
n , and θ̂

LR-LO,∗
n satisfy (11) under Conditions D, K, and B−. The proof will be

completed by giving conditions under which the estimators satisfy (14). Suppose Conditions

D, K, and B are satisfied. By the proof of Theorem 5,

√
n(E[θ̂LRn ]− θ0) = 2K(0)−K1(0)√

nh2dn

+o(1),

√
n(E[θ̂LR-BCn ]− θ0) = o(1),

√
n(E[θ̂LR-GJn ]− θ0) = o(1),
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and

√
n(E[θ̂LR-LOn ]− θ0) = −ηn

K1(0)

nhdn
+o(1),

while it follows from the proofs of Theorems 2 and 4 that

√
n(E∗

n[θ̂
LR,∗
n ]− θ̂LRn ) = 2K(0)−K1(0)√

nh2dn

+oP(1),

√
n(E∗

n[θ̂
LR-BC,∗
n ]− θ̂LR-BCn ) = 2K(0)−K1(0)√

nh2dn

+oP(1),

√
n(E∗

n[θ̂
LR-GJ,∗
n ]− θ̂LR-GJn ) = oP(1),

and

√
n(E∗

n[θ̂
LR-LO,∗
n ]− θ̂LR-LOn ) = 2K(0)−K1(0)√

nh2dn

+oP(1).

As a consequence, θ̂
LR,∗
n and θ̂

LR-GJ,∗
n satisfy (14) under Conditions D, K, and B,

whereas Condition B must be strengthened to Condition B+ for θ̂
LR-BC,∗
n and θ̂

LR-LO,∗
n

to satisfy (14).
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