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I. Introduction

Revealed preference theory is not only a cornerstone of modern econom-
ics but also the source of important theoretical, methodological, and pol-
icy implications for many social and behavioral sciences. This theory aims
to identify the preferences of a decision maker (e.g., an individual or a
firm) from her observed choices (e.g., buying a house or hiring a worker).
In its classical formulation, revealed preference theory assumes that the
decision maker selects the best available option after full consideration
of all possible alternatives presented to her. This assumption leads to spe-
cific testable implications based on observed choice patterns, but unfortu-
nately, empirical testing of classical revealed preference theory shows that
it is not always compatible with observed choice behavior (Hauser and
Wernerfelt 1990; Goeree 2008; van Nierop et al. 2010; Honka, Hortacsu,
and Vitorino 2017). For example, Reutskaja et al. (2011) provide interest-
ing experimental evidence against the full attention assumption using eye
tracking and choice data.

Motivated by these findings and the fact that certain theoretically im-
portant and empirically relevant choice patterns cannot be explained us-
ing classical revealed preference theory based on full attention, scholars
have proposed other economic models of choice behavior. An alternative
is the limited attention model (Masatlioglu, Nakajima, and Ozbay 2012;
Dean, Kibris, and Masatlioglu 2017; Lleras et al. 2017), where decision
makers are assumed to select the best available option from a subset of
all possible alternatives, known as the consideration set. This framework
takes the formation of the consideration set—also known as attention
rule or consideration map—as unobservable and hence an intrinsic fea-
ture of the decision maker. Nonetheless, it is possible to develop a fruitful
theory of revealed preference within this framework, employing only
mild and intuitive nonparametric restrictions on how the decision maker
decides to focus attention on specific subsets of all possible alternatives
presented to her.

Until very recently, limited attention models have been deterministic,
a feature that diminished their empirical applicability: testable implica-
tions via revealed preference have relied on the assumption that the de-
cision maker pays attention to the same subset of options every time she is
confronted with the same set of available alternatives. This requires that,
for example, an online shopper always uses the same keyword and the same
search engine (e.g., Google) on the same platform (e.g., tablet) to look for
a product. This is obviously restrictive and can lead to predictions that are
inconsistent with observed choice behavior. Aware of this fact, a few schol-
ars have improved deterministic limited attention models by allowing for
stochastic attention (Manzini and Mariotti 2014; Aguiar 2015; Brady and
Rehbeck 2016; Horan 2019), which permits the decision maker to pay
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attention to different subsets with some nonzero probability given the
same set of alternatives to choose from. All available results in this litera-
ture proceed by first parameterizing the attention rule (i.e., committing
to a particular parametric attention rule) and then studying the revealed-
preference implications of these parametric models.

In contrast to earlier approaches, we introduce a random attention
model (RAM) where we abstain from any specific parametric (stochastic)
attention rule and instead consider a large class of nonparametric ran-
dom attention rules. Our model imposes one intuitive condition, termed
“monotonic attention,” which is satisfied by many stochastic attention
rules. Given that consideration sets are unobservable, this feature is cru-
cial for applicability of our revealed preference results, as our findings and
empirical implications are valid under many different and particular atten-
tion rules that could be operating in the background. In other words, our
revealed preference results are derived from nonparametric restrictions
on the attention rule and hence are more robust to misspecification biases.

The RAM is best suited for eliciting information about the preference
ordering of a single decision-making unit when her choices are observed
repeatedly.' For example, scanner data keep track of the same single con-
sumer’s purchases across repeated visits, where the grocery store adjusts
product varieties and arrangements regularly. Another example is web ad-
vertising on digital platforms, such as search engines or shopping sites,
where not only are abundant records from each individual decision maker
available butitis also common to see manipulations or experiments alter-
ing the options offered to them. A third example is given in Kawaguchi,
Uetake, and Watanabe (2016), where large data on each consumer’s
choices from vending machines (with varying product availability) are an-
alyzed. In addition, our model can be used empirically with aggregate
data on a group of distinct decision makers, provided that each of them
may differ on what they pay attention to but all share the same preference.

Our key identifying assumption—monotonic attention—restricts the
possibly stochastic attention formation process in a very intuitive way: each
consideration set competes for the decision maker’s attention, and hence
the probability of paying attention to a particular subsetis assumed not to
decrease when the total number of possible consideration sets decreases.
We show that this single nonparametric assumption is general enough
to nest most (if not all) previously proposed deterministic and random

! The finding that individual choices frequently exhibit randomness was first reported
in Tversky (1969) and has now been illustrated by Agranov and Ortoleva (2017) and nu-
merous other studies. Similar to our work, Manzini and Mariotti (2014); Fudenberg,
Iijima, and Strzalecki (2015); and Brady and Rehbeck (2016), among others, have devel-
oped models that allow the analyst to reveal information about the agent’s preferences
from her observed random choices.

This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
All use subject to University of Chicago Press Terms and Conditions (http://www .journals.uchicago.edu/t-and-c).



A RANDOM ATTENTION MODEL 2799

limited attention models. Furthermore, under our proposed monotonic
attention assumption, we are able to develop a theory of revealed prefer-
ence, obtain specific testable implications, and (partially) identify the un-
derlying preferences of the decision maker by investigating her observed
choice probabilities. Our revealed preference results are applicable to a
wide range of attention rules, including the parametric ones currently
available in the literature, which, as we show, satisfy the monotonic atten-
tion assumption.

On the basis of these theoretical findings, we also develop econometric
results for identification, estimation, and inference of the decision mak-
er’s preferences, as well as specification testing of the RAM. We show that
the RAM implies that the set of partially identified preference orderings
containing the decision maker’s true preferences is equivalent to a set of
inequality restrictions on the choice probabilities (one for each prefer-
ence ordering in the identified set). This result allows us to employ the
identifiable/estimable choice probabilities to (i) develop a model speci-
fication test (i.e., test whether there exists a nonempty set of preference
orderings compatible with the RAM), (ii) conduct hypothesis testing on
specific preference orderings (i.e., testwhether the inequality constraints
on the choice probabilities are satisfied), and (iii) develop confidence
sets containing the decision maker’s true preferences with prespecified
coverage (i.e., via testinversion). Our econometric methods rely on ideas
and results from the literature on partially identified models and mo-
ment inequality testing: see Canay and Shaikh (2017), Ho and Rosen
(2017), and Molinari (2020) for recent reviews and further references.

The RAM is fully nonparametric and agnostic because it relies on the
monotonic attention assumption only. As a consequence, it may lead to
relatively weak testable implications in some applications—that is, “little”
revelation or a “large” identified set of preferences. However, the RAM also
provides a basis for incorporating additional (parametric and) nonpara-
metric restrictions that can substantially improve identification power.
In this paper, we illustrate how the RAM can be combined with additional,
mild nonparametric restrictions to tighten identification in nontrivial
ways: in section V.A, we incorporate an additional restriction on attention
rule for binary choice problems and show that this alone leads to impor-
tant revelation improvements within the RAM. We also illustrate this result
numerically in our simulation study.

Finally, we implement our estimation and inference methods in the
general-purpose software package ramchoice for R—see https://cran.r
-project.org/package=ramchoice for details. Our novel identification re-
sults allow us to develop inference methods that avoid optimization over
the possibly high-dimensional space of attention rules, leading to methods
thatare very fast and easy to implement when applied to realistic empirical
problems. See appendix B (available online) for numerical evidence.
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Our work contributes to both economic theory and econometrics. We
describe several examples covered by our model in section II after we in-
troduce our proposed RAM. We also discuss in detail the connections
and distinctions between this paper and the economic theory literature
in section SA-1 of appendix B. In particular, we show how the RAM nests
and/or connects to the recent work by Gul, Natenzon, and Pesendorfer
(2014); Manzini and Mariotti (2014); Fudenberg, Iijima, and Strzalecki
(2015); Aguiar, Boccardi, and Dean (2016); Brady and Rehbeck (2016);
Echenique, Saito, and Tserenjigmid (2018); and Echenique and Saito
(2019), among others.

This paper is also related to a rich econometric literature on nonpara-
metric identification, estimation, and inference both in the specific con-
text of random utility models and more generally. See Matzkin (2013) for
a review and further references on nonparametric identification, Haus-
man and Newey (2017) forarecent review and further references on non-
parametric welfare analysis, and Blundell, Kristensen, and Matzkin (2014);
Kawaguchi (2017); Deb etal. (2018); and Kitamura and Stoye (2018) for a
sample of recent contributions and further references. As mentioned
above, a key feature of the RAM is that our proposed monotonic attention
condition on attention rule nests previous models as special cases and also
covers many new models of choice behavior. In particular, the RAM can
accommodate more choice behaviors or patterns than what can be ratio-
nalized by random utility models. This is important because numerous
studies in psychology, finance, and marketing have shown that decision
makers exhibit limited attention when making choices; they compare
(and choose from) only a subset of all available options. Whenever deci-
sion makers do not pay full attention to all options, implications from
revealed preference theory under random utility models no longer hold
in general, implying that empirical testing of substantive hypotheses as well
as policy recommendations based on random utility models will be invalid.
On the other hand, our results may remain valid.

In contemporaneous work, a few scholars have also developed identifi-
cation and inference results under (random) limited attention, trying to
connect behavioral theory and econometric methods, as we do in this pa-
per. Three recent examples of this new research area include Abaluck and
Adams (2017), Barseghyan et al. (2018), and Dardanoni et al. (2020).
These papers are complementary to ours insofar as different assumptions
on the random attention rule and preference (s) are imposed, which leads
to different levels of (partial) identification of preference(s) and (ran-
dom) attention rule(s). For further discussion of the relationship with
these papers, see section SA-1 of appendix B.

The rest of the paper proceeds as follows. Section II presents the basic
setup, where our key monotonicity assumption on the decision maker’s sto-
chastic attention rule is presented later in the section. Section III discusses
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our RAM in detail, including the main revealed preference results. Sec-
tion IV presents our main econometrics methods, including nonparamet-
ric (partial) identification, estimation, and inference results. In section V.A,
we consider additional restrictions on the attention rule for binary choice
problems, which can help improve our identification and inference results
considerably. We also consider random attention filters in section V.B,
which are one of the motivating examples of monotonic attention rules.
In this case, however, there is no additional identification. Section VI sum-
marizes the findings from a simulation study. Finally, section VII concludes
with a discussion of directions for future research. A companion appendix B
includes more examples, extensions, other methodological results, omitted
proofs, and additional simulation evidence.

II. Setup

We designate a finite set X to act as the universal set of all mutually exclu-
sive alternatives. This set is thus viewed as the grand alternative space and
is kept fixed throughout. A typical element of X is denoted by a, and its
cardinality is | X| = K. We let X denote the set of all nonempty subsets of
X. Each member of & defines a choice problem.

DEFINITION 1 (Choice rule). A choiceruleisamap 7: X x X' —[0, 1]
such that forall S € X, 7(a|S) > 0forall a € S, w(a|S) = 0 forall a & S,
and 2,.57m(alS) = 1.

Thus, (a|S) represents the probability that the decision maker chooses
alternative @ from the choice problem S. Our formulation allows both sto-
chastic and deterministic choice rules. If w(«a|S) is either zero or one, then
choices are deterministic. For simplicity in the exposition, we assume that
all choice problems are potentially observable throughout the main paper,
but this assumption is relaxed in section SA-3 of appendix B to account for
cases where only data on a subcollection of choice problems are available.

The key ingredient in our model is probabilistic consideration sets.
Given a choice problem S, each nonempty subset of S could be a consid-
eration set with certain probability. We impose that each frequency is be-
tween zero and one and that the total frequency adds up to one. Formally:

DEFINITION 2 (Attention rule). An attention rule is a map p: X X
X —[0,1], such that for all S€ X, u(7|S) >0 forall Tc S, u(7T|S) =0
forall T ¢ S, and 275 u(7T1S) = 1.

Thus, u(T|S) represents the probability of paying attention to the consid-
eration set 7" C S when the choice problem is S. This formulation captures
both deterministic and stochastic attention rules. For example, u(S|S) = 1
represents an agent with full attention. Given our approach, we can always
extract the probability of paying attention to a specific alternative: for a
given a € S, 2,.rcspu(T]S) denotes the probability of paying attention to
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ain the choice problem S. The probabilities on consideration sets allow
us to derive the attention probabilities on alternatives uniquely.

We consider a choice model where a decision maker picks the maximal
alternative with respect to her preference among the alternatives she pays
attention to. Our ultimate goal is to elicit her preferences from observed
choice behavior without requiring any information on consideration sets.
Of course, this is impossible without any restrictions on her (possibly ran-
dom) attention rule. For example, a decision maker’s choice can always
be rationalized by assuming that she pays attention only to singleton sets.
Because the consumer never considers two alternatives together, one can-
not infer her preferences at all.

We propose a property (i.e., an identifying restriction) on how stochas-
tic consideration sets change as choice problems change, as opposed to
explicitly modeling how the choice problem determines the consider-
ation set. We argue below that this nonparametric property is indeed sat-
isfied by many problems of interest and mimics heuristics that people use
in real life (see examples below and in sec. SA-2 of app. B). This approach
makes it possible to apply our method to elicit preference without relying
on a particular formation mechanism of consideration sets.

AssuMPTION 1 (Monotonic attention). Forany ae S — T, u(7T]S) <
w(T|S — a).

Monotonic p captures the idea that each consideration set competes
for consumers’ attention: the probability of a particular consideration
set does not shrink when the number of possible consideration sets de-
creases. Removing an alternative that does not belong to the consider-
ation set T results in less competition for 7, and hence the probability
of T being the consideration set in the new choice problem is weakly
higher. Our assumption is similar to the regularity condition proposed
by Suppes and Luce (1965). The key difference is that their regularity
condition is defined on choice probabilities, while our assumption is de-
fined on attention probabilities.

To demonstrate the richness of the framework and motivate the anal-
ysis to follow, we discuss six leading examples of families of monotonic at-
tention rules—that is, attention rules satisfying assumption 1. We offer
several more examples in section SA-2 of appendix B. The first example
is deterministic (i.e., u(7|S) is either zero or one), but the others are all
stochastic.

ExampLE 1 (Attention filter). Alarge class of deterministic attention
rules, leading to consideration sets that do not change if an item not at-
tracting attention is made unavailable (attention filter), was introduced
by Masatlioglu, Nakajima, and Ozbay (2012). A classical example in this
class is when a decision maker considers all the items appearing in the
first page of search results and overlooks the rest. Formally, let I'(S) be
the deterministic consideration set when the choice problem is S, and
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hence T'(S) C S. Then, I' is an attention filter if when a & T'(S) then
I'(S — @) = T'(S). In our framework, this class corresponds to the case
w(T|S) = 1if T = T'(S) and zero otherwise.

ExampLE 2 (Random attention filters). Consider a decision maker
whose attention is deterministic but utilizes different deterministic atten-
tion filters on different occasions. For example, itis well known that search
behavior on distinct platforms (mobile, tablet, and desktop) is drastically
different (e.g., the same search engine produces different first-page lists
depending on the platform, or different platforms utilize different search
algorithms). In such cases, while the consideration set comes from a (de-
terministic) attention filter for each platform, the resulting consideration
setis random. Formally, if a decision maker utilizes each attention filter I';
with probability ¥, then the attention rule can be written as

w(T|S) = E]I =1y,

where I denotes the indicator functlon. We will pay special attention to
this class of attention rules in section V.B.

ExampLE 3 (Independent consideration). This example is based on
Manzini and Mariotti (2014). Consider a decision maker who pays atten-
tion to each alternative a with a fixed probability y(a) € (0,1). The pa-
rameter y represents the degree of brand awareness for a product or
the willingness of an agent to seriously evaluate a political candidate.
The frequency of each set being the consideration set can be expressed
as follows: for all T C S,

MUNE Hv ) [T (1 = (a)),

S uer aeS—=T

where 85 = 1 — [[,es(1 — v(a))—which represents the probability that
the decision maker considers no alternative in $—is used to adjust each
probability so that they sum to one.

ExampLE 4 (Logit attention). This example is based on Brady and
Rehbeck (2016). Consider a decision maker who assigns a positive weight
for each nonempty subset of X. Psychologically, w;is a strength associated
with the subset 7. The probability of considering 7" in § can be written as

. wr
(1

Ercsz’ .

Even though there is no structure on weights in the general version of this
model, there are two interesting special cases where weights depend solely
on the size of the set. These are wy = |T| and wy = 1/|T|, which are
conceptually different. In the latter, the decision maker tends to have
smaller consideration sets, while larger consideration sets are more likely
in the former.

s) =
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ExampLE 5 (Dogit attention). This example is a generalization of
logit attention and is based on the idea of the dogit model (Gaundry
and Dagenais 1979). A decision maker is captive to a particular consider-
ation set with certain probability, to the extent that she pays attention to
that consideration set regardless of the weights of other possible consid-
eration sets. Formally, let

1 wr 0+

M<T|S) L+ El‘tsef E'PCsz ! 1+ 27“@0’1" ’

where 07 > 0 represents the degree of captivity (impulsivity) of 7. The
“captivity parameter” reflects the attachment of a decision maker to a cer-
tain consideration set. Since wyvalues are nonnegative, the second term,
which is independent of wy, is the smallest lower bound for u(77S). The
larger the 0, values, the more likely the decision maker is to be captive to
Tand pay attention to it. When § = 0 forall 7, this model becomes logit
attention. This formulation is able to distinguish between impulsive and
deliberate attention behavior.

ExampLE 6 (Elimination by aspects). Consider a decision maker who
intentionally or unintentionally focuses on a certain aspect of alternatives
and then refuses or ignores those alternatives that do not possess that as-
pect. This model is similar in spirit to Tversky (1972). Let {j, k, ¢, ...}
represent the set of aspects. Let w; represent the probability that aspect
J “draws attention to itself.” It reflects the salience and/or importance
of aspect j. All alternatives without that aspect fail to receive attention.
Let B; represent the set of alternatives that possess aspect j. We assume
that each alternative must belong to at least one B; with w; > 0. If aspect
7 is the salient aspect, the consideration set is B, N S when S represents
the set of feasible alternatives. The total probability of Tbeing the consid-
eration set is the sum of w;such that 7" = B; N S. When there is no alter-
native in § possessing the salient aspect, a new aspect will be drawn. For-

mally, the probability of 7 being the consideration set under S is given by
w;
lf,ms:'/'EB,,nS;thk '

u(T

These six examples give a sample of different limited attention models of
interestin economics, psychology, marketing, and many other disciplines.
While these examples are quite distinct from each other, all of them are
monotonic attention rules.* As a consequence, our revealed preference

* To provide an example where assumption 1 might be violated, consider a generaliza-
tion of independent consideration of Manzini and Mariotti (2014). In this generalization,
the degree of brand awareness for a product is not only a function of the product but also a
function of the context—i.e., ys(a). Then, the frequency of each set being the consider-
ation set is calculated as an independent consideration rule. Because of this contextual de-
pendence, further restrictions on vys(a) and v, - ,(a) are needed to ensure assumption 1.
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characterization will be applicable to a wide range of choice rules without
committing to a particular attention mechanism, which is not observable
in practice and hence untestable. Furthermore, as illustrated by the exam-
ples above (and those in sec. SA-2 of app. B), our upcoming characteriza-
tion, identification, estimation, and inference results nest important pre-
vious contributions in the literature.

III. A Random Attention Model

We are ready to introduce our RAM based on assumption 1. We assume
that the decision maker has a strict preference ordering > on X. To be pre-
cise, we assume that the preference ordering is an asymmetric, transitive,
and complete binary relation. A binary relation > on a set Xis (i) asym-
metric, if for all x, y € X, x>y implies that y i x; (ii) transitive, if for all
x,y,z€ X, x>y and y>z imply that x>z and (ili) complete, if for all
x #y € X, either x>y or y>x is true. Consequently, the decision maker
always picks the maximal alternative with respect to her preference among
the alternatives she pays attention to. Formally:

DerFINITION 3 (Random attention representation). A choice rule 7
has a random attention representation if there exists a preference order-
ing > over X and a monotonic attention rule p (assumption 1) such that

S) = D I(ais>bestin T) - u(T)|S)

TCS

m(a

forall @ € Sand Se X. In this case, we say that 7 is represented by (-, u).
We may also say that > represents m, which means that there exists some
monotonic attention rule p such that (>, u) represents w. We also say that
w is a RAM.

While our framework is designed to model stochastic choices, it cap-
tures deterministic choices as well. In classical choice theory, a decision
maker chooses the best alternative according to her preferences with
probability one, and hence, choice is deterministic. In our framework,
this case is captured by a monotonic attention rule with u(S|S) = 1. Fig-
ure 1 gives a graphical representation of the RAM.

We now derive the implications of our RAM. They can be used to test
the model in terms of observed choice rules or probabilities. In this sec-
tion, we treat the choice rule as known/observed to facilitate the discus-
sion of preference elicitation. In practice, the researcher may observe only
a set of choice problems and choices thereof. We discuss econometric im-
plementation in section IV: even if the choice rule is not directly observed,
itis identified (consistently estimable) from choice data.

In the literature, there is a principle called “regularity” (see Suppes
and Luce 1965), according to which adding a new alternative should only
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w(T|S) T *
************ > T} seem------» qis >-bestin T
Attention Rule Yo L aip Preference
Choice Problem Consideration Set Choice
(alS)
Choice Rule

Fic. 1.—Illustration of a RAM. Observable: choice problem and choice (solid line). Un-
observable: attention rule, consideration set, and preference (dashed line).

decrease the probability of choosing one of the existing alternatives. How-
ever, empirical findings suggest otherwise. Rieskamp, Busemeyer, and
Mellers (2006) provide a detailed review of empirical evidence on viola-
tions of regularity and alternative theories explaining these violations. Im-
portantly, our model allows regularity violations.

The next example illustrates that adding an alternative to the feasible
set can increase the likelihood that an existing alternative is selected. This
cannot be accommodated in the Luce (multinomial logit) model or in any
random utility model. In the RAM, the addition of an alternative changes
the choice set and therefore the decision maker’s attention, which could
increase the probability of an existing alternative being chosen.

ExampLE 7 (Regularity violation). Let X = {a, b, ¢}, and consider
two nested choice problems {«, b, ¢} and {a, b}. Imagine a decision maker
with @ > b~ ¢ and the following monotonic attention rule u. Each row
corresponds to a different choice problem, and columns represent pos-
sible consideration sets.

w(T]S) T=Aabcl Hfa bl H{acl (b} Hal {0} {c}
S=1la b, c} 2/3 0 0 1/6 0 0 1/6
{a, b} 1/2 0 1/2

{a, ¢} 1/2 0 1/2
{b, ¢} 1/2 0 1/2

Then 7w(al{a, b, c}) = 2/3>1/2 = w(al{a, b}) = w(al{a, c}).

This example shows that the RAM can explain choice patterns that
cannot be explained by the classical random utility model. Given that
the model allows regularity violations, one might think that the model
has very limited empirical implications—that is, it is too general to have
empirical content. However, it is easy to find a choice rule 7 that lies out-
side the RAM with only three alternatives. Here we provide an example
where our model makes very sharp predictions.
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ExampLE 8 (RAM violation). The following choice rule 7 is not com-
patible with our RAM as long as the decision maker chooses each alter-
native with positive probability from the set {a, b, c}—that is, N,\,A, > 0.
Each column corresponds to a different choice problem.

w(-]8) S={a, b, c} {a, b} {a, ¢} {b, ¢}
a . 1 0

b N, 0 1
c A 1 0

We now illustrate that 7 is not a RAM. Since the choice behavior is sym-
metric among all binary choices, without loss of generality, assume that
a>b>c. Given that cis the worst alternative, {¢} is the only consideration
set in which ¢ can be chosen. Hence, the decision maker must consider
the consideration set {c} with probability A, (i.e., u({c}/{a, b, ¢}) = N\,). As-
sumption 1 implies that p({c}|{b, c}) must be greater than \, > 0. This
yields a contradiction since (¢|{ b, ¢}) = 0.In sum, given the above binary
choices, our model predicts that when the choice setis {a, b, ¢} the decision
maker must choose at least one alternative with zero probability, which is a
stark prediction in probabilistic choice.

One might wonder that the model makes a strong prediction due to the
cyclical binary choices—that is, w(a|{a, b}) = w(b|{b, ¢}) = w(c/{a, c}) =
1. We can generate a similar prediction where the individual is perfectly
rational in the binary choices—that is, w(a|{a,b}) = w(al{a,c}) =
(b|{b, c}) = 1. In this case, our model predicts that the individual can-
not chose both b and ¢ with strictly positive probability when the choice
problem is {a, b, ¢}. Therefore, we obtain similar predictions. Given that
the RAM has nontrivial empirical content, it is natural to investigate to
what extent assumption 1 can be used to elicit (unobserved) strict prefer-
ence orderings given (observed) choices of decision makers.

A.  Revealed Preference

In general, a choice rule can have multiple RAM representations with dif-
ferent preference orderings and different attention rules. When multiple
representations are possible, we say that ais revealed to be preferred to b
if and only if a is preferred to 4 in all possible RAM representations. This
is a very conservative approach, as it ensures that we never make false
claims about the preference of the decision maker.

DEFINITION 4 (Revealed preference). Let {(>;, u;)},-1, . ; represent
all random attention representations of w. We say that a is revealed to be
preferred to bif a>; b for all j.

We now show how revealed preference theory can still be developed
successfully in our RAM framework. If all representations share the same
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preferences > (or if there is a unique representation), then the revealed
preference will be equal to . In general, if one wants to know whether a
is revealed to be preferred to b, it would appear necessary to identify all
possible (>, ;) representations. However, this is not practical, especially
when there are many alternatives. Instead, we shall now provide a handy
method to obtain the revealed preference completely.

Our theoretical strategy parallels that of Masatlioglu, Nakajima, and
Ozbay (2012) in their study of a deterministic model of inattention.
Masatlioglu, Nakajima, and Ozbay identify « as revealed to be preferred
to b whenever a is chosen in the presence of b, and removing b causes
a choice reversal. This particular observation, in conjunction with the
structure of attention filters, ensures that the decision maker considers
bwhile choosing a. Here we show that a is revealed to be preferred to b
if removing b causes a regularity violation—that is, w(a|S) > w(alS — b).
To see this, assume that (>, ) represents = and w(alS) > w(a|S — b). By
definition, we have

m(alS) = > w(T1S)
TCS,
ais >-bestin T
= > n(T|S) + > w(T1S)
beTCS, bETCS,
ais >-bestin T ais >-bestin T
= > w(T|S) + > w(T|S = b)
beTCS, TCS — b,
ais >-bestin T ais >-bestin T
= S w(TIS) + w(ds - b),
beTCS,

ais >-bestin T

where the second term in the third row follows from assumption 1.
Hence, we have the following inequality:

w(alS) — w(a|lS — b) < > p(T|S).
beTCS,
ais >-bestin T

Since w(a|S) — w(a|S — b) > 0, there must exist at least one T such that
(i) be T, (ii) ais >-bestin T, and (iii) u(7|S) # 0. Therefore, there ex-
ists at least one occasion that the decision maker pays attention to b while
choosing a (revealed preference). The next lemma summarizes this inter-
esting relationship between regularity violations and revealed preferences.
It simply illustrates that the existence of a regularity violation informs us
about the underlying preference.
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LemMa 1. Letwbe aRAM. If w(a|S) > w(a|S — b), then ais revealed to
be preferred to b.

Lemma 1 allows us to define the following binary relation. For any dis-
tinct ¢ and b, define

aPbif there exists S € X including @ and b such that 7(a

S)>mw(a

S—b).

By lemma 1, if aPb, then ais revealed to be preferred to 4. In other words,
this condition is sufficient to reveal preference. In addition, since the un-
derlying preference is transitive, we also conclude that she prefers a to ¢if
aPband 0P ¢ for some b, even when aPcis not directly revealed from her
choices. Therefore, the transitive closure of P, denoted by P, must also
be part of her revealed preference. One may wonder whether some re-
vealed preference is overlooked by Pi. The following theorem, which is
our first main result, shows that Py includes all preference information
given the observed choice probabilities under only assumption 1.

THeOREM 1 (Revealed preference). Let m be a RAM. Then a is re-
vealed to be preferred to b if and only if aPyb.

Proof.  The “if” part follows from lemma 1. To prove the “onlyif” part,
we show that given any preference > thatincludes Py, there exists a mono-
tonic attention rule p such that (>, u) represents . The details of the con-
struction can be found in the proof of theorem 2. QED

Theorem 1 establishes the empirical content of revealed preferences
under monotonic attention only. Our resulting revealed preferences
could be incomplete: it may provide only coarse welfare judgments in
some cases. At one extreme, there is no preference revelation when there
is no regularity violation. This is because the decision maker’s behavior
can be fully attributed to her preference or to her inattention (i.e., never
considering anything other than her actual choice). This highlights the
fact that our revealed preference definition is conservative, which guar-
antees no false claims in terms of revealed preference, especially when
there are alternative explanations for the same choice behavior. The fol-
lowing example illustrates that we might make misleading inferences if
we wrongly believe that the decision maker uses a particular attention
rule.

ExampLE 9 (Avoiding misleading inference). We now describe a typ-
ical online customer’s search behavior. For simplicity, there are three
products a, b, and ¢. She prefers ¢ over a and a over b (not observable).
She visits two different search engines: G and Y. Eighty-five percent of
her search takes place on engine G across three different platforms: lap-
top (20%), tablet (50%), and smartphone (15%). Engine G always lists b
before aand abefore ¢. Because of screen size, engine Glists up to three,
two, and one pieces of product information on laptops, tablets, and
smartphones, respectively. The rest of her search is on engine Y (15%),
which has a unique platform. In this engine, ais listed firstif it is available,
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and clicking «’s link will provide information aboutboth a¢and c. If ais not
available, bis listed first. In engine Y, she clicks only one link. (When she
uses engine Y, her consideration set is {a, ¢} when @ and ¢ are both avail-
able, {a} when a is available but not ¢, and finally {6} when only b and ¢
are available.) On the basis of her underlying preference, the above con-
sideration set formation leads to stochastic choice, the frequencies of
which are reported in the following table:

w(-]S) S={a, b, ¢} {a, b} {a, c} {b, ¢}
a .50 .85 15

b .15 .15 .30
¢ .35 .85 .70

Assume that we observe the customer’s choice data without any knowl-
edge about her underlying search behavior. First, note that the above
choice data are consistent with the logit attention model of Brady and
Rehbeck (2016).” In other words, we can apply their revealed preference
result for this choice data. Their model, then, concludes that the unique
revealed preference is a > b > ¢; however, this is not the true one that has
generated the data. Therefore, if we make a mistaken assumption that
the customer’s behavior is in line with the logit model, we will infer that
c is the worst alternative when it is the best product for our customer.

Example 9 is an example where a specific consideration set formation
model leads to wrong conclusions on the revealed preferences. This ex-
ample highlights the importance of knowledge about the underlying
choice procedure when we conduct welfare analysis. In other words, wel-
fare analysis is more delicate a task than it looks. Notice that in the above
example, monotonic attention is satisfied as engines do not change their
presentations of first-page results when an alternative outside of the
first page becomes unavailable. Hence, theorem 1 is applicable. Since
w(al{a, b, c}) > w(al{a, c}), our model correctly identifies her true pref-
erence between a and b. However, our model is silent about the relative
ranking of ¢. Therefore, while our revealed preference is conservative,
it does not make misleading claims.

We now illustrate that theorem 1 could be very useful for understand-
ing the attraction effect phenomena. The attraction effect introduced by
Huber, Payne, and Puto (1982) was the first evidence against the regular-
ity condition. It refers to an inferior product’s ability to increase the
attractiveness of another alternative when this inferior product is added
to a choice set. In a typical attraction effect experiment, we observe
w(al{a, b, c}) > w(a|{a, b}). Assume that we have no information about

* For example, letting the preference order be a>b>¢ and letting weights be given as

wy = 0, wyy = 1/20, wyy = 7/20, w,,y = 17/60, wy,, = 21/340, wy,y = 1/10, wig =
79/510, it is easy to check that this is a logit attention representation of the choice data given
above.
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the alternatives other than the frequency of choices. Then, by simply us-
ing observed choice, theorem 1 informs us that the third product cis in-
deed an inferior alternative compared to @ (a>¢). This is exactly how
these alternatives are chosen in these experiments. While alternatives a
and b are not comparable, alternative ¢, which is also not comparable
to b, is dominated by a. Theorem 1 informs us about the nature of prod-
ucts by observing only choice frequencies.

Our revealed preference result includes the one in Masatlioglu, Naka-
jima, and Ozbay (2012) for attention filters (i.e., nonrandom monotonic
attention rules). In their model, a is revealed to be preferred to b if there
is a choice problem such that ais chosen and bis available, butitis no lon-
ger chosen when bis removed from the choice problem. This means that
we have 1 = w(a|S) > m(a|S — b) = 0. Given theorem 1, this reveals that
a is better than 4. On the other hand, generalizing this result to non-
deterministic attention rules allows for a broader class of empirical and
theoretical settings to be analyzed; hence, our revealed preference result
(theorem 1) is strictly richer than those obtained in previous work. For ex-
ample, in a deterministic world with three alternatives, there are no data
revealing the entire preference. On the other hand, we illustrate that it
is possible to reveal the entire preference in the RAM with only three alter-
natives. This discussion makes clear the connection between deterministic
and probabilistic choice in terms of revealed preference.

ExampLE 10 (Full revelation). Consider the following stochastic choice
with three alternatives:

(-] S) S={a, b, c} {a, b} {a, c} {b, c}
a N 1- )\1, )\a

b 1-A N 1 -\
¢ 0 1=, A,

If1 — N, > N>\, A\, then we can verify that 7 has a random attention
representation (see theorem 2). Now we show thatin all possible represen-
tations of m, @ >b> ¢ must hold. By lemma 1, w(a|{a, b, ¢}) >7(al{a, c})
implies that « is revealed to be preferred to b. Similarly, 7(b|{«, b, ¢}) >
7(b|{a, b}) implies that b is revealed to be preferred to ¢. Hence, prefer-
ence is uniquely identified.

Example 10 also illustrates that one can achieve unique identification
of preferences by utilizing assumption 1 even when observed choices
cannot be explained by well-known models, such as the logit attention
model of Brady and Rehbeck (2016) and the independent attention
model of Manzini and Mariotti (2014). To see this point, assume that
max{1l — A, \.} > 0. One can show that neither Brady and Rehbeck
(2016) nor Manzini and Mariotti (2014) can explain observed choices in
this example. First, notice that since both models satisfy assumption 1
and the preference is uniquely revealed as a > b > ¢ under assumption 1,
if the observed choice data can be explained by either model, then their
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revealed preference must also be @ > 6> ¢. That is, ¢ must be the worst al-
ternative. On the other hand, c¢is chosen with zero probability in {a, b, ¢}.
These models then imply that ¢ must also be chosen with zero prob-
ability in {a, ¢} and {b, ¢}. This contradicts our assumption that
max{1l — N, \.} > 0.

B. A Characterization

Theorem 1 characterizes the revealed preference in our model. However,
it is not applicable unless the observed choice behavior has a random at-
tention representation, which motivates the following question: How
can we test whether a choice rule is consistent with the RAM? It turns
out that the RAM can be simply characterized by only one behavioral pos-
tulate of choice: acyclicity. Our characterization is based on an idea sim-
ilar to Houthakker (1950). Choices reveal information about preferences.
If these revelations are consistent in the sense that there is no cyclical
preference revelation, the choice behavior has a RAM representation.

THEOREM 2 (Characterization). A choice rule 7 has a random atten-
tion representation if and only if P has no cycle.

Recall that example 8 is outside of our model. Theorem 2 implies
that Py must have a cycle. Indeed, we have aPb because of the regularity
violation w(al|{a, b, ¢}) = N\, > 0 = w(a|{a, ¢}). Similarly, we have bP¢ by
w(bl{a, b, c}) =N, >0 = w(b{a, b}) and Pa by w(c[{a, b, c}) =N\ >
0 = 7(c|[{b, c}). Since P has a cycle, example 8 must be outside of our
model. Therefore, theorem 2 provides a very simple test of the RAM.

Our characterization result also helps us to understand the relation be-
tween our model and random utility models. It is well known in the liter-
ature that any choice rule that has a random utility model representation
satisfies regularity. On the other hand, for any choice rule that satisfies
regularity, P will trivially have no cycle. Hence, any choice rule that has
a random utility model representation also has a RAM representation.
However, in terms of modeling purposes, the RAM assumes random at-
tention with a deterministic preference, whereas the random utility model
assumes random preference and deterministic (full) attention.

Before closing this section, we sketch the proof of theorem 2 and pro-
vide a corollary that is used in the next section for developing econo-
metric methods. The “only if” part of theorem 2 follows directly from
lemma 1. For the “if” part, we need to construct a preference and a mono-
tonic attention rule representing the choice rule. Given that P hasno cycle,
there exists a preference relation > including Px. Indeed, we illustrate
that any such completion of Py represents w by an appropriately chosen
u. The construction of u depends on a particular completion of Pr and
is not unique in general. We then illustrate that the constructed p satis-
fies assumption 1. At the last step, we show that (>, u) represents 7. In
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corollary 1, we provide one specific construction of the attention rule.
We first make a definition.

DEFINITION b (Lower contour set; triangular attention rule). Given a
preference ordering > of the alternatives in X—a, >, > ... >ax,—a
lower contour set is defined as L,, = {a;,:j >k} = {a e X:ax a,}.
A triangular attention rule is an attention rule that puts weights only
on lower contour sets. That is, u(7']S) > 0 implies that 7 = L,, N S for
some ksuch that g, € S.

CoroLLARY 1 (Monotonic triangular attention rule representation).
Assume that (>, p) is a representation of m, with u satisfying assumption 1.
Then there is a unique triangular attention rule g corresponding to >,
which also satisfies assumption 1, such that (>, i) is a representation of .

IV. Econometric Methods

Theorem 1 shows that if the choice probability w is a RAM, then prefer-
ence revelation is possible. Theorem 2 gives a falsification result, which
can be used to design a specification test. The challenge for econometric
implementation, however, is that our main assumption—monotonic at-
tention—is imposed on the attention rule and that the attention rule is
notidentified from typical choice data and has a much higher dimension
than the identified (consistently estimable) choice rule. To circumvent
this difficulty, we rely on corollary 1, which states that if 7 has a random
attention representation (-, u), then there exists a unique monotonic tri-
angular attention rule g such that (>, p) is also a representation of 7. This
latter result turns out to be useful for our proposed identification, estima-
tion, and inference methods, as it allows us to construct (for each given
preference ordering) a mapping from the identified choice rule to a tri-
angular attention rule, for which we can test whether assumption 1 holds.
This test turns out to be a test on moment inequalities.

A.  Nonparametric Identification

We first define the set of partially identified preferences, which mirrors
definition 3, with the only difference being that now we fix the choice
rule to be identified/estimated from data. More precisely, let 7 represent
the underlying choice rule/data generating process. Then a preference >
is compatible with 7, denoted by > € 0,,* if there exists some monotonic
attention rule p such that (m, >, p) is a RAM.

When 7 is known, it is possible to employ theorem 1 directly to con-
struct O,. For example, consider the specific preference ordering a > b,

* O, is not the same as Py (defined in sec. III.A): Py contains all revealed preferences,
while ©, is the set of preferences compatible with the choice probability (i.e., all possible
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which can be checked by the following procedure. First, check whether
7 (b|S) < w(b|S — a) is violated for some S. If so, then we know that the
preference ordering is not compatible with the RAM and hence does not
belong to ©, (lemma 1). On the other hand, if the preference ordering is
not rejected in the first step, we need to check along “longer chains” (theo-
rem 1)—that is, whether 7(b|S) < 7 (b|S — ¢) and w(¢|T) < w(c|T — a)
are simultaneously violated for some S, 7, and c. If so, the preference order-
ingisrejected (i.e., incompatible with the RAM), while if not, then a chain
of length three needs to be considered. This process goes on for longer
chains until either at some step we are able to reject the preference order-
ing or all possibilities are exhausted. In practice, additional comparisons
are needed since it is rarely the case that only a specific pair of alternatives
is of interest. This algorithm, albeit feasible, can be hard to implement
in practice, even when the choice probabilities are known. The fact that
« has to be estimated makes the problem even more complicated, since it
becomes a sequential multiple-hypothesis testing problem.

Another possibility is to employ the J-test approach, which stems from
the idea that, given the choice rule, compatibility of a preference is equiv-
alent to the existence of an attention rule satisfying monotonicity. To im-
plement the J-test, one fixes the choice rule (identified/estimated from
the data) and the preference ordering (the null hypothesis to be tested),
searches the space of all monotonic attention rules, and checks whether
definition 3 applies. The J-test procedure can be quite computationally
demanding because the space of attention rules has high dimension.
We further discuss the J-test approach in section SA.4.3 of appendix B,
as well as how it is related to our proposed procedure.

One of the main purposes of this section is to provide an equivalent
form of identification that (i) is simple to implementand (ii) remains sta-
tistically valid even when applied using estimated choice rules. For ease of
exposition, we rewrite the choice rule 7 as a long vector w, whose elements
are simply the probability of each alternative @ € X being chosen from a
choice problem § € X. For example, one can label the choice problems
as S, S,, ... and the alternatives as a,;, a, ..., ax, and then the vector «
simply consists of w(ai]$), T(@|S), ..., T(ax|Si), T(ai]S:), 7(@|S:), and
so on. See example 11 for a concrete illustration.

TraeOREM 3 (Nonparametric identification).  Given any preference >,
there exists a unique matrix R_such that > € O, ifand only if R, < 0.

Proof.  Recall that (7, >) has a RAM representation if and only if there
exists a monotonic and triangular attention rule p such that 7 is induced

completions of Py). For example, when there is no preference revelation, ©, contains all
preference orderings and Py will be empty. For the other extreme—that the choice prob-
ability is not compatible with our RAM—O, will be empty and Py will involve cycles.
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by u and > (corollary 1). With this fact, we are able to construct the con-
straint matrix R, explicitly and write it as a product, RC.. The first ma-
trix, R, consists of constraints on the attention rules, and the second ma-
trix, C_, maps the choice rule back to a triangular attention rule.

First consider R. The only restrictions imposed on attention rules are
from the monotonicity assumption (assumption 1). Again, we represent
a generic attention rule p as a long vector u. Then each row of R will con-
sist of one +1, one —1, and zero otherwise. The product Rp then corre-
sponds to u(7|S) — u(7T|S — a)forall S, T C S,and a € S — T. That is,
we use Ry < 0 to represent assumption 1. Note that R does not depend
on any preference.

Next consider C.. Given some preference > and the choice rule 7, the
only possible triangular attention rule that can be constructed is

w(T18) = X UT = S0 L) - w(a-|9)
k:a,eS

(see corollary 1 and the proof of theorem 2 in app. A), where
{Ly>:1 < k < K} are the lower contour sets corresponding to the prefer-
ence ordering > (definition 5). The above defines the mapping C. and rep-
resents the triangular attention rule as a linear combination of the choice
probabilities. This mapping depends on the preference/hypothesis be-
cause the triangular attention rule depends on the preference/hypothesis.

Along the construction, both R and C, are unique, hence showing that
R is uniquely determined by the preference >. QED

This theorem states that to decide whether a preference > is compati-
ble with the (identifiable) choice rule , it suffices to check a collection of
inequality constraints. In particular, it is no longer necessary to consider
the sequential and multiple testing problems mentioned earlier or numer-
ically searching in the high-dimensional space of attention rules. More-
over, as we discuss below, given the large econometric literature on moment
inequality testing, many techniques can be adapted when theorem 3 is ap-
plied to estimated choice rules. An algorithmic construction of the con-
straint matrix R._is given in algorithm 1.

ArcoriTHM 1 (Construction of R.). Require: Set a preference >.

R, < empty matrix

for Sin A do

for ain Sdo
for b< ain Sdo
R. < add row corresponding to 7(b|S) — «(b|S — a) < 0.
end for
end for

end for

As can be seen, the only input needed is the preference >, which we are
interested in testing against. Each row of R, consists of one +1, one —1,
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and zero otherwise. The constraint matrix R, is nonrandom and does not
depend on the estimated choice probabilities but rather is determined
by the collection of (fixed, known to the researcher) restrictions on the
estimable choice probabilities. Next, we compute the number of con-
straints (i.e., rows) in R, for the complete data case (i.e., when all choice
problems are observed):

S

nowr) = $ 3100 = 3 () =3(%)(4),

SeXa,beS SeX,|S[>2 k=2

where K = |X| denotes the number of alternatives in the grand set X. Not
surprisingly, the number of constraints increases very fast with the size of
the grand set. However, once the matrix R_has been constructed for one
preference >, the constraint matrices for other preference orderings can
be obtained by column permutations of R... This is particularly useful and
saves computation if there are multiple hypotheses to be tested, as the
above algorithm needs to be implemented only once.

Finally, we illustrate that in simple examples, the constraint matrix R,
can be constructed intuitively.

ExampLE 11 (R, with three alternatives). Assume that there are three
alternatives—a, b, and ¢—in X; then the choice rule is represented by a
vector in R

7 = [w([{a, b, &}), 7({a, b}), 7(|{a }), w(-|{b, ),
—_— — — —
eR* eR* eR? eR?
where, for ease of presentation, trivial cases such as w(a|{b, ¢}) = 0 and
w(b|{b}) = 1 are ignored. Now consider the preference/hypothesis
b>a >c. From lemma 1, we can reject b > a if w(a|{a, b, ¢}) > w(al|{a, c}).
Therefore, we need the reverse inequality in R, ., given by a row:

[10000-1000].

Similarly, we will be able to reject a > ¢ if w(c|{a, b, ¢}) > m(c|{b, ¢}), which
implies the following row in the matrix Ry, ..

[00100O0O0O0 —1].
The row corresponding to b > ¢ is

(001000 -100].

Therefore, for this simple problem with three alternatives, we have the
following constraint matrix:

10000-10 00
Rywe=100100 0 0 0—1
00100 0 —-10 0

Note that for problems with more than three alternatives, the above
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reasoning does not work if implemented naively. Consider the case X =
{a, b, ¢, d}. Then b > a can be rejected by w(al{a, b, ¢, d}) > w(al{a, ¢, d}),
w(al{a, b, d}) > w(al{a, d}), or w(al{a, b, c}) > w(al{a, c}), which corre-
spond to three rows in the constraint matrix. Again we emphasize that
to construct R, one does not need to know the numerical value of the
choice rule w. The matrix R. contains restrictions jointly imposed by
the monotonicity assumption and the preference > that is to be tested.

B.  Hypothesis Testing

Given the identification result in theorem 3, we can replace the identifi-
able choice rule with its estimate to conduct estimation and inference of
the (partially identifiable) preferences. We can also conduct specifica-
tion testing by evaluating whether the identified set ©, is empty. To pro-
ceed, we assume the following data structure.

AssuMPTION 2 (Data generating process). The data are a random
sample of choice problems Y; and corresponding choices y, {(y, ¥:):
y; € Y, 1 <4 < N}, generated by the underlying choice rule P[y, = a|Y, =
S| = w(alS), with P[Y; = S| > p >0 forall S € X.

We assume only that the data are generated from some choice rule 7.
We allow for the possibility that it is not a RAM, since our identification
result permits falsifying the RAM representation: 7 has a RAM represen-
tation if and only if ©, is not empty according to theorem 3. In addition,
we assume only that the choice problem Y;and the corresponding selec-
tion y; € Y; are observed for each unit, while the underlying (possibly ran-
dom) consideration set for the decision maker remains unobserved (i.e.,
the set T'in definition 2 and fig. 1). For simplicity, we discuss the case of
“complete data,” where all choice problems are potentially observable,
but in sections SA.3 and SA.4.4 of appendix B we extend our work to
the case of incomplete data.

The estimated choice rule is denoted by T,

sl = @ ¥ = 9)
EISzSNH(Yi =9) ’

w(alS) = 2

For convenience, we represent @ (-|S) by the vector #g and its population
counterpart by 7s. The choice rules are stacked into a long vector, denoted
by 7 with the population counterpart .

We consider Studentized test statistics, and hence we introduce some
additional notation. Let ¢,, denote the standard deviation of R, 7 and o,
denote its plug-in estimate. That is,
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0, = \/diag(R, Q,R.) and &, = \/diag(R.QR.),

where diag(-) denotes the operator that extracts the diagonal elements of
a square matrix or constructs a diagonal matrix when applied to a vector.
Here @, is block diagonal, with blocks given by {1/[P(Y; = §)]}Q,s and
Q.5 = diag(ms) — wsm's. The estimator  is constructed simply by plug-
ging in the estimated choice rule.

Consider the null hypothesis Hy : > € ©,. This null hypothesis is useful
if the researcher believes that a certain preference represents the under-
lying data generating process. It also serves as the basis for constructing
confidence sets or for ranking preferences according to their (im)plausi-
bility in repeated sampling (e.g., via employing associated pvalues). Given
aspecific preference, the test statistic is constructed as the maximum of the
Studentized, restricted sample choice probabilities:

T(>) = VN - max{(R,. %) @ &,, 0},

where @ denotes elementwise division (i.e., Hadamard division) for con-
formable matrices. The test statistic is the largest element of the vector
VN(R, %) @ 6. if it is positive or zero otherwise. The reasoning behind
such construction is straightforward: if the preference is compatible with
the underlying choice rule, then in the population we have R, 7 <0,
meaning that the test statistic, 7 (>), should not be too large.

Other test statistics have been proposed for testing moment inequali-
ties, and usually the specific choice depends on the context. When many
moment inequalities can be potentially violated simultaneously, it is usu-
ally preferred to use a statistic based on the truncated Euclidean norm. In
our problem, however, we expect only a few moment inequalities to be
violated, and therefore we prefer to employ 7 (). Having said this, the
large-sample approximation results given in theorem 4 can be adapted
to handle other test statistics commonly encountered in the literature
on moment inequalities.

The null hypothesis is rejected whenever the test statistic is too large or,
more precisely, when it exceeds a critical value, which is chosen to guar-
antee uniform size control in large samples. We describe how this critical
value leading to uniformly valid testing procedures is constructed based
on simulating from multivariate normal distributions. Our construction
employs the generalized moment selection approach of Andrews and
Soares (2010); see also Canay (2010) and Bugni (2016) for closely related
methods. The literature on moment inequalities testing includes several
alternative approaches, some of which we discuss briefly in section SA.4.5
of appendix B.

To illustrate the intuition behind the construction, first rewrite the test
statistic 7 (>) as
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T(>) = max{(RVN(it = m) + VNR.7) ©5.,0}.

By the central limit theorem, the first component v/N (7 — 7) is approx-
imately distributed as N(0,2,). The second component, R, 7, although
unknown, is bounded above by zero under the null hypothesis. Motivated
by these observations, we approximate the distribution of 7 (>) by simu-
lation as

T*(>) = VN - max{(R.z") @ 6, + ¥y(R.7,5,),0}.

Here z" is a random vector simulated from the distribution N/(0, ﬁ/ N),
and v/ Nyy(R. 7, 6, ) is used to replace the unknown moment conditions
(\/ﬁRﬁr) @ 0,. Several choices of Yy have been proposed. One extreme
choice is Y (-) = 0, so that the upper bound zero is used to replace the
unknown R, 7. Such a choice also delivers uniformly valid inference in
large samples and is usually referred to as “critical value based on the least
favorable model.” However, for practical purposes it is better to be less
conservative. In our implementation, we employ

¢N(R>7Ar, 6>) = Kl (R>';r @ a'>)—a
N

where (a). = aQI(a < 0), with © denoting the Hadamard product, the
indicator function I(-) operating elementwise on the vector a, and «y di-
verging slowly. That is, the function y(-) retains the nonpositive ele-
ments of (R, T @ 6,.)/ky, since under the null hypothesis all moment con-
ditions are nonpositive. We use ky = v/In N, which turns out to work well
in the simulations described in section VI. For other choices of ¥\(-), see
Andrews and Soares (2010).

In practice, Msimulations are conducted to obtain the simulated statis-
tics {T:(>) :1 < m < M}. Then, given some « € (0, 1), the critical value is
constructed as

1 M

w(>) = inf{t:M SUTw(>)<t)=1-— oz},
m=1

and the null hypothesis Hy : > € 0, is rejected ifand only if 7 (>) > ¢,(>).

Alternatively, one can compute the pvalue as

P) = 4 SITE) > T(-)).

m=1

To justify the proposed critical values, it is important to address unifor-
mityissues. A testing procedure is (asymptotically) uniform among a class
of data generating processes if the asymptotic size does not exceed the
nominal level across this class. Testing procedures that are valid only
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pointwise but not uniformly may yield bad approximations to the finite
sample distribution, because in finite samples the moment inequalities
could be close to binding. The following theorem shows that conducting
inference using the critical values above is uniformly valid.

TaEOREM 4 (Uniformly valid testing). Assume that assumption 2
holds. Let II represent a class of choice rules and > a preference, such
that (i) for each w € II, > € ©,, and (ii) inf,qy min(o,,) > 0. Then,

limsup sup P[7(>) > ¢.(>)] < .
N> well
The proofis given in section B of appendix A. The only requirement is
that each moment condition is nondegenerate so that the normalized
statistics are well defined in large samples but no restrictions on correla-
tions among moment conditions are imposed.

C. Extensions and Discussion

We discuss some extensions based on theorem 4, including how to con-
struct uniformly valid confidence sets via test inversion and how to con-
duct uniformly valid specification testing, both based on testing individ-
ual preferences.

1. Confidence Set

Given the uniformly valid hypothesis testing procedure already devel-
oped in theorem 4, we can obtain a uniformly valid confidence set for
the (partially) identified preferences by test inversion:

Cla) ={>:T(>) < a(>)}.

The resulting confidence set C(a) exhibits an asymptotic uniform cover-
age rate of at least 1 — a:
liminf inf min P[> € C(a)] > 1 — .
N —w© well >e€06,
This inference method offers a uniformly valid confidence set for each
member of the partially identified set with prespecified coverage proba-

bility, which is a popular approach in the partial identification literature
(Imbens and Manski 2004).

2. Testing Model Compatibility: Hy: P N O, # &

Given a collection of preferences, an empirically relevant question is
whether any of them is compatible with the data generating process—a
basic model specification question. That is, the question is whether the
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null hypothesis Hy : P N O, # Jshould be rejected. If the null hypothesis
is rejected, then certain features shared by the collection of preferences
are incompatible with the underlying decision theory (up to type I error).
See Bugni, Canay, and Shi (2015) and Kaido, Molinari, and Stoye (2019)
and references therein for further discussion of this idea and related
methods.

For a concrete example, consider the question of whether @ > bis com-
patible with the data generating process. As long as there are more than
two alternatives in the grand set, a question like this can be accommodated
by setting P = {>: a> b}. Rejection of this null hypothesis provides evi-
dence in favor of bbeing preferred to a (up to type I error). Of course, with
more preferences included in the collection, it becomes more difficult to
reject the null hypothesis.

The test is based on whether the confidence set intersects with P:

H, is rejected if andonlyif Cla) NP =J.

We note that since C(a) covers elements in the identified set asymptot-
ically and uniformly with probability 1 — «, the above testing proce-
dure will have uniform size control. Indeed, if P N O, # &, there exists
some > € P N O,, which will be included in C(«) with at least 1 — «
probability asymptotically.

One important application of this idea is to set P as the collection of all
possible preferences, which leads to a specification testing. Then the null
hypothesis becomes H, : 6, # & and is rejected on the basis of the follow-
ing rule:

H, is rejected if and onlyif C(o) = .

Rejection in this case implies that at least one of the underlying assump-
tions is violated, and the data generating process cannot be represented
by a RAM (up to type I error).

V. Incorporating Additional Restrictions

Our identification and inference results so far are obtained using the
RAM only; thatis, all empirical content of our revealed preference theory
comes from the weak nonparametric assumption 1. As mentioned be-
fore, our model provides a minimum benchmark for preference revela-
tion, which sometimes may not deliver enough empirical content. How-
ever, it is easy to incorporate additional (nonparametric) assumptions in
specific settings. In this section, we first illustrate one such possibility,
where additional restrictions on the attentional rule are imposed for bi-
nary choice problems. This will improve our identification and inference
results considerably. We then consider random attention filters, which
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are one of the motivating examples of monotonic attention rules, and
show that in this case there is no identification improvement relative to
the baseline RAM.

A.  Allentive at Binaries

To motivate our approach, a policy maker may want to conclude that ais
revealed to be preferred to b if the decision maker chooses a over b fre-
quently enough in binary choice problems. “Frequently enough” is mea-
sured by a constant ¢ > 1/2.° For example, when ¢ = 2/3, it means that
choosing atwice as often as choosing bimplies that ais better than 5. The
parameter ¢ represents how cautious the policy maker is. Denote by

aP’b if and onlyif w(al{a,b}) > ¢.

To justify P? as preference revelation, the policy maker inherently as-
sumes that the decision maker pays attention to the entire set frequently
enough. This is captured by the following assumption on the attention
rule.

ASSUMPTION 3 (¢-attentive at binaries). Forall ¢,b € X and ¢ > 1/2,

1

— max{u({a}|{a, B}), u({B}|{a, B})} .

n({a b}{a, b}) = "

The quantity (1 — ¢)/¢ is a measure of full attention at binaries. When
(1 =¢)/¢ =0 (or ¢ = 1), there is no constraint on u({a, b}|{a, b}). In
this case, it is possible that the decision maker considers only singleton
consideration sets. When (1 — ¢)/¢ gets larger (or ¢ gets smaller), the
probability of being fully attentive is strictly positive, which creates room
for preference revelation. An alternative way to understand assump-
tion 3 is as follows. Take ¢ = max{w(a|{a, b}), 7(b|{a, b})}; then [(1 —
¢)/¢| max{u({a}|{a, b}), n({6}|{a, b})} is a strict lower bound on the
amount of attention that the decision maker has to pay to both op-
tions for revelation to occur.

We now illustrate that, under assumption 3, if w(a|{a, b}) > ¢, then «
is revealed to be preferred to b. Let (>, u) be a RAM representation of
m where p satisfies assumption 3. First, assumption 3 necessitates that
p({a}|{a, b}) cannot be higher than ¢. (To see this, assume that
r({a}|{a, b}) > ¢. By assumption 3, we must have pu({a, b}|{a, b}) >

> Even when the policy maker is least cautious, we need w(a|{a, b}) > w(b|{a, b}) to con-
clude that a s strictly better than b. This implies that 7(a|{«, b}) > 1/2. Hence, ¢ must be
greater than 1/2.
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1 — ¢, which is a contradiction.) Then = (a|{a, b}) > ¢ indicates that a
is chosen over b whenever the decision maker pays attention to {a, b} (re-
vealed preference). Therefore, a > b.

ExampLE 12 (Preference revelation without regularity violation). To
illustrate the extra identification power of assumption 3, consider the
following stochastic choice with three alternatives and take ¢ = 1/2.

(-] 8) S={a, b, c} {a, b} {a, c} {b, c}
a 1/3 2/3 1/2

b 1/3 1/3 2/3
c 1/3 1/2 1/3

Note that 7 satisfies the regularity condition, meaning that there is no
preference revelation if only monotonicity (assumption 1) is imposed on
the attention rule. Thatis, P = P, = & (sec. III.A). On the other hand,
by utilizing assumption 3, we can infer the preference completely. Since
w(al{a, b}) > 1/2 and w(b|{b, ¢}) > 1/2, we must have aP*b and bP?c. No-
tice that 7(al|{a, c}) = 1/2, and hence we cannot directly deduce aP?c.
Since the underlying preference is transitive, we can conclude that the
decision maker prefers a to ¢ as aP?b and bP?c, even when aP?cis not di-
rectly revealed from her choices. Therefore, the transitive closure of
P?, denoted by P9, must also be part of the revealed preference. In this
example, note that the same conclusion can be drawn as long as the pol-
icy maker assumes that ¢ < 2/3.

To accommodate the revealed preference defined in the original model
(i.e., to combine assumptions 1 and 3), we now define the following binary
relation:

a(P® U P)b if and only if

either (i) for some S € S, 7(a

S) > w(a|S — b),or (ii) w(al{a, b}) > ¢.

The relation P? U P includes our original binary relation P, defined un-
der the monotonic attention restriction (assumption 1), as well as P?,
characterized by the new attentive-at-binary assumption. Therefore, we
can infer more.

The next theorem shows that acyclicity of P* U P or its transitive clo-
sure (P® U P), provides a simple characterization of the model we con-
sider in this subsection.

TaEOREM 5 (Characterization). For a given ¢ > 1/2, a choice rule 7
has a random attention representation (>, u) where p satisfies assump-
tions 1 and 3 if and only if P? U P has no cycle.

For ¢ < 1, the model characterized by theorem 5 has a higher predic-
tive power (i.e., empirical content) compared with the model characterized
by theorem 2. Hence, the model will fail to retain some of its explanatory
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power. For example, example 10 with N\, \;, A, <1 — ¢ is outside of the
model given here.

Under the assumption ¢ = 1/2 and w(a|{a, b}) # 1/2 for all a, b, the-
orem b yields that our framework reveals a unique preference while it
allows regularity violation.

REMARK 1 (Acyclic stochastic transitivity). We highlight a close con-
nection between acyclicity of P* U P and the acyclic stochastic transitivity
(AST) introduced by Fishburn (1973). The model characterized by theo-
rem b satisfies a weaker version of AST:

W(al‘{al, aﬁz}) > ¢, veey 7T((lk_1|{ak_1, Cl]c}) > ¢
implies that 7(a |{@, a.}) < ¢.

We call this condition ¢-acyclic stochastic transitivity (¢-AST). Note that
1/2-AST is equivalent to AST. If we consider only binary choice probabil-
ities, acyclicity of P* U P becomes equivalent to ¢-AST. Otherwise, our
condition is stronger than ¢-AST.

Nowwe discuss the econometric implementation. Recall from section IV
that to test whether a specific preference ordering is compatible with the
observed (identifiable) choice rule and the monotonicity assumption,
we first construct a triangular attention rule and then test whether the tri-
angular attention rule satisfies assumption 1. This is formally justified in
the proof of theorem 3.

This line of reasoning can be naturally extended to accommodate as-
sumption 3 in our econometric implementation. Again, the researcher
constructs a triangular attention rule based on a specific preference or-
dering and the identifiable choice rule. She then tests whether the trian-
gular attention rule satisfies assumptions 1 and 3. This is formally justified
in the proof of theorem 5. For testing, only minor changes have to be
made when constructing the matrix R.. The precise construction is given
in algorithm 2.

ALGORITHM 2 (Construction of R.). Require: Set a preference >.

R, «— empty matrix

for Sin X do

for ain Sdo

for h< ain Sdo

R. < add row corresponding to w(b|S) — 7(b|S — a) < 0.

end for
end for
if S = {a, b} is binary and b < « then

R. < add row corresponding to [(1 — ¢)/¢]x(b
end if

end for

S)—m(alS) <0
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We now revisit example 11 to illustrate what additional (identifying) re-
strictions are imposed by assumption 3.

ExampLE 13 (Example 11 continued). Recall thatthere are three alter-
natives—a, b, and ¢—in X, and the choice rule is represented by a vector in
R°. For the preference b > a > ¢, the matrix Ry, contains three restric-
tions if only assumption 1 is imposed. With our new restriction on the at-
tention rule for binary choice problems, R, .. is further augmented:

100 O 0o -1 O 0 0
001 O 0 0 0 0 -1
001 O 0 0 -1 0 0

R, = 000 -1 0 0 0 0

o]
000 0 0 -1"%0 o
o}
0 0

0 0 -1 —
L ¢
where the first three rows correspond to restrictions imposed by assump-
tion 1 and the last three rows capture our new assumption 3.

Assumption 3 considerably improves the empirical content of our
benchmark RAM (assumption 1). However, this assumption is just one
of many possible assumptions that could be used in addition to our gen-
eral RAM. The main takeaway is that our proposed RAM offers a baseline
for specific, empirically relevant models of choice under random limited
attention. In section VI, using simulations we compare the empirical con-
tent of our benchmark RAM, which employs only assumption 1, and the
model that incorporates assumption 3 as well.

B. Random Attention Filter

‘We now consider random attention filters, which are one of the motivat-
ing examples of monotonic attention rules. Recall from section II that an
attention filter is a deterministic attention rule that satisfies assumption 1
and a random attention filter is a convex combination of attention filters,
and hence a random attention filter will also satisfy assumption 1. For ex-
ample, the same individual might be utilizing different platforms during
her internet search. Each platform yields a different attention filter, and
the usage frequency of each platform is equal to the weight of that atten-
tion filter. Random attention filters also give a different interpretation of
our model.
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The set of all random attention filters is a strict subset of monotonic
attention rules. This is not surprising given that the class of monotonic
attention rules is very large. Whatis (arguably) surprising is the following
fact that we are able to show: if (, >, ) is a RAM with p being a monotonic
attention rule, there exists a random attention filter y’ such that (m, >, u') is
still a RAM (see remark 2). Before presenting this result, however, we ob-
serve that p and ' need not be the same, which means that there are mono-
tonic attention rules that cannot be written as a convex combination of
attention filters.

ExampLE 14. LetX = {a, as, as, a,}. Consideramonotonic attention
rule p such that (i) p(7S) is either 0 or 0.5, (ii) u(7]S) = 0if |T] > 1, and
(iii) if u({a,;}|S) = 0 and &k < j, then p({@}|S) = 0. Then we must have
p{ast{a, as, as, as}) = p({as}|{@, as, as, a;}) = 0.5. We now show
that p is not a random attention filter.

Suppose that u can be written as a linear combination of attention fil-
ters. Then p({as}{a, as, as, as}) = p({as}|{a@, as, as, ay}) = 0.5 im-
plies that only attention filters for which I'({a, as, as, as}) = {as} or
I'{a, as, as, as}) = {as} must be assigned positive probability. On the
other hand, p({as}{a@, as, as}) = 0.5 and u({as}|{a@, as, a;}) = 0.5 im-
ply that for all T' that are assigned positive probability I'({a, as, as}) =
{as} whenever T'({a, as, as, as}) = {as} and T'({a, as, as}) = {as}
whenever T'({a, as, as, a;}) = {as}. To see this, notice that the at
tention filter property implies that I'({a, as, as}) = {as} for all T
with T'({a, as, as, as}) = {as} and that I'({a@, as, as}) = {as} for all
I with T'({a, as, as, as}) = {as}. However, it must then be the case that
I'{a, as}) = {as} for all T that are assigned positive probability or that
p({as}{@, as}) = 1, which is a contradiction.

We now show that if we restrict our attention to a certain type of mono-
tonic attention rules, then we can show that within that class every atten-
tion rule is a random attention filter (i.e., convex combination of deter-
ministic attention filters). Let M7 (>) denote the set of all attention
rules that are both monotonic (assumption 1) and triangular with re-
spect to > (definition 5), and let AF () denote all attention filters that
are triangular with respect to >. We are now ready to state the main result
of this section.

THEOREM 6 (Random attention filter). For any pu € M7 (>), there
exists a probability law ¢ on AF(>) such that forany S € X and T C §,

w(T]S) = X LI(S) = T) - ().

TeAF(>)

REMARK 2 (Triangular random attention filter representation). Com-
bining this theorem and corollary 1 in appendix A, we easily reach the fol-
lowing conclusion: if 7 has a random attention representation (>, u),
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then there exists a triangular random attention filter p’ such that (>, u')
also represents .

The proof of theorem 6 is long and hence left to section D of appen-
dix A, but here we provide a sketch of it. First, M7 (>) is a compact
and convex set, and thus the above theorem can alternatively be stated
as follows: the set of extreme points of M7 (>) is AF(>). (An atten-
tion rule u € M7 (>) is an extreme point of M7 (>) if it cannot be writ-
ten as a nondegenerate convex combination of any p/, p’ € M7 (>).)
Minkowski’s theorem then guarantees that every element of M7 (>) lies
in the convex hull of AF(>).

Obviously, every element of AF () is an extreme point of M7 (>>). We
then show that nondeterministic triangular attention rules cannot be ex-
treme points; that is, given any p € M7 (>) — AF(>), we can construct
w,p" e MT (>),such thatp = (1/2)p’ + (1/2)p". The key step is to show
that both the y' and the p” that we construct are monotonic. After this
step, we have shown that no pe M7 (>) — AF(>) can be an extreme
point, thus concluding the proof.

VI. Simulation Evidence

This section gives a summary of a simulation study conducted to assess
the finite sample properties of our proposed econometric methods. We
consider a class of logit attention rules indexed by ¢:

w'l‘,c

Drcsrs

where | T'| is the cardinality of 7. Thus, the decision maker pays more at-
tention to larger sets if ¢ > 0 and pays more attention to smaller sets if ¢ <
0. When ¢ is very small (negative and large in absolute magnitude), the
decision maker almost always pays attention to singleton sets, and hence
nothing will be learned about the underlying preference from the choice
data.

Other details on the data generating process used in the simulation
study are as follows. First, the grand set X consists of five alternatives,
@, Gs, s, a4, and a;. Without loss of generality, assume that the underly-
ing preference is @ > as > as > a4 > a;. Second, the data consist of
choice problems of size two, three, four, and five. That is, there are 26
choice problems in total. Third, given a specific realization of Y;, a consid-
eration set is generated from the logit attention model with ¢ = 2, after
which the choice y; is determined by the aforementioned preference. We
also report simulation evidence for ¢ € {0,1} in appendix B. Finally,
the observed data are a random sample {(y;, ¥;) : 1 <7 < N}, where the
effective sample size can be 50, 100, 200, 300, and 400. (Effective sample

r(T1S) = wre = |TT,
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size refers to the number of observations for each choice problem. Be-
cause there are 26 choice problems, the overall sample size is N €
{1,300, 2,600, 5,200, 7,800, 10,400}.)

For inference, we employ the procedure introduced in section IV and
test whether a specific preference ordering is compatible with the basic
RAM (assumption 1). We also incorporate the attentive-at-binaries as-
sumption introduced in section V.A. Recall from assumption 3 that
(1 — ¢)/¢isameasure of full attention at binaries, and specifying a larger
value (i.e., asmaller value of ¢) implies that the researcher is more willing
to draw information from binary comparisons. Note that with ¢ = 1, im-
posing assumption 3 does not bring any additional identification power.
Before proceeding, we list five hypotheses (preference orderings) and
indicate whether they are compatible with our RAM and specific val-
ues of ¢.

o
(€28
QO
(=]
oo
[©28
[0s)
(=]
N
ot
I3
(=
[=2]
(S8
[=2]
(=]
ot
Qt
ot
[

1
Ho,:a > as>as>a,>as
Hoo:as>as>a,>as>a
Hos:as>a,>as>as>a X
Hos:ay>as>as>as>a X
Hos:as>a,>as>as>a X

X X X NN
X X X NN
X X X NN
X X X X N
X X X X N
X X X X N
X X X X N
X X X X N
X X X X N
X X X X N

As can be seen, H,; always belongs to the identified set of preferences,
as it is the preference ordering used in the underlying data generating
process. The hypothesis H,», however, may or may not belong to the iden-
tified set depending on the value of ¢: with ¢ close to 0.5, the researcher
is confident enough using information from binary comparisons, and she
will be able to reject this hypothesis; for ¢ close to one, assumption 3 no
longer brings too much additional identification power beyond the mono-
tonic attention assumption, and monotonic attention alone is not strong
enough to reject this hypothesis. Indeed, with ¢ = 1 (i.e., assumption 1
alone), the set of identified preferences is {>: as > as > a4 > a5}, which
contains Hy.. The other three hypotheses, Hy;, Hy4, and Hy;, do not be-
long to the identified set even with ¢ = 1.

Opverall, our simulation has 5 (different N) x 5 (different preference
orderings) x 11 (different ¢) = 275 designs. For each design, 5,000 sim-
ulation repetitions are used, and the five null hypotheses are tested using
our proposed method at the 5% nominal level. Simulation results are
summarized in figure 2.

We first focus on Hy; (fig. 2A). As this preference ordering is compat-
ible with our RAM, one should expect the rejection probability to be lower
than the nominal level. Indeed, the rejection probability is far below .05:
this illustrates a generic feature of any (reasonable) procedure for testing
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F1c. 2.—Empirical rejection probabilities. Shown in the figure are empirical rejection
probabilities testing the five null hypotheses through 5,000 simulations, with nominal size
0.05. Logit attention rule with ¢ = 2 is used, as described in the main text. For each sim-
ulation repetition, five effective sample sizes are considered: 50, 100, 200, 300, and 400.
A color version of this figure is available online.

moment inequalities—to maintain uniform asymptotic size control, em-
pirical rejection probability is below the nominal level when the inequalities
are far from binding. Next consider Hy, (fig. 2B). For ¢ larger than 0.85,
the rejection probability is below the nominal size, which is compatible
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with our theory, because this preference belongs to the identified set
when only assumption 1 is imposed. With smaller ¢, the researcher relies
more heavily on information from binary comparisons/choice problems,
and she is able to reject this hypothesis much more frequently. This dem-
onstrates how additional restrictions on the attention rule can be easily
accommodated by our basic RAM, which in turn can bring additional
identification power. The other three hypotheses (fig. 2C-2F) are not
compatible with our RAM, and we do see that the rejection probability
is much larger than the nominal size even for ¢ = 1, showing that even
our basic RAM has nontrivial empirical content in this case.

VII. Conclusion

We introduced a limited attention model allowing for a general class of
monotonic (and possibly stochastic) attention rules, which we called a
random attention model (RAM). We showed that this model nests several
important recent contributions in both economic theory and economet-
rics, in addition to other classical results from decision theory. Using our
RAM, we obtained a testable theory of revealed preferences and devel-
oped partial identification results for the decision maker’s unobserved
strict preference ordering. Our results included a precise constructive
characterization of the identified set for preferences, as well as uniformly
valid inference methods based on that characterization. Furthermore, we
showed how additional nonparametric restriction can be easily incorpo-
rated into the RAM to obtain tighter empirical implications and more
powerful accompanying econometric procedures. We found good finite
sample performance of our econometric methods in a simulation exper-
iment. Last but not least, we provide the general-purpose R software pack-
age ramchoice, which allows other researchers to easily employ our econo-
metric methods in empirical applications.

Appendix A
Omitted Proofs

This appendix collects proofs that are omitted from the main text to improve the
exposition.

A.  Proof of Theorem 2

Suppose that 7 has a random attention representation (>, u). Then lemma 1 im-
plies that > must include P so P must be acyclic.

For the other direction, suppose that P has no cycle. Pick any preference > that
includes Pr and enumerate all alternatives with respect to >: a,» > ag» > ... > ax,-.
Let{L; : 1 < k < K} be the corresponding lower contour sets (definition 5). Then
we specify pi as

This content downloaded from 128.112.070.247 on June 24, 2020 14:47:21 PM
All use subject to University of Chicago Press Terms and Conditions (http://www .journals.uchicago.edu/t-and-c).



A RANDOM ATTENTION MODEL 2831

MTIS) =

(. |S) if 4y € Sand T = L, N S,
0 otherwise.

It is trivial to verify that (>, i) represents m, since (>, i) induces the following
choice rule:

S ais =bestin T|a(T|S) = > Mais =bestin L . N S|a(L; . N S[S)

TS ;€S

= > I[ais =bestin L; . N Slw(ay, .

a,-€S

= EH[G = a, >]7T(a“v>

a,.€8

S)

s)

= w(alS),

which is the same as 7. For the first equality, we use the definition that a triangular
attention rule puts weights only on lower contour sets; for the second equality,
we apply the definition/construction of ji; the third equality follows from the def-
inition of lower contour sets.

Now we verify that p satisfies assumption 1. Assume that this is not the case;
then it means that there exist some S, @, @, € S, such that (i) L,, NS =
Ly N (S — a,)and (i) p(Li>- N S|S) > p(Li- N (S — @)|S — a). By the def-
inition of lower contour sets, statement i implies that @, > a,,. Then statement ii
implies that

WL NS

S - (lf&.)‘

S) = w(a|S) > p(Lis N (S — ax)|S — &) = 7(ay

The above, however, implies that ,,Pa, ., which contradicts the implication of
statement i that a,» >a,.. This closes the proof.

ReMARK Al. The previous proof has a nice implication that a choice rule
can be represented by a monotonic attention rule if and only if it can also be rep-
resented by a monotonic triangular attention rule. Formally, if 7 has a random
attention representation, (>, u), then (>, i) also represents = where g is mono-
tonic and triangular with respect to >. Hence, we can focus on monotonic trian-
gular attention rules without loss of generality. This is formally summarized in
corollary 1.

B.  Proof of Theorem 4

See section SA.4.1 of appendix B.

C.  Proof of Theorem 5

The “only if” part is trivial and is omitted. We illustrate the “if” part. Assume that
P? U P has no cycle (or equivalently, that its transitive closure (P? U P), has
no cycle); then there exists some preference ordering that embeds P* U P. Fix
one such preference >. With the same argument used in the proof of theorem 2,
S) and show that it satisfies

we can construct a triangular attention rule u(7
assumption 1.
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We then show that p(7'S) satisfies assumption 3. Take binary S = {q, b} and as-
sume without loss of generality that a > b. Then p({a, b}|{a, b}) = w(a|S) and
p({b}{a, b}) = w(b|S). Violation of assumption 3 implies that w(al{a, b}) <
(1 — ¢)/¢]w(b|{a, b}) and equivalently that w(b|{a, b}) > ¢. This means that bP?q,
which violates our definition of >.

D.  Proof of Theorem 6

We show that the set of extreme points of M7 (>) is AF(>). Clearly, any I' €
AZF(>) is an extreme point. Pick a nondeterministic attention rule p € M7 (>).
We show that u cannot be an extreme point. Let X, © X stand for all sets S € X
for which u(7S) = 1 forno T C S. We start by choosing ¢ > 0 small enough so
that none of the nonbinding constraints are affected whenever ¢ is added to or sub-
tracted from p(7T|S) forall 7' C Sand S € X. Let k, = mingy, |S|. Since p is not de-
terministic, such k, exists.

We begin with the following simple observation that given Swith |S| = k,, we
can have at most two subsets of Swith u(71S) € (0, 1). Moreover, it must be the
case that u(S|S) € (0,1).

LemMma D1, Let Swith |S| = k, be given. Then there exist at most two T C S,
such that u(7S) € (0, 1). Furthermore, p(S|S) € (0, 1).

Proof.  Suppose that there exist three such subsets: 77, 75, and T;. Since p is tri-
angular, the subsets that are considered with positive probability can be ordered
by set inclusion. Hence, we can assume that 7, © 7, C T; without loss of gener-
ality. But then since p is monotonic and 77 © 7, C S, it must be that u(7,|73) €
(0, 1) and u(T3| 73) € (0, 1). This contradicts the definition of k,. Hence, there can
be at most two subsets 7} and 75 with positive probability. The same contradiction
appears as long as 7, & S. Hence, T, = S. QED

Now for all sets S € X, with |S| = k,, we define p’ and p” as follows:

w(T|S) = u(T|S) + &,

K(SIS) = w(SIS) —
and

W(TIS) = w(T1S) = ¢,

W(SIS) = u(SIS) + ¢,
where TG S with u(71S) € (0,1).

Suppose that we have defined p' and p” for all sets with |S] < [, and let Swith
|S| = L+ 1 be given. If there exist no 7' C S and S; C S such that @/ (7|Sy) #
w(T|Sr) and u(T|S) = u(T|Sr), then we set u(T|S) = W (T|S) = w'(T|S) for
all T C §. Otherwise, pick the smallest 7 for which such S; exists. If p/'(7]S;) >
W' (T)Sz), then let p/(T|S) = u(T|S) +e and p'(T|S) = u(T|S) — &, and if
W (TIS;) < w'(T|S;), then let w/(T|S) = u(T|S) — e and '(T|S) =u(T|S) + &. If
Tis the only set for which such S, exists, then let 7" be the largest set for which
p(T)8) € (0,1). Otherwise, 7" denotes the other set for which S, satisfying the
description exists. If p/(T]Sy) > p'(7T|Sy), then let p'(7"|S) =p(7"|S) — ¢ and
w'(T)8) = w(T'|S) +& and if p(T|Sr) <p’(T|Sy), then let p/(T'|S) =
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w(T'|S) + eand p'(77)S) = w(T"
We proceed iteratively.

LeEmMma D2.  Suppose that there exist 77 C Sand S; C S such that y/(7]Sy) #
w'(T|Sr) and p(T|S) = p(T|Sr). Then either T'is the smallest set in S satisfying
the description or we can set Sy = 7.

Proof.  The claim follows from lemma D1 when |S| = k, + 1. Suppose that the
claim holds whenever | S| < /. We show that the claim holds when [S| = [ + 1. Let
T C Sand Sy C § satisfy the description, and suppose that 7'is not the smallest
set in S satisfying the description. Since p/'(TS7) # p”(T|Sr), by construction, ei-
ther T'is the largest set satisfying p(7S7) € (0, 1) or there exists S;, © Sy such
that @' (T|Ss,) # w'(T|Ss,) and u(T|Sr) = p(T|Ss,). If the first case is true, then
since p is monotonic, it must be the case that u(7'|T) = u(7'|S;) for all
T C T, and hence we are done. In the second case, the claim follows from in-
duction. QED

Lemma D3. For any S, there exist either zero or two subsets satisfying
w(T|S) # p'(T|S). Moreover, if there are two sets satisfying the description, then
wW(T|S) > p'(T1|S) if and only if p'(T5]S) < p'(Tz|S).

Proof:  The claim is trivial when |S| = k,. Suppose that the claim is true for all
Swith |S] <[ and let Swith [S| = [ + 1 be given. If there is no 7 that satisfies
the description in the construction, then no subset will be affected. Suppose that
there exists only one such 7. We show that there exists 7"> 7T such that
w(T'|S) € (0,1). To see this, notice that by monotonicity property u(7"|S) <
w(T"|Sy) for all T" € T. Since by induction there are two subsets of S; for
which @/ (T|Sr) # p'(T|Sr), either u(T"|S) < u(T"|Sr) for some 7" C T or there
exists 7" > T such that u(7"|S;) € (0, 1). In both cases, Z;cru(1”|S) < 1 follows.
Hence, there is 7" > T such that u(7"|S) € (0, 1). The construction then guaran-
tees that p/(7'|S) # p"(1']S) for some 7" > T. Now suppose that there are three
subsets, T}, T5, and T5, satisfying the description. Since p is triangular, we can as-
sume that 7} © 7T, C T; withoutloss of generality. By the previous lemma, we can
assume that S, = 75 and S, = T; without loss of generality. But then since p is
monotonic, three subsets of S, must satisfy the description, which is a contradic-
tion to induction hypothesis.

To prove the second part of the claim, notice that the claim follows from con-
struction if |S| = k,. Suppose that the claim holds whenever [S| </, and let
|S| =1+ 1 be given. If T; = S, then the claim follows from construction. If
T, & S, then the claim follows from induction and construction by considering
the set 75,. QED

Itis clear thatp = (1/2)p' + (1/2)p". The previous lemmas also show that both
@ and u" are monotonic. Hence, no p € M7 (>) — AF(>) can be an extreme
point. This concludes the proof of theorem 6.

S) — e. For all other subsets p, p', and p" agree.
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