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Abstract—Portfolio sorting is ubiquitous in the empirical finance literature,
where it has been widely used to identify pricing anomalies. Despite its
popularity, little attention has been paid to the statistical properties of the
procedure. We develop a general framework for portfolio sorting by cast-
ing it as a nonparametric estimator. We present valid asymptotic inference
methods and a valid mean square error expansion of the estimator leading
to an optimal choice for the number of portfolios. In practical settings, the
optimal choice may be much larger than the standard choices of five or ten.
To illustrate the relevance of our results, we revisit the size and momentum
anomalies.

I. Introduction

PORTFOLIO sorting is an important tool of modern
empirical finance. It has been used to test fundamental

theories in asset pricing, establish a number of different pric-
ing anomalies, and identify profitable investment strategies.
However, despite its ubiquity in the empirical finance litera-
ture, little attention has been paid to the statistical properties
of the procedure. We endeavor to fill this gap by formalizing
and investigating the properties of so-called characteristic-
sorted portfolios—where portfolios of assets are constructed
based on similar values for one or more idiosyncratic char-
acteristics and the cross-section of portfolio returns is of
primary interest. The empirical applications of characteristic-
sorted portfolios are too numerous to list, but some of the
seminal work applied to the cross-section of equity returns
includes Basu (1977), Stattman (1980), Banz (1981), De
Bondt andThaler (1985), Jegadeesh (1990), Fama andFrench
(1992), and Jegadeesh and Titman (1993). More recently, the
procedure has been applied to other asset classes, such as
currencies, and across different assets; furthermore, portfo-
lio sorting remains a highly popular tool in empirical finance.
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We develop a general, formal framework for portfolio sort-
ing by casting the procedure as a nonparametric estimator.
Sorting into portfolios has been informally recognized in the
literature as a nonparametric alternative to imposing linearity
on the relationship between returns and characteristics in
recent years (Fama & French, 2008; Cochrane, 2011), but no
formal framework is at present available in the literature. We
impose sampling assumptions that are very general and can
accommodate momentum and reversal effects, conditional
heteroskedasticity in both the cross section and the time
series, and idiosyncratic characteristics with a factor struc-
ture. Furthermore, our proposed framework allows for both
estimated quantiles when forming the portfolios and additive
linear-in-parameters conditioning variables entering the un-
derlying model governing the relationship between returns
and sorting characteristics. This latter feature of our proposed
framework bridges the gap between portfolio sorts and cross-
sectional regressions and will allow empirical researchers
to investigate new candidate variables while controlling
for existing anomalies already identified. More generally,
our framework captures and formalizes the main aspects
of common empirical work in finance employing portfolio
sorts, and therefore gives the basis for a thorough analysis
of the statistical properties of popular estimators and test
statistics.
Employing our framework, we study the asymptotic prop-

erties of the portfolio-sorting estimator and related test statis-
tics in settings with large cross-sectional and times-series
sample sizes, as this is the most usual situation encountered
in appliedwork.Wefirst establish consistency and asymptotic
normality of the estimator, explicitly allowing for estimated
quantile-spaced portfolios, which reflects standard practice
in empirical finance. In addition, we prove the validity of
two distinct standard error estimators. The first is a plug-in
variance estimator new to the literature. The second is the
omnipresent Fama and MacBeth (1973)–style variance esti-
mator, which treats the average portfolio returns as if they
were draws from a single, uncorrelated time series. Despite
its widespread use, we are unaware of an existing proof of
its validity for inference in this setting, although this finding
is presaged by the results in Ibragimov and Müller (2010,
2016). Altogether, our first-order asymptotic results provide
theory-based guidance to empirical researchers.
Once the portfolio sorting estimator is viewed through the

lens of nonparametric estimation, it is clear that the choice
of number of portfolios acts as the tuning parameter for the
procedure and that an appropriate choice is paramount for
drawing valid empirical conclusions. To address this issue,
we obtain higher-order asymptotic mean square error expan-
sions for the estimator, which we employ to develop sev-
eral optimal choices of the total number of portfolios for ap-
plications. These optimal choices balance bias and variance

The Review of Economics and Statistics, July 2020, 102(3): 531–551
© 2019 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
https://doi.org/10.1162/rest_a_00883

http://www.mitpressjournals.org/doi/suppl/10.1162/rest_a_00883


532 THE REVIEW OF ECONOMICS AND STATISTICS

and will change depending on the prevalence of many com-
mon features of panel data in finance, such as unbalanced
panels, the relative number of cross-sectional observations
versus time-series observations, and the presence of condi-
tional heteroskedasticity. In practice, the common approach
in the empirical finance literature is to treat the choice of the
number of portfolios as invariant to the data at hand, often
following historical norms, such as ten portfolios when sort-
ing on a single characteristic. This is summarized succinctly
in Cochrane (2011, 1061): “Following Fama and French, a
standard methodology has developed: Sort assets into port-
folios based on a characteristic, look at the portfolio means
(especially the 1–10 portfolio alpha, information ratio, and
t-statistic)” (emphasis added). Thus, another contribution of
our paper is to provide a simple data-driven procedure that
is optimal in an objective sense to choose the appropriate
number of portfolios. Employing this data-driven procedure
provides more power to discern a significant return differ-
ential in the data. The optimal choice will vary across time
with the cross-sectional sample size and, all else equal, be
larger for longer time series. Our results thus have a direct
impact on empirical practice by providing a transparent, ob-
jective, data-driven way to choose the number of portfolios
that nonetheless capture intuitive, real-world concerns in data
analysis.

We demonstrate the empirical relevance of our theoretical
results by revisiting the size anomaly, where smaller firms
earn higher returns than larger firms on average, and the mo-
mentum anomaly, where firms that have had better relative
returns in the recent past also have higher future relative re-
turns on average. We find that in the universe of U.S. stocks,
the size anomaly is significant using our methods and is ro-
bust to different subperiods including the period from 1980 to
2015. Moreover, this conclusion would not be reached with
the ad hoc, yet standard, choice of ten portfolios; our results
are thus crucial for data analysis. Our results suggest that the
relationship is monotonically decreasing and convex; this is
borne out graphically. As pointed out in the existing litera-
ture, the size anomaly is not robust in subsamples that exclude
“smaller” small firms (i.e., considering only firms listed on
the NYSE). We also find that in the universe of U.S. stocks,
the momentum anomaly is significant, with the “short” side
of the trade becoming more profitable in later subperiods.
Graphically, the relationship appears monotonically increas-
ing and concave. We also show that the momentum anomaly
is distinct from industry momentum by including the latter
measure (along with its square and cube) as linear control
variables in a portfolio-sorting exercise. In both empirical
applications, we find that the optimal number of portfolios
varies substantially over time and is much larger than the
standard choice of ten routinely used in the empirical finance
literature and, more important, that substantive conclusions
change with the number of portfolios chosen for analysis. In
the case of the size anomaly, the optimal number of portfolios
can be as small as about 50 in the 1920s and can rise to above
200 in the late 1990s. However, for the momentum anomaly,

the optimal number of portfolios is about 10 in the 1920s and
about 50 in the late 1990s.
The financial econometrics literature has primarily fo-

cused on the study of estimation and inference in (restricted)
factor models featuring common risk factors and idiosyn-
cratic loadings. For recent examples, see Shanken and
Zhou (2007), Kleibergen and Zhan (2015), Nagel and
Singleton (2011), Connor, Hagmann, and Linton (2012),
Adrian, Crump, and Moench (2015), Ang, Liu, and Schwarz
(forthcoming), and Gospodinov, Kan, and Robotti (2017),
among others. In contrast, to our knowledge, we are the first
to provide a formal framework and analyze the standard em-
pirical approach of (characteristic-based) portfolio sorting.
A few authors have investigated specific aspects of sorted
portfolios. Lo and MacKinlay (1990) and Conrad, Cooper,
and Kaul (2003) have studied the effects of data-snooping
bias on empirical conclusions drawn from sorted portfolios
and argue that they can be quite large. Berk (2000) investi-
gates the power of testing asset pricing models using only
the assets within a particular portfolio and argues that this
approach biases results in favor of rejecting the model being
studied. More recently, Patton and Timmermann (2010) and
Romano and Wolf (2013) have proposed tests of mono-
tonicity in the average cross-section of returns, taking the
sorted portfolios themselves as given. Finally, there is a large
literature attempting to discriminate between factor-based
and characteristic-based explanations for return anomalies.
The empirical implementations in this literature often use
characteristic-sorted portfolios as test assets, although this
approach is not universally advocated (Lewellen, Nagel, &
Shanken, 2010; Kleibergen & Zhan, 2015).
The paper is organized as follows. Section II describes

our framework and provides a brief overview of our new
results. The more general framework is presented in section
III. Then sections IV andV treat first-order asymptotic theory
and mean square error expansions, respectively; the latter
provides guidance on implementation. Section VI provides
our empirical results, and sectionVII concludes and discusses
further work.

II. Motivation and Overview of Results

This section provides motivation for our study of port-
folio sorting and a simplified overview of our results. The
premise behind portfolio sorting is to discover whether ex-
pected returns of an asset are related to a certain characteris-
tic. A natural, and popular, way to investigate this is to sort
observed returns by the characteristic value, divide the as-
sets into portfolios according to the characteristic, and then
compare differences in average returns across the portfolios.
This methodological approach has found wide popularity in
the empirical finance literature not least because it uses a
basic building block of modern finance, a portfolio of as-
sets, which produces an intuitive estimator of the relation-
ship between asset returns and characteristics. The main goal
of this paper is to provide a formal framework and develop
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rigorous inference results for this procedure. All assumptions
and technical results are discussed in detail in the following
sections but omitted here for ease of exposition.
To begin, suppose we observe both the return, R, and value

of a single continuous characteristic, z, for n assets over T
time periods, that are related through a regression-typemodel
of the form

Rit = μ(zit ) + εit , i = 1, . . . , n, t = 1, . . . , T . (1)

Here μ(·) is the unknown object of interest that dictates how
expected returns vary with the characteristic and is assumed
to be twice continuously differentiable. The general results
given in the next section cover a wide range of inference tar-
gets and extend the model of equation (1) to include multi-
ple sorting characteristics, conditioning variables, and unbal-
anced panels, among other features commonly encountered
in empirical finance.
To understand the relationship between expected returns

and the characteristic at hand, characterized by the unknown
function μ(z), we first form portfolios by partitioning the
support of z into quantile-spaced bins. While it is possible to
form portfolios in otherways, quantile spacing is the standard
technique in empirical finance. Our goal is to develop theory
thatmimics empirical practice as closely as possible. For each
period t , it is common practice to form J disjoint portfolios,
denoted by Pjt , as follows: Pjt = [z(�n( j−1)/J�)t , z(�n j/J�)t ) if
j = 1, . . . , J − 1, and PJt = [z(�n(J−1)/J�)t , z(n)t ], where z(�)t
denotes the �th order statistic of the sample of characteristics
{zit : 1 ≤ i ≤ n} at each time period t = 1, 2, . . . , T , and �·�
denotes the floor operator. In other words, each portfolio is a
random interval containing roughly (100/J )% of the obser-
vations at each moment in time. This means that the position
and size of the portfolios vary over time, but are set auto-
matically, while the number of such portfolios (J) must be
chosen by the researcher. A careful (asymptotic) analysis of
portfolio-sorting estimators requires accounting for the ran-
domness introduced in the construction of the portfolios, as
we do in more detail below.
With the portfolios thus formed, we estimateμ(z∗) at some

fixed point z∗ with the average returns within the portfolio
containing z∗. Here z∗ represents the evaluation point that
is of interest to the empirical researcher. For example, one
might be interested in expected returns for those individual
assets with a very high value of a characteristic. Over time,
exactly which portfolio includes assets with characteristic z∗
may change. If we let P∗

jt represent the appropriate portfolio
at each time t , then the basic portfolio-sorted estimate is

μ̂(z∗) = 1

T

T∑
t=1

μ̂t (z∗), μ̂t (z∗) = 1

N∗
jt

∑
i:zit ∈P∗

jt

Rit , (2)

where N∗
jt is the number of assets in P∗

jt at time t . If J ≤ n,
this estimator is well defined, as there are (roughly) n/J as-
sets in all portfolios. The main motivation for using a sample
average of each individual estimator is so that the procedure

more closely mimics the actual practice of portfolio choice
(where future returns are unknown) and because of the highly
unbalanced nature of financial panel data. That said, this esti-
mator (as well as themore general version below) can be sim-
ply implemented using ordinary least squares (or weighted
least squares in the case of value-weighted portfolios).
The starting point of our formalization is the realization

that each μ̂t (z∗), t = 1, . . . , T , is a nonparametric estimate
of the regression function μ(z∗), using a technique known
as partitioned regression. Studied recently by Cattaneo and
Farrell (2013), the partition regression estimator estimates
μ(z∗) using observations that are “close” to z∗, which at
present means that they are in the same portfolio. A key
lesson is that J is the tuning parameter of this nonparametric
procedure, akin to the bandwidth in kernel-based estimators
or the number of terms in a sieve estimator (such as knots for
spline regression). It is well documented that nonparametric
inference is sensitive to tuning parameter choices, and em-
pirical finance is no exception. For smaller J , the variance of
μ̂t (z∗) will be low, as a relatively large portion of the sample
is in each portfolio, but this also implies that the portfolio in-
cludes assets with characteristics quite far from z∗, implying
an increased bias; on the other hand, a larger J will decrease
bias but inflate variance. For each cross section, μ̂t (·) is a
step function with J “rungs,” each an average return within
a portfolio.While estimation ofμ(·) could be performedwith
a variety of nonparametric estimators (such as kernel or series
regression), our goal is to explicitly analyze portfolio sorting.
Such methods are not immune from tuning parameter choice
sensitivity and may require stronger assumptions than port-
folio sorting. From a practitioner’s perspective, the estimator
has the advantage that it has a direct interpretation as a return
on a portfolio, which is an economically meaningful object.
Moving beyond the cross section, the same structure and

lessons holds for the full μ̂(z∗) of equation (2), but with dra-
matically different results. Consider figure 1. The top-left
plot shows a single realization of μ̂t (·), with J = 4, for a sin-
gle cross section. Moving to the top-center plot, we see that
averaging over only two time periods results in a more com-
plex estimator, as the portfolios are formed separately for
each cross section. Finally, the top-right plot shows the result
with T = 50 (though a typical application may have T in the
hundreds). Throughout, J is fixed, but the increase in T acts
to smooth the fit; this point appears to be poorly recognized
in practice and makes clear that the choice of J must depend
on T . Next, for the same choices of n and T , the bottom row
repeats the exercise but with J = 10. Comparing panels in
the top row to the bottom of figure 1 shows the bias-variance
trade-off. Figure 1makes clear that J must depend on the fea-
tures of the data at hand. We show that consistency of μ̂(·)
requires that J diverge with n and T fast enough to remove
bias but not so quickly that the variance explodes. We detail
practicable choices of J later in the paper.
With the portfolios and estimator defined, by far the most

common object of interest in the empirical finance literature
is the expected returns in the highest portfolio less those in
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FIGURE 1.—INTRODUCTORY EXAMPLE

This figure shows the true (dashed line) and estimated function (solid line). The left panels show the n = 500 data points (gray dots), and the middle panels display the estimated function for each time period (light
gray lines). Break points are chosen as estimated quantiles of z where z ∼ beta(1, 1)/z ∼ beta(1.2, 1.2) for odd or even time periods.

the lowest, which is then either (informally) interpreted as
a test of monotonicity of the function μ(z) or used to con-
struct factors based on the characteristic z. These are different
goals (inference and point estimation, respectively) and thus
require different choices of J .
First, consider the test of monotonicity, which is also in-

terpreted as the return from a strategy of buying the spread
portfolio: long $1 of the higher expected return portfolio and
short $1 of the lower expected return portfolio. Formally, we
wish to conduct the hypothesis test,

H0 : μ(zH ) − μ(zL ) = 0 versus

H1 : μ(zH ) − μ(zL ) �= 0, (3)

where zL < zH denotes “low” and “high” evaluation points.
(In practice, zL and zH are usually far apart and never within
the same portfolio.) Statistical significance in this context is
intimately related to the economic significance of the trading
strategy, as measured by the Sharpe ratio. Our general frame-
work allows for a richer class of estimands (see remark 4),
but this estimand will remain our focus throughout the paper
because it is the most relevant to empirical researchers.

Our main result establishes asymptotic validity for testing
equation (3) using portfolio sorting with estimated quantiles.
Namely, it follows from (the more general) theorem 1 that

T =
[
μ̂(zH ) − μ̂(zL )

] − [
μ(zH ) − μ(zL )

]
√

V̂ (zH ) + V̂ (zL )
→d N (0, 1),

provided that J log(max(J, T ))/n → 0 and nT/J3 → 0, and
other regularity conditions hold. The growth restrictions on
J formalize the bias-variance trade-off in this problem.
Consistent variance estimation can be done in several

ways. The structure of the estimator implies that the vari-
ance of μ̂(zH ) − μ̂(zL ) is the sum of each pointwise variance
and that V̂ (z) 
 J/(nT ). We show that the commonly used
Fama and MacBeth (1973) variance estimator, given by

V̂FM(z) = 1

T 2

T∑
t=1

(μ̂t (z) − μ̂(z))2,

is indeed valid for Studentization, as is a novel plug-in ap-
proach. Both are given in equation (9). (See theorem 2 for
a complete discussion.) To the best of our knowledge, these
results are all new to the literature.
Beyond first-order validity, we also provide explicit, prac-

ticable guidance for choice of J via higher-order mean
square error (MSE) expansions. To our knowledge, this rep-
resents the first theory-founded choice of J for implement-
ing portfolio-sorting-based inference. The literature typically
employs ad hoc choices, and often J = 10 (see the quotation
from Cochrane, 2011, above). However, given the nonpara-
metric nature of the problem, J should depend on the features
of the data and, moreover, should change over time because
cross-sectional sample sizes vary substantially. To make this
clear notationally, we will write Jt for the number of portfo-
lios in period t . Even if these facts are recognized by empirical
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researchers and the need for J �= 10 is clear, a lack of prin-
cipled tools may be holding back practice. Our results fill
this gap by providing a transparent, data-driven method of
portfolio choice, so that practitioners who wish to use some-
thing other than ten may do so in a replicable, objective way.
For example, in our data, n ranges from 500 to nearly 8,000
(see section VI in the text and figure A1 in the supplemental
appendix) and the optimal choice of Jt , for example, varies
from 13 to 52 for the momentum anomaly (figure 5).
In the context of hypothesis testing, as in equation (3), we

find that the optimal number of portfolios obeys

J�
t = K�n1/2

t T 1/4, t = 1, 2, . . . , T,

where the constant K� depends on the data-generating pro-
cess. It is easy to check that J�

t satisfies the conditions above
(i.e., those for theorem 1). In section V, we detail the constant
terms and discuss implementation in applications. Turning to
factor construction, we find a different choice of J will be
optimal,

J��
t = K��n1/3

t T 1/3, t = 1, 2, . . . , T,

where, again, portfolios are chosen separately at each time,
K� depends on the data generating process, and implemen-
tation is discussed in section V. The major difference here is
that for point estimation, the optimal number of portfolios,
J��

t , diverges more slowly than for hypothesis testing, J�
t , in

typical applications where the cross-sectional sample size is
much larger than the number of time-series observations. The
bias-variance trade-off, though still present of course, man-
ifests differently because this is a point estimation problem
rather than one of inference. In particular, the divergence rate
will often be slower. This formal choice is a further contri-
bution of our paper and is new to the literature. However, it
does seem that at least informally, the status quo is to use
fewer portfolios for factor construction than for testing. (See
remark 9 for further discussion.)
We illustrate the use and importance of our results in our

empirical applications (section VI). As a preview, consider
the momentum anomaly. We find that in the universe of U.S.
stocks, the momentum anomaly results in statistically signif-
icant average returns, both overall and also individually for
the long side and short side of the trade (see table 1). Graph-
ically, the relationship between past relative returns and cur-
rent returns appears monotonically increasing and concave,
shown in figure 2. Alongside we show the results using the
standard approach based on 10 portfolios. This makes clear
that these same conclusions would not be reached using the
conventional estimator.
Finally, we note that when zH and zL are always in the

extreme portfolios, the estimator μ̂(zH ) − μ̂(zL ), based on
equation (2), is exactly the standard portfolio sorting esti-
mator that enjoys widespread use in empirical finance. We
exploit the assumed structure that μ(z) is constant over time
as a function of the characteristic value itself, which allows

for intuitive and interpretable estimation and inference about
μ(z) at z �= {zL, zH }. The analogous assumption implicitly
required in standard portfolio sorting is that μ(·) is constant
over time as a function of the (random) cross-sectional or-
der statistic of the characteristics, that is, the ranks. These
two overlap in the special case when zH and zL are always
in the extreme portfolios. We could accommodate this case
but with substantial notational complexity.Moreover, the key
insights obtained in this paper by formalizing and analyzing
the portfolio sorting estimator would not be affected. In these
broad terms, then, the main contribution of our paper is a for-
mal asymptotic treatment of the standard portfolio-sorts test
on μ̂(zH ) − μ̂(zL ), but a further contribution is to show how
portfolio sorting can be used for a much wider range of in-
ference targets and, correspondingly, to allow for inference
on additional testable hypotheses generated by theory (e.g.,
shape restrictions).
An alternative interpretation that unifies the two ap-

proaches, which researchers may hold implicitly, is as in-
ference on the grand mean at that point, even if μ(·) is not
constant in z itself or in its rank. That is, recalling equa-
tion (2), we interpret the estimand as (the limit of) μ̄(z∗) =∑T

t=1 μt (z∗)/T . When zH and zL are always in the extreme
portfolios, this interpretation may be natural and the quantity
μ̂(zH ) − μ̂(zL ) directly interpretable. Our method accommo-
dates this interpretation without substantive change.

Remark 1 (Analogy to Cross-Sectional Regressions). The
assumption that μ(z) is constant over time as a function of
the characteristic value is perfectly aligned with the practice
of cross-sectional (or Fama-MacBeth) regressions (Fama &
MacBeth, 1973). This approach ismotivated by amodel of the
form Rit = ζ zit + εit , i = 1, . . . , nt , t = 1, . . . , T , where zit

is the value of the characteristic (or a vector of characteristics,
more generally). Thus, cross-sectional regressions are then
nested in equation (1) under the assumption thatμ(·) is linear
in the characteristics (see also remark 6 below).

III. General Asset Returns Model and Sorting Estimator

In this section, we study amore general model and develop
a correspondingly general characteristic-sorted portfolio es-
timator. We extend beyond the simple case of the previous
section in two directions. First, we allow for multiple sort-
ing characteristics, such that zit is replaced by zit ∈ Z ⊂ Rd .
This extension is important because sorting on two variables
is quite common in empirical work, and, further, we can cap-
ture and quantify the empirical reality that sorting is very
rarely done on more than two characteristics because this
leads to empty portfolios. Intuitively, the nonparametric par-
titioning estimator, like all others, suffers from the curse of
dimensionality, and performance deteriorates as d increases,
as we can make precise (see also section IIIA and remark 6).
To address this issue, our second generalization is to allow for
other conditioning variables, denoted by xit ∈ Rdx , to enter
the model in a parametric fashion.
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TABLE 1.—EMPIRICAL RESULTS

Size Anomaly
Point Estimate Test Statistic

(zH , zL ) High Low Difference High Low Difference

1926–2015 (�−1(.975),�−1(.025)) 0.0089 0.0407 −0.0317 5.38 8.77 −6.45
(�−1(.95),�−1(.05)) 0.0088 0.0232 −0.0144 5.03 5.82 −3.31
(�−1(.9),�−1(.1)) 0.0107 0.0147 −0.0039 5.91 4.41 −1.04
Standard Estimator 0.0089 0.0204 −0.0115 5.81 6.00 −3.09

1967–2015 (�−1(.975),�−1(.025)) 0.0095 0.0464 −0.0369 4.70 8.68 −6.46
(�−1(.95),�−1(.05)) 0.0096 0.0227 −0.0131 4.63 6.36 −3.17
(�−1(.9),�−1(.1)) 0.0103 0.0137 −0.0034 4.83 4.32 −0.88
Standard Estimator 0.0089 0.0183 −0.0094 4.93 5.59 −2.51

1980–2015 (�−1(.975),�−1(.025)) 0.0107 0.0453 −0.0346 4.62 7.67 −5.46
(�−1(.95),�−1(.05)) 0.0111 0.0238 −0.0127 4.63 5.35 −2.51
(�−1(.9),�−1(.1)) 0.0108 0.0092 0.0016 4.45 2.58 0.36
Standard Estimator 0.0101 0.0163 −0.0062 4.79 4.52 −1.49

Momentum Anomaly
Point Estimate Test Statistic

(zH , zL ) High Low Difference High Low Difference

1926–2015 (�−1(.975),�−1(.025)) 0.0170 −0.0074 0.0244 7.39 −1.83 5.25
w/ controls 0.0136 −0.0102 0.0238 3.57 −1.75 3.42

(�−1(.95),�−1(.05)) 0.0172 −0.0062 0.0234 7.74 −1.46 4.87
w/ controls 0.0138 −0.0041 0.0179 3.31 −0.62 2.32

(�−1(.9),�−1(.1)) 0.0143 −0.0000 0.0152 6.64 −0.23 3.37
w/ controls 0.0115 −0.0021 0.0136 3.03 −0.42 2.13

Standard Estimator 0.0159 0.0000 0.0155 7.70 0.13 4.05
1967–2015 (�−1(.975),�−1(.025)) 0.0175 −0.0082 0.0257 5.60 −1.76 4.58

w/ controls 0.0146 −0.0168 0.0314 3.44 −2.01 3.35
(�−1(.95),�−1(.05)) 0.0163 −0.0047 0.0210 5.48 −1.07 3.94

w/ controls 0.0131 −0.0125 0.0255 3.28 −1.77 3.16
(�−1(.9),�−1(.1)) 0.0157 −0.0063 0.0220 5.65 −1.41 4.20

w/ controls 0.0083 −0.0131 0.0214 2.02 −2.35 3.09
Standard Estimator 0.0156 −0.0023 0.0180 5.62 −0.58 3.66

1980–2015 (�−1(.975),�−1(.025)) 0.0150 −0.0159 0.0309 4.13 −2.45 4.15
w/ controls 0.0128 −0.0208 0.0336 2.35 −1.90 2.74

(�−1(.95),�−1(.05)) 0.0143 −0.0127 0.0270 4.09 −2.06 3.82
w/ controls 0.0117 −0.0152 0.0269 2.20 −1.47 2.31

(�−1(.9),�−1(.1)) 0.0144 −0.0073 0.0216 4.47 −1.32 3.40
w/ controls 0.0093 −0.0098 0.0191 1.67 −1.35 2.08

Standard Estimator 0.0150 −0.0018 0.0168 4.59 −0.36 2.84

This table reports point estimate and associated test statistics from the models specified in equation (13) (top panel) and equations (14) and (15) (bottom panel) using J�
t . The standard estimator refers to the standard

implementation with J = 10. Test statistics are formed using V̂FM for the variance estimator. All returns are in monthly changes, and all portfolios are value weighted based on lagged market equity.

FIGURE 2.—MOMENTUM ANOMALY EXAMPLE

This figure shows the estimated relation between equity returns and 12-2 momentum. The left column shows μ̂(z) using J�
t ; the right column shows the estimated relation using the standard implementation with J = 10.

All returns are in monthly changes, and all portfolios are value weighted based on lagged market equity. The sample period is 1927 to 2015.
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Formally, our model for asset returns is

Rit = μ(zit ) + x′
itβt + εit , i = 1, 2, . . . , nt ,

t = 1, 2, . . . , T . (4)

This model retains the nonparametric structure on μ(z) as in
equation (1), with the same interpretation (though now condi-
tional on xit ). Notice that the vector xit may contain both ba-
sic conditioning variables as well as transformations thereof
(e.g., interactions and/or power expansions), thus providing
a flexible parametric approach to modeling these variables
and providing a bridge to cross-sectional regressions from
portfolio sorting. Cross-sectional regressions are popular be-
cause their linear structuremeans a larger number of variables
can be incorporated compared to the nonparametric nature of
portfolio sorting (i.e., cross-sectional regressions do not suf-
fer the curse of dimensionality). Model (4) keeps this prop-
erty while retaining the nonparametric flexibility and spirit
of portfolio sorting. Indeed, the parameters βt are estimable
at the parametric rate, in contrast to the nonparametric rate
for μ(z). The additive separability of the conditioning vari-
ables, common to both approaches, is the crucial restriction
that enables this. Furthermore, due to the linear structure,
the sorting estimator can be easily implemented via ordinary
least squares, as discussed below.
As in the prior section, the main hypothesis of interest in

the empirical finance literature is the presence of a large dis-
crepancy in expected returns between a lower and a higher
portfolio. To put equation (3) into the present, formalized
notation, let zL < zH be two values at or near the lower and
upper (observed) boundary points. We are then interested
in testing H0 : μ(zH ) − μ(zL ) = 0 against the two-sided
alternative. Of course, our results also cover other linear
transformations such as the “diff-in-diff” approach—
for example, for d = 2, the estimand μ(z1H , z2H ) −
μ(z1H , z2L ) − (μ(z1L, z2H ) − μ(z1L, z2L )). (See Nagel,
2005, for an example of the latter and remark 4 below for
further discussion on other potential hypotheses of interest.)
We will frame much of our discussion around the main hy-
pothesis H0 for concreteness, while still providing generic
results that may be used for other inference targets.
The framework is completed with the following assump-

tion governing the data-generating process, which also in-
cludes regularity conditions for our asymptotic results.

Assumption 1 (Data-Generating Process). Let the sigma
fieldsFt = σ(ft ) be generated from a sequence of unobserved
(possibly dependent) random vectors {ft : t = 0, 1, . . . , T }.
For t = 1, 2, . . . , T , the following conditions hold.

(a) Conditional onFt , {(Rit , z′
it , x

′
it )

′ : i = 1, 2, . . . , nt } are
i.i.d. satisfying model (4).

(b) E[εit |zit , xit ,Ft ] = 0; uniformly in t ,�uu,t = E[V (xit |
zit ,Ft )] is bounded and its minimum eigenvalue is
bounded away from 0, σ2

it = E[|εit |2|zit , xit ,Ft ] is
bounded and bounded away from 0, E[|εit |2+φ|

zit , xit ,Ft ] is bounded for some φ > 0, and
E[a′xit |zit ,Ft ] is sub-Gaussian for all a ∈ Rdx .

(c) Conditional on Ft , zit has time-invariant support, de-
noted Z , and continuous Lebesgue density bounded
away from 0.

(d) μ(z) is twice continuously differentiable; |E[xit,�|zit =
z,Ft ] − E[xit,�|zit = z′,Ft ]| ≤ C‖z − z′‖ for all
z, z′ ∈ Z where xit,� is the �th element of xit and the
constant C is not a function of t or Ft .

These conditions allow for considerable flexibility in the
behavior of the time series of returns and the cross-sectional
dependence. Indeed, Andrews (2005, 1552), using the same
condition in a single cross-section, called assumption 1a “sur-
prisingly general.” The setup allows for dependence and con-
ditional heteroskedasticity across assets and time. For exam-
ple, if ft were to include a business cycle variable, we could
allow for a common business cycle component in the idiosyn-
cratic variance of returns. As another example, the sampling
assumptions allow for a factor structure in the zit variables.
Perhaps most important, we do not impose that returns are
independent or even uncorrelated over time. Our assumptions
accommodate momentum or reversal effects whereby an as-
set’s past relative return predicts its future relative return,
which corresponds to lagged returns entering zit (De Bondt
&Thaler, 1985; Jegadeesh, 1990; Lehmann, 1990; Jegadeesh
& Titman, 1993, 2001).
Assumption 1 requires that the density of zit be bounded

away from 0, for each t = 1, 2, . . . , T , which is useful to
form (asymptotically) nonempty portfolios. The assumption
that the support of the characteristics is the same across time-
series observations is common when studying panel data.
The other restrictions are mostly regularity conditions stan-
dard in the (cross-sectional) semi-/nonparametric literature,
related to boundedness of moments and smoothness condi-
tions of unknown functions. These conditions are not mate-
rially stronger than typically imposed, despite the complex
nature of the estimation and the use of an estimated set of ba-
sis functions in the nonparametric step (due to the estimated
quantiles).
In the context of model (4), the portfolio-sorting estima-

tor of μ(z) retains the structure given above in equation (2),
but first the conditioning variables must be projected out.
Thus, the cross-sectional estimator μ̂t (z) can be constructed
by simple ordinary least squares: regressing Rit on Jd

t dum-
mies indicating whether zit is in portfolio j, along with the
dx control variables xit . Note that in contrast to section II,
we allow J = Jt to vary over time, in line with having an
unbalanced panel. This is particularly important for applica-
tions to equities, as these data tend to be very unbalanced
with cross sections much larger later in the sample than they
are at the beginning of the sample. For example, in our em-
pirical applications the largest cross-sectional sample size is
approximately fifteen times the smallest.
The multiple-characteristic portfolios are formed as the

Cartesian products of marginal intervals. That is, we first
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partition each characteristic into Jt intervals, using its
marginal quantiles, and then form Jd

t portfolios by taking the
Cartesian products of all such intervals.We retain the notation
Pjt ⊂ Rd for a typical portfolio, where here j = 1, 2, . . . , Jd

t .
For d > 1, even if Jd < n, these portfolios are not uniformly
guaranteed to contain any assets, and this concern for “empty”
portfolios can be found in the empirical literature (Goyal,
2012). Our construction mimics empirical practice, and we
formalize the constraints on J that ensure nonempty portfo-
lios (a variance condition) while simultaneously controlling
bias. While the problem of a large J implying empty portfo-
lios has been recognized (though never studied), the idea of
controlling bias appears to be poorly understood. However, in
our framework, the nonparametric bias arises naturally and
is amenable to study. Conditional sorts have been used to
“overcome” the empty portfolio issue, but these are different
conceptually, as discussed below.

With the portfolios thus formed, we can define the final
portfolio-sorting estimator of μ(z), for a point of interest
z ∈ Z . First,with an eye to reinforcing the estimated portfolio
break points, for a given portfolio Pjt , j = 1, 2, . . . , Jd

t , t =
1, . . . , T , let 1̂ jt (z) = 1{z ∈ Pjt } indicate that the point z is in
Pjt , and let Njt = ∑nt

i=1 1̂ jt (zit ) denote its (random) sample
size. The portfolio-sorting estimator is then defined as

μ̂(z) = 1

T

T∑
t=1

μ̂t (z),

μ̂t (z) =
Jd

t∑
j=1

1

Njt

nt∑
i=1

1̂ jt 1̂ jt (z)1̂ jt (zit )(Rit − x′
it β̂t ), (5)

where

β̂t = (X′
tMtXt )

−1X′
tMtRt , Rt = [R1t , . . . , Rnt t ]

′,

Xt = [x1t , x2t , . . . , xnt t ]
′, Mt = Int − B̂t (B̂′

t B̂t )
−1B̂′

t , (6)

and B̂t = B̂t (zt ) with zt = [z1t , z2t , . . . , znt t ]
′ is the nt × Jd

t

matrix with (i, j) element equal to 1̂ jt (zit ), characterizing the
portfolios for the characteristics zit . The indicator function
1̂ jt ensures that all necessary inverses exist and thus takes
the value 1 if Pjt is nonempty and (X′

tMtXt/nt ) is invertible.
Both events occur with probability approaching 1 (see the
supplemental appendix). It is established there that Njt 

nt/Jd

t with probability approaching 1, for all j and t .

Remark 2 (Implementation and Weighted Portfolios). De-
spite the notational complexity, the estimator μ̂t (z) is imple-
mented as a standard linear regression of the outcome Rit

on the Jd
t + dx covariates B̂t and Xt . It is the product of the

indicator functions 1̂ jt (z)1̂ jt (zit ) that enforces the nonpara-
metric nature of the estimator: only zit in the same portfolio
as z, and hence “close,” are used. The estimator can easily
accommodate weighting schemes, such as weighting assets
by market capitalization or inversely by their estimated (con-

ditional) heteroskedasticity. For notational ease, we present
our theory without portfolio weights, but all empirical re-
sults in section VI are based on the value-weighted portfolio
estimator.

It worth emphasizing that the nonparametric estimator
μ̂t (z) of equation (5) is nonstandard. At first glance, it ap-
pears to be the nonparametric portion of the usual partially
linear model, using the partitioning regression estimator as
the first stage (β̂t would be the parametric part). However, the
partitioning estimator here is formed using estimated quan-
tiles, whichmakes the “basis” functions of our nonparametric
estimator nonstandard and renders prior results from the lit-
erature inapplicable.

Remark 3 (Connection to Other Anomalies Adjustments).
A number of authors have attempted to control for existing
anomalies by first regressing their proposed anomaly variable
on existing variables, and sorting on the residuals. This is fun-
damentally (and analytically) different from what we study
in this paper, and this approach does not, in general, enjoy
the usual interpretation of estimating the effect of zit on Rit

controlling for additional variables. In contrast, our frame-
work retains the standard interpretation through the additive
separability assumption as described by model (4).

A. Conditional Sorts

Acommon practice in empirical finance is to performwhat
are called conditional portfolio sorts. These are done by first
sorting on one characteristic and then, within each portfolio
separately, sorting on a second characteristic, and so forth
(usually only two characteristics are considered). In each
successive sort, quantile-spaced portfolios are used. In this
section, we discuss how our framework relates to conditional
sorts, based on twodistinct interpretations of conditional sort-
ing: first as conditional testing and second as a mechanical
solution to empty portfolios.
To fix ideas, consider firm size and credit rating. Small

firms are less likely to have high credit ratings, and so in
the “high” credit rating portfolio, there may be no truly
small firms. Directly applying equation (5) would thus yield
empty portfolios. Conditional sorts “solve” the empty portfo-
lios problem by construction: first sorting by rating and then
within each rating-based portfolio, by size, but have the is-
sue that the “small firm” portfolio within the highest rating
portfolio will typically have larger firms than conditional on
lower ratings.
But this may not present a problem if we seek to study

whether smaller firms still earn higher average returns if we
keep credit rating fixed (section VI finds evidence for the size
anomaly marginally). To answer this question, we could test
the “high minus low” hypothesis within each credit-based
portfolio. Our framework directly applies here, that is, the
results and discussion in the following sections, provided one
is careful to interpret the results conditionally on the first
sort. Further, if μ(·) is truly monotonic in size, then these
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conditional results can be extrapolated to “fill” the empty
bins, but our theory does not justify this.
A second interpretation of conditional sorts is that they are

designed solely to solve the problemof empty portfolios. This
is distinct from the above, and our framework does not apply
here because in this formulation of portfolio sorting, it is im-
plicitly assumed that the function μ(z) is constant over time
as a function of the conditional order statistics within each
portfolio (or interest is in a specific grand mean, as above,
though here mixing qualitatively different firms). This is dif-
ficult to treat theoretically, as the (population) assumption on
μ(z) must hold for each conditional sort for the (estimated)
portfolios already constructed. Moreover, it is not clear that
this approach can be extended to other interesting estimands.
Finally, it would likely be challenging for an economic theory
to generate such a constrained (conditional) return-generating
process.
However, an alternative, and arguably more transparent,

approach to empty portfolios would be to assume additive
separability of the function μ(·) so that if we denote the d
components of zit by zit,1, . . . , zit,d , we suppose

Rit = μ1(zit,1) + · · · + μd (zit,d ) + εit i = 1, . . . , nt ,

t = 1, . . . , T, (7)

and so each characteristic affects returns via its own unknown
function, μ�(·), for � = 1, . . . , d . The resulting estimator is
always defined for any value z in the support and so too avoids
the problem of empty portfolios (see also remark 6).

IV. First-Order Asymptotic Theory

With the estimator fully described, we now present consis-
tency and asymptotic normality results and twovalid standard
error estimators. To our knowledge, these results are all new
to the literature. As discussed in section II, the empirical lit-
erature contains numerous studies that implement exactly the
tests validated by the results below, but such validation has
heretofore been absent.
Beyond the definition of model (4) and the conditions

placed on it by assumption 1, we will require certain rate
restrictions for our asymptotic results. We now make these
precise, grouped into the following two assumptions.

Assumption 2 (Panel Structure). The cross-sectional sample
sizes diverge proportionally: for a sequence n → ∞, nt =
κt n, with κt ≤ 1 and uniformly bounded away from 0.

Assumption2 requires that the cross-sectional sample sizes
grow proportionally. This ensures that each μ̂t (·) contributes
to the final estimate, and at the same rate. We will also re-
strict attention to Jt = Jt (nt , n, T ), which implies a sequence
J → ∞ such that Jt ∝ J for all t . Neither of these is likely
to be limiting in practice; our optimal choices depend on
nt by design, and there is little conceptual point in letting
Jt vary over time beyond accounting for panel imbalance.

The notations n and J for common growth rates enable us to
present compact and simplified regularity conditions, such as
the following assumption,which formalizes the bias-variance
requirements on the nonparametric estimator. All limits are
taken as n, T → ∞ unless otherwise noted.

Assumption 3 (Rate Restrictions). The sequences n,
T , and J obey (a) n−1Jd log(max(Jd , T )) log(n) → 0,
(b)

√
nT J−(d/2+1) → 0, and, if dx ≥ 1, (c) T/n → 0.

Assumption 3a ensures that all Jt grow slowly enough that
the variance of the nonparametric estimator is well controlled
and all portfolios are nonempty, while assumption 3b ensures
the nonparametric smoothing bias is negligible. Finally, as-
sumption 3c restricts the rate at which T can grow. This ad-
ditional assumption is necessary for standard inference when
linear conditioning variables are included in the model and
d = 1. When d > 1, then it is implied by assumptions 3a
and 3b.
In general, the performance of the portfolio sorting es-

timator may be severely compromised if the number of
time-series observations is large relative to the cross sec-
tion or d is large. To illustrate, suppose for the moment
that J 
 nA and T 
 nB. Assumptions 3a and 3b require
that A ∈ ((1 + B)/(2 + d ), 1/d ), which amounts to requir-
ing Bd < 2. If the time-series dimension is large, then the
number of allowable sorting characteristics is limited. For
example, if B is near 1, at most two sorting characteristics
are allowed, and even then just barely, and may lead to a
very poor distributional approximation. Thus, some caution
should be taken when applying the estimator to applications
with relatively few underlying assets.
Before stating the asymptotic normality result, it is useful

to first give an explicit (conditional) variance formula:

V (z) = 1

T

T∑
t=1

Jd
t∑

j=1

1

Njt

nt∑
i=1

1̂ jt 1̂ jt (z)1̂ jt (zit )σ
2
it . (8)

This formula, and the distributional result below, are stated
for a single point z. It is rare that a single μ(z) would be
of interest, but these results will serve as building blocks for
more general parameters of interest, such as the leading case
of testing equation (3) treated explicitly below. An important
consideration in any such analysis is the covariance between
point estimators. The special structure of the portfolio-sorting
estimator (or partition regression estimator) is useful here:
as long as z and z′ are in different portfolios (which is the
only interesting case), μ̂(z) and μ̂(z′) are uncorrelated be-
cause 1̂ jt (z)1̂ jt (z′) ≡ 0. The partitioning estimator is, in this
sense, a local nonparametric estimator as opposed to a global
smoother.
We can now state our first main result.

Theorem1 (Asymptotic Distribution). Suppose assumptions
1, 2, and 3 hold. Then,

V (z)−1/2(μ̂(z) − μ(z))
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=
T∑

t=1

nt∑
i=1

ŵit (z)εit + oP (1) →d N (0, 1),

where

V (z) 
 Jd

nT
and

ŵit (z) = V −1/2(z)
Jd

t∑
j=1

1

T Njt
1̂ jt 1̂ jt (z)1̂ jt (zit ).

Theorem 1 shows that the properly normalized and cen-
tered estimator μ̂(z) has a limiting normal distribution. The
flexibility of the nonparametric specification between returns
and (some) characteristics comes at the expense of slower
convergence—the factor J−d/2. Theorem 1 also makes clear
why assumption 3b is necessary: the bias of the estimator is
of the order J−1; thus, once the rate J−d/2

√
nT is applied,

assumption 3b must hold to ensure that the bias can be ig-
nored for the limiting normal distribution. This undersmooth-
ing approach is typical for bias removal. The statement of
the theorem includes a weighted average asymptotic repre-
sentation for the estimator, which is useful for treatment of
estimands beyond point-by-pointμ(z), including linear func-
tionals such as partial means, as discussed in remark 4.

The final missing piece of the pointwise first-order asymp-
totic theory is a valid standard error estimator. To this end, we
consider two options. The first, due in this context to Fama
and MacBeth (1973), makes use of the fact that μ̂(z) is an
average over T “observations,” while the second is a plug-in
estimator based on an asymptotic approximation to the large
sample variability of the portfolio estimator. Define

V̂FM(z) = 1

T 2

T∑
t=1

(μ̂t (z) − μ̂(z))2 and

V̂PI(z) = 1

T 2

T∑
t=1

Jd
t∑

j=1

nt∑
i=1

1̂ jt
1

N2
jt

1̂ jt (z)1̂ jt (zit )ε̂
2
it , (9)

with ε̂it = Rit − μ̂(z) − x′
it β̂t . The following result estab-

lishes the validity of both options.

Theorem 2 (Standard Errors). Suppose the assumptions of
theorem 1 hold with φ = 2 + � for some � > 0. Then,

nT

Jd
(V̂FM(z) − V (z)) →P 0, and

nT

Jd
(V̂PI(z) − V (z)) →P 0.

The Fama andMacBeth (1973) variance estimator is com-
monly used in empirical work, but this is the first proof of
its validity. In contrast, V̂PI is the plug-in variance estima-
tor based on the results in theorem 1. Theorem 2 shows that

these variance estimators are asymptotically equivalent. In a
fixed sample, it is unclear which of the two estimators is pre-
ferred. V̂FM is simple to implement and very popular, while
V̂PI is based on estimated residuals and may need a large
cross-section. On the other hand, while we assume T di-
verges, in line with common applications of sorting, it may
be established that V̂PI is valid for fixed T , whereas V̂FM is
valid only for large-T panels. However, a related result is
due to Ibragimov and Müller (2010), who provided condi-
tions under which the Fama and MacBeth (1973) approach
applied to cross-sectional regressions produces inference on
a scalar parameter that is valid or conservative, depending on
the assumptions imposed. Specifically, Ibragimov andMüller
(2010), in the context of cross-sectional regressions, show
that for fixed T and a specific range of size-α tests, the Fama
and MacBeth (1973) approach is valid but potentially con-
servative. Our empirical results in section VI use V̂FM to form
test statistics so as to be comparable to existing results in the
literature. In general, a consistent message of our results is
that caution is warranted in cases applying portfolio sorting
to applications with a very modest number of time periods
or, as discussed above, when the number of time periods is
large relative to the cross-sectional sample sizes.
Theorems 1 and 2 lead directly to the following result,

which treats the main case of interest under simple and easy-
to-interpret conditions:

Corollary 1. Let the conditions of theorem 2 hold. Then,[
μ̂(zH ) − μ̂(zL )

] − [
μ(zH ) − μ(zL )

]
√

V̂ (zH ) + V̂ (zL )
→d N (0, 1),

where V̂ (z) may be V̂FM or V̂PI as defined in equation (9).

Section II states this same result, simplified to model
(1). This result shows that testing H0 : μ(zH ) − μ(zL ) = 0
against the two-sided alternative can proceed as standard:
by rejecting H0 if |μ̂(zH ) − μ̂(zL )| greater than 1.96 ×√

V̂ (zH ) + V̂ (zL ). In this way, our work shows under pre-
cisely what conditions the standard portfolio-sorting ap-
proach is valid and, perhaps more important, under what con-
ditions it may fail.

Remark 4 (Other Estimands). As we have discussed, our
general framework allows for other estimands aside from the
“high minus low” return. For example, a popular estimand
in the literature that may be easily treated by our results is
the case of partial means, which arises when d > 1. If we
denote the d components of z by z(1), z(2), . . . , z(d ), then for
some subset of these of size δ < d , the object of interest is∫
×δ

�=1
μ(z)w

(
z(1), z(2), . . . , z(δ)

)
dz(1)dz(2) · · · dz(δ), where the

components of z that are not integrated over are held fixed
at some value, or linear combinations for different initial
z points. Prominent examples are the SMB and HML fac-
tors of the Fama/French 3 factors. The weighting function
w(· · ·) is often taken to be the uniform density (based on
value-weighted portfolios), but this need not be the case. For
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example, if d = 2, one component may be integrated over
before testing the analogous hypothesis to equation (3):

H0 :
∫

z(1)
μ

(
z(1), z(2)H

)
w

(
z(1)

)
dz(1)

−
∫

z(1)
μ

(
z(1), z(2)L

)
w

(
z(1)

)
dz(1) = 0.

In the case of factor construction this corresponds to a test of
whether a factor is priced unconditionally. Theorems 1 and 2
can be applied to provide valid inference.

Remark 5 (StrongApproximations). Our asymptotic results
apply to hypothesis tests that can be written as pointwise
transformations of μ(z), with the leading case being equa-
tion 3: H0 : μ(zH ) − μ(zL ) = 0. However, there are other
hypotheses of interest in this context of portfolio sorting that
require moving beyond pointwise results. Chief among these
is directly testing the monotonicity of μ(·) rather than us-
ing μ(zH ) − μ(zL ) as a proxy (see the discussion in section
II). Building on Cattaneo, Farrell, and Feng (forthcoming)
and Cattaneo, Crump, Farrell, and Feng (2019), it may be
possible to establish a valid strong approximation to the suit-
able centered and scaled stochastic process {μ̂(z) : z ∈ Z}.
Such a result would require nontrivial additional techni-
cal work but would allow us to test monotonicity, concav-
ity, and many other hypotheses of interest, such as testing
for a U-shaped relationship (Hong, Lim, & Stein, 2000),
or for the existence of any profitable trading strategy via
H0 : |maxz μ(z) − minz μ(z)| = 0.

Remark 6 (Analogy to Cross-Sectional Regressions). As
we discussed in remark 1, cross-sectional regressions are
the parametric alternative to portfolio sorting. In practice,
however, themore natural parametric alternatives to portfolio
sorts withmore than one sorting variable—interaction effects
in the linear specification—are rarely utilized. Thus, themore
exact nonparametric counterpart to the common implementa-
tion of cross-sectional regressions is the additively separable
model introduced in equation (7) of section IIIA.The assump-
tion of additive separability would have the effect of amelio-
rating the curse of dimensionality; in fact, it can be shown that
in this model, the rate restrictions J log(max(J, T ))/n → 0
and nT/J3 → 0 (i.e., assumption 3 when d = 1) are suffi-
cient to ensure consistency and asymptotic normality of the
estimators, μ̂�(z), based on the additively separable model
with d ≥ 1 characteristics.

V. Mean Square Expansions and Practical Guidance

With the first-order theoretical properties of the portfolio
sorting estimator established, we now turn to issues of im-
plementation. Chief among these is the choice of the number
of portfolios. With the estimator defined as in equation (5),
all that remains for the practitioner is to choose Jt . The re-
sults in the previous two sections have emphasized the key
role played by the choice of Jt in obtaining valid inference.

In contrast, the choice of Jt in empirical studies has been
ad hoc, and almost always set to either five or ten portfolios.
Here we provide simple, data-driven rules to guide the choice
of the number of parameters. To aid in this, we will consider
a mean square error expansion for the portfolio estimator,
with a particular eye toward testing the central hypothesis
of interest, H0 : μ(zH ) − μ(zL ) = 0, as the starting point for
constructing a plug-in optimal choice.
Our main result for this section is the following charac-

terization of the mean square error of the portfolio-sorting
estimator. To simplify the calculations, this section assumes
that the quantiles are known (as opposed to being estimated in
each cross-section). This simplification only affects the con-
stants of the higher-order terms in the MSE expansion, not
the corresponding rates (see Calonico, Cattaneo, & Titiunik,
2015, for a related example and more discussion). Recall that
n and J represent the common growth rates of the {nt } and
{Jt }, respectively.
Theorem 3. Suppose assumptions 1, 2, and 3 hold and that
the marginal quantiles of z are known. Then,

E
[([

μ̂(zH ) − μ̂(zL )
] − [

μ(zH ) − μ(zL )
])2∣∣∣Z,

X,F1, . . . ,FT

]

= V (1) Jd

nT
+ V (2) J2d

n2T
+ B2 1

J2
+ C J3d/2

n3/2T 3/2

+ OP

(
1

nT

)
+ oP

(
J−2 + J2d

n2T

)
,

where Z = (z11, . . . , znT T ), X = (x11, . . . , xnT T ) and B =∑T
t=1 Bt (zH ) − ∑T

t=1 Bt (zL ) and V (�) = ∑T
t=1 V

(�)
t (zL ) +∑T

t=1 V
(�)
t (zH ), � ∈ {1, 2}, and Bt (z), V (1)

t (z), V (2)
t (z) and C

are defined in the supplementary appendix. The term C is
(conditionally) mean 0, and the term of order1/(nT ) captures
the limiting variability of

√
n/T

∑T
t=1(β̂t − βt ), and does not

depend on J.

Under the conditions in theorem 3 and imposing appro-
priate regularity conditions on the time-series structure (e.g.,
mixing conditions), it can be shown that B̄ = plimn,T →∞B,
V̄ (1) = plimn,T →∞V (1), V̄ (2) = plimn,T →∞V (2), where B̄,
V̄ (1), and V̄ (2) are nonrandom and nonzero quantities. In this
paper, however, we remain agnostic about the specific regu-
larity conditions for convergence in probability to occur be-
cause our methods do not rely on them.
To obtain an optimal choice for the number of portfolios,

note that the first variance term of the expansion will match
the first-order asymptotic variance of theorem 1, which sug-
gests choosing J to jointly minimize the next two terms of
the expansion: the bias and higher-order variance (see Cat-
taneo, Crump, & Jansson, 2010, for another application of
this logic). This approach is optimal in an inference-targeted
sense because it minimizes the two leading terms not ac-
counted for by the approximation in theorem 1. For testing
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H0 : μ(zH ) − μ(zL ) = 0,wefind the optimal number of port-
folios to be

J�
t =

⌊( B̄2

dV̄ (2)

(
n2

t T
)) 1

2d+2
⌋

, (10)

where �·� is the integer part of the expression.A simple choice
for enforcing the same number of portfolios in all periods is
to simply replace nt with n in this expression. It is straightfor-
ward to verify that this choice of J�

t satisfies assumption 3: the
condition required remains that Bd < 2, for T 
 nB, which
limits the number of sorting characteristics or the length of
time series allowed (see the discussion of assumption 3). To
gain intuition for J�

t , consider the simple case of a univari-
ate, homoskedastic linear model: μ(z) = bz, σ2

it = σ2. Then
B2 ∝ |b|2 and V ∝ σ2, and so a steeper line (larger |b|) calls
for more portfolios, whereas more idiosyncratic noise (larger
σ2) calls for fewer.

To make this choice practicable, we can select J to min-
imize a sample version of the MSE expansion underlying
equation (10),

̂MSE
(
μ̂(zH ) − μ̂(zL ); J

) = V̂ (2) J2d

n2T
+ B̂2 1

J2
, (11)

where the estimators, V̂ (2) and B̂, will themselves be a func-
tion of J . Thus, it is straightforward to search over a grid of
values of J and choose based on the minimum value of the
expression in equation (11) (see the supplementary appendix
for further details). Alternatively, if we had pilot estimates of
V (2) and B, we could directly utilize the formula in equation
(10) to obtain a choice for each Jt .

Remark 7 (Undersmoothing). A common practice through-
out semi- and nonparametric analyses is to select a tuning
parameter by undersmoothing a mean square error optimal
choice. In theory, this is feasible, but it is necessarily ad hoc
(see Calonico, Cattaneo, & Farrell, 2018, 2019, for more dis-
cussion). In contrast, the choice of J�

t of equation (10) has the
advantage of being optimal in an objective sense and appro-
priate for conducting inference. A possible alternative to J�

t
would be to choose J by balancing

∣∣B̄∣∣ against V̄ (1); however,

this would lead to a choice of Jt ∝ (nt T )
1

d+1 , which would
tend to result in a larger number of portfolios chosen as com-
pared to J�

t .

Remark 8 (Parametric Component). An additional advan-
tage of J�

t is that for d ≤ 2 (the most common case in empir-
ical applications) inference on the parametric component is
also valid for this choice of J . It can be shown that for any
real, nonzero vector a ∈ Rdx ,

1
T

∑T
t=1 a

′(β̂t − βt )√
1

T 2

∑T
t=1(a′(β̂t − βt ))2

→d N (0, 1). (12)

An advantage of the Fama and MacBeth (1973) variance es-
timator over a plug-in alternative in this context is that in-
ference on 1

T

∑T
t=1 βt may be conducted without having to

estimate the conditional expectation of x given z nonpara-
metrically.

Remark 9 (Constructing Factors). Theorem 3 can be also be
used when the goal is point estimation rather than inference.
Using the leading variance term and the bias, we obtain

J��
t =

⌊(
2B̄2

dV̄ (1)
(nt T )

) 1
d+2

⌋
,

which is different in the constants but more important, also
the rate of divergence. For example, when d = 1, then J��

t ∝
n1/3

t T 1/3, whereas J�
t ∝ n1/2

t T 1/4. In applications such as eq-
uities where the cross-sectional sample size is much larger
than the number of time periods, it will be the case that
J��

t = o(J�
t )—that is, that the optimal number of portfolios

is smaller when constructing factors than when conduct-
ing inference on whether expected returns vary significantly
with characteristics. Informally, this has been recognized in
the empirical literature as the number of portfolios used to
construct factors has been relatively small (Fama & French,
1993). As discussed in the supplement, a feasible version of
J��

t can be constructed following the steps as in equation (11),
replacing V̂ (2)J2d/(n2T ) with V̂ (1)Jd/(nT ).

VI. Empirical Applications

In this section, we revisit some notable equity anomaly
variables that have been considered in the literature and
demonstrate the empirical relevance of the theoretical discus-
sion of the previous sections. We focus on the size anomaly
(Banz, 1981; Reinganum, 1981) and themomentum anomaly
(Jegadeesh & Titman, 1993).

A. Data and Variable Construction

We use monthly data from the Center for Research in Se-
curity Prices (CRSP) over the sample period January 1926
to December 2015. We restrict data to firms listed on the
New York Stock Exchange (NYSE), American Stock Ex-
change (AMEX), or Nasdaq and use only returns on common
shares (CRSP share code 10 or 11). To deal with delisting re-
turns, we follow the procedure described in Bali, Engle, and
Murray (2016). When forming market equity, we use quotes
when closing prices are not available and set to missing all
observations with 0 shares outstanding. When forming the
momentum variable, we follow the popular convention of
defining momentum by the cumulative return from twelve
months ago (t − 12) until one month prior to the current
month (t − 2). The one-month gap is to avoid confounding
the momentum anomaly variable with the short-term reversal
anomaly (Jegadeesh, 1990; Lehmann, 1990). We set to miss-
ing this variable if any monthly returns are missing over the
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period.We also construct an industrymomentum variable. To
do so, we use the definitions of the 38 industry portfolios used
in Ken French’s data library, which are based on four-digit
SIC codes. To construct the industry momentum variable,
we form a value-weighted average of each individual firm’s
momentum variable within the industry. We use thirteenth-
month lagged market capitalization to form weights so they
are unaffected by any subsequent changes in price.
We implement the estimator introduced in section III as

follows. Since the underlying data are monthly, portfolios
are always formed and then rebalanced at the end of each
month. All portfolios, including those based on the standard
implementation approach, are value weighted using lagged
market equity. We implement the estimators based on the
number of portfolios,whichminimizes our higher-orderMSE
criterion, described in equation (11), since our objective in
this section is inference.
Finally, it is important to fully characterize the nature of

these data. In particular, the equity return data represent a
highly unbalanced panel over our sample period. At the be-
ginning of the sample, the CRSP universe includes approxi-
mately 500 firms, increases to nearly 8,000 firms in the late
1990s, and is currently at approximately 4,000 firms. More-
over, there are sharp jumps in cross-sectional sample sizes
that occur in 1962 and 1972 that reflect the addition of firms
listed on the AMEX and Nasdaq to the sample (see figure A1
in the supplemental appendix). Even for the subset of firms
listed on the NYSE, the panel is still highly unbalanced. At
the beginning of the sample, there are about 500 firms before
rising to a high of approximately 2,000 firms and currently
slightly below 1,500 firms.

B. Size Anomaly

We first consider the size anomaly—where smaller firms
earn higher returns than larger firms on average. To inves-
tigate the size anomaly, we use market capitalization as our
measure of size of the firm. Thus, following the notation of
section III, we have

Rit = μ(MEi(t−1))+ εit , i = 1, . . . , nt , t = 1, . . . , T . (13)

Here, MEit , represents the market equity of firm i at time t
transformed in the following way: (a) the natural logarithm
of market equity of firm i at time t is taken, and (b) at each
cross-section t = 1, . . . , T , the natural logarithm of market
equity is demeaned and normalized by the inverse of the
cross-sectional standard deviation (i.e., a z-score is applied).
This latter transformation is necessary in light of assump-
tion 1c and ensures that the measure of the size of a firm is
comparable over time.
Figure 3 provides the estimates of the relationship between

returns and firm size. The left column shows the estimate,
{μ̂(z) : z ∈ Z}, based on equation (5), whereas the right col-
umn plots the average return in each of ten portfolios formed
based on the conventional approach currently used in the lit-

erature. The portfolio break points for the standard approach
are commonly chosen using either deciles of the subsample of
firms listed on the NYSE or deciles based on the entire sam-
ple. Here we choose deciles based on the latter as they ensure
better comparability across estimators. To ensure compara-
bility, both estimates have been placed on the same scale. As
is clear from the figure, the conventional approach produces
an attenuated return differential between average returns and
size. One important reason for this is that the standard ap-
proach relies on the same number of portfolios regardless
of changes in the cross-sectional sample size. As we have
shown in sections III and IV, it is imperative that the choice
of the number of portfolios is data driven, respecting the ap-
propriate rate conditions, in order to deliver valid inference.
The standard approach will tend to produce a biased esti-
mate of the return differential and will compromise power to
discern a significant differential in the data. This issue will
always arise in any unbalanced panel, but is exacerbated by
the highly unbalanced nature of these data where the number
of firms has been trending strongly over time.
The estimate, {μ̂(z) : z ∈ Z}, is shown for three different

subsamples in figure 3: 1926–2015, 1967–2015, and 1980–
2015. The estimated shape between returns and size is gener-
ally very similar across the three subperiods with a relatively
flat relationship except for small firms, where there is a sharp
monotonic rise in average returns as size decreases. The peak
average return for the smallest firms appears to have risen over
time, at approximately 5% over the full sample, 5.5% over
the sample from 1967 to 2015, and slightly above 6% over
the sample 1980 to 2015.
Table 1 shows the associated point estimates and test statis-

tics corresponding to the graphs in figure 3. We display re-
sults for a number of different choices of the pairs (zh, zL ),
namely, (�−1(.975), �−1(.025)), (�−1(.95), �−1(.05)), and
(�−1(.9), �−1(.1)), where�(·) is the CDF of a standard nor-
mal random variable, shown as vertical lines in figure 3. The
table also shows the point estimates and corresponding test
statistics from the conventional approach using ten portfo-
lios. Over all three subperiods, the difference between the
function evaluated at the twomost extreme evaluation points,
(�−1(.975), �−1(.025)), is associated with a strongly statis-
tically significant effect of size on returns. Even in the short-
est subsample, 1980 to 2015, the t-statistic is −5.46. This is
also the case when the evaluation points are shifted inward
to (�−1(.95), �−1(.05)). As shown in figure 3, this result is
driven by very small firms. However, the conventional es-
timator would suggest that the size effect is no longer sta-
tistically distinguishable from 0 over the past 35 or so years.
Instead, what has happened is that “larger” small firms are no
longer producing higher returns in the last subsample. This
pattern can be seen in the innermost set of evaluation points,
(zH , zL ) = (�−1(.9), �−1(.1)), where the size effect is es-
timated to be reversed, albeit statistically indistinguishable
from 0.
To further investigate the results of table 1, we reconsider

the estimates for the relationship between returns and firm
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FIGURE 3.—SIZE ANOMALY: ALL STOCKS

This figure shows the estimated relation between the cross section of equity returns and lagged market equity, equation (13). The left column displays μ̂(·) where Jt has been chosen based on equation (11),
zH = �−1(.975), zL = �−1(.025). The right column displays the estimated relation using the standard portfolio-sorting implementation with J = 10. All returns are in monthly changes, and all portfolios are
value-weighted based on lagged market equity.

size using only firms listed on the NYSE in figure 4. In
this case, the shape of the estimated relationship changes
markedly in the full sample versus the most recent subsam-
ples. In the full sample, the estimated relationship appears
very similar to the shape shown in the three charts in fig-
ure 3—a sharp downward slope from smaller firms to larger
firms. However, over the samples 1967 to 2015 and 1980 to

2015, the estimated shape changes demonstrably toward an
upside-down U shape. It is important to emphasize that the
standard approach implies a very different shape and pattern
of the relationship between returns and size for this sample of
firms, especially for the 1967–2015 and 1980–2015 samples.
The left panel of figure 5 shows time-series plots of the op-

timal number of portfolios in the sample for the size anomaly
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FIGURE 4.—SIZE ANOMALY: NYSE ONLY

This figure shows the estimated relationship between the cross section of equity returns and lagged market equity, equation (13), for NYSE firms. The left column displays μ̂(·), where Jt is based on equation (11),
zH = �−1(.975), zL = �−1(.025). The right column displays the estimated relation using the standard portfolio sorting implementation with J = 10. All returns are in monthly changes, and all portfolios are value
weighted based on lagged market equity.

chosen based on equation (11), using data for our three
subperiods and based on zH = �−1(.975), zL = �−1(.025).
Notably, the optimal number of portfolios is substantially
larger than the standard choice of ten. Instead, the optimal
choice is approximately 250 in the largest cross section and
around 50 in the smallest cross section. Furthermore, in all
three samples, there is substantial variation in the optimal

number of portfolios, again reflecting the strong variation in
cross-sectional sample sizes in these data. The charts also
show the optimal number of portfolios in the NYSE-only
sample. In this restricted sample, the cross-sectional sample
sizes are lower which, all else equal, will reduce the optimal
choice of number of portfolios. However, the bias-variance
trade-off also changes in the NYSE-only sample, and so it is
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FIGURE 5.—OPTIMAL PORTFOLIOS COUNTS

This figure shows the optimal number of portfolios for the estimated relationship between the cross section of equity returns and lagged market equity—equation (13), left column—and 12-2 momentum—equation
(14), right column. Jt has been chosen based on equation (11), zH = �−1(.975), zL = �−1(.025).

not always the case that the restricted sample has a smaller
value for the optimal number of portfolios. In the 1980–2015
sample, the optimal choice of portfolios is slightly larger (at

its peak) than the case using all stocks, reinforcing the point
that the appropriate choice of number of portfolios will be
strongly affected by the features of the data being used.
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C. Momentum Anomaly

We next consider the momentum anomaly—where firms
that have had better relative returns in the nearby past also
have higher relative returns on average. As discussed in
section III, the generality of our sampling assumptionsmeans
that our results apply to anomalies such asmomentum, where
lagged returns enter in the unknown function of interest—
specifically,

Rit = μ(MOMit )+ εit , i = 1, . . . , nt , t = 1, . . . , T . (14)

Here, MOMit , represents the 12-2 momentummeasure of firm
i at time t transformed in the following way: at each cross
section t = 1, . . . , T , 12-2 momentum is demeaned and nor-
malized by the inverse of the cross-sectional standard devia-
tion (i.e., a z-score is applied). Unlike in the case of the size
anomaly, no transformation is necessary to satisfy assump-
tion 1c. We chose to normalize each cross-section in this
way as it is the natural counterpart in our setting to the stan-
dard portfolio-sorting approach to the momentum anomaly.
Moreover, the results based directly on 12-2 momentum are
similar.
Figure 6 shows the estimates of the relationship between

returns and momentum. Even more so than in the case of
the size anomaly, we observe that {μ̂(z) : z ∈ Z} is very
similar across subsamples. The relationship appears concave
with past “winners” (those with high 12-2 momentum val-
ues) earning about 2% in returns on average. The strategy of
investing in past “losers” (those with low 12-2 momentum
values) has resulted in increasing losses in the later subsam-
ples. The nadir in the estimated relationship occurs at ap-
proximately −0.8% in the full sample, slightly less than that
in the 1967–2015 subsample and −1.5% in the 1980–2015
subsample. This suggests that the short side of buying the
spread portfolio appears to have become more profitable in
recent years. This conclusion is robust to excluding the fi-
nancial crisis and its aftermath. The right column of figure
6 shows that this insight could not be gleaned by using the
conventional estimator. Furthermore, the conventional esti-
mator suggests an approximately linear relationship between
returns and momentum with a distinctly compressed differ-
ential between the average returns of winners versus losers.
This underscores how our more general approach leads
to richer conclusions about the underlying data-generating
process.
The bottom panel of table 1 shows the corresponding point

estimates and test statistics for the momentum anomaly. The
results strongly confirm that momentum is a robust anomaly.
Across all three pairs of evaluation points and the three dif-
ferent samples, the spread is highly statistically significant
(last column). Focusing separately on μ(zH ) and μ(zL ), we
find that the point estimates are positive and negative, respec-
tively, across all our specifications. In fact, the short end of
the spread trade, represented by μ(zL ), appears to have be-
come stronger in the latter samples (see also figure 6), produc-

ing t-statistics that have the largest magnitude in the 1980–
2015 sample when evaluated at (�−1(.975), �−1(.025)) or
(�−1(.95), �−1(.05)). In contrast, the conventional imple-
mentation finds that the short side of the trade is never sig-
nificant across any of the subsamples and a t-statistic of only
−0.36 in the 1980–2015 sample.
Cross-sectional regressions are by far the most popular

empirical alternative to portfolio sorting (see the discussion
in remarks 1 and 6). Arguably, the most appealing feature
of cross-sectional regressions to the empirical researcher is
the ability to include a large number of control variables.
Given that we have combined the two approaches in a uni-
fied framework, it is natural to consider an example. Here
we consider the nonparametric relationship between returns
and momentum while controlling for industry momentum.
This empirical exercise is similar in spirit to Moskowitz and
Grinblatt (1999). The model then becomes,

Rit = μ(MOMit ) + β1 × IMOMit + β2 × IMOM2
it + β3

× IMOM3
it + εit , (15)

where IMOMit is the industry momentum of firm i at time t .
We also include the square and cube of industry momentum
as a flexible way to allow for nonlinearities in this control.
Figure 7 shows the estimates of the relationship between

returns and momentum controlling for industry momentum
as in equation (15) (solid line). For reference, the plots in
the left column also include {μ̂(z) : z ∈ Z} (dash-dotted line)
with no control variables—that is, based on equation (14)—
for the same choice of the number of portfolios at each time
t . To improve comparability, the estimated function without
control variables uses the same sequence of {Jt : t = 1 . . . T }
as in the case with control variables. Thus, this estimated
function differs from that presented in figure 6. The differ-
ence between the two estimated functions tends to be larger
for larger values of 12-2momentumand accounts for, atmost,
approximately 0.5 percentage point of momentum returns in
the full sample. In the twomore recent subsamples, the differ-
ences are smaller but economicallymeaningful. That said, the
broad shape of the relationship between returns and stockmo-
mentum is unchanged by controlling for industrymomentum.
This suggests that for this choice of specification, momen-
tum of individual firms is generally distinct from momentum
within an industry (Moskowitz & Grinblatt, 1999; Grundy &
Martin, 2001).
The bottom panel of table 1 provides point estimates and

associated test statistics based on equation (15) in the rows
labeled “w/controls.” First, it is clear that the inclusion of
industry momentum does have a noticeable effect on infer-
ence. In general, the magnitudes of the t-statistics for the
high evaluation point, low evaluation point, and difference
are shrunk toward 0. For both the high evaluation point and
the difference, this is uniformly true and, in all cases, results
in t-statistics with substantially larger associated p-values.
That said, for all subsamples, the difference at the high
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FIGURE 6.—MOMENTUM ANOMALY

This figure shows the estimated relation between the cross section of equity returns and 12-2 momentum, equation (14). The left column displays μ̂(·), where Jt has been chosen based on equation (11), zH = �−1(.975),
zL = �−1(.025). The right column displays the estimated relation using the standard portfolio-sorting implementation with J = 10. All returns are in monthly changes, and all portfolios are value weighted based on
lagged market equity.

and low evaluation points results in a statistically signifi-
cant return differential at the 5% level. This exercise illus-
trates the usefulness of our unified framework as it allows for
the addition of control variables in a simple, straightforward
manner.

Finally, the right panel of figure 5 shows time-series plots
of the optimal number of portfolios in the sample for the
momentum anomaly. Just as in the case of the size anomaly,

the optimal number of portfolios is well above ten. How-
ever, a number of specifications result in a maximum number
of portfolios of approximately 55. This is much smaller, in
general, than for the size anomaly. The charts also show the
optimal number of portfolios across time when controlling
for industry momentum. These are much larger than the cor-
responding row in the left column. Intuitively, the inclusion of
controls soaks up some of the variation in returns previously
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FIGURE 7.—MOMENTUM ANOMALY: CONTROLLING FOR INDUSTRY MOMENTUM

This figure shows the estimated relation between the cross section of equity returns and 12-2 momentum. The left column displays μ̂(·) controlling for IMOMit , IMOM2
it , and IMOM3

it (solid line) as in equation (15) where

Jt has been chosen based on equation (11), zH = �−1(.975), zL = �−1(.025). The dash-dotted line shows μ̂(z) without control variables as in equation (14) for the same Jt . The right column displays the estimated
relation using the standard portfolio-sorting implementation with J = 10 and no controls. All returns are in monthly changes, and all portfolios are value weighted based on lagged market equity.

explained only by 12-2 momentum. This lower variance re-
sults in a higher choice of J (see equation [10]). This example
makes clear that the appropriate choice of the number of port-
folios reflects a diverse set of characteristics of the data such
as cross-sectional sample size, the number of time-series ob-
servations, the shape of the relationship, and the variability
of the innovations.

VII. Conclusion

This paper has developed a framework formalizing
portfolio-sorting-based estimation and inference. Despite
decades of use in empirical finance, portfolio sorting has re-
ceived little to no formal treatment. By formalizing portfolio
sorting as a nonparametric procedure, this paper made a first
step in developing the econometric properties of this widely
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used technique. We have developed first-order asymptotic
theory as well as mean-square-error-based optimal choices
for the number of portfolios, treating the most common ap-
plication, testing high versus low returns based on empirical
quantiles. We have shown that the choice of the number of
portfolios is crucial to draw accurate conclusions from the
data and, in standard empirical finance applications, should
vary over time and be guided by other aspects of the data at
hand. We provided practical guidance on how to implement
this choice. In addition, we showed that once the number of
portfolios is chosen in the appropriate, data-driven way, in-
ference based on the Fama-MacBeth variance estimator is
asymptotically valid.

One of the key challenges in the empirical finance litera-
ture is sorting in a multicharacteristic setting where the num-
ber of characteristics is quickly limited by the presence of
empty portfolios. Instead, researchers often resort to cross-
sectional regressions, thereby imposing a restrictive para-
metric assumption. Here, we bridged the gap between the
two approaches proposing a novel portfolio-sorting estima-
tor, which allows for linear conditioning variables.

We have demonstrated the empirical relevance of our the-
oretical results by revisiting two notable stock return anoma-
lies identified in the literature: the size anomaly and the mo-
mentum anomaly. We found that the estimated relationship
between returns and size appears to be monotonically de-
creasing and convex, with a significant return differential be-
tween the function evaluated at extreme values of the size
variable. However, the statistical significance is generated by
very small firms, and the results are no longer robust once
the smallest firms have been removed from the sample. We
also found that the estimated relationship between returns
and past returns appears to be monotonically increasing and
concave, with a significant and robust return differential. We
found that the “short” side of the momentum spread trade has
becomemore profitable in later subperiods. In both empirical
applications, the optimal number of portfolios varies substan-
tially over time and is much larger than the standard choice
of ten routinely used in the empirical finance literature.
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