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We present large sample results for partitioning-based least squares non-
parametric regression, a popular method for approximating conditional ex-
pectation functions in statistics, econometrics and machine learning. First, we
obtain a general characterization of their leading asymptotic bias. Second, we
establish integrated mean squared error approximations for the point estima-
tor and propose feasible tuning parameter selection. Third, we develop point-
wise inference methods based on undersmoothing and robust bias correction.
Fourth, employing different coupling approaches, we develop uniform dis-
tributional approximations for the undersmoothed and robust bias-corrected
t-statistic processes and construct valid confidence bands. In the univariate
case, our uniform distributional approximations require seemingly minimal
rate restrictions and improve on approximation rates known in the literature.
Finally, we apply our general results to three partitioning-based estimators:
splines, wavelets and piecewise polynomials. The Supplemental Appendix
includes several other general and example-specific technical and method-
ological results. A companion R package is provided.

1. Introduction. We study the standard nonparametric regression setup, where {(y;,
x;),i =1,...n} is arandom sample from the model

(1.1) vi=u&x)+e,  Elegxl=0,  E[ex]=0(x),

for a scalar response y; and a d-vector of continuously distributed covariates x; =
(x1,i,...,xq;) with compact support X'. The object of interest is the unknown regression
function w(-) and its derivatives. We focus on partitioning-based, or locally-supported, series
(linear sieve) least squares regression estimators, which are characterized by two features.
First, the support X is partitioned into nonoverlapping cells, which are then used to form a
set of basis functions. Second, the final fit is determined by a least squares regression us-
ing these bases. The key distinguishing characteristic is that each basis function is nonzero
only on a small, contiguous set of cells of the partition. Popular examples include splines,
compactly supported wavelets and piecewise polynomials. For this class of estimators, we
develop novel bias approximations, integrated mean squared error (IMSE) expansions useful
for tuning parameter selection and pointwise and uniform estimation and inference results,
with and without bias correction techniques.

A partitioning-based estimator is made precise by the partition of X and basis expan-
sion used. Let A ={§; C X : 1 <[ <k} be a collection of k¥ open and disjoint sets, the
closure of whose union is A (or, more generally, covers X). We restrict §; to be poly-
hedral, which allows for tensor products of (marginally-formed) intervals as well as other
popular partitioning shapes. Based on this partition, the dictionary of K basis functions,
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each of order m (e.g., m = 4 for cubic splines) is denoted by x; — p(x;) ;= p(x;; A, m) =
(p1(xi; A,m), ..., px(x;; A,m)) . Forxe X andq=(q1,...,q4) € Zfﬁ, the partial deriva-
tive 39 (x) is estimated by least squares regression

(1.2) T =3B, B eargmin} (i — px)'b)’
beRK ;1

where 09(x) = 9911 %494 (x) /991 x1 - - - 394 x4 (for boundary points defined from the inte-
rior of A" as usual) and w(x) := 30/L(X).

The approximation power of this class of estimators comes from two user-specified pa-
rameters: the granularity of the partition A and the order m € Z_ of the basis. The choice m
is often fixed in practice, and hence we regard A as the tuning parameter. Under our assump-
tions, kK — oo as the sample size n — 00, and the volume of each §; shrinks proportionally to
h?, where h = max{diam(3) : § € A} serves as a universal measure of the granularity. Thus,
as k — 00, h? vanishes at the same rate, and with each basis being supported only on a finite
number of cells, K diverges proportionally as well. Complete, detailed examples of bases
and partitioning schemes are discussed in the online supplement for brevity.

Our first contribution, in Section 3, is a general characterization of the bias of partitioning-
based estimators, which we then use for both tuning parameter selection and robust bias cor-
rection. In the supplement, we specialize our generic bias approximation to splines, wavelets
and piecewise polynomials over different partitioning schemes, leading to novel results.

Our second contribution, in Section 4, is a general integrated mean squared error (IMSE)
expansion for partitioning-based estimators. These results lead to IMSE-optimal partition-
ing choices, and hence deliver IMSE-optimal point estimators of the regression function
and its derivatives. We show that the IMSE-optimal choice of partition granularity obeys
hiugs < n~Y/@m+d wwhich translates to the familiar K pysg < n~4/@"+4) "and give a pre-
cise characterization of the leading constant. For simple cases on tensor-product partitions,
some results exist for splines [1, 43, 44] and piecewise polynomials [13]. In addition to gen-
eralizing these results substantially, our characterization for compactly supported wavelets
appears to be new.

The IMSE-optimal partitioning scheme, and consistent implementations thereof, cannot
be used directly to form valid pointwise or uniform (in x € X’) inference procedures. Under-
smoothing (employing a finer partition than would be IMSE-optimal) is theoretically valid
for inference, but difficult to implement in a principled way. Inspired by results proving that
undersmoothing is never optimal relative to bias correction for kernel-based nonparametrics
[6], we develop three robust bias-corrected inference procedures using our new bias char-
acterizations of partitioning-based estimators. These methods are more involved than their
kernel-based counterparts, but are still based on least squares regression using partitioning-
based estimation. Specifically, we show that the conventional partitioning-based estimator
a’qﬁ(x) and the three bias-corrected estimators we propose have a common structure, which
we exploit to obtain general pointwise and uniform distributional approximations under weak
(sometimes minimal) conditions. These robust bias correction results for partitioning-based
estimators, both pointwise and uniform in X, are practically useful because they allow for
mean squared error minimizing tuning parameter choices, thus offering a data-driven method
combining optimal point estimation and valid inference on the same partitioning scheme.

Section 5 establishes pointwise in x € A" distributional approximations for both conven-
tional and robust bias-corrected ¢-statistics based on partitioning-based estimators. These
pointwise distributional results are made uniform in Section 6, where we establish a strong
approximation for the whole ¢-statistic processes, indexed by the point x € &X', covering both
conventional and robust bias-corrected inference. To illustrate, Section 6.3 constructs valid
confidence bands for (derivatives of) the regression function using our uniform distributional
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approximations. When compared to the current literature, we obtain a strong approximation
to the entire t-statistic process under either weaker or seemingly minimal conditions on the
tuning parameter /4 (i.e., on K or k), depending on the case under consideration.

Section 7 summarizes Monte Carlo results, Section 8 gives selected proofs, and Section 9
concludes. A Supplemental Appendix (SA hereafter) [15] gives complete proofs, several new
technical and methodological results, further Monte Carlo evidence and applies our general
results to splines, wavelets and piecewise polynomials. A companion R package [14] is pro-
vided.

1.1. Related literature. This paper contributes primarily to two literatures, nonparamet-
ric regression and strong approximation. There is a vast literature on nonparametric regres-
sion, summarized in many textbook treatments (e.g., [25, 26, 34] and references therein).
Of particular relevance are treatments of series (linear sieve) methods, which offer some re-
sults concerning partitioning-based estimators in particular, many times limited to splines,
wavelets or piecewise polynomials considered separately [2, 3, 13, 16, 17, 27, 28, 32, 43].
Piecewise polynomial fits on partitions have a long and ongoing tradition in statistics, dating
at least to the regressogram of Tukey [39], continuing through [37] (named local polynomial
regression therein) and [13], and up to modern, data-driven partitioning techniques such as
regression trees [5], trend filtering [38] and related methods [42]. Partitioning-based methods
have also featured as inputs or preprocessing in treatment effects [9, 12], empirical finance
[11], “binscatter” analysis [10] and other settings. The bias corrections we develop for series
estimation and uniform inference follow recent work on kernel-based nonparametric infer-
ence [6-8]. Our coupling and strong approximation results relate to early work discussed in
[24], Chapter 22, and the more recent work in [18-22] and [41], as well as with the results for
series estimators in [3] and [2]. See also [40] for a review on strong approximation methods.

1.2. Notation. For a d-tuple q = (q1,...,q4) € Zi, define [q] = Z‘j:lqj, x4 =
x'xd? o x3 and 99u(x) = 99 u(x)/0x]" ... 9x]?. Unless explicitly stated otherwise,
whenever x is a boundary point of some closed set, the partial derivative is understood
as the limit with x ranging within it. Let 0 = (0, ..., 0)’ be the length-d zero vector. We
set u(x) := 80,u(x) and 1;(x) := 80Mj (x) for j =0,1,2,3 and collect the covariates as
X = [x1,...,X,]. The tensor product or Kronecker product operator is ®. The smallest in-
teger greater than or equal to u is [u]. For two random variables X and Y, X =; Y denotes
that they have the same probability law.

We use several norms. For a vector v= (vy, ..., vy) € RY, we write ||v| = (Z?il 1)1-2)1/2
and dim(v) = M. For a matrix A € RM*N A = max;0;(A) and ||Ale =
maxi<j<m Z;V:l la;j| for operator norms induced by L, and L, norms, where o;(A) is
the ith singular value of A, and Apin (A) is the minimum eigenvalue of A when M = N.

We use empirical process notation: E,[g(x;)] = % "1 8(x;) and G,lg(xi)] = ﬁ X
"_1(g(x;) — E[g(x;)]). For sequences, a, S b, denotes limsup, |a,/b,| is finite, a, =
Op(b,) denotes limsup,_, o, limsup, P[|a,/b,| = €] =0, a, = o(b,) denotes a, /b, — 0,
an = op(by) denotes a, /b, —p 0, where —p is convergence in probability, and a, < b, de-
notes a, < b, and b, < a,. Limits are taken as n — oo (h — 0, K — 00, as appropriate),
unless otherwise stated.

Finally, throughout the paper, r,, > 0 denotes a nonvanishing sequence and v > 0 denotes

a fixed constant used to characterize moment bounds.

2. Setup. We first make precise our setup and assumptions. Our first assumption restricts
the data generating process.
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ASSUMPTION 1 (Data generating process).

@ {(vi, xg) : 1 <i <n}arei.id. satisfying (1.1), where x; has compact connected support
X c R? and an absolutely continuous distribution function. The density of x;, f(-), and the
conditional variance of y; given x;, o2(+), are bounded away from zero and continuous.

(b) () is S-times continuously differentiable, for S > [q], and all 95 u(-), [¢] = S, are
Holder continuous with exponent ¢ > 0.

The next two assumptions specify a set of high-level conditions on the partition and basis:
we require that the partition is “quasi-uniform” and the basis is “locally” supported.

ASSUMPTION 2 (Quasi-uniform partition). The ratio of the sizes of inscribed and cir-
cumscribed balls of each § € A is bounded away from zero uniformly in § € A, and

max{diam(8) : § € A} _ |
min{diam(8) : § € A} ~

where diam(§) denotes the diameter of §. Further, for 4 = max{diam(§) : § € A}, assume
h=o0().

This condition implies that the size of each § € A can be well characterized by the diameter
of §, where we use h as a universal measure of mesh sizes of elements in A. In the univariate
case, it reduces to a bounded mesh ratio. A special case of a quasi-uniform partition is one
formed via a tensor product of univariate marginal partitions on each dimension of x € X,
with appropriately chosen knot positions. The SA (Section SA-3) gives details and discusses
this special example of partitioning scheme. If A covers only a strict subset of X, then our
results hold on that subset.

We focus on nonrandom partitions. Data-dependent partitioning can be accommodated
by sample splitting: estimating the partition configuration in one subsample and perform-
ing inference in the other. In this way, quite general partitions can be used with our results,
including data-driven methods such as regression trees and other modern machine learning
techniques. In fact, these modern methods would typically generate nontensor-product parti-
tioning schemes. We defer studying general data-dependent partitioning for future work, but
note that a few specific results are available [5, 9, 33].

The second assumption on the partitioning-based estimators employs generalized notions
of stable local basis [23] and active basis [28]. We say a function p(-) on X is active on
6 € A if it is not identically zero on 8.

ASSUMPTION 3 (Local basis).

(a) For each basis function pi, k =1, ..., K, the union of elements of A on which py is
active is a connected set, denoted by Hy. For all k =1, ..., K, both the number of elements
of Hj and the number of basis functions which are active on H; are bounded by a constant.

(b) Forany a= (ai, ...,ax) € RX,

a// p(x; A, m)p(x; A, m) dxa>ath?, k=1,...,K.
Hi

(c) Let [q] < m. For an integer ¢ € [[q], m), forall ¢, [¢] < ¢,

RISV <inf inf 3Sp(x; A,m)| <sup sup [3Sp(x; A, m)| <hTIS],
deAxeclo(d) deAxeclo(d)

where clo(§) is the closure of §, and for [¢] = ¢ + 1,

sup sup [dSp(x; A, m)| <p sl
deAxeclo(d)
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Assumption 3 imposes conditions ensuring the stability of the L, projection operator onto
the approximating space. Condition 3(a) requires that each basis function in p(x; A, m) be
supported by a region consisting of a finite number of cells in A. Therefore, as k — oo (and
h — 0), each element of A shrinks and all the basis functions are “locally supported” relative
to the whole support of the data. Another common assumption in least squares regression is
that the regressors are not too colinear: the minimum eigenvalue of E[p(x;)p(x;)’] is usually
assumed to be bounded away from zero. Since the local support condition in Assumption 3(a)
implies a banded structure for this matrix, it suffices to require that the basis functions are not
too colinear locally, as stated in Assumption 3(b). These two assumptions are very similar
to Condition A.2 and Condition A.3 in the Appendix of [28] and, therefore, they could also
be used to establish theoretical results analogous to those discussed in that Appendix (such
results are not needed herein because our proofs are different). Finally, Assumption 3(c)
controls the magnitude of the local basis in a uniform sense.

Assumptions 2 and 3 implicitly relate the number of approximating series terms, the num-
ber of knots used and the maximum mesh size: K < i < h~?. By restricting the growth rate
of these tuning parameters, the least squares partitioning-based estimator satisfying the above
conditions is well-defined in large samples. We next state a high-level requirement that gives
explicit expression of the leading approximation error. For each x € X, let §x be the element
of A whose closure contains x and %y be the diameter of this Jy.

ASSUMPTION 4 (Approximation error). Let S > m. For all ¢ satisfying [¢] < ¢ in As-
sumption 3, there exists s* € SA . the linear span of p(x; A, m), and

B (X)) =— Y 3"u@ny 1B, ((x)

uel,
such that
(2.1) sup|dS u(x) — 8Ss*(X) + B (x)| < hmTelel
xeX
and
B X)) — B X
(22) Sup Sup | u’g( 1) uvg( 2)| Sh—l
seAxy,xp€clo(d) ||X1 - X2||

where B, ¢(-) is a known function that is bounded uniformly over n, and A, is a multiindex
set, which depends on the basis, with [u] =m foru € A,,.

The usual rate-only assumption, supy, y |99 (x) — 99s*(x)| < h™~1491 which is implied by
Assumptions 4, will not suffice for our bias correction and IMSE expansion results: (2.1) is
needed. The terms B, ¢(X) in %, (x) are known functions of x which depend on the partic-
ular partitioning scheme and bases used. The only unknowns are the higher-order derivatives
of (). In the SA (Section SA-6) we verify this (and other assumptions) for splines, wavelets
and piecewise polynomials, including explicit formulas for the leading error in (2.1) and pre-
cise characterizations of A,,. We assume enough smoothness exists to characterize these
terms: see [6] for a discussion when smoothness constrains inference.

The function %, ¢ (-) is understood as the approximation error in L, norm, and is not in
general the misspecification (or smoothing) bias of a series estimator. In least squares series
regression settings, the leading smoothing bias is described by two terms in general: %, ¢ (-)
and the accompanying error from the linear projection of %, ¢(-) onto Sa . We formalize
this result in Lemma 3.1 below. The second bias term is often ignored because in several cases
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the leading approximation error %, ¢(-) is approximately orthogonal to p(-) with respect to
the Lebesgue measure, that is,

(2.3) max / Pr(X; A, m) By 0(X) dx = o(h"™ ),
1<k<K JH;

under Assumptions 1-4. In some simple cases, (2.3) is automatically satisfied if one con-
structs the leading error based on a basis representing the orthogonal complement of Sa .
When (2.3) holds, the leading term in L, approximation error coincides with the leading
misspecification (or smoothing) bias of a partitioning-based series estimator. When a stronger
quasi-uniformity condition holds (i.e., neighboring cells are of the same size asymptotically),
a sufficient condition for (2.3) is simply the orthogonality between B, ¢(-) and p(:) in L»
with respect to the Lebesgue measure, for all u € A,,.

For general partitioning-based estimators, this orthogonality need not hold. For example,
(2.3) is hard to verify when the partitioning employed is sufficiently uneven, as is usually the
case when employing machine learning methods. All our main results hold when this orthog-
onality fails, and importantly, our bias correction methods and IMSE expansion explicitly
account for the L; projection of %, ¢(-) onto the approximating space spanned by p(-).

3. Characterization and correction of bias. We now precisely characterize the bias of
@(x) under Assumptions 1-4, but not assuming (2.3). Then, using this result, we develop
valid IMSE expansions and three robust bias-corrected inference procedures. This section
focuses on bias correction, and Section 5 presents the associated robust Studentization ad-
justments for inference, following the ideas in [6] for kernel-based nonparametrics.

Given our assumptions, the estimator @(X) of (1.2) can be written as

3.1) (%) = P ¢ o) En [To(x:)yi],
where
Pqo® = 39pX) E,[px)p(x)']™ and  Mo(x;) := p(x;).

The subscript “0” differentiates this estimator from the bias-corrected versions below. We
give our first result, proven in the SA, Section SA-10.2.

LEMMA 3.1 (Conditional bias). Let Assumptions 1, 2, 3 and 4 hold. If 1;’5;’ =o0(1), then

E[0910()|X] — 39 11(x)
(3.2) = P 4,0 En[o(xi) 1 (x;)] — 89.(x)
3-3) = Bn.q(X) = P .0 En[To(x;) By 0 (xi)] + Op (" F0719)).

The proof of this lemma generalizes an idea in [43], Theorem 2.2, to handle partitioning-
based series estimators beyond the specific example of B-Splines on tensor-product parti-
tions. The first component %, ¢(x) is the leading term in the asymptotic error expansion
and depends on the function space generated by the series employed. The second compo-
nent comes from the least squares regression, and it can be interpreted as the projection of
the leading approximation error onto the space spanned by the basis employed. Because the
approximating basis p(x) is locally supported (Assumption 3), the orthogonality condition
in (2.3), when it holds, suffices to guarantee that the projection of the leading error is of
smaller order (such as for B-splines on a tensor-product partition). In general, the bias will
be O (h™~14) and further, in finite samples both terms may be important even if (2.3) holds.

We consider three bias correction methods to remove the leading bias terms of Lemma 3.1.
All three methods rely, in one way or another, on a higher-order basis: for some m > m, let
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p(x) ;= p(x; A, nt) be a basis of order m defined on a partition A which has maximum mesh
h. Objects accented with a tilde always pertain to this secondary basis and partition for bias
correction. In practice, a simple choice is 77 =m + 1 and A = A.

The first approach is to use a higher-order basis in place of the original basis. This is thus
named higher-order-basis bias correction and numbered as approach j = 1. In complete
parallel to (3.1) define

(34) Iy (x) == P 1 () E, [T (x1) ;]

where

1

Vg1 (® =3P E[Px)P(x)']"  and T (x;) :=P(x:).

This approach can be viewed as a bias correction of the original point estimator because,
trivially, B/Qﬁ X)) = 8/‘17L0(x) — (8/‘1740()() — 8/‘174 1(x)). Valid inference based on 8/(17/L 1(X) can
be viewed as “undersmoothing” applied to the higher-order point estimator, but is distinct
from undersmoothing @O(X) (i.e., using a finer partition A and keeping the order fixed).
Huang [28] used this idea to remove the asymptotic bias of splines estimators.

Our second approach makes use of the generic expression of the least squares bias in (3.2).
The unknown objects in this expression are u and 99, both of which can be estimated using
the higher-order estimator (3.4). By plugging these into (3.2) and subtracting the result from

8/‘171,0()(), we obtain the least squares bias correction, numbered as approach 2:
s 015 (%) 1= 09110 (%) — (P 4.0(%) En[To(x;) 1 (x;)] — 3971 (x))
' = P20 Ea[Iax)yi],

where
Pa2® = Po®'s =P g0 Ea[pax)Bx:) JE[BNBXN ]! + P g1 X))
and T (x;) := (p(x), p(x:)"),
which is exactly of the same form as 8/‘17L0(x) and 8/‘17“()() (cf., (3.1) and (3.4)), except for
the change in ?q’j (x) and IT; (x;).
Finally, approach number 3 targets the leading terms in equation (3.3). We dub this ap-
proach plug-in bias correction, as it specifically estimates the leading bias terms, in fixed-n

form, of 99 (x) according to Assumption 4. To be precise, we employ the explicit plug-in
bias estimator

DX =— Y (T, (0) By 4 (x),

uelh,,

with [q] < m and A, as in Assumption 4, leading to
56 IU3(%) = 3900(X) — (Bn.q(X) — P q.0(X) En [T (%) B0 (x)])
' =P .30 Ea[M3(x)yi]

where

Pos () = (?q,()(x)’, S (Fur BB, (%)

uelh,
— P o0 Ea[p(x) Bu,o<x,->?,,,1(xi)/]}),

and  T3(x;) = (p(x;), p(x;)')’.
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When the orthogonality condition (2.3) holds, the second correction term in @3 (x) is
asymptotically negligible relative to the first. However, in finite samples both terms can be
important, so we consider the general case.

Our results employing bias correction will require the following conditions on the higher-
order basis used for bias estimation.

ASSUMPTION 5 (Bias correctlon) The partition A satisfies Assumption 2, with max-
imum mesh A, and the basis P(x; A, ), m > m, satisfies Assumptions 3 and 4 with
¢ = ¢(m) > m in place of ¢. Let p := h/fz, which obeys p — pg € (0, 00). In addition,
for j =3, either (i) p(x; A, /i) spans a space containing the span of p(x; A, m), and for all
uc Ay, 0"px; A,m)=0;or (ii) both p(x; A, m) and p(x; A, n) reproduce polynomials of
degree [q].

In addition to removing the leading bias, Assumption 5 requires that the asymptotic vari-
ance of bias-corrected estimators is properly bounded from below in a uniform sense, which is
critical for inference. Additional conditions are needed for plug-in bias correction (j = 3) due
to the more complicated covariance between B/‘Iﬁo and the estimated leading bias. Orthogo-
nality properties due to the projection structure of the least squares bias correction (j = 2) re-
moves these “covariance” components in the variance of 391 [, The natural choice of A = A
and m = m + 1 will obey this restriction under intuitive conditions. In the SA, Assumption 5
is verified for splines, wavelets and piecewise polynomials (Section SA-6), and we also com-
pare theoretically the alternative bias correction strategies (Section SA-7.2).

4. IMSE and convergence rates. We establish two main results related to the point
estimator 091 (x): a valid IMSE expansion for the estimator, which gives as a by-product an
estimate of its L, convergence rate, and its uniform convergence rate.

4.1. IMSE-optimal point estimation. We first give a general IMSE approximation, which
then is specialized for tensor-product partitions. These expansions are used to obtain optimal
choices of partition size from a point estimation perspective.

Our first result holds for any partition A satisfying Assumption 2.

THEOREM 4.1 (IMSE). Let Assumptions 1, 2, 3 and 4 hold. If logn = o(1), then for a
weighting function w(X) that is continuous and bounded away from zero on X,

/){E[(@O(x) — 09 (%)) X]w(x) dx

= %(VM +op(h 7)) + (Ba g + op (")),
where
Vaq= trace():o/X Y q.0X)¥ q.0®) w(x) dx) = p—d-2la]
PBnq= /X (Bn.q(x) — )’q70(X)/E[p(xi)t%’mvo(xi)])zw(X) dx < p2m=2lal,
%o :=E[Mox)Mo(x;) 0%(x;)], and y 4 o(x) := 9Ip(x)'E[p(x;)p(x;)']".
This theorem, proven in the SA, Section SA-10.5, shows that the leading term in the in-

tegrated (and pointwise) variance of a/‘lﬁo(x) is of order n~'h—4-2l4]_ For the bias term, on
the other hand, the theorem only establishes an upper bound: to bound the bias component
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from below, stronger conditions on the regression function would be needed. This rate bound
is sharp in general.

The quantities ¥ ¢ and % ¢ are nonrandom sequences depending on the partitioning
scheme A in a complicated way, and need not converge as 1 — 0. Nevertheless, when the
integrated squared bias does not vanish (% q # 0), Theorem 4.1 implies that the IMSE-
optimal mesh size h1ygg is proportional to n~1/@"+4) or equivalently, the IMSE-optimal
number of series terms Krusg =< n?/ "+ Furthermore, because the IMSE expansion is
obtained for a given partition scheme, the result in Theorem 4.1 can be used to evaluate
different partitioning schemes altogether, and to select the “optimal” one in an IMSE sense.

Theorem 4.1 generalizes prior work substantially. Existing results cover only special cases,
such as piecewise polynomials [13] or splines [1, 43, 44] on tensor-product partitions only,
and often restricting tod = 1 or [q] = 0.

We now consider the special case of a tensor-product partition where the “tuning parame-
ter” A reduces to the vector of partitioning knots k = (k1, ..., kg)’, where ky is the number
of subintervals used for the £-th covariate. We assume that A and p(-) obey the following
regularity conditions, so that the limiting constants in the IMSE approximation can be char-
acterized.

ASSUMPTION 6 (Regularity for asymptotic IMSE). Suppose that X = ®f:1 X, C RY,
which is normalized to [0, 1]¢ without loss of generality, and A is a tensor-product partition.
For x € [0, 119, denote 8¢ = {ter, <x¢ <tes+1,1 <€ =<d}, where lx < k¢ (see SA, Section
SA-3 for details). Let by = (bx 1, . .., bx 4) collect the interval lengths bx ¢ = |t7 1,41 — tr,1,].
In addition:

(@) Fort=1,...,d, SUPxe(0,1}¢ |bx. e — K[lgg(x)_1| = 0(/([1), where g¢(-) is bounded
away from zero continuous.
(b) Forall § € A and uy, u; € A, there exist constants 1y, u,,q such that

2m—2[q]
X
/8 WBul,q(X)Buz,q(X) dX = Tu,,uy,q Vol(3),
where vol(§) denotes the volume of §.
(c) There exists a set of points {rk},';(:1 such that T4 € supp(px(-)) foreachk=1,..., K,
and {'rk}f:1 can be assigned into J + J <o groups such that {7 x, },{i‘;l, s=1,....,J+ j,

ZSJ;FIJV K; = K, and the following conditions hold: (i) For all 1 <s < J, {(Srs’ks},ii‘:1 are
pairwise disjoint and vol([0, 14 \ U,{i“zl 8z,,,) =o(1); and (ii) forall J + 1 <s < J + j,
vol(Ug™_, 8r,,,) = o(1).

Part (a) slightly strengthens the quasi-uniform condition imposed in Assumption 2, but
allows for quite general transformations of the knot location. Part (b) ensures that the “local”
integral of the product between any two By () for u € Ay, which depend on the basis
but not 1 (x), is proportional to the volume of the cell. The scaling factor is due to the use
of the lengths of intervals on each axis (denoted by by) to characterize the approximation
error for a tensor-product partition, instead of the more general diameter used in Section 2.
Finally, part (c) describes how the supports of the basis functions cover the whole support
of data. Specifically, it requires that the approximating basis p(-) can be divided into J + J
groups. The supports of functions in each of the first J groups constitute “almost” complete
covers of X'. In contrast, the supports of functions in other groups are negligible in terms of
volume. In such a case, we refer to J as the number of complete covers generated by the
supports of basis functions. For tensor product B-splines (with simple knots) and wavelets,



PARTITIONING-BASED SERIES ESTIMATORS 1727

each subrectangle in A can be associated with one basis function in p(-) and the supports
of the remaining functions are asymptotically negligible in terms of volume. Thus, J =1 in
these two examples. For piecewise polynomials of total order m, within each subrectangle
the unknown function is approximated by a multivariate polynomial of degree m — 1, and
thus J = (dj;[”ifl ). This condition is used to ensure that the summation over the number of

basis functions converges to a well-defined integral as K =< h™¢ — oo.
We then have the following result for fig(x), proven in the SA, Section SA-10.7.

THEOREM 4.2 (Asymptotic IMSE). Suppose that the conditions in Theorem 4.1 and
Assumption 6 hold. Then, for [q] =0,

d 2 d
_ —d B o°(x)
“//x,o—<n'<e)“//o+0(h ), %_J/[O,ud ) (]_[gz(X)>w(X)dx,

=1 =1
and, provided that (2.3) holds,

%K,O = Z ’C_(u1+u2)%u1,u2,0+0(h2m)’

Ui, u2€N,

9" p(x)0"2 pu(x)
Buy uz,0 = Nuy,uz,0 /[O,l]d g ()81 w(x) dx.

The bias approximation requires the approximate orthogonality condition (2.3) which is
satisfied by B-splines, wavelets and piecewise polynomials. It appears to be an open question
whether 7 q and %, q converge to a well-defined limit when general basis functions are
considered. Cattaneo and Farrell [13] showed convergence to well-defined limits for piece-
wise polynomials, but their result is not easy to extend to cover other bases functions without
imposing q = 0 and the approximate orthogonality condition (2.3). The SA (Section SA-3)
contains more details and other results.

Theorem 4.2 justifies the IMSE-optimal choice of number of knots:

(& .
KIMSE,():argmm!;(HKg)"//o—i- Z K ("‘+"2)93u1,u2,0},
=1

KGZiJr up,urENy

and, in particular, when the same number of knots is used in all margins,

1
2m Zul,uzeAm %ul ,us,0 2m+d 1
*amse,0 = d¥ n2m+d |,
0

Data-driven versions of this IMSE-optimal choice, and extensions to derivative estimation,
are discussed in the SA (Section SA-8) and fully implemented in our companion general-
purpose R package 1spartition [14]. While beyond the scope of this paper, it would be
of interest to study the theoretical properties of cross-validation methods as an alternative way
of constructing IMSE-optimal tuning parameter selectors for partitioning-based estimators.

4.2. Convergence rates. Theorem 4.1 immediately delivers the L, convergence rate for
the point estimator 09.,(x). For completeness, we also establish its uniform convergence
rate. Recall that v > 0.

THEOREM 4.3 (Convergence rates). Let Assumptions 1, 2 and 3 hold. Assume also that
supyc v |89 (x) — 395*(x)| < W™~ with s* defined in Assumption 4. Then, if 1;’% =o(1),

o 1
2 _
/X(aqﬂo(x) - aqM(X)) w(x) dx Sp pyREEI] + p2m=lab),

If, in addition:
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2 2v
. 2 442
i) E[le; z+v]<ooandM<Lm
nhd ~

3
(i) Elle; > exp(le:)] < 00 and 182- <1,

then
logn

2(m—[ql)
nhd+20d] th :

sup 99720 (x) — 09 (x)|* <p
xeX

This theorem, proven in the SA, Section SA-10.11, shows that the partitioning-based es-
timators can attain the optimal L, and uniform convergence rate [37] by proper choice of
partitioning scheme, under our high-level assumptions. (The full force of Assumption 4 is
not needed for this result.) Cattaneo and Farrell [13] were the first to show existence of a
series estimator (in particular, piecewise polynomials) attaining the optimal uniform conver-
gence rate, a result that was later generalized to other series estimators in [3, 16].

5. Pointwise inference. We give pointwise inference based on classical undersmoothing
and all three bias correction methods. All four point estimators take the form 99u;(x) =
')7q7 j(x)/ E,[IT;(x;)y;], where j = 0 corresponds to the conventional partitioning estimator,
and j =1, 2, 3 refer to the three distinct bias correction strategies. Infeasible inference would
be based on the standardized z-statistics

991 (x) — I (®)

, QLX) =y, X)ET iy, (X)),
T S =pq,, 0y, X)
where, for each j =0,1,2,3, yq,j(x) are defined as ?qvj in (3.1), (3.4), (3.5) and (3.6),
respectively, but with sample averages and other estimators replaced by their population
counterparts, and X ; := E[IT; (x;) IT; (x;)’ o2(x;)]. These -statistics are infeasible, but they
nonetheless capture the additional variability introduced by the bias correction approach
when j =1, 2, 3, the key idea behind robust bias-corrected inference [6, 8]. We also discuss
below Studentization, that is, replacing €2 (x) with a consistent estimator.

Tj(x) =

5.1. Distributional approximation. Our first result establishes the limiting distribution of
the standardized z-statistics 7 (x).

THEOREM 5.1 (Asymptotic normality). Let Assumptions 1, 2, 3 and 4 hold. Assume

SUPyc x E[sizll{lm > M}|x; =x] — 0as M — oo, and l;;f; = o0(1). Furthermore, for j =0,

assume nh*"+t¢ = o(1); and for j = 1,2, 3, assume Assumption 5 holds and nh*"+%¢ < 1.
Then, foreach j =0,1,2,3 andx € X, sup, g |P[T;(x) < u]—P(u)| =o(1), where ®(u)
denotes the cumulative distribution function of N(0O, 1).

This theorem, proven in the SA, Section SA-10.9, gives a valid Gaussian approximation
for the #-statistics 7 (x), pointwise in X € X'. The regularity conditions imposed are extremely
mild, and in perfect quantitative agreement with those used in [3] for j = 0 (undersmoothing).
For j = 1,2, 3 (robust bias correction), the result is new and the restrictions are in qualitative
agreement with those obtained for kernel-based nonparametrics.

5.2. Implementation. To make the results in Theorem 5.1 feasible, we replace €2;(x)
with a consistent estimator. Specifically, we consider the four feasible ¢-statistics, j =
0,1,2,3,

4, . (x) — 94
fj(x)z 99 (x) — 0% (x)

(5.1) /2 (x)/n

% =B, [ )T (x)37 5], &g = yi — 2 (x0).

L Q=P 0P (X,
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Once the basis functions and partitioning schemes are chosen, the statistic T"j(x) is readily
implementable. The following theorem gives sufficient conditions for valid pointwise infer-
ence.

THEOREM 5.2 (Variance consistency). Let Assumptions 1,2,3 and 4 hold. If j =1,2,3,
also let Assumption 5 hold. In addition, assume one of the following holds:

2 _2v
() Elle;[>*"] < 00 and "BV — (1), or

n 3
(ii) Elle;|> exp(lei])] < 0o and 1282 = o(1).

Then, for each j =0,1, 2, 3, Iﬁj(x) -Q;(x)|= op(h——2ldly,

This result, proven in the SA, Section SA-10.12, together with Theorem 5.1, delivers fea-
sible inference. Valid 100(1 — @)%, o € (0, 1), confidence intervals for 99 (x) are formed in
the usual way:

[09n;x) £~ (1 —e/2)-/Q;(x)/n], j=0,1,2,3.

For j =1, 2, 3, the IMSE-optimal partitioning scheme choice derived in Section 4 can be
used directly, while for j = O the partitioning has to be undersmoothed (i.e., made finer than
the IMSE-optimal choice) in order to obtain valid confidence intervals. Our results generalize,
under weaker conditions, prior work on univariate regression splines [28, 43, 44].

6. Uniform inference. We next give a valid distributional approximation for the whole
process {Tj(x) :x € X}, for each j =0, 1,2, 3. We establish this approximation using two
distinct coupling strategies. We then propose a simulation-based feasible implementation of
the result. We close by applying our results to construct valid confidence bands for 99..(-).

6.1. Strong approximations. The stochastic processes {T}(X) :X € X'} are not asymptot-
ically tight and, therefore, do not converge weakly in £°°(X), where £L>°(X) denotes the
set of all (uniformly) bounded real functions on & equipped with uniform norm. Neverthe-
less, their finite sample distribution can be approximated by carefully constructed Gaussian
processes (in a possibly enlarged probability space).

We first employ the following lemma to simplify the problem. Recall that r, is some
nonvanishing positive sequence and v > 0.

LEMMA 6.1 (Hats Off). Let Assumptions 1, 2, 3 and 4 hold. Assume one of the following
holds:

2 242v

(i) supycr Ellei > [x; =x] < 00 and =082 — o(,2); or
.. logn)* -
(ii) supycy Ell&i > exp(lei])|x; = x] < 00 and % =o(r;?).

Furthermore, if j =0, assume nhd+2m — o(rn_z); and, if j =1, 2,3, assume Assumption 5
holds and nh?+2"+2¢ = o(r-2). Then

7 (%)
sup| 750 — 10| = 0p (1), 1700 = T

xex /Qj x)

Lemma 6.1 requires that the estimation and sampling uncertainty of ?q, j(x) and Q i (x),

Gn[Ij (x7)€i].

as well as the smoothing bias of I (%), be negligible uniformly over x € X'. The proof is
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given in Section 8.2 and relies on a new technical lemma stated in Section 8.1. This technical
approximation step allows us to focus on developing a distributional approximation for the
infeasible stochastic processes {¢;(x) : x € X'}, j =0, 1,2, 3. We make precise our uniform
distributional approximation in the following definition.

DEFINITION 6.1 (Strong approximation). For each j =0, 1, 2, 3, the law of the stochas-
tic process {t;(x),x € X’} is approximated by that of a Gaussian process {Z;(x),x € X}
in £%°(X) if the following condition holds: in a sufficiently rich probability space, there
exists a copy t}(-) of 7j(-) and a standard Normal random vector Ng i~ N, Ix j) with
K j = dim(IT; (x)) such that

(x)/x2?
sup |z’ (x) — Z;(x)| =op(r,Y), Z,x= Yo 00> K
xeX \/ Q j (x)

This approximation is denoted by #;(-) =4 Z;(-) + 0]p>(rn_1) in £L2(X).

This definition gives the precise meaning of uniform distributional approximation of 7; ()
by a Gaussian process Z(-), and also provides the explicit characterization of such Gaussian
process. We establish this strong approximation in two distinct ways. For d = 1, we develop
a novel two-step coupling approach based on the classical Komlés—Major—Tusnady (KMT)
construction [30, 31]. For d > 1, we apply an improved version of the classical Yurinskii
construction [29].

6.1.1. Unidimensional regressor. Let d = 1. The following theorem gives a valid distri-
butional approximation for {7;(x) : x € X'} using the Gaussian process {Z;(x) : x € X'}, for
j=0,1,2,3, in the sense of Definition 6.1.

THEOREM 6.1 (Strong approximation: KMT). Let the assumptions and conditions of
3/2
Lemma 6.1 hold withd = 1. If j =2, 3, also assume % = o(rn_z). Then, for each j =
0,1,2,3,t;()=a Z;(-) + Op(rn_l) in L>(X), where Z () is given in Definition 6.1.

The proof of this result, in Section 8.3, employs a two-step coupling approach:

Step 1. On a sufficiently rich probability space, there exists a copy t}(-) of #j(-), and an
i.i.d. sequence {¢; : 1 <i < n} of standard Normal random variables, such that

}’q,j(x)/

’ . — -1 . — (s N
jlelgh‘j(x) Zj(-x)’ OIP’(rn )a Zj(-x) mGn[Hj(xt)a(xl)gz]-

Step 2. On a sufficiently rich probability space, there exists a copy z/j (1) of z;(-), and the

standard Normal random vector N ; from Definition 6.1 such that z/j ()=q Z j (+) conditional
on X, where

-1/2
(x)E "
Yq,j /N

Tj(x) Kj

Zi(x) = T =K, [ ()T (x) 0 (x1)],

and

suE|Zj(x) —Zj(0)|=op(r, ).
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These two steps summarize our strategy for constructing the unconditionally Gaussian
process {Z;(x),x € X'} approximating the distribution of the whole z-statistic processes
{tj(x) : x € X'}: we first couple #;(-) to the process z;(-), which is Gaussian only condi-
tionally on X but not unconditionally (Step 1), and we then show that the unconditionally
Gaussian process Z;(-) approximates the distribution of z;(-) (Step 2).

To complete the first coupling step, we employ a version of the classical KMT inequalities
that applies to independent but nonidentically distributed random variables [35, 36]. We do
this because the processes {z;(x) : x € X'} are characterized by a sum of independent but not
identically distributed random variables conditional on X. This part of our proof is inspired
by, but is distinct from, the one given in [24], Chapter 22, where a conditional strong ap-
proximation for smoothing splines is established. Our proof relies instead on the new general
coupling Lemma 8.2 in Section 8.3.

The intermediate coupling result in Step 1 has the obvious drawback that the process
{zj(x) : x € X} is Gaussian only conditionally on X but not unconditionally. Step 2 ad-
dresses this shortcoming by establishing an unconditional coupling, that is, approximating
the distribution of the stochastic process z;(-) by that of the (unconditional) Gaussian process
Z;(-). As shown in Section 8.3, verifying the second coupling step boils down to controlling
the supremum of a Gaussian random vector of increasing dimension, and in particular the

Crux is to prove precise (rate) control on ||)_3}/2 — Z}/ZH, j=0,1,2,3. Both )_:j and X

are symmetric and positive semidefinite. Further, for j =0, 1, Apnin(X;) 2 h4 for generic
partitioning-based estimators under our assumptions and, therefore, we use the bound

6.1) JAY? = AV < Amin(A2) V2 1AL — Asll,

which holds for symmetric positive semidefinite A; and symmetric positive definite Ay [4],
Theorem X.3.8. Using this bound, we obtain unconditional coupling from conditional cou-
pling without additional rate restrictions.

However, for j = 2,3 the bound (6.1) cannot be used in general because p and p are

typically not linearly independent, and hence X ; will be singular. To circumvent this prob-
lem, we employ the weaker bound [4], Theorem X.1.1: if A| and A; are symmetric positive
semidefinite matrices, then
6.2) |AY? = AY? < IIA; — Az /2,
This bound can be used for any partitioning-based estimator, with or without bias correction,
at the cost of slowing the approximation error rate r, when constructing the unconditional
coupling, and hence leading to the stronger side rate condition as shown in the Theorem 6.1
below. When r,, = 1, there is no rate penalty, while the penalty is only in terms of logn terms
when r, = /logn (as in Theorem 6.4 further below). Furthermore, for certain partitioning-
based series estimators it is still possible to use (6.1) even when j = 2, 3, as the following
remark discusses.

REMARK 6.1 (Square-root convergence and improved rates). The additional restriction
imposed in Theorem 6.1 for j = 2, 3, that (logn)3/?/</nh = o(r, 2), can be dropped in some
special cases. For some bases, it is possible to find a transformation matrix Y, with || Y ||s <
1, and a basis p, which obeys Assumption 3, such that (p(-)’, p(:)")’ = Yp(-). In other words,
the two bases p and p can be expressed in terms of another basis p without linear dependence.
Then a positive lower bound holds for Anyin(X%;), j = 2,3, implying that the bound (6.1)
can be used instead of (6.2). For example, for piecewise polynomials and B-splines with
equal knot placements for p and P, a natural choice of p is simply a higher-order polynomial
basis on the same partition. Since each function in p and p is a polynomial on each § €
A and nonzero on a fixed number of cells, the “local representation” condition ||Y||s < 1
automatically holds. See the SA (Section SA-6) for more details.



1732 M. D. CATTANEO, M. H. FARRELL AND Y. FENG

An alternative unconditional strong approximation for general series estimators was ob-
tained by [3] for the case of undersmoothing inference (j = 0). Their proof employs the
classical Yurinskii’s coupling inequality that controls the convergence rate of partial sums in
terms of Euclidean norm, leading to the rate restriction r,?K 3/n — 0, up to logn terms, which
does not depend on v > 0. In contrast, Theorem 6.1 employs a (conditional) KMT-type cou-
pling and then a second (unconditional) coupling approximation, and make use of the banded
structure of the Gram matrix formed by local bases, to obtain weaker restrictions. Under
bounded polynomial moments, we require only r,?K 3 /n3v/C+v) 0, up to logn terms. For
example, when v = 2 and r,, = /logn, this translates to K2/n — 0, up to logn terms, which
is weaker than previous results in the literature. Under the subexponential conditional mo-
ment restriction, the rate condition can be relaxed all the way to K /n — 0, up to logn terms,
which appears to be a minimal condition. This is for the entire #-statistic process. In addition,
Theorem 6.1 gives novel strong approximation results for robust bias-corrected ¢-statistic
processes.

REMARK 6.2 (Strong approximation: KMT for Haar basis). Our two-step coupling ap-
proach builds on the new coupling Lemma 8.2, which appears to be hard to extend to
d > 1, except for the important special case the undersmoothed (j = 0) ¢-statistic process
{fo(x) 1 x € X} constructed using Haar basis, which is a spline, wavelet, and piecewise poly-
nomial with m = 1. In the SA, Section SA-5.1, we establish #5(-) =4 Zo(-) + OP(r,jl) in
L%(X) for any d > 1 under the same conditions of Lemma 6.1.

6.1.2. Multidimensional regressors. Letd > 1. The method of proof employed to estab-
lish Theorem 6.1 does not extend easily to multivariate regressors (d > 1) in general. There-
fore, we present an alternative strong approximation result based on an improved version of
the classical Yurinskii’s coupling inequality, recently developed by [2].

THEOREM 6.2 (Strong approximation: Yurinskii). Let the assumptions and conditions

4
of Lemma 6.1 hold. Furthermore, assume v > 1 and % =o(r, 6. Then, for each j =
0,1,2,3,1;()=a Z;(-) + OP(I"n_l) in LX(X), where Z;(-) is given in Definition 6.1.

This strong approximation result, proven in Section 8.4, does not have optimal (i.e., min-
imal) restrictions, but nonetheless improves on previous results by exploiting the specific
structure of the partitioning-based estimators, while also allowing for any d > 1. Specifically,
the result sets v = 1 and requires rSK 3/n — 0, up to logn terms. While not optimal when
v > 3 (see Remark 6.2 for a counterexample), it improves on the condition r,? K>/n— 0, up
to logn terms, mentioned previously. In addition, Theorem 6.2 gives novel strong approxi-
mation results for robust bias-corrected ¢-statistic processes.

6.2. Implementation. We present a simple plug-in approach that gives a (feasible) ap-
proximation to the infeasible standardized Gaussian processes {Z;(x) : x € X'}, in order to
conduct inference using the results in Theorem 6.1 or Theorem 6.2. In the SA (Section SA-
5.2), we also give another plug-in approach and one based on the wild bootstrap. The follow-
ing definition gives a precise description of how the approximation works.

DEFINITION 6.2 (Simulation-based strong approximation). Let P*[-] = P[-|y, X] de-
note the probability operator conditional on the data. For each j =0, 1,2, 3, the law of
the Gaussian process {Z;(x) : x € X'} is approximated by a (feasible) Gaussian process
{Z;(x) : x € X'}, with known distribution conditional on the data (y, X), in £L°(X), if the
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following condition holds: on a sufficiently rich probability space there exists a copy /Z\; )
of Z j () such that /Z\; (+) =4 Z;(-) conditional on the data, and

P*sup|Z;0) — Z;0| = o, | =0p(D) vy >0,
xeX
where, for a Ng, ~N(0, Ix,) with K; = dim(IT; (x)),

- al/2
~ yqvj(x)/):j

20 = 2812
j J2®

This approximation is denoted by 2J~(-) =g+ Zj(-) + opx (rn_l) in £L2(X).

Nk,, Xe€X,j=0,123.

From a practical perspective, Definition 6.2 implies that sampling from 2 (+), conditional
on the data, is possible and provides a valid distributional approximation of Z;(-), for each
j =0,1,2,3. The feasible process Z i(-) relies on a direct plug-in approach, where all the
unknown quantities are replaced by con51stent estimators already used in forming T (x).
Resampling is from a multivariate standard Gaussian of dimension K ;, not n.

THEOREM 6.3 (Plug-in approximation). Let the assumptions and conditions of Lem-
ma 6.1 hold. Furthermore, for j =2, 3:

. . 2+U — n _ —25.
(i) when supyc v E[|e;|“7"|x; =X] < 00, assume BV o(r; °); or

2
.. 13 ) J— —— =
(i1) when supyc y E[&|” exp(le;|)[x; = X] < 00, assume fond

Then, for each j =0,1, 2, 3, 2j(-) =g Zj(-) + opx (rn_l) in L(X), where 2j () is given in
Definition 6.2.

This result, proven in Section 8.5, strengthens the rate condition for j = 2,3 compared
to Theorems 6.1 (d = 1) and 6.2 (d > 1) only by logarithmic factors when r, = /logn.
Moreover, if the structure discussed in Remark 6.1 holds, then this additional condition can
be dropped.

6.3. Application: Confidence bands. A natural application of Theorems 6.1, 6.2 and 6.3
is to construct confidence bands for the regression function or its derivatives. Specifically, for
J=0,1,2,3 and a € (0, 1), we seek a quantile g; () such that

P[sup\fj(x)] < q_/(a)] =1—a+o(1),
xeX

which then can be used to construct uniform 100(1 — «)-percent confidence bands for 99 (x)
of the form

[09% (%) £ qj(c)/Q2;(x)/n:x € X].

The following theorem, proven in Section 8.6, establishes a valid distributional approxi-
mation for the suprema of the z-statistic processes {T (x) : x € X'} using [19], Lemma 2.4, to
convert our strong approximation results into convergence of distribution functions in terms
of Kolmogorov distance.

THEOREM 6.4 (Confidence bands). Let the conditions of Theorem 6.1 or Theorem 6.2
hold with r, = /logn. If the corresponding conditions of Theorem 6.3 hold for each j =
0,1,2,3, then

sup[Bsup| ;09| < ] ~ B*[sup|Z; 0] < u]| = op().
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Chernozhukov et al. [18, 19] recently showed that if one is only interested in the supre-
mum of an empirical process rather than the whole process, then the sufficient conditions for
distributional approximation could be weakened compared to earlier literature. Their result
applied Stein’s method for Normal approximation to show that suprema of general empirical
processes can be approximated by a sequence of suprema of Gaussian processes, under the
usual undersmoothing conditions (i.e., j = 0). They illustrate their general results by consid-
ering ¢-statistic processes for both kernel-based and series-based nonparametric regression:
[19], Remark 3.5, establishes a result analogous to Theorem 6.4 under the side rate condition
K /n'=%/C+v) = (1), up to logn terms (with ¢ = 2 + v in their notation). In comparison,
our result for j =0 and d = 1 in Theorem 6.4, under the same moment conditions, requires
exactly the same side condition, up to logn terms. Theorems 6.1 and 6.4 show that the whole
t-statistic process for partitioning-based series estimators, and not just the suprema thereof,
can be approximated under the same weak conditions when d = 1. The same result holds
for sub-exponential moments, where the rate condition becomes minimal: K /n = o(1), up to
logn factors. In addition, Theorem 6.4 gives new inference results for bias-corrected estima-
tors (j =1, 2, 3).

For the case of special univariate regression splines, [43] constructs conservative confi-
dence bands under the assumption of normal errors and the rate restriction K2/n = o(1). In
comparison, the confidence band constructed using Theorem 6.4 has asymptotically exact
coverage rate, and requires substantially weaker tuning parameter rate restrictions.

7. Simulations. We conducted a Monte Carlo investigation of the finite sample perfor-
mance of our methods. Only a summary is given here, while the SA (Section SA-9) contains
complete results and details.

We considered three univariate (d = 1), two bivariate (d = 2), and two trivariate (d = 3)
data generating processes. We shall summarize one univariate design here for brevity. We
set u(x) = sin(rx — /2)/(1 +2(2x — 1)>(sign(2x — 1) + 1)), with sign(-) denoting the
sign function. We generate samples {(y;, x;) :i =1, ..., n} from y; = u(x;) + &;, where x; ~
U[0, 1] and &; ~ N(0, 1), independent of each other. We consider 5000 simulated datasets
with n = 1000 each. Results based on splines and wavelets are presented. We use linear
splines or Daubechies (father) wavelets of order 2 (m = 2) to form the point estimator fio(x),
and quadratic splines or Daubechies wavelets of order 3 (m = 3) for bias correction, on the
same evenly spaced partitioning for point estimation and bias correction (A = A).

Table 1 reports (simulated) root mean squared error for point estimators (column
“RMSE”), coverage rate and average interval length of pointwise 95% nominal confidence
intervals at x = 0.5 (columns “CR” and “AL”), and analogous uniform inference results
(columns under “Uniform”). For B-splines, « is set using either an infeasible IMSE-optimal
choice (k1usg), a rule-of-thumb estimate (kror), or a direct plug-in estimate (kppr). For
wavelets, the tuning parameter is instead the resolution level (resp., Stmse, Sror OF Spp1),
which is the logarithm of the number of subintervals (to base 2). Finally, Table 1 reports all
four (estimation and) inference methods discussed in this paper (j =0, 1, 2, 3), except for
wavelets with plug-in bias correction (j = 3) because of the lack of smoothness of low-order
wavelet bases.

Numerical findings are consistent with our theoretical results. Robust bias correction
seems to perform quite well, always delivering close-to-correct coverage, both pointwise
and uniformly. In addition, our rule-of-thumb (ROT) and direct plug-in (DPI) knot selection
procedures for tensor-product partitions exhibited good numerical performance.
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TABLE 1
Simulation Evidence

B-Splines (m =2, i =3, A = A, Evenly Spaced Partition)

Pointwise Uniform
K RMSE CR AL UCR AW

j=0

KTMSE 3.0 0.046 91.6 0.328 79.9 0.384

KROT 4.1 0.002 94.9 0.254 90.1 0.433

KDPT 4.7 0.008 93.8 0.311 91.6 0.460
j =

KTMSE 3.0 0.003 94.8 0.226 93.8 0.426

KROT 4.1 0.008 94.8 0.297 93.5 0.473

KDPT 4.7 0.007 94.9 0.294 93.2 0.497
j=2

KTMSE 3.0 0.004 94.7 0.268 94.1 0.443

KROT 4.1 0.008 94.8 0.312 93.4 0.497

KDPT 4.7 0.004 94.8 0.330 93.6 0.526
j=3

KTMSE 3.0 0.016 90.0 0.320 89.0 0.413

KROT 4.1 0.007 94.2 0.275 93.0 0.463

KDPT 4.7 0.005 94.2 0.322 93.2 0.490

Wavelets(m =2, m =3, A = A, Evenly Spaced Partition)
Pointwise Uniform
s RMSE CR AL UCR AW

Jj=0

STMSE 3.0 0.002 94.2 0.476 91.1 0.509

SROT 2.0 0.002 94.2 0.476 91.1 0.509

SpPT 2.8 0.002 94.2 0.476 91.1 0.509
j=1

STMSE 3.0 0.036 93.6 0.449 89.9 0.504

SROT 2.0 0.036 93.6 0.449 89.9 0.504

SpPT 2.8 0.036 93.6 0.449 89.9 0.504
j=2

STMSE 3.0 0.009 94.2 0.523 914 0.576

SROT 2.0 0.009 94.2 0.523 914 0.576

SpPT 2.8 0.009 94.2 0.523 91.4 0.576

Notes: (i) Pointwise = pointwise inference at x = 0.5, Uniform = uniform inference.

(il) RMSE = root MSE of point estimator, CR = coverage rate of 95% nominal confidence intervals, AL =
average interval length of 95% nominal confidence intervals.

(iii) UCR = uniform coverage rate of 95% nominal confidence band, AW = average width of 95% nominal
confidence band.

(iv) ktmsk and stysg = infeasible IMSE-optimal number of partitions, kror and Sgror = feasible rule-of-thumb
(ROT) implementation of k1ysg, Kkppr and Sppr = feasible direct plug-in (DPI) implementation of k1ysg. See
Section SA-8 and Section SA-9 in the Supplemental Appendix for more details.
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8. Main technical lemmas and proofs.

8.1. Technical lemma. Let Q, = E,[px)px:)'], Qs = Eu[px)pxi)1, Qum =
Elp(x)p(x;)'], and Q; = E[p(x;))p(x;)'].

LEMMA 8.1. Let Assumptions 1,2, 3 and 5 hold. Iflog" o(1), then: (1) ||(§m Qul <p
428 11Qu — Quilloo Sp A% 2 (i) Q| e 2. 11Q oo Sp A~ (i) for each j =

!
05 17 2, 37 SupxeX ”yq’](x) ”OO S./ h —d- q]’ SupXEX ||yq,](x) - )’q,J(X) ”OO S_, h —d- q] %7
infycy ||yq’j(x)/|| > h=47l4; gnd (iv) for j =0,1,2,3, supyey 2(x) S h—d=2ld gpd
infyex Q;(x) > h—4-214],

PROOF. SA, Section SA-10. [

These results for Qm and Q,;, also hold for 6,;, and Q; under Assumption 5. See the SA
(Section SA-2) for details and other related results.

8.2. Proof of Lemma 6.1. First, suppose condition (i) holds. Theorem SA-4.2 of the SA
shows supycy 1Q0(x) — Qo(x)| <p n_%h_%_z[q][(logn)% + nﬁ(logn)ﬁ + \/ﬁh%m]
and, for j = 1,2, 3, supycy 1Q; (%) — Q;(x)| <p n~2h~ 32l [(log )2 +nz+*v(1ogn)4ﬁ -
JHRETMC] Then, for j =0, 1,2, 3, supycp [0 (%) — 09(%)/, /2 (%)/n — (@ ; (x)

090 (x))/\/ Q0 /n] Sp k3PN supy o (98050~ 99| supyey 12;(%) —
Q;x)| =op(r, b, Wllere the result follows from Lemma 8.1, Theorem SA-4.1, the uniform
convergence rate of £2;(x), and the rate conditions imposed.

The result under the conditions in (ii) follows similarly.

8.3. Proof of Theorem 6.1. We first prove the following general lemma. Let TV x(g(-))
denote the total variation of g(-) on X C R.

LEMMA 8.2 (Kernel-based KMT coupling). Suppose {(x;, &) : 1 <i <n} are i.id.,
with x; € X C R and oiz = o02(x;) = E[812|Xi]. Let {A(x) .= G,[# (x,x;)g],x € X} be
a stochastic process with J£ (-,-) : R x R+ R an n-varying kernel function possibly de-
pending on X. Assume one of the following holds:

(1) sup,cy E[|8i|2+”|xi = x] < 00, for some v > 0, and

sup max |# (x, x;)| = op(r, 'n~ 2+v+2)
xeXx 1<i<n

sup TV x (A (x,)) = o(r, 'n~ 2+v+2) or
xXeXx

(i) sup,cy Elle:]? exp(|&i)|x; = x] < o0 and

sup max |# (x, x;)| = op(r, ' (logn) ' /n),

xex 1<izn

sup TV x (A (x, ) = o(r, ' (logn) ~1/n).

xeX
Then, on a sufficiently rich probability space, there exists a copy A'(-) of A(-), and an
i.i.d. sequence {{; : 1 <i < n} of standard Normal random variables such that A(x) =4

Gl A (x, x1)0:i] + op(r ) in L2O(X).
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PROOF. Suppose condition (i) holds. Let {x(;) : 1 <i <n} be the order statistics of {x; :
1 <i < n} such that x(1) < x(2) <--- < X(»), which also induces the concomitants {e[;}: 1 <
i <n}and {05] = oz(x(i)) :1 <i <n}. Conditional on X, {gf;) : 1 <i <n} is an independent
mean zero sequence with V{e[;;|X] = o%]. By [36], Corollary 5, there exists a sequence of
i.i.d. standard normal random variables {¢f;;: 1 <i <n} such that max;<;<, |S;.»| Sp n2+v
where Sy, = lel(s[,] — o[;1¢[i7)- Then, using summation by parts,

n
DA (x, xm) (e — o)
i1

sup
xeX

K X)) Snn = Y Sin (0, x41) — A (x, X))
i=1

n—1
= sup
xeX

n—1

(sup max | (x, x;)| + sup Y| (x, x41) — H (x, x(,))|> max |S1.nl.
xeXx Isi=n xeX ;7

Since Z?;ll |,%/(X,X(H_1)) - %(X,X(i)ﬂ < TV/\/(,)IC/(X, )), we have A(x) =d Gn[%(x,

x)0; &1+ op(ry b).
When (ii) holds, the proof is the same except that under the stronger moment restriction,
maxj <<y |S1.n| Sp logn by [35], Theorem 1. [

To prove Theorem 6.1, for each j =0,1,2,3, let J# (x,u) = yqvj(x)/l'lj(u)/ /€2 (x)

and observe that sup,y sup,cy |-# (x,u)| < h=¢/2. By Lemma 8.1, the uniform bound
on the total variation of % (x,u) can be verified easily. Alternatively, simply note that

|0 Sin (K (x, X1) = H X)) < 17,0 /R0 oo Il 202 Sion (T (1)) —

IT; (x())) lloo- By Assumption 3 and Lemma 8.1, sup, c y ||yq j(x) /R oo Sh™ 42 De-
note the /th element of IT;(-) by 7;;(-). Then max; << | Zi:l (i 1(xi41)) — ) 1(x6))) X
Sinl < max|</<k; Z;’:_ll |70 (x(i1)) — 7,1 (X)) | Max| <¢<y | Se,»|. By Assumptions 3 and 5,
max|</<k; Z;’:—ll I7j.1(xi+1)) — 7 1(x@))| S 1. Thus, using Lemma 8.2, under the corre-
sponding moment conditions and rate restrictions, there exists an independent standard nor-
mal sequence {; : 1 <i <n} such that G,[.% (x, x;)&i] =4 z;(x) + 0]p(rn_]).

Next, note that

1/2

2/ =dx ¥q ;0'Z Nk, 1/ + yq ;0 (£} — 217Nk, /,/2, ).

where NKj is a K j-dimensional standard normal vector (independent of X) and “=4x”
denotes that two processes have the same conditional distribution given X. For the second

=Nk, ool X1 S

Jlogn|| )_:}/2 1/2 I. By the same argument as that in the proof of Lemma SA-2.1 in Sec-

tion SA-10.1, ||zj — Il <k h(logn/(nh)!/2. Then by [4], Theorem X.1.1, | £} —

E;/zll <p h¥*>(logn/(nh?))!/*. For j = 0,1, a sharper bound is available: by [4], The-

orem X.3.8, and Lemma 8.1, [|£}> = £ < amin(Z)~V2IZ; — £ Sp h42 /121
1 2 1 2

Thus, E[supycy [¥q,; (0 (E; 1”)NK,/ Q;(|IX1 Sp h™% VIogn| £ — 27| =

op(r, 1. The results now follow from Markov inequality and dominated convergence.

term, by the Gaussian maximal inequality [22], Lemma 13, E[|| ()51-/
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8.4. Proof of Theorem 6.2. 1t suffices to verify the conditions in Lemma 39 of [2]. For
j=0,1,2,3,1et §; = ﬁl’[j(xi)e,-. {§; : 1 <i <n}isani.id. sequence of K ;j-dimensional
random vectors, and

D B8 1718 loc] = ELITL (xoer P11 000 oo/
i=1
E[I; (x;) T (x)|ei [*]//n Sn™t2

by Assumption 3, the moment condition imposed, and Lemma 8.1. On the other hand, let
{g; : 1 <i <n} be a sequence of independent Gaussian vectors with mean zero and variance

X j/n. By properties of Gaussian random variables and Lemma 8.1, (E[||g; ||go])1/2 < l(’%,
n 12 n
> (ELlg '] 5trace(ZE[£,-s;]) S
i=1 i=1

and thus L, := VELIENPIE Noo] + X0 ELlIgi 1218 lloo] S 1"% Then there exists a

K j-dimensional normal vector N K; with variance X ; such that for any 7 > 0,

:[ED(
i=1 00

<m1n(2IP’(||Z||OO >r)+h S, < 3(1ogn) /Vnh3d,

1 d)
>3r, h2t

where Z is a K j-dimensional standard Gaussian vector, and the second inequality follows by
setting 7 = Cy/logn for a sufficiently large C > 0. Using sup,cx |7, @) /i)l S
h—d/2 again, the result follows.

8.5. Proof of Theorem 6.3. Foreach j =0,1,2,3,

= Y. X Ve i ®\a12 Yaq i X 12 12
Z-(x)—Z-(x):( L. 4] ) : REERAL A D L) e
J j 1/2(> 1/2() i K /—Qj(X)[ j j ] K;

Each term on the RHS is a mean-zero Gaussian process conditional on the data. The de-
sired results then follow by Lemma 8.1, Theorem SA-4.2 in Section SA-4, and applying the
Gaussian maximal inequality to each term as in Section 8.3.

8.6. Proof of Theorem 6.4. By Theorem 6.1 or Theorem 6.2, there exists a sequence of

constants 7,, such that n, = o(1) and P(| supy.y |Tj(x)| — SUpxex | Z;(X)|| > nn/rn) = o0(1).
Therefore, for any u € R,

P|sup|T; (%) < u]
xeX
SIP’“;‘EJE‘TJ(X)‘ < u] N Higgrfj(x)] _EEEIZJ(X)” < ﬂn/rn”

+P[{

sup| 7 (x)| = sup| Z; ()| > mu/ra |
xXeX XeX

< IP’[supIZj(X)I <u-+ nn/rn] +o(1)
xeX

< ]P’[sup|Zj(x)| < u] + Crn_ln,,IE[sup\Zj(x)” +o(1)
xeX xeX
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for some constant C > 0, where the last inequality holds by the anticoncentration inequality
due to [19]. By the Gaussian maximal inequality, E[sup,.y |Z;(X)|] S /logn. Since r, =
J/logn, the second term on the right of the last inequality is o(1). The reverse of the inequality
follows similarly, and thus

sup‘IP’[sup|T"j(x)| < u] — P[sup|Zj(x)| < u]) =o(l).
ueR' ~xeX xeX

In addition, by Theorem 6.3, Z j(+) is approximated by the same Gaussian process conditional

on the data. The result then follows by the same argument.

9. Conclusion. We presented new asymptotic results for partitioning-based least squares
regression estimators. The first main contribution gave a general IMSE expansion for the
point estimators. The second set of contributions were pointwise and uniform distributional
approximations, with and without robust bias correction, for ¢-statistic processes indexed by
x € X, with improvements in rate restrictions and convergence rates. For the case of d =1,
our uniform approximation results rely on a new coupling approach, which delivered seem-
ingly minimal rate restrictions. Furthermore, we apply our general results to three popular
special cases: B-splines, compactly supported wavelets and piecewise polynomials. Finally,
we provide a general purpose R package 1spartition [14].
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SUPPLEMENTARY MATERIAL

Additional technical results, omitted proofs, implementation details and further sim-
ulation results (DOI: 10.1214/19-A0S1865SUPP; .pdf). The SA gives omitted proofs and
additional technical results that may be of independent interest, including pointwise and uni-
form stochastic linearization useful in semiparametric settings (Section SA-4; see, in par-
ticular, Remark SA-4.1), theoretical comparisons between bias correction approaches and a
discussion of the relationship between B-Splines and polynomials. Details on implementa-
tion, specific examples, and further simulation evidence are also reported.
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