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Abstract
We consider the cubic and quintic nonlinear Schrödinger equations (NLS) under the
R
d and T

d energy-supercritical setting. Via a newly developed unified scheme, we
prove the unconditional uniqueness for solutions to NLS at critical regularity for all
dimensions. Thus, together with [19, 20], the unconditional uniqueness problems for
H1-critical and H1-supercritical cubic and quintic NLS are completely and uniformly
resolved at critical regularity for these domains. One application of our theorem is
to prove that defocusing blowup solutions of the type in [59] are the only possible
C([0, T ); Ḣ sc ) solutions if exist in these domains.
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1 Introduction

We consider the nonlinear Schrödinger equation (NLS)

{
i∂t u = −�u ± |u|p−1u, (t, x) ∈ [0, T ] × �d

u(0, x) = u0(x)
(1.1)

where �d = R
d or T

d and ± denotes defocusing/focusing. In Euclidean spaces, the
NLS (1.1) enjoys the scaling invariance

uλ(t, x) = λ
2

p−1 u(λ2t, λx), λ > 0. (1.2)

which preserves the homogeneous Sobolev norm ‖u0‖Ḣ sc where the critical scaling
exponent is given by

sc := d

2
− 2

p − 1
. (1.3)

Accordingly, the initial value problem (1.1) for u0 ∈ Ḣ sc can be classified as energy
subcritical, critical or supercritical depending onwhether the critical Sobolev exponent
sc lies below, equal to or above the energy exponent s = 1.

In this paper, we focus on the cubic and quintic cases under the energy-supercritical
setting (sc > 1) where

sc =
{

d−2
2 f or d ≥ 5, p = 3,

d−1
2 f or d ≥ 4, p = 5.

(1.4)

In the energy-supercritical setting, the global well-posedness of (1.1) is fully open,
away from the classical local well-posedness and L2-supercritical blowup results [5,
30]. But it has been, for a long time, believed that, even under the energy-supercritical
setting, the defocusing version of (1.1) is globally well-posed and the solution scatters
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when � = R, just like the energy-critical and subcritical cases, especially after the
breakthrough [3, 22, 32, 45, 62]1 on the R

d energy-critical cubic and quintic cases.
(See, for example [47].) Surprisingly, the recent work [59] unexpectedly constructed
the first instance of finite time blowup solution for the defocusing energy-supercritical
NLS. Thus it is of interest to know if there could exist a scattering global solution in
Ḣ sc but may not be in C([0, T ); Ḣ sc )

⋂
L p(d+2)/2
t,x when blowups of this type exist.

There are certainly multiple routes for such a problem. But one way is the classical
unconditional uniqueness theorem in Ḣ sc which itself has remained open at least for
T
d . With an unconditional uniqueness result, we know that there could be at most one

solution in C([0, T ); Ḣ sc ) regardless of auxiliary spaces. One application is to prove
that blowup solutions of the type in [59] is the only possible C([0, T ); Ḣ sc ) solution
if exist in these domains. In this paper, we prove the Ḣ sc unconditional uniqueness
for (1.1) as follows and address this issue.

Theorem 1.1 2 Let sc > 1 and p = 3 or 5. There is at most one C([0, T0]; Ḣ sc (�d))3

solution to (1.1).

The fundamental concept of unconditional uniqueness was first raised by Kato in
[43, 44]whenprovingwell-posedness inStrichartz type spaces hadmadevast progress.
InR

d , these unconditional uniqueness problems at critical regularity are usually proved
by showing any solution must agree with the Strichartz solution, if exists, using the
inhomogeneous (retarded) Strichartz estimate. Such a method has been proven to be
successful even in the R

3 quintic energy-critical case, see for example [22]. (This is
a very active field, see for example [1, 29, 34, 50, 54, 60, 61, 69] and the reference
within for work on other dispersive equations along this line.)

However, such arguments for the Euclidean setting are no longer effective if (1.1)
is posed on T

d , as the Strichartz estimate is rather weak in the periodic case. The L2
x

Strichartz estimate does not hold in the periodic case and hence the dual Strichartz
estimate also fails. On the other hand, the well-posedness on T

d is more intricate,
such as using the Xs,b space [2] and the atomic U p and V p spaces [37, 42]. Thus the
unconditional uniqueness problems on T

d under the critical setting are much more
difficult to handle. Nevertheless, a unified method has recently unexpectedly arisen
from the study of the derivation of (1.1) on the T

d case in [36] and under the energy-
critical setting in [19, 20].4

We find that one could use the scheme of [20] to perfectly solve the unconditional
uniqueness problem under the energy-supercritical setting for both R

d and T
d . The

proof comes from the Gross-Pitaevskii(GP) hierarchy, which seems to be weaker than
the NLS analysis, as it originates from the derivation of NLS. However, we will see
that such an argument is also powerful and worthy for further study. Here, we focus on

1 See [23] for a more detailed survey.
2 One could extend the domain �d to more general manifolds, as long as the multilinear estimates which
relies on Fourier analysis and Strichartz estimates in Section 5 hold.
3 We consider Hsc for the T

d case and Ḣ sc for the R
d case as Ḣ sc does not generate much differences

for the T
d case.

4 We mention [36] 1st here and in the related places in the rest of the paper. Even though [19] was posted
on arXiv one month before [36], X. Chen and Holmer were not aware of the unconditional uniqueness
implication of [19] until [36].
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the quintic GP hierarchy, also see [20] for the cubic case. The quintic GP hierarchy is
a sequence

{
γ (k)(t)

}∞
k=1 which satisfies the infinitely coupled hierarchy of equations:

i∂tγ
(k) =

k∑
j=1

[−�x j , γ
(k)] ± b0

k∑
j=1

Trk+1,k+2[δ(x j − xk+1)δ(x j − xk+2), γ
(k+2)] (1.5)

where b0 is some coupling constant, ± denotes defocusing/focusing. Given any solu-
tion u of (1.1), it generates a solution to (1.5) by letting

γ (k) = |u〉〈u|⊗k (1.6)

in operator form or

γ (k)(t, xk; x′
k) =

k∏
j=1

u(t, x j )u(t, x ′
j )

in kernel form where xk = (x1, ..., xk).
The hierarchy approach was first suggested by Spohn [67] for the derivation of NLS

from quantummany-body dynamic. Around 2005, it was Erdös, Schlein, and Yauwho
first rigorously derived the 3D cubic defocusing NLS from a 3D quantum many-body
dynamic in their fundamental papers [24–28]. The proof for the uniqueness of the
GP hierarchy was the principal part and also surprisingly dedicate due to the fact
that it is a system of infinitely many coupled equations over an unbounded number
of variables. With a sophisticated Feynman graph analysis in [25], they proved the
H1-type unconditional uniqueness of the R

3 cubic GP hierarchy. The first series of
ground breaking papers have motivated a large amount of work.

Subsequently in 2007, with imposing an additional a-prior condition on space-
time norm, Klainerman and Machedon [52], inspired by [25, 51], gave an another
proof of the uniqueness of the GP hierarchy in a different space of density matrices
defined by Strichartz type norms. They provided a different combinatorial argument,
the now so-called Klainerman-Machedon (KM) board game argument, to combine the
inhomogeneous terms effectively reducing their numbers and thenderived a space-time
estimate to control these terms. At that time, it was open to prove that the limits coming
from the N -body dynamics satisfy the space-time bound. Nonetheless, [52] has made
the delicate analysis of the GP hierarchy approachable from the perspective of PDE.
Later, Kirkpatrick, Schlein, and Staffilani [48] obtained the KM space-time bound
via a simple trace theorem in both R

2 and T
2 and derived the 2D cubic defocusing

NLS from the 2D quantum many-body dynamic. Such a scheme also motivated many
works [8, 13, 16, 18, 31, 63, 65, 68] for the uniqueness of GP hierarchies.

Later in 2008, T. Chen and Pavlović [8] initiated the study of the quintic GP hier-
archy and provided a proof for the quintic KM board game argument, which laid the
foundation for the further study of the quintic GP hierarchy. They also showed that the
2D quintic case, which is usually considered the same as the 3D cubic case since they
share the same scaling criticality, satisfied the KM space-time bound while it was still
open for the 3D cubic case at that time. To attack the problem, they also considered
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the well-posedness theory with more general data in [7, 9, 11]. (See also [12, 56–58,
65, 66]). Then in 2011, they proved that the 3D cubic KM space-time bound holds for
the defocusing β < 1/4 case in [10]. The result was quickly improved to β < 2/7
by X. Chen in [14] and then extended to the almost optimal case, β < 1, by X. Chen
and Holmer in [15, 17]. Around the same period of time, Gressman, Sohinger, and
Staffilani [31] studied the uniqueness of the GP hierarchy on T

3 and proved that the
sharp space-time estimate on T

3 needed an additional ε derivatives than the R
3 setting

in which one derivative is needed. Later, Herr and Sohinger generalized this fact to
more general cases in [35].

In 2013, by introducing quantum de Finetti theorem from [55], T. Chen, Hainzl,
Pavlović and Seiringer [6] provided a simplified proof of the L∞

T H1
x -type 3D cubic

uniqueness theorem in [25]. With the quantum de Finetti theorem, one can replace
the space-time estimates by Sobolev multilinear estimates. The scheme in [6], which
consists of the KM board game argument, the quantum de Finetti theorem and the
Sobolev multilinear estimates, is robust to deal with such uniqueness problems. Fol-
lowing the scheme in [6], Sohinger [64] solved the aforementioned ε-loss problem for
the defocusing T

3 cubic case. In [40], Hong, Taliaferro, and Xie used the scheme to
obtain unconditional uniqueness theorems inR

d , d = 1, 2, 3, with regularities match-
ing the NLS analysis. Then in [41], they proved H1 small solution uniqueness for the
R
3 quintic case. For other refined uniqueness theorems, see also [21].
The uniqueness analysis of GP hierarchy started to unexpectedly yield new NLS

results with regularity lower than the NLS analysis all of a sudden since [36] and [19,
20]. In [36], with the scheme in [6], Herr and Sohinger discovered new unconditional
uniqueness results for the cubic NLS on T

d , which covered the full scaling-subcritical
regime for d ≥ 4. (See also the later work [49] using NLS analysis.)

On the other hand, the T
3 quintic energy-critical case at H1 regularity was not

known until recently [19]. By discovering the new hierarchical uniform frequency
localization (HUFL) property for the GP hierarchy, X. Chen and Holmer established
a new H1-type uniqueness theorem for the T

3 quintic energy-critical GP hierarchy.
The new uniqueness theorem, though neither conditional nor unconditional for the GP
hierarchy implies the H1 unconditional uniqueness result for the T

3 quintic energy-
critical NLS. Then in [20], they proved the unconditional uniqueness for the T

4 cubic
energy-critical case by working out new combinatorics and extending the KM board
game argument. As the previously used Sobolev multilinear estimates fail on T

4,
they develop the new combinatorics which enable the application of U -V multilinear
estimates, which is indeed weaker than Sobolev multilinear estimates. The scheme
in [20], which effectively combines the quantum de Finetti theorem, the U -V space
techniques, the multilinear estimates proved by using the scale invariant Strichartz
estimates / l2-decoupling theorem and the HUFL properties, provides a unified proof
of the large solution uniqueness.
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2 Proof of theMain Theorem

2.1 Outline of the Proof

Our proof will focus on the T
d case, as it works the same for R

d .5 Our argument
follows the scheme of [20] where an extended version of KM board game argument
which is compatible with U -V estimates was discovered. We summarize our proof
below, especially for the quintic case.

To conclude the uniqueness for NLS (1.1), one usually proves that

w(t) = u1(t, x) − u2(t, x) ≡ 0

where u1 and u2 are two solutions to (1.1) with the same initial datum. Instead, we
turn to prove that

γ (k)(t) :=
k∏
j=1

u1(t, x j )u1(t, x
′
j ) −

k∏
j=1

u2(t, x j )u2(t, x
′
j ), (2.1)

which is a solution to (1.5) with zero initial datum, vanishes identically on [0, T0].
The formulation (2.1) endows the NLS (1.1) with an extra linear structure via the GP
hierarchy so that one could iteratively use multilinear estimates to yield smallness,
instead of constructing a closed inequality in some Strichartz space.

Hence, we first prove Theorem 2.2, which is a uniqueness theorem for the GP
hierarchy, and then Theorem 1.1 comes as a corollary of Theorem 2.2 and Lemma 2.7.
As Theorem 2.2 requires the uniform in time frequency localization (UTFL) condition,
we prove that every C([0, T0]; Hsc ) solution to (1.1) satisfies UTFL condition by
Lemma 2.7. Thus we would have established Theorem 1.1 once we have proved
Theorem 2.2.

The GP hierarchy argument does not require the dual Strichartz estimate or the
existence of a Strichartz solution. However, we have to carefully combine and estimate
the (2k − 1)!!2k summands in iterated Duhamel expansions. More precisely,

γ (1)(t1) =
∑

(μ,sgn)

∫
t1≥t3≥···≥t2k+1

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1 (2.2)

with t2k+1 = (t3, t5, ..., t2k+1) and

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1) =U (1)(t1 − t3)B

sgn(2)
μ(2);2,3U

(3)(t3 − t5)B
sgn(4)
μ(4);4,5

· · ·U (2k−1)(t2k−1 − t2k+1)B
sgn(2k)
μ(2k);2k,2k+1γ

(2k+1)(t2k+1)

(2.3)

whereU (2 j+1)(t) is the propagator and B±
i;2 j,2 j+1 is the collapsing operator, and thus

there are (2k − 1)!!2k terms in γ (1)(t1). Hence handling the (2k − 1)!!2k terms in the

5 By using the classical methods, we also give a more usual proof for the R
d case at the appendix.
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critical setting is the main difficulty. Now, we divide the proof of Theorem 2.2 into
two main parts.

Part 1: The Estimate Part. Usually, one employs the original KM board game argu-
ment to sort the (2k − 1)!!2k summands of γ (1) into a sum of KM upper echelon
forms with a time integration domain, which is a union of a very large number of high
dimensional simplexes. As Sobolev type multilinear estimates work regardless of the
time integration domain, one can iteratively use them to yield smallness. Nevertheless,
if we have some combinatorics which is compatible with space-time type multilinear
estimates, we could exploit the multilinear estimates inU -V spaces. Indeed, based on
the combinatorics part (Part 2), we can write

γ (1)(t1) =
∑

re f erence (μ̂, ˆsgn)

∫
TC (μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1 (2.4)

where the number of reference pairs in Definition 4.22 can be controlled by 16k ,
which is substantially smaller than the original (2k − 1)!!2k . More importantly, the
time integration domain TC (μ̂, ˆsgn) is compatible with space-time type multilinear
estimates. Hence it comes down to how to estimate∫

TC (μ,sgn)

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1. (2.5)

In Section 3.1, we start with a Duhamel tree to represent the Duhamel expansion.
Then in Section 3.2, we introduce the time integration domain TC (μ, sgn) which is
compatible with space-time type multilinear estimates. Subsequently in Section 3.3,
after giving a short introduction to U -V spaces, we show how to apply the U -V
multilinear estimates to estimate (2.5). We will use the following U -V multilinear
estimates.

∥∥∥ ∫ t

a
ei(t−s)�(̃u1ũ2ũ3ũ4ũ5)ds

∥∥∥
Xs

≤ C‖u1‖Xs ‖u2‖Xsc ‖u3‖Xsc ‖u4‖Xsc ‖u5‖Xsc , (2.6)

∥∥∥ ∫ t

a
ei(t−τ)�(̃u1ũ2ũ3ũ4ũ5)dτ

∥∥∥
Xs

≤ C‖u1‖Xs

(
T

1
2(d+3) M

2d+3
3(d+3)
0 ‖P≤M0u2‖Xsc + ‖P>M0u2‖Xsc

)
‖u3‖Xsc ‖u4‖Xsc ‖u5‖Xsc ,

(2.7)

where ũ ∈ {u, u} and s ∈ {sc, sc − 2}. The proof highly relies on the scale invari-
ant Strichartz estimates / l2-decoupling theorem [4, 46] and hence is postponed to
Section 5. Compared with Sobolev multilinear estimates, the proof of U -V multilin-
ear estimates is simpler and less technical. (Although the representation (2.4) is also
compatible with Xs,b multilinear estimates, they need an additional ε derivatives in
time and hence cannot be used to deal with the critical problem.) On the one hand, to
prove Sobolev multilinear estimates, the L∞

T H−s space, which is usually used in the
duality argument, is an endpoint case in Littlewood-Paley theory and does not carry
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any Strichartz regularity. On the other hand, U -V techniques have been proven to be
successful and adaptive for NLS in many different general domains.

Together with assumptions in Theorem 2.2, we are able to prove the following key
estimate.

∥∥∥〈∇x1〉sc−2〈∇x ′
1
〉sc−2

∫
TC (μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1

∥∥∥
L∞
T L2

x1
L2
x ′1

≤ δk

(2.8)

where δ(T , ε,C0, M0) can be sufficiently small by properly choosing these parame-
ters. More specifically, the smallness comes from the UTFL property, that is,

‖〈∇〉sc P>M(ε)u‖L∞[0,T0]L2
x

≤ ε.

By iteratively using (2.7) at least 45k times, we obtain the factor of smallness as follows

(
T

1
2(d+3) M

2d+3
2(d+3)
0 C0 + ε

) 4
5 k

.

Thus, we are left to prove the representation (2.4), especially, the compatibility part.

Part 2: The Combinatorics Part. In Section 4, by working out new combinatorics
to reconstruct the quintic KM board game argument from the ground up, we could
represent γ (1) in the form of (2.4), which is compatible with the U -V multilinear
estimates. The combinatorics analysis is independent of themultilinear estimates or the
regularity settings, so it could be applied for more general cases. Such a representation
(2.4), which enables the application of U -V multilinear estimates, would also be
helpful for further study of GP hierarchy.

In Section 4.1,wefirst give a brief reviewof the quinticKMboard game argument as
in [8, 52]. Then, we give an introduction to an admissible tree diagram representation
used to represent collapsing map pairs. For example6, given a collapsing map pair
(μ1, sgn1) as follows,

2 j 2 4 6 8 10
μ1 1 1 1 3 6
sgn1 + + − − +

we generate the following trees in turn by Algorithm 6.

6 We will not use this example again in the paper, as we can generate as many as we want.
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1

2+

4+ 8−

1

2+

4+ 8−

6−

1

2+

4+ 8−

6−

10+

Such a tree diagram reprentation could provide a more elaborated proof of the original
quintic KM board game argument as well.

In Section 4.2, we give the signed Klainerman-Machedon acceptable moves in
Chen-Pavlović format (signed acceptable moves), which sorts (2k−1)!!2k collapsing
map pairs (μ, sgn) into various equivalence classes, the number of which can be
controlled by 16k . Moreover, the signed acceptable moves preserve the signed tree
structures. Here are all the collapsingmap pairs and the corresponding trees equivalent
to (μ1, sgn1).

2 j 2 4 6 8 10
μ2 1 1 1 6 3
sgn2 + + − + −

1

2+

4+ 10−

6−

8+

2 j 2 4 6 8 10
μ3 1 1 3 1 8
sgn3 + + − − +

1

2+

4+ 6−

8−

10+

2 j 2 4 6 8 10
μ4 1 3 1 1 8
sgn4 + − + − +

1

2+

6+ 4−

8−

10+

(Notice that the above trees have the same skeleton.)
However, extending to signed move is not sufficient for our proposes. To be com-

patible with the U -V multilinear estimates, we have to further combine the integrals
and enlarge the time integration domain. For this purpose, we need the wild moves
defined by (4.18). The wild moves, unlike the signed acceptable moves, do change
the tree structure. However, KM upper echelon forms are not invariant under the wild
moves.
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Thus in Section 4.3, we prove that there exists a unique special form, for which we
call the tamed form, in each equivalent class and hence arrive at

γ (1)(t1) =
∑

(μ∗,sgn∗) tamed

∫
TD(μ∗)

J (2k+1)
μ∗,sgn∗(γ

(2k+1))(t1, t2k+1)dt2k+1 (2.9)

where TD(μ∗) can be read out from the corresponding tree. Here, (μ1, sgn1) is the
unique tamed form in the equivalent class {(μi , sgni )}4i=1.

Subsequently in Section 4.4,we exploit wild moves for a further reduction of (2.9),
which keeps the tamed form invariant, to sort the tamed forms into tamed classes. All
the tamed forms and trees wildly relatable to (μ1, sgn1) are shown as follows.

2 j 2 4 6 8 10
μ1 1 1 1 3 6
sgn1 + + − − +

1

2+

4+ 8−

6−

10+

2 j 2 4 6 8 10
μ5 1 1 1 3 4
sgn5 + − + − +

1

2+

4− 8−

6+ 10+

2 j 2 4 6 8 10
μ6 1 1 1 5 2
sgn6 − + + − +

1

2−

4+

8−6+

10+

(Notice the changes on the tree structures under the wild move.)
Finally, in Section 4.5, we prove that, given a tamed class, there exists a unique

reference form representing the tamed class, and the time integration domain for the
whole tamed class can be directly read out from the reference form. Moreover, the
time integration domain is compatible. For instance, as (μ1, sgn1) is also the unique
reference form, we could directly read TC (μ1, sgn1) out as follows

TC (μ1, sgn1) = {t1 ≥ t3, t3 ≥ t5, t7 ≥ t11, t3 ≥ t9} ,

which is indeed compatible withU -V multilinear estimates. (See Example 3.7 on how
to estimate.) Hence, we arrive at the representation (2.4).

At the end, we have justified the representation (2.4) and the key estimate (2.8) is
now valid. Hence, we have

∥∥∥〈∇x1〉sc−2〈∇x ′
1
〉sc−2γ (1)(t1)

∥∥∥
L∞
T L2

x1
L2
x ′1

≤ (16δ)k → 0 as k → ∞,

which implies that γ (1) ≡ 0 which finishes the proof of Theorem 2.2.
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To sum up, we prove unconditional uniqueness for solutions to the R
d and T

d

energy-supercritical cubic and quintic NLS at critical regularity for all dimensions via
a newly developed unified scheme. Thus, together with [19, 20], the unconditional
uniqueness problems for H1-critical and H1-supercritical cubic and quintic NLS are
completely and uniformly resolved at critical regularity for these domains. The novelty
of this paper is that our procedure works uniformly in all dimensions regardless of the
domain.

2.2 The Uniqueness for GP Hierarchy

In this section, we first prove Theorem 2.2, which is a uniqueness theorem for the GP
hierarchy. Theorem 1.1 then comes as a corollary of Theorem 2.2 and Lemma 2.7.
Here, we consider theT

d casewith the inhomogeneous norm Hsc , as the homogeneous
norm Ḣ sc is special for the R

d case.

Definition 2.1 ([6]) A nonnegative trace class symmetric operator sequence � ={
γ (k)

}∞
k=1, is called admissible if for all k, one has

Tr γ (k) = 1, γ (k) = Trk+1 γ (k+1). (2.10)

Here, a trace class operator is called symmetric, if, written in kernel form

γ (k)(x1, ..., xk; x ′
1, ..., x

′
k) = γ (k)(x ′

1, ..., x
′
k; x1, ..., xk),

γ (k)(xπ(1), ..., xπ(k); x ′
π(1), ..., x

′
π(k)) = γ (k)(x1, ..., xk; x ′

1, ..., x
′
k),

for all permutations π on {1, 2, ..., k}. Let Hs ≡ Hs(�d) denote the set of all sym-
metric operator sequences

{
γ (k)

}∞
k=1 of density matrices such that, for each k ∈ N

⎛
⎝ k∏

j=1

〈∇x j 〉sc
⎞
⎠ γ (k)

⎛
⎝ k∏

j=1

〈∇x j 〉sc
⎞
⎠ ∈ L1

k,

where L1
k denotes the space of trace class on L2(�dk × �dk).

Theorem 2.2 Let � = {γ (k)
} ∈⊕k≥1 C([0, T0];Hsc

k ) be a solution to (1.5) in [0, T0]
in the sense that

(1) � is admissible in the sense of Definition 2.1.
(2) � satisfies the kinetic energy condition that ∃ C0 > 0 such that

sup
t∈[0,T0]

Tr

⎛
⎝ k∏

j=1

〈∇x j 〉sc
⎞
⎠ γ (k)(t)

⎛
⎝ k∏

j=1

〈∇x j 〉sc
⎞
⎠ ≤ C2k

0 . (2.11)
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Then there is a threshold η(C0) > 0 such that the solution is unique in [0, T0]
provided that

sup
t∈[0,T0]

Tr

⎛
⎝ k∏

j=1

P j
>M 〈∇x j 〉sc

⎞
⎠ γ (k)(t)

⎛
⎝ k∏

j=1

P j
>M 〈∇x j 〉sc

⎞
⎠ ≤ η2k (2.12)

for some frequency M,which is allowed to depend on γ (k) butmust apply uniformly
on [0, T0]. Here, P j

>M is the projection onto frequencies > M acting on functions
of x j .

By letting γ (k) = |u〉〈u|⊗k , we could obtain Corollary 2.3, which is a special case
of Theorem 2.2 as follows.

Corollary 2.3 Given an initial datum u0 ∈ Hsc , there is at most one C([0, T0]; Hsc )

solution to (1.1) satisfying the following conditions

(1) There is a C0 > 0 such that

sup
t∈[0,T0]

‖u(t)‖Hsc ≤ C0

(2) There is some frequency M such that

sup
t∈[0,T0]

‖P>Mu(t)‖Hsc ≤ η(C0)

for the threshold η(C0) > 0 concluded in Theorem 2.2.

Before the proof, we set up some notations. We rewrite γ (k) in Duhamel form

γ (k)(t) = U (k)(t)γ (k)(0) ∓ i
∫ t

0
U (k)(t − s)B(k+2)γ (k+2)(s)ds (2.13)

where U (k)(t) =∏k
j=1 e

it(�x j −�x ′j ) and

B(k+2)γ (k+2)

=
k∑
j=1

Bj;k+1,k+2γ
(k+2)

=
k∑
j=1

(
B+
j;k+1,k+2 − B−

j;k+1,k+2

)
γ (k+2)

=
k∑
j=1

Trk+1,k+2

(
δ(x j − xk+1)δ(x j − xk+2)γ

(k+2)

−γ (k+2)δ(x j − xk+1)δ(x j − xk+2)
)

.
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In the above, products are interpreted as the compositions of operators. For example,
in kernels,

Trk+1,k+2

(
γ (k+2)δ(x j − xk+1)δ(x j − xk+2)

)
(xk; x′

k)

=
∫

γ (k+2)(xk , x
′
k+1, x

′
k+2; x′

k , x
′
k+1, x

′
k+2)δ(x

′
j − x ′

k+1)δ(x
′
j − x ′

k+2)dx
′
k+1dx

′
k+2

where xk = (x1, ..., xk).

We will prove that if �1 =
{
γ

(k)
1

}∞
k=1

and �2 =
{
γ

(k)
2

}∞
k=1

are two solutions

to (2.13), with the same initial datum and assumptions in Theorem 2.2, then � ={
γ (k) = γ

(k)
1 − γ

(k)
2

}
is identically zero. We start using a representation of � given

by the quantum de Finetti theorem.

Lemma 2.4 (quantum de Finetti Theorem [6, 55]) 7 Let
{
γ (k)

}∞
k=1 be admissible. Then

there exists a probability measure dμt (φ) supported on the unit sphere of L2(�d) such
that

γ (k)(t) =
∫

|φ〉〈φ|⊗kdμt (φ).

ByLemma2.4, there exist dμ1,t and dμ2,t representing the two solutions�1 and�2.
Then the Chebyshev argument as in [6,Lemma 4.5] turns the assumptions in Theorem
2.2 to the support property that dμ j,t is supported in the set

S =
{
φ ∈ S(L2(�d )) : ‖P>M 〈∇〉scφ‖L2 ≤ ε

}⋂{
φ ∈ S(L2(�d )) : ‖φ‖Hsc ≤ C0

}
.

(2.14)

Let the signed measure dμt = dμ1,t − dμ2,t , we have

γ (k)(t) =
(
γ

(k)
1 − γ

(k)
2

)
(t) =

∫
|φ〉〈φ|⊗kdμt (φ) (2.15)

and dμt is supported in the set S defined in (2.14).
It suffices to prove γ (1)(t) = 0 as the proof is the same for the general k case. For

notational convenience, we set the ±i in (2.13) to be 1. Since (2.13) is linear, � is a
solution to (2.13) with zero initial datum. Thus after iterating (2.13) k times, we can
write

γ (1)(t1) =
∫ t1

0

∫ t3

0
· · ·
∫ t2k−1

0
J (2k+1)(γ (2k+1))(t1, t2k+1)dt2k+1 (2.16)

where

7 We in fact do not need Lemma 2.4 to prove Theorem 1.1, but it is the origin of the ideas of this proof.
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J (2k+1)(γ (2k+1))(t1, t2k+1)

= U (1)(t1 − t3)B
(3)U (3)(t3 − t5)B

(5)

· · ·U (2k−1)(t2k−1 − t2k+1)B
(2k+1)γ (2k+1)(t2k+1) (2.17)

with t2k+1 = (t3, t5, ..., t2k+1).
We notice that there are (2k − 1)!!2k summands inside γ (1)(t1). Exactly,

γ (1)(t1) =
∑

(μ,sgn)

∫
t1≥t3≥···≥t2k+1

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1, (2.18)

where

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1) =U (1)(t1 − t3)B

sgn(2)
μ(2);2,3U

(3)(t3 − t5)B
sgn(4)
μ(4);4,5

· · ·U (2k−1)(t2k−1 − t2k+1)B
sgn(2k)
μ(2k);2k,2k+1γ

(2k+1)(t2k+1)

(2.19)

with sgnmeaning the signature array (sgn(2), sgn(4), ..., sgn(2k)) and Bsgn(2 j)
μ(2 j);2 j,2 j+1

stands for B+
μ(2 j);2 j,2 j+1 or B

−
μ(2 j);2 j,2 j+1 depending on the sign of the 2 j-th signature

element. Here, {μ} is a set of maps from {2, 4, ..., 2k} to {1, 2, ..., 2k − 1} satisfying
that μ(2) = 1 and μ(2 j) < 2 j for all j .

Now, we get into the proof, which spans Section 3-Section 5, so we first state two
propositions which are the main results in Section 3 and Section 4.

In Section 3, the main result is the following proposition.

Proposition 2.5 Let γ (k)(t) = ∫ |φ〉〈φ|⊗kdμt (φ). Then we have

∥∥∥〈∇x1〉sc−2〈∇x ′
1
〉sc−2

∫
TC (μ,sgn)

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1

∥∥∥
L∞
T L2

x1
L2
x ′1

≤ Ck
∫ T

0

∫
‖φ‖

16
5 k+2

H
d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

) 4k
5

d|μt2k+1 |(φ)dt2k+1

where T (μ, sgn) is the compatible time integration domain defined by (3.2).

In Section 4, our goal is to represent γ (1) as follows.

Proposition 2.6 We can write

γ (1)(t1) =
∑

re f erence (μ̂, ˆsgn)

∫
TC (μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1 (2.20)

where the number of reference pairs in Definition 4.22 can be controlled by 16k , which
is substantially smaller than the original (2k−1)!!2k .More importantly, the summands
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are endowed with the time integration domain TC (μ̂, ˆsgn), which is compatible with
the estimate part in Section 3.

With the above two propositions, we could complete the proofs of Theorem 2.2 and
Corollary 2.3.

Proof of Theorem 2.2 By Proposition 2.6, we can write

γ (1)(t1) =
∑

re f erence (μ̂, ˆsgn)

∫
TC (μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1

where the number of reference pairs can be controlled by 16k . Then we have

∥∥∥〈∇x1〉sc−2〈∇x ′
1
〉sc−2γ (1)(t1)

∥∥∥
L∞
T L2

x1
L2
x ′1

≤
∑

re f erence (μ̂, ˆsgn)

∥∥∥〈∇x1〉sc−2〈∇x ′
1
〉sc−2

∫
TC (μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))

(t1, t2k+1)dt2k+1

∥∥∥
L∞
T L2

x1
L2
x ′1

By Proposition 2.5,

≤(16C)k
∫ T

0

∫
‖φ‖

16
5 k+2
Hsc

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖Hsc + ‖P>M0φ‖Hsc

) 4k
5

d|μt2k+1 |(φ)dt2k+1

Put in the support property (2.14),

≤2T (16C)kC
16
5 k+2
0

(
T

1
2(d+3) M

2d+3
2(d+3)
0 C0 + ε

) 4
5 k

≤2TC2
0

(
T

1
2(d+3) M

2d+3
2(d+3)
0 C2C5

0 + C2C4
0ε

) 4
5 k

for all k. Select ε small enough such that C2C4
0ε < 1

4 and then select T small enough

such that T
1

2(d+3) M
2d+3
2(d+3)
0 C2C5

0 < 1
4 , we thus have for T small enough,

∥∥∥〈∇x1〉sc−2〈∇x ′
1
〉sc−2γ (1)(t1)

∥∥∥
L∞
T L2

x1
L2
x ′1

≤ 2TC2
0

(
1

2

)k

→ 0 as k → ∞.

We can then bootstrap to fill the whole [0, T0] interval. ��
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Proof of Corollary 2.3 Given the solution μ of (1.1), it generates a solution to the GP
hierarchy (1.5) taking the following form

⎧⎨
⎩

k∏
j=1

u(t, x j )u(t, x ′
j )

⎫⎬
⎭

∞

k=1

. (2.21)

Thus, one could just apply the proof of Theorem 2.2 to the special case

γ (k)(t) =
∫

|φ〉〈φ|⊗kdμt (φ) =
k∏
j=1

u1(t, x j )u1(t, x
′
j ) −

k∏
j=1

u2(t, x j )u2(t, x
′
j ),

where u1 and u2 are two solutions to (1.1) and μt is the signed measure δu1,t − δu2,t .
Especially, when k = 1, we have proved that

u1(t, x)u1(t, x
′) = u2(t, x)u2(t, x

′), (2.22)

which directly implies the uniqueness for the trivial solution u ≡ 0. Then by Lemma
A.1 which concludes that the phase difference is zero, we complete the proof. ��
As Corollary 2.3 requires condition (2), uniform in time frequency (UTFL) condition,
we prove that every C([0, T0]; Hsc ) solution to (1.1) satisfies UTFL condition by
Lemma 2.7. Immediately, Theorem 1.1 follows from Corollary 2.3 and Lemma 2.7.

Lemma 2.7 Let u be a C([0, T0]; Hsc ) solution, then u satisfies uniform in time fre-
quency localization (UTFL) , that is, for each ε > 0 there exists M(ε) such that

‖〈∇〉sc P>M(ε)u‖L∞[0,T0]L2
x

≤ ε. (2.23)

Proof We compute

∣∣∂t‖〈∇〉sc P≤Mu‖2L2
x

∣∣ =2
∣∣∣ Im ∫ P≤M 〈∇〉scu · P≤M 〈∇〉sc (|u|p−1u)dx

∣∣∣
≤2‖P≤M 〈∇〉scu‖L2‖P≤M 〈∇〉sc (|u|p−1u)‖L2 .

Noting that ‖P≤M 〈∇〉s f ‖L2 � Ms‖P≤M f ‖L2 , then by Sobolev embedding A.3 and
(A.11), we have

∣∣∂t‖〈∇〉sc P≤Mu‖2L2
x

∣∣ �2M2‖P≤M 〈∇〉scu‖L2‖P≤M 〈∇〉sc−2(|u|p−1u)‖L2

�2M2‖u‖p+1
Hsc .

Hence there exists δ′ > 0 such that for any t0 ∈ [0, T0], it holds that for t ∈ (t0 −
δ′, t0 + δ′) ∩ [0, T ],

∣∣∣‖〈∇〉sc P≤Mu(t)‖2L2
x
− ‖〈∇〉sc P≤Mu(t0)‖2L2

x

∣∣∣ ≤ 1

16
ε2. (2.24)
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On the other hand, since u ∈ C([0, T0]; Hsc ), for each t0, there exists δ′′ > 0 such
that for any t ∈ (t0 − δ′′, t0 + δ′′) ∩ [0, T0],

∣∣∣‖〈∇〉scu(t)‖2L2
x
− ‖〈∇〉scu(t0)‖2L2

x

∣∣∣ ≤ 1

16
ε2. (2.25)

Let δ = min
(
δ′, δ′′). Then we have that for any t ∈ (t0 − δ, t0 + δ) ∩ [0, T0],

∣∣∣‖〈∇〉sc P>Mu(t)‖2L2
x
− ‖〈∇〉sc P>Mu(t0)‖2L2

x

∣∣∣ ≤ 1

4
ε2.

For each t ∈ [0, T0], there exists Mt such that

‖〈∇〉sc P>Mt u(t)‖L2
x

≤ 1

2
ε.

By the above, there exists δt > 0 such that on (t − δt , t + δt ) ∩ [0, T0], we have

‖〈∇〉sc P>Mt u‖L∞
(t−δt ,t+δt )∩[0,T0]L2

x
≤ ε.

Since the collection of interval (t − δt , t + δt ) ∩ [0, T0], as t ranges over [0, T0], is an
open cover of [0, T0]. By compactness, we might as well assume that

(t1 − δt1 , t1 + δt1) ∩ [0, T0], ..., (tJ − δtJ , tJ + δtJ ) ∩ [0, T0]

be a finite open cover of [0, T0]. Letting

M = (Mt1 , ..., MtJ

)
,

we have established (2.23). ��

3 Estimates for the Compatible Time Integration Domain

3.1 Duhamel Expansion and Duhamel Tree

We start the analysis of the Duhamel expansions. We will create a Duhamel tree
(we write D-tree for short) and show how to obtain the Duhamel expansion J (2k+1)

μ,sgn
from the D-tree. At first, we present an algorithm to generate a Duhamel tree from a
collapsing map pair (μ, sgn) and then show this by an example. Subsequently, we are
able to calculate the Duhamel expansion by a general algorithm. Finally, we exhibit
an example by employing the above algorithms.
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Algorithm 1 (Duhamel Tree)

(1) Let D(0) be a starting node in the D-tree. Find the pair of indices l and r so that
l ≥ 1, r ≥ 1 and

μ(2l) = 1, sgn(2l) = +,

μ(2r) = 1, sgn(2r) = −,

and moreover l and r are the minimal indices for which the above equalities hold.
Then place D(2l) or D(2r) as the left or right child of D(0) in the D-tree. If there is
no such l or r , place F1,+ or F1,− as the left or right child of D(0) in the D-tree.

(2) Set counter j = 1.
(3) Given j , find the indices {ki }5i=1 so that ki > j and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ(2k1) = μ(2 j), sgn(2k1) = sgn(2 j),

μ(2k2) = 2 j, sgn(2k2) = +,

μ(2k3) = 2 j, sgn(2k3) = −,

μ(2k4) = 2 j + 1, sgn(2k4) = +,

μ(2k5) = 2 j + 1, sgn(2k5) = −,

(3.1)

and ki is theminimal index forwhich the corresponding equalities hold. Then place
D(2ki ) as the i-th child of D(2 j) in the D-tree. If there is no such k1/k2/k3/k4/k5,
then place Fμ(2 j),sgn(2 j)/F2 j,+/F2 j,−/F2 j+1,+/F2 j+1,− as the i-th child of D(2 j)

in the D-tree.
(4) If j = k, then stop, otherwise set j = j + 1 and go to step (3).

Example 3.1 Let us work with the following example

2 j 2 4 6 8 10 12 14
μ(2 j) 1 1 1 2 3 6 6
sgn(2 j) + + − − + + −

D(0)

D(2) D(6)

Let D(0) be a starting node in the D-tree, so we need
to find the minimal l ≥ 1, r ≥ 1 such that μ(2l) =
1, sgn(2l) = + and μ(2r) = 1, sgn(2r) = −. In
the case, it is 2l = 2 and 2r = 6 so we put D(2) and
D(6) as left and right children of D(0), respectively,
in the D-tree as shown in the left.
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D(0)

D(2)

D(4) F2,+ D(8) D(10) F3,−

D(6)

Now we start with counter j = 1 so we need to
find the minimal ki > j such that

μ(2k1) = μ(2), sgn(2k1) = sgn(2),

μ(2k2) = 2, sgn(2k2) = +,

μ(2k3) = 2, sgn(2k3) = −,

μ(2k4) = 3, sgn(2k4) = +,

μ(2k5) = 3, sgn(2k5) = −.

We find 2k1 = 4, 2k3 = 8, 2k4 = 10 and there
is no such k2 and k5. Thus,
we put D(4)/F2,+/D(8)/D(10)/F3,− as the i-th
child of D(2) (shown at left).

Next, the counter turns to j = 2 andwe find that there is no ki satisfying (3.1), sowe
put F1,+/F4,+/F4,−/F5,+/F5,− as the i-th child of D(4). Then we move to j = 3 and
find that 2k2 = 12 and 2k3 = 14 satisfy (3.1) so we put F1,−/D(12)/D(14)/F7,+/F7,−
as the i-th child of D(6) shown as follows.

D(0)

D(2)

D(4)

F1,+ F4,+ F4,− F5,+ F5,−

F2,+ D(8) D(10) F3,−

D(6)

F1,− D(12) D(14) F7,+ F7,−

Finally, by repeating the above step, we jump to the full D-tree shown as follows
where we use F to replace Fi,± for short.

Next, we present the following algorithm to obtain the Duhamel expansion from
the D-tree. For convenience, let U± j := e±i t j�.

D(0)

D(2)

D(4)

F F F F F

F D(8)

F F F F F

D(10)

F F F F F

F

D(6)

F D(12)

F F F F F

D(14)

F F F F F

F F

Fig. 1 Duhamel Tree
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Algorithm 2 (From D-tree to Duhamel expansion)

(1) Set Fi,+ = U−2k−1φ, Fi,− = U−2k−1φ for i = 1, 2, ..., 2k. If sgn(2k) = +, set

D(2k)(t2k+1) = U−2k−1(|φ|4φ),

if sgn(2k) = −, set

D(2k)(t2k+1) = U−2k−1(|φ|4φ).

(2) Set counter l = k − 1.
(3) Given l, if sgn(2l) = +, set

D(2l)(t2l+1) = U−2l−1

[
(U2l+1C1) (U2l+1C2)

(
U2l+1C3

)
(U2l+1C4)

(
U2l+1C5

)]
if sgn(2l) = −, set

D(2l)(t2l+1) = U−2l−1
[(
U2l+1C1

) (
U2l+1C2

) (
U2l+1C3

) (
U2l+1C4

) (
U2l+1C5

)]
where Ci is the i-th child of D(2l) in the D-tree.

(4) Set l = l − 1. If l = 0, set

D(0)(t1, t2k+1) = (U1Cl)(x1)(U1Cr )(x
′
1),

where Cl /Cr is the left/right child of D(0) in the D-tree, and stop, otherwise go to
step (3).

Proposition 3.2 By Algorithm 2 (From D-tree to Duhamel expansion), we have

J (2k+1)
μ,sgn (|φ〉〈φ|⊗(2k+1))(t1, t2k+1) = D(0)(t1, t2k+1).

Proof It follows from Algorithms 1 and 2. ��
Example 3.3 We calculate the Duhamel expansion in Example 3.1. By Algorithm 1
and 2, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(14)(t15) = U−15(|φ|4φ),

D(12)(t13, t15) = U−13(|U13,15φ|4U13,15φ),

D(10)(t11, t15) = U−11(|U11,15φ|4U11,15φ),

D(8)(t9, t15) = U−9(|U9,15φ|4U9,15φ),

D(6)(t7, t13, t15) = U−7

[
(U7,15φ)(U7D(12))(U7D(14))(U7,15φ)(U7,15φ)

]
,

D(4)(t5, t15) = U−5(|U5,15φ|4U5,15φ),

D(2)(t3, t5, t9, t11, t15) = U−3

[
(U3D(4))(U3,15φ)(U3D(8))(U3D(10))(U3,15φ)

]
,

D(0)(t1, t15) = (U1D(2))(U1D(6)).

where Ui, j := UiU− j .
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On the one hand, expanding D(0)(t1, t15) gives the Duhamel expansion

D(0)(t1, t15)

= (U1D
(2))(U1D(6))

=
(
U1,3

[
(U3D

(4))(U3,15φ)(U3D(8))(U3D
(10))(U3,15φ)

])

·
(
U1,7

[
(U7,15φ)(U7D(12))(U7D(14))(U7,15φ)(U7,15φ)

])

= U1,3

[
(U3,5(|U5,15φ|4U5,15φ))(|U3,15φ|2)(U3,9(|U9,15φ|4U9,15φ))(U3,11(|U11,15φ|4U11,15φ))

]
·U1,7

[
(|U7,15φ|2U7,15φ)(U7,13(|U13,15φ|4U13,15φ))(U7,15(|φ|4φ))

]

On the other hand, we calculate J (15)
μ,sgn(|φ〉〈φ|⊗15)(t1, t2k+1) by step. Note that

J (15)
μ,sgn(|φ〉〈φ|⊗15)(t1, t15)

= U (1)
1,3B

+
1;2,3U

(3)
3,5B

+
1;4,5U

(5)
5,7B

−
1;6,7U

(7)
7,9B

−
2;8,9U

(9)
9,11

B+
3;10,11U

(11)
11,13B

+
6;12,13U

(13)
13,15B

−
6;14,15(|φ〉〈φ|⊗15).

At first,

U (13)
13,15B

−
6;14,15(|φ〉〈φ|⊗15) =(U13,15φ)(x6)(U13,15(|φ|4φ))(x ′

6)|U13,15φ〉〈U13,15φ|⊗12.

Adding U (11)
11,13B

+
6;12,13 gives

(U11,13(|U13,15φ|4U13,15φ))(x6)(U11,15(|φ|4φ))(x ′
6)|U11,15φ〉〈U11,15φ|⊗10.

Then adding U (7)
7,9B

−
2;8,9U

(9)
9,11B

+
3;10,11 gives

(U7,15φ)(x2)(U7,9(|U9,15φ|4U9,15φ))(x ′
2)

(U7,11(|U11,15φ|4U11,15φ))(x3)(U7,15φ)(x ′
3)

(U7,13(|U13,15φ|4U13,15φ))(x6)(U7,15(|φ|4φ))(x ′
6)|U7,15φ〉〈U7,15φ|⊗4

Finally adding U (1)
1,3B

+
1;2,3U

(3)
3,5B

+
1;4,5U

(5)
5,7B

−
1;6,7 gives

U1,3

[
(U3,5(|U5,15φ|4U5,15φ))(|U3,15φ|2)(U3,9(|U9,15φ|4U9,15φ))(U3,11(|U11,15φ|4U11,15φ))

]
(x1)

·
(
U1,7

[
(|U7,15φ|2U7,15φ)(U7,13(|U13,15φ|4U13,15φ))(U7,15(|φ|4φ))

])
(x ′

1)

which shows that J (15)
μ,sgn(|φ〉〈φ|⊗15)(t1, t15) = D(0)(t1, t15).
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3.2 Compatible Time Integration Domain

Toenable the application ofU -V multilinear estimates,we have to take into account the
compatible time integration domain. Combining with the Duhamel tree, we present
a general algorithm to compute the Duhamel expansion with the compatible time
integration domain.

Definition 3.4 Define the compatible time integration domain as follows

TC (μ, sgn) =
{
t2 j+1 ≥ t2l+1 : D(2l) → D(2 j)

}
. (3.2)

where D(2l) → D(2 j) denotes that D(2l) is the child of D(2 j). Moreover, we say that
D(2l) is the offspring of D(2 j) if there exist 2l1,...,2lr such that D(2l) → D(2l1) →
· · · → D(2lr ) → D(2 j).

Example 3.5 Continuing the Example 3.3, we will expand

∫
TC

J (15)
μ,sgn(|φ〉〈φ|⊗15)(t1, t15)dt15.

From the D-tree (Fig. 1), the compatible time integration domain is as follows

∫ t1

t3=0

∫ t1

t7=0

∫ t3

t5=0

∫ t3

t9=0

∫ t3

t11=0

∫ t7

t13=0

∫ t7

t15=0
.

Write
∫ t1
t15=0 on the outside and hence

∫ t1
t7=0 changes into

∫ t1
t7=t15

. Then it turns to

∫ t1

t15=0

∫ t1

t3=0

∫ t1

t7=t15

∫ t3

t5=0

∫ t3

t9=0

∫ t3

t11=0

∫ t7

t13=0
.

So we can rewrite

∫
TC

J (15)
μ,sgn(|φ〉〈φ|⊗15)(t1, t15)dt15

=
∫ t1

t15=0

[∫ t1

t3=0

∫ t3

t5=0

∫ t3

t9=0

∫ t3

t11=0
U1D

(2)

][∫ t1

t7=t15

∫ t7

t13=0
U1D(6)

]

=
∫ t1

t15=0

∫ t1

t3=0
U1,3

[(
U3

∫ t3

t5=0
D(4)

)
U3,15φ

(
U3

∫ t3

t9=0
D(8)

)(
U3

∫ t3

t11=0
D(10)

)
U3,15φ

]

·
∫ t1

t7=t15
U1,7

[
(U7,15φ)

(
U7

∫ t7

t13=0
D(12)

)
(U7D(14))(U7,15φ)(U7,15φ)

]

where D(2 j) is shown in Example 3.3. We can see that all the Duhamel structures are
fully compatible with U -V multilinear estimates, which we will show in Section 3.3.

Next, we give a general form of the algorithm.
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Algorithm 3 (From D-tree to Duhamel integration)

(1) Let

Q(2k)(t2k+1) = D(2k)(t2k+1).

and replace D(2k) by Q(2k)(t2k+1) in the D-tree.
(2) Set counter l = k − 1.
(3) Given l, there exists only one j such that D(2l) → D(2 j). Then there will be four

cases as follows.
Case 1. D(2k) is the offspring of D(2l) and sgn(2l) = +. Then set

Q(2l)(t2 j+1, t2k+1)

=
∫ t2 j+1

t2l+1=t2k+1

U−2l−1

[(
U2l+1C1

) (
U2l+1C2

) (
U2l+1C3

) (
U2l+1C4

) (
U2l+1C5

)]
dt2l+1.

Case 2. D(2k) is the offspring of D(2l) and sgn(2l) = −. Then set

Q(2l)(t2 j+1, t2k+1)

=
∫ t2 j+1

t2l+1=t2k+1

U−2l−1
[(
U2l+1C1

) (
U2l+1C2

) (
U2l+1C3

) (
U2l+1C4

) (
U2l+1C5

)]
dt2l+1.

Case 3. D(2k) is not the offspring of D(2l) and sgn(2l) = +. Then set

Q(2l)(t2 j+1, t2k+1)

=
∫ t2 j+1

t2l+1=0
U−2l−1

[(
U2l+1C1

) (
U2l+1C2

) (
U2l+1C3

) (
U2l+1C4

) (
U2l+1C5

)]
dt2l+1.

Case 4. D(2k) is not the offspring of D(2l) and sgn(2l) = −. Then set

Q(2l)(t2 j+1, t2k+1)

=
∫ t2 j+1

t2l+1=0
U−2l−1

[(
U2l+1C1

) (
U2l+1C2

) (
U2l+1C3

) (
U2l+1C4

) (
U2l+1C5

)]
dt2l+1.

In the above, Ci is the i-th child of D(2l) in the D-tree.
(4) Update the D-tree by using Q(2l)(t2 j+1, t2k+1) to replace D(2l).
(5) Set l = l − 1. If l = 0, set

Q(0)(t1) =
∫ t1

t2k+1=0
(U1Cl)(U1Cr )dt2k+1

where Cl or Cr is the left or right child of D(0) in the updated D-tree, and stop,
otherwise go to step (3).

Hence, we arrive at a representation as follows.
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Proposition 3.6

∫
TC

J (2k+1)
μ,sgn (|φ〉〈φ|(2k+1))(t1, t2k+1)dt2k+1 = Q(0)(t1). (3.3)

Proof It follows from Algorithm 3. ��

3.3 Estimates using the U-Vmultilinear estimates

Referring to the standard text [53] for the definition of U p
t and V p

t , we define
Xs([0, T )) and Y s([0, T )) to be the spaces of all functions u : [0, T ) �→ Hs(Td)

such that for every ξ ∈ Z
d the map t �→ ̂e−i t�u(t)(ξ) is in U 2([0, T ); C) and

V 2
rc([0, T ); C), respectively, with norms given by

‖u‖Xs ([0,T )) :=
⎛
⎝∑

ξ∈Zd

〈ξ 〉2s‖ ̂e−i t�u(t)(ξ)‖2U2

⎞
⎠

1/2

,

‖u‖Y s ([0,T )) :=
⎛
⎝∑

ξ∈Zd

〈ξ 〉2s‖ ̂e−i t�u(t)(ξ)‖2V 2

⎞
⎠

1/2

as in [37, 38, 42, 46]. In particular, we have the usual properties,

‖u‖L∞
t Hs

x
� ‖u‖Y s � ‖u‖Xs , (3.4)

‖eit� f ‖Y s ≤ ‖eit� f ‖Xs ≤ ‖ f ‖Hs , (3.5)

which were proved in [37,Propositions 2.8-2.10].
By quintilinear estimates in Lemma 5.6 and the trivial estimate ‖u‖Y s � ‖u‖Xs ,

we have that

∥∥∥ ∫ t

a
ei(t−s)�(̃u1ũ2ũ3ũ4ũ5)ds

∥∥∥
X

d−5
2

≤ C‖u1‖
X

d−5
2

‖u2‖
X

d−1
2

‖u3‖
X

d−1
2

‖u4‖
X

d−1
2

‖u5‖
X

d−1
2

(3.6)∥∥∥ ∫ t

a
ei(t−s)�(̃u1ũ2ũ3ũ4ũ5)ds

∥∥∥
X

d−1
2

≤ C‖u1‖
X

d−1
2

‖u2‖
X

d−1
2

‖u3‖
X

d−1
2

‖u4‖
X

d−1
2

‖u5‖
X

d−1
2

(3.7)∥∥∥ ∫ t

a
ei(t−s)�(̃u1ũ2ũ3ũ4ũ5)ds

∥∥∥
X

d−5
2

≤ C‖u1‖
X

d−5
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0u2‖X d−1

2
+ ‖P>M0u2‖X d−1

2

)
‖u3‖

X
d−1
2

‖u4‖
X

d−1
2

‖u5‖
X

d−1
2

(3.8)
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∥∥∥ ∫ t

a
ei(t−s)�(̃u1ũ2ũ3ũ4ũ5)ds

∥∥∥
X

d−1
2

≤ C‖u1‖
X

d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0u2‖X d−1

2
+ ‖P>M0u2‖X d−1

2

)
‖u3‖

X
d−1
2

‖u4‖
X

d−1
2

‖u5‖
X

d−1
2

(3.9)

where ũ ∈ {u, u}.
Before moving into the estimate part, we first mark the D-tree as a preparation,

as we will use the above U -V multilinear estimates according to the marked D-tree.
Here, we give a general algorithm to mark a D-Tree.

Algorithm 4 (Marked D-Tree)

(1) We put a subscript R at D(2k), that is, D(2k)
R . Here, we use the subscript R to denote

the roughest term.
(2) Set counter l = k − 1. If D(2k) is the offspring (see Definition 3.4) of D(2l), put a

subscript R at D(2l), that is, D(2l)
R . Moreover, if one of the children of D(2l) is F ,

then put a subscript φ at D(2l), that is, D(2l)
φ or D(2l)

φ,R .
(3) Set l = l − 1. If l = 0, then stop, otherwise go to step (2).

Example 3.7 We estimate theDuhamel expansion in Example 3.3with the correspond-
ing time integration domain to show how to apply theU -V multilinear estimates. First,
Applying Algorithm 4 to the D-tree in Fig. 1, we obtain a marked D-tree as in Fig. 2.

Next, we get into the estimate part. By Proposition 3.6, it suffices to estimate
Q(0)(t1). Combining the D-tree (Fig. 1) and Algorithm 3, we obtain

Q(0)(t1) =
∫ t1

t15=0
(U1Q

(2)(t1, t15))(U1Q(6)(t1, t15))dt15,

Q(2)(t1, t15) =
∫ t1

t3=0
U−3

[(
U3Q

(4)
) (

U3,15φ
) (

U3Q(8)

)(
U3Q

(10)
) (

U3,15φ
)]

dt3,

Q(6)(t1, t15) =
∫ t1

t7=t15
U−7

[(
U7,15φ

) (
U7Q(12)

) (
U7Q(14)

) (
U7,15φ

) (
U7,15φ

)]
dt7.

D(0)

D
(2)
φ

D
(4)
φ

F F F F F

F D
(8)
φ

F F F F F

D
(10)
φ

F F F F F

F

D
(6)
φ,R

F D
(12)
φ

F F F F F

D
(14)
R

F F F F F

F F

Fig. 2 Marked Duhamel Tree
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At first, we use Minkowski to obtain

‖〈∇x1〉
d−5
2 〈∇x ′

1
〉 d−5

2 Q(0)(t1)‖L∞
T L2

x1
L2
x ′1

≤
∫ T

0
‖U1Q

(2)(t1, t15)‖
L∞
t1
H

d−5
2

x1

‖U1Q(6)(t1, t15)‖
L∞
t1
H

d−5
2

x ′1

dt15

Note that D(2)
φ carries no R subscript, so we can bump it to H

d−1
2 and then use estimate

(3.4) to get

≤
∫ T

0
‖U1Q

(2)(t1, t15)‖
X

d−1
2

‖U1Q(6)(t1, t15)‖
X

d−5
2
dt15

By multilinear estimate (3.9),

‖U1Q
(2)‖

X
d−1
2

≤C‖U3Q
(4)‖

X
d−1
2(

T
1

2(d+3) M
2d+3
2(d+3)
0 ‖P≤M0U3,15φ‖

X
d−1
2

+ ‖P>M0U3,15φ‖
X

d−1
2

)

‖U3Q(8)‖
X

d−1
2

‖U3Q
(10)‖

X
d−1
2

‖U3,15φ‖
X

d−1
2

.

As D(6)
φ,R carries subscript φ and R, we use multilinear estimate (3.8) to get

‖U1Q(6)‖
X

d−5
2

≤C‖U7Q(14)‖
X

d−5
2(

T
1

2(d+3) M
2d+3
2(d+3)
0 ‖P≤M0U7,15φ‖

X
d−1
2

+ ‖P>M0U7,15φ‖
X

d−1
2

)
‖U7Q

(12)‖
X

d−1
2

‖U7,15φ‖
X

d−1
2

‖U7,15φ‖
X

d−1
2

.

From Algorithm 3, we have

Q(4) =
∫ t3

t5=0
U−5

[(
U5,15φ

) (
U5,15φ

) (
U5,15φ

) (
U5,15φ

) (
U5,15φ

)]
dt5,

Q(8) =
∫ t3

t9=0
U−9

[(
U9,15φ

) (
U9,15φ

) (
U9,15φ

) (
U9,15φ

) (
U9,15φ

)]
dt9,

Q(10) =
∫ t3

t11=0
U−11

[(
U11,15φ

) (
U11,15φ

) (
U11,15φ

) (
U11,15φ

) (
U11,15φ

)]
dt11,

Q(12) =
∫ t7

t13=0
U−13

[
(U13,15φ)(U13,15φ)(U13,15φ)(U13,15φ)(U13,15φ)

]
dt13,

Q(14) = U−15(|φ|4φ).
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Notice that D(4)
φ , D(6)

φ , D(8)
φ and D(10)

φ only carry subscript φ, so we use multilinear
estimate (3.9) to obtain

‖U3Q
(4)‖

X
d−1
2

≤C‖U5,15φ‖
X

d−1
2(

T
1

2(d+3) M
2d+3
2(d+3)
0 ‖P≤M0U5,15φ‖

X
d−1
2

+ ‖P>M0U5,15φ‖
X

d−1
2

)
‖U5,15φ‖

X
d−1
2

‖U5,15φ‖
X

d−1
2

‖U5,15φ‖
X

d−1
2

≤C‖φ‖4
H

d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

)

‖U3Q(8)‖
X

d−1
2

≤C‖U9,15φ‖
X

d−1
2(

T
1

2(d+3) M
2d+3
2(d+3)
0 ‖P≤M0U9,15φ‖

X
d−1
2

+ ‖P>M0U9,15φ‖
X

d−1
2

)
‖U9,15φ‖

X
d−1
2

‖U9,15φ‖
X

d−1
2

‖U9,15φ‖
X

d−1
2

≤C‖φ‖4
H

d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

)
‖U3Q

(10)‖
X

d−1
2

≤C‖U11,15φ‖
X

d−1
2(

T
1

2(d+3) M
2d+3
2(d+3)
0 ‖P≤M0U11,15φ‖

X
d−1
2

+ ‖P>M0U11,15φ‖
X

d−1
2

)
‖U11,15φ‖

X
d−1
2

‖U11,15φ‖
X

d−1
2

‖U11,15φ‖
X

d−1
2

≤C‖φ‖4
H

d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

)
‖U7Q

(12)‖
X

d−1
2

≤C‖U13,15φ‖
X

d−1
2(

T
1

2(d+3) M
2d+3
2(d+3)
0 ‖P≤M0U13,15φ‖

X
d−1
2

+ ‖P>M0U13,15φ‖
X

d−1
2

)
‖U13,15φ‖

X
d−1
2

‖U13,15φ‖
X

d−1
2

‖U13,15φ‖
X

d−1
2

≤C‖φ‖4
H

d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

)

Finally, to deal with the roughest term Q(14), we use Sobolev inequality (A.11),

‖U7Q(14)‖
X

d−5
2

= ‖U7,15(|φ|4φ)‖
X

d−5
2

≤ ‖|φ|4φ‖
H

d−5
2

≤ C‖φ‖5
H

d−1
2

.

Together with the above estimates, we arrive at

‖〈∇x1〉
d−5
2 〈∇x ′

1
〉 d−5

2 Q(0)(t1)‖L∞
T L2

x1
L2
x ′1

≤ C7
∫ T

0
‖φ‖24

H
d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

)6

dt15.
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From Example 3.7, one can immediately tell that a decay power comes from esti-
mates (3.8) and (3.9). Actually, such a decay power is at least proportional to k.

Definition 3.8 ([19, 20]) For l < k, we say the l-th coupling is an unclogged coupling,
if one of the children of D(2l) is F . If the l-th coupling is not unclogged, we will call
it a congested coupling.

Lemma 3.9 [19,Lemma 5.14] For large k, there are at least 4
5k unclogged couplings

in k couplings.

The main result of this section is the following proposition.

Proposition 3.10 Let γ (k)(t) = ∫ |φ〉〈φ|⊗kdμt (φ). Then we have

∥∥∥〈∇x1〉
d−5
2 〈∇x ′

1
〉 d−5

2

∫
TC

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1

∥∥∥
L∞
T L2

x1
L2
x ′1

≤ Ck
∫ T

0

∫
‖φ‖

16
5 k+2

H
d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+‖P>M0φ‖
H

d−1
2

) 4k
5
d|μt2k+1 |(φ)dt2k+1.

Proof We rewrite

‖〈∇x1 〉
d−5
2 〈∇x ′

1
〉 d−5

2

∫
TC

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1‖L∞

T L2x1 L
2
x ′1

= ‖〈∇x1 〉
d−5
2 〈∇x ′

1
〉 d−5

2

∫
TC

∫
J (2k+1)
μ,sgn (|φ〉〈φ|⊗(2k+1))(t1, t2k+1)dμt2k+1 (φ)dt2k+1‖L∞

T L2x1 L
2
x ′1

By Proposition 3.6, we then use Minkowski and estimate (3.4)

≤
∫ T

0

∫
‖U1Cl(t1, t2k+1)‖

L∞
t1
H

d−5
2

x1

‖U1Cr (t1, t2k+1)‖
L∞
t1
H

d−5
2

x ′1

d|μt2k+1 |(φ)dt2k+1

≤
∫ T

0

∫
‖U1Cl(t1, t2k+1)‖

X
d−5
2

‖U1Cr (t1, t2k+1)‖
X

d−5
2
d|μt2k+1 |(φ)dt2k+1.

where Cl or Cr is the left or right child of Q(0) by Algorithm 3. Only one of Cl and

Cr carries the subscript R, so bump the other one into X
d−1
2 .

We can now present the algorithm which proves the general case.

Algorithm 5 (Estimate)

(1) Set counter l = 1.
(2) Given l, there exists only one j such that D(2l) → D(2 j). There will be four

cases as follows.
Case 1. D(2l) = D(2l)

φ,R . Then apply estimate (3.8), put the factor carrying the

subscript R in X
d−5
2 and replace all the X

d−1
2 norm of Uφ by H

d−1
2 norm of φ.
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Case 2. D(2l) = D(2l)
φ . Then apply estimate (3.9) and replace all the X

d−1
2 norm

of Uφ by H
d−1
2 norm of φ.

Case 3. D(2l) = D(2l)
R . Then apply estimate (3.6), put the factor carrying the

subscript R in X
d−5
2 and replace all the X

d−1
2 norm of Uφ by H

d−1
2 norm of φ.

Case 4. D(2l) = D(2l). Then apply estimate (3.7) and replace all the X
d−1
2 norm

of Uφ by H
d−1
2 norm of φ.

(3) Set counter l = l + 1. If l < k, go to step (2), otherwise go to step (4).
(4) We are now at the k-th coupling and would have applied (3.8) and (3.9) at least

4
5k times, so we arrive at

∥∥∥〈∇x1〉
d−5
2 〈∇x ′

1
〉 d−5

2

∫
TC

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1

∥∥∥
L∞
T L2

x1
L2
x ′1

≤ Ck−1
∫ T

0

∫
‖φ‖

16
5 k−3

H
d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

) 4k
5

‖|φ|4φ‖
H

d−5
2
d|μt2k+1 |(φ)dt2k+1

Apply Sobolev inequality (A.11) to ‖|φ|4φ‖
H

d−5
2
,

≤ Ck
∫ T

0

∫
‖φ‖

16
5 k+2

H
d−1
2

(
T

1
2(d+3) M

2d+3
2(d+3)
0 ‖P≤M0φ‖

H
d−1
2

+ ‖P>M0φ‖
H

d−1
2

) 4k
5

d|μt2k+1 |(φ)dt2k+1.

��

4 Existence of Compatible Time Integration Domain

In this section, our main goal is to prove that

γ (1)(t1) =
∑

re f erence (μ̂, ˆsgn)

∫
TC (μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1, (4.1)

where the number of reference pairs can be controlled by 16k , and the summands are
endowed with the compatible time integration domain TC (μ̂, ˆsgn) that we introduce
in Section 3.2.We divide this section into twomain parts. In Section 4.1, we first recall
the quintic KM board game argument and then give an introduction to an admissible
tree diagram representation as a preparation for the subsequent sections. Such type
of tree also gives an elaborated proof of the quintic KM board game argument. Then
in Section 4.2- 4.5, we prove the extended quintic KM board game argument, which
allows to sort the summands in the initial Duhamel-Born expansion γ (1) into a sum
of reference forms with the compatible time integration domain.
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4.1 Admissible Tree

We first give a brief review of the quintic KM board game argument as in [8, 52]. In
short, one could sort (2k − 1)!!2k summands into a sum of upper echelon forms with
the time integration domain, denoted by Dm , which is a union of a very large number
of high dimensional simplexes. The number of upper echelon forms can be controlled
by 8k . Then, we give an introduction to an admissible tree diagram representation
which could provide an elaborated proof of the quintic KM board game argument.
Besides, one could use it to calculate Dm explicitly, which was unknown.

Recall that {μ} is a set of maps from {2, 4, ..., 2k} to {1, 2, 3, ..., 2k − 1} satisfying
μ(2) = 1 and μ(2l) < 2l for all 2l. For convenience, we extend the domain to
{2, 3, 4, ..., 2k} and define

μ(2l + 1) := μ(2l) l ∈ {1, 2, ..., k − 1} . (4.2)

Moreover, if μ satisfies μ(2 j) ≤ μ(2 j + 2) for 1 ≤ j ≤ k − 1, then it is in upper
echelon form as they are called in [8, 52].

Let P = {ρ} be a set of permutations of {2, 4, ..., 2k}. To be compatible with the
definition (4.2), we also extend the domain to {2, 3, 4, ..., 2k + 1} and define

ρ(2l + 1) := ρ(2l) + 1, l ∈ {1, 2, ..., k} . (4.3)

We note that P is closed under the composition and inverse operations.
Associated to each μ and σ ∈ P , we define the Duhamel integrals

I (μ, σ, f (2k+1)) =
∫
t1≥tσ(3)≥···≥tσ(2k+1)

J (2k+1)
μ ( f (2k+1))(t1, t2k+1)dt2k+1. (4.4)

where

J (2k+1)
μ ( f (2k+1))(t1, t2k+1) =U (1)(t1 − t3)Bμ(2);2,3U (3)(t3 − t5)Bμ(4);4,5

· · ·U (2k−1)(t2k−1 − t2k+1)Bμ(2k);2k,2k+1 f
(2k+1)(t2k+1)

and f (2k+1) is a symmetric density.

Definition 4.1 For fixed j ∈ {2, 3, .., k − 1} and a permutation ρ = (2 j, 2 j + 2) ◦
(2 j + 1, 2 j + 3) ∈ P , if μ(2 j) �= μ(2 j + 2) and μ(2 j + 2) < 2 j , we define the
action as follows:

μ′ = (2 j, 2 j + 2) ◦ (2 j + 1, 2 j + 3) ◦ μ ◦ (2 j, 2 j + 2) ◦ (2 j + 1, 2 j + 3),

σ ′ = (2 j, 2 j + 2) ◦ (2 j + 1, 2 j + 3) ◦ σ.

We call the action induced by ρ, which we simply denote KM(ρ), a Klainerman-
Machedon acceptable move in Chen-Pavlović format of μ, or an acceptable move of
μ for simplicity.
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For general case, we also call a permutation ρ a Klainerman-Machedon acceptable
move in Chen-Pavlović format of μ, if ρ = ρr ◦ ρr−1 ◦ · · · ◦ ρ1 where ρ1 is an
acceptable move of μ and ρi = (2 ji , 2 ji + 2) ◦ (2 ji + 1, 2 ji + 3) is an acceptable
move of μi = KM(ρi−1) ◦ · · · ◦ KM(ρ1)(μ) for 2 ≤ i ≤ r . Moreover, we define the
action (μ′, σ ′) = KM(ρ)(μ, σ ):

μ′ = ρ ◦ μ ◦ ρ−1,

σ ′ = ρ ◦ σ.

Ifμ andμ′ are such that there exists ρ as above for which (μ′, σ ′) = KM(ρ)(μ, σ )

then we say that μ′ and μ are KM-relatable. This is an equivalence relation that
partitions the set of collapsing maps into equivalence classes.

Now, we could describe the quintic KM board game argument in [8, 52]. Namely,
for every μ, there is exactly one μm in upper echelon form, which is KM-related to μ

and the number of upper echelon forms can be controlled by 8k . Moreover, it follows
from [8,Lemma 7.1] that

I (μ, σ, f (2k+1)) = I (μ′, σ ′, f (2k+1)). (4.5)

With the equality (4.5), one has

∑
μ∼μm

I (u, id, γ (2k+1)) =
∫
Dm

J (2k+1)
μ (γ (2k+1))(t1, t2k+1)dt2k+1 (4.6)

where the time integration domain Dm is a union of the simplexes
{
t1 ≥ tσ(3) ≥ · · ·

≥ tσ(2k+1)
}
.

The time integration domain Dm is obviously very complicated for large k, as it is
a union of a very large number of simplexes in high dimension. To calculate Dm , we
construct a ternary tree with the following algorithm.

Algorithm 6 (1) Set counter j = 1.
(2) Given j , find the indices l, m, r so that l > j , m > r , r > j and

μ(2l) = μ(2 j),

μ(2m) = 2 j,

μ(2r) = 2 j + 1,

and l, m and r are the minimal indices for which the above equalities hold. Then
place 2l/2m/2r as the left/middle/right child of node 2 j in the tree. If there is no
such l/m/r , the node 2 j will be missing a left/middle/right child.

(3) If j = k, then stop, otherwise set j = j + 1 and go to step (2).

Since it requires μ(2 j) < 2 j , one can check that every node 2 j has a parent by
induction argument. Hence, the generated tree by μ, which we denote by T (μ), is
a connected ternary tree with child node’s label strictly larger than its parent node’s
label.
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Example 4.2 Let us work with the following example

2 j 2 4 6 8 10
μ(2 j) 1 1 1 2 3

By Algorithm 2, we start with j = 1 and note that μ(2) = 1. For the left, middle
and right child of node 2, we need to respectively find the minimal a > 1, b > 1
and c > 1 such that μ(2a) = 1, μ(2b) = 2 and μ(2c) = 3. In the case, it is a = 2,
b = 4 and c = 5, so we put 2, 8, and 10 as left, middle and right children of node 2,
respectively, in the tree8.

1

2

4 8 10

Next we turn to j = 2. Since μ(4) = 1, we find the minimal a > 2, b > 2 and
c > 2 such that μ(2a) = μ(4) = 1, μ(2b) = 4 and μ(2c) = 5. We find a = 3 and
there is no such b or c satisfying the above condition, so we only put 6 as the left child
of node 4 in the tree.

1

2

4 8 10

6

Since all indices appear in the tree, it is complete.

Definition 4.3 A ternary tree is called an admissible tree if every child node’s label is
strictly larger than its parent node’s label. For an admissible tree, we call, the graph
of the tree without any labels in its nodes, the skeleton of the tree.

For example, the skeleton of the tree in Example 4.2 is shown as follows.

8 We use a line to link the left child and an arrow to link themiddle/right child, aswewould like to emphasize
the differences between the left child and the middle/right child. Besides, by this way, it is convenient to
calculate the tier value which we introduce in Section 4.3.
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1

Given an admissible ternary tree, we can uniquely reconstruct a collapsing map μ

that generates it. For notational convenience, we take the following notations.

2l
L→ 2 j : node 2l is the left child of node 2 j,

2l
M→ 2 j : node 2l is the middle child of node 2 j,

2l
R→ 2 j : node 2l is the right child of node 2 j,

2l → 2 j : node 2l is a child of node 2 j .

Algorithm 7 (From admissible tree to collapsing map)

(1) Set counter j = 1 and μ(2) = 1.
(2) Given j , in the admissible tree α,

if there exists 2k1 such that 2k1
L→ 2 j, then μ(2k1) := μ(2 j);

if there exists 2k2 such that 2k2
M→ 2 j, then μ(2k2) := 2 j;

if there exists 2k3 such that 2k3
R→ 2 j, then μ(2k3) := 2 j + 1.

Otherwise, go to step (3).
(3) Set j = j + 1. If j = k, then stop, otherwise go to step (2).

Since it is an admissible tree α, one can see that, if j = l, we have defined μ(2i) for
1 ≤ i ≤ l and μ(2i) < 2i by the step (2). Especially, when j = k, we generate a
collapsing map μ. Moreover, one has that T (μ) equals to tree α.

Example 4.4 Suppose we are given the tree as follows.
1

2

4 8 10

6

At first, let μ(2) = 1. As there are left, middle and right
children of node 2, we define μ(4) = 1, μ(8) = 2, and
μ(10) = 3. Next, turn to node 4. There only exists the
left child and hencewe defineμ(6) = μ(4) = 1. Finally
we arrive at

2 j 2 4 6 8 10
μ(2 j) 1 1 1 2 3
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Note that the upper echelon form μm is unique in every equivalent class. Given a
skeleton tree, there also exists a unique upper echelon tree. We give an algorithm to
uniquely produce an upper echelon tree.

Algorithm 8 (Generate an upper echelon tree)

(1) Given a skeleton tree with k + 1 nodes, label the top node with 1 and set counter
j = 1.

(2) If the node labeled 2 j has a left child, then label that left child node with 2( j +1),
set counter j = j + 1 and go to step (4). If not, go to step (3).

(3) In the already labeled nodes which has an unlabeled middle or right child, search
for the node with the smallest label. If such a node has an unlabeled middle child,
label the middle child with 2( j + 1), set counter j = j + 1, and go to step (4). If
such a node has no unlabeled middle child but an unlabeled right child, label the
right child with 2( j + 1), set counter j = j + 1, and go to step (4). If none of the
labeled nodes has an unlabeled middle or right child, then stop.

(4) If j = k, then stop, otherwise go to step (2).

Next, we are able to show that acceptable moves preserve the tree structures but
permute the labeling under the admissibility requirement.

Proposition 4.5 Two collapsingmapsμ andμ′ areKM-relatable if and only if the trees
corresponding to μ and μ′ have the same skeleton. Moreover, if μ′ = KM(ρ)(μ),
then T (μ′) has the same skeleton to T (μ) with node 2 j replaced by ρ(2 j).

Proof Without loss,wemight aswell assume thatρ = (2 j0, 2 j0+2)◦(2 j0+1, 2 j0+3)
and μ′ = KM(ρ)(μ). With node 2 j in the tree T (μ) replaced by ρ(2 j), it generates
a tree α′′ with the same skeleton as T (μ). Since ρ ∈ P is an acceptable move with
respect to μ, we have μ(2 j0 + 2) < 2 j0 and μ(2 j0) �= μ(2 j0 + 2), which implies
that α′′ is also an admissible tree. By Algorithm 7, it generates a collapsing map μ′′.
Thus it suffices to prove μ′ = μ′′, or equivalently, μ′′ = KM(ρ)(μ). Note that

2l
L/M/R−→ 2 j in the tree T (μ) ⇐⇒ ρ(2l)

L/M/R−→ ρ(2 j) in the tree α′′.

By Algorithm 7, it implies that

⎧⎪⎨
⎪⎩

μ(2l) = μ(2 j) ⇐⇒ μ′′(ρ(2l)) = μ′′(ρ(2 j)),

μ(2l) = 2 j ⇐⇒ μ′′(ρ(2l)) = ρ(2 j),

μ(2l) = 2 j + 1 ⇐⇒ μ′′(ρ(2l)) = ρ(2 j) + 1.

(4.7)

With μ(2) = μ′′(2) = 1, by induction argument we obtain

ρ ◦ μ(2l) = μ′′(ρ(2l)),

that is, μ′′ = KM(ρ)(μ).
Conversely, we suppose that T (μ) has the same skeleton as T (μ′). By Algorithm

8 and Algorithm 7, it generates a unique collapsing map μs which is in upper echelon
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form for the skeleton of T (μ). On the other hand, there exist an acceptable move
σ with respect to μ as well as μm , which is in an upper echelon form, such that
μm = KM(σ )(μ). Since T (μm) also has the same skeleton as T (μ), it gives that
μm = μs . In the same way, we also have μ′

m = μs , which implies that μ and μ′ are
KM-relatable. ��

Given k, we would like to have the number of different ternary tree structures of
k nodes, which equals to the number of equivalent classes. This number is exactly
defined as the generalized Catalan number (see [39]), that is,

1

k

(
3k

k − 1

)
(4.8)

which can be controlled by 8k by Stirling’s approximation to k!. Hence, we just provide
a proof of the quintic KM board game argument.

Now, let us get to the main part, namely, how to compute Dm for a given upper
echelon class. We define a map TD which maps an admissible tree T (μ) to a time
integration domain

TD(μ) = {t2 j+1 ≥ t2l+1 : 2l → 2 j in the tree T (μ)
}⋂ {t1 ≥ t3} . (4.9)

where 2l → 2 j denotes that node 2l is a child of node 2 j .

Proposition 4.6 Given a μm in upper echelon form, we have

∑
μ∼μm

∫
t1≥t3≥...≥t2k+1

J (2k+1)
μ (γ (2k+1))(t1, t2k+1)dt2k+1

=
∫
TD(μm )

J (2k+1)
μm

(γ (2k+1))(t1, t2k+1)dt2k+1.

and hence

γ (1)(t1) =
∑

μm :upper echelon form

∫
TD(μm )

J (2k+1)
μm

(γ (2k+1))(t1, t2k+1)dt2k+1. (4.10)

Proof Let �(μm) be the set of all acceptable moves with respect to μm . Then by the
equality (4.5), we have

∑
μ∼μm

I (μ, id, γ (2k+1)) =
∑

ρ∈�(μm )

I (μm, ρ−1, γ (2k+1)).

By Proposition 4.5, we see that

�(μm) = {ρ ∈ P : ρ(2 j) < ρ(2l), if 2l → 2 j in the tree T (μm)} (4.11)

123



   14 Page 36 of 82 X. Chen et al.

Table 1 Acceptable moves and Time integration domain

2 j 2 4 6 8 10 2 j 2 4 6 8 10 Time integration domain

ρ1(2 j) 2 4 6 8 10 ρ−1
1 (2 j) 2 4 6 8 10 {t1 ≥ t3 ≥ t5 ≥ t7 ≥ t9 ≥ t11}

ρ2(2 j) 2 4 6 10 8 ρ−1
2 (2 j) 2 4 6 10 8 {t1 ≥ t3 ≥ t5 ≥ t7 ≥ t11 ≥ t9}

ρ3(2 j) 2 4 8 6 10 ρ−1
3 (2 j) 2 4 8 6 10 {t1 ≥ t3 ≥ t5 ≥ t9 ≥ t7 ≥ t11}

ρ4(2 j) 2 4 8 10 6 ρ−1
4 (2 j) 2 4 10 6 8 {t1 ≥ t3 ≥ t5 ≥ t11 ≥ t7 ≥ t9}

ρ5(2 j) 2 4 10 6 8 ρ−1
5 (2 j) 2 4 8 10 6 {t1 ≥ t3 ≥ t5 ≥ t9 ≥ t11 ≥ t7}

ρ6(2 j) 2 4 10 8 6 ρ−1
6 (2 j) 2 4 10 8 6 {t1 ≥ t3 ≥ t5 ≥ t11 ≥ t9 ≥ t7}

ρ7(2 j) 2 6 8 4 10 ρ−1
7 (2 j) 2 8 4 6 10 {t1 ≥ t3 ≥ t9 ≥ t5 ≥ t7 ≥ t11}

ρ8(2 j) 2 6 8 10 4 ρ−1
8 (2 j) 2 10 4 6 8 {t1 ≥ t3 ≥ t11 ≥ t5 ≥ t7 ≥ t9}

ρ9(2 j) 2 6 10 4 8 ρ−1
9 (2 j) 2 8 4 10 6 {t1 ≥ t3 ≥ t9 ≥ t5 ≥ t11 ≥ t7}

ρ10(2 j) 2 6 10 8 4 ρ−1
10 (2 j) 2 10 4 8 6 {t1 ≥ t3 ≥ t11 ≥ t5 ≥ t9 ≥ t7}

ρ11(2 j) 2 8 10 4 6 ρ−1
11 (2 j) 2 8 10 4 6 {t1 ≥ t3 ≥ t9 ≥ t11 ≥ t5 ≥ t7}

ρ12(2 j) 2 8 10 6 4 ρ−1
12 (2 j) 2 10 8 4 6 {t1 ≥ t3 ≥ t11 ≥ t9 ≥ t5 ≥ t7}

and hence

⋃
ρ∈�(μm )

{
t1 ≥ tρ−1(3) ≥ · · · ≥ tρ−1(2k+1)

} = TD(μm). (4.12)

��

Example 4.7 Let us demonstrate Proposition 4.6 by an example. Recall the upper
echelon tree T (μ) in Example 4.2.

2 j 2 4 6 8 10
μ1(2 j) 1 1 1 2 3

There are 12 acceptable moves with respect to μ1 such that

ui = KM(ρi )(μ1).

Here are all the admissible trees equivalent to T (μ1).
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2 j 2 4 6 8 10
μ1(2 j) 1 1 1 2 3

1

2

4 8 10

6

2 j 2 4 6 8 10
μ2(2 j) 1 1 1 3 2

1

2

4 10 8

6

2 j 2 4 6 8 10
μ3(2 j) 1 1 3 1 2

1

2

4 6 10

8

2 j 2 4 6 8 10
μ4(2 j) 1 1 3 1 2

1

2

4 10 6

8

2 j 2 4 6 8 10
μ5(2 j) 1 1 2 3 1

1

2

4 6 8

10

2 j 2 4 6 8 10
μ6(2 j) 1 1 3 2 1

1

2

4 8 6

10

2 j 2 4 6 8 10
μ7(2 j) 1 2 1 1 3

1

2

6 4 10

8

2 j 2 4 6 8 10
μ8(2 j) 1 3 1 1 2

1

2

6 10 4

8

2 j 2 4 6 8 10
μ9(2 j) 1 2 1 3 1

1

2

6 4 8

10
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2 j 2 4 6 8 10
μ10(2 j) 1 3 1 2 1

1

2

6 8 4

10

2 j 2 4 6 8 10
μ11(2 j) 1 2 3 1 1

1

2

8 4 6

10

2 j 2 4 6 8 10
μ12(2 j) 1 3 2 1 1

1

2

8 6 4

10
From the above time integration domains in Table 1, we have

⋃
ρi∈�(μ1)

{
t1 ≥ t

ρ−1
i (3) ≥ t

ρ−1
i (5) ≥ t

ρ−1
i (7) ≥ t

ρ−1
i (9) ≥ t

ρ−1
i (11)

}

= {t1 ≥ t3, t3 ≥ t5 ≥ t7, t3 ≥ t9, t3 ≥ t11} .

By the definition,

TD(μ1) = {t1 ≥ t3, t3 ≥ t5 ≥ t7, t3 ≥ t9, t3 ≥ t11} .

Hence,

⋃
ρi∈�(μ1)

{
t1 ≥ t

ρ−1
i (3) ≥ t

ρ−1
i (5) ≥ t

ρ−1
i (7) ≥ t

ρ−1
i (9) ≥ t

ρ−1
i (11)

}
= TD(μ1).

4.2 Signed KMAcceptable Moves

In Section 4.1, we provide a method to compute TD(μ). A nontrivial application
is that, the original KM board game argument is not compatible with space-time
multilinear estimates. Indeed, depending on the sign combination in the Duhamel
expansion J (2k+1)

μm (γ (2k+1))(t1, t2k+1), one could run into the problem that one needs
to estimate the x part and the x ′ part using the same time integral. (See [20,Example
4].) To be compatible with the estimate part in Section 3, we restart with the signed
collapsing pair (μ, sgn).

First, we rewrite

γ (1) =
∑

(μ,sgn)

I (μ, id, sgn, γ (2k+1)), (4.13)

where

I (μ, σ, sgn, γ (2k+1)) =
∫
t1≥tσ(3)≥···≥tσ(2k+1)

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1 (4.14)
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and

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1) =U (1)(t1 − t3)B

sgn(2)
μ(2);2,3U

(3)(t3 − t5)B
sgn(4)
μ(4);4,5

· · ·U (2k−1)(t2k−1 − t2k+1)B
sgn(2k)
μ(2k);2k,2k+1γ

(2k+1)(t2k+1) (4.15)

where the notations have been introduced in (2.19).
For convenience, we define

sgn(2l + 1) := sgn(2l)

for l ∈ {1, 2, ..., k}.
Definition 4.8 Let ρ be an acceptable move of μ. We define a signed version of the
KM acceptable move in Chen-Pavlović format, still denoted by KM(ρ), as follows:

(μ′, σ ′, sgn′) = KM(ρ)(μ, σ, sgn)

where

μ′ = ρ ◦ μ ◦ ρ−1,

σ ′ = ρ ◦ σ,

sgn′ = sgn ◦ ρ−1.

If (μ, σ, sgn) and (μ′, σ ′, sgn′) are such that there exists ρ as above for which

(μ′, σ ′, sgn′) = KM(ρ)(μ, σ, sgn)

then we say that (μ, σ, sgn) and (μ′, σ ′, sgn′) are KM-relatable. With a slight modi-
fication of the argument in [8, 52], we also have

I (μ′, σ ′, sgn′, γ (2k+1)) = I (μ, σ, sgn, γ (2k+1)). (4.16)

Example 4.9 We consider the following pair (μ, sgn)

2 j 2 4 6 8 10
μ(2 j) 1 1 1 2 3
sgn(2 j) − + − − +

By Algorithm 6, with adding the sign, it generates a signed admissible tree as
follows
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1

2−

4+ 8− 10+

6−
Definition 4.10 For a skeleton tree, we call it the signed skeleton tree if we add the
sign. For example, the signed skeleton of the tree in Example 4.9 is shown as follows.

1

−

+ − +

−

Similarly, the signed acceptable moves also preserve the signed tree structures.

Proposition 4.11 Two collapsing map pairs are KM-relatable if and only if they have
the same signed skeleton tree.

Proof By Proposition 4.5, it suffices to prove that ρ keeps the sign invariant. Indeed,
we note that node 2 j in the tree T (μ) is corresponding to node ρ(2 j) in the tree T (μ′)
and hence sgn′(ρ(2 j)) = sgn(2 j). ��

4.3 Tamed Form

We will prove that there exists a unique special form, which we call the tamed form,
in every equivalent class. First, through an example, we present an algorithm for
producing the tamed enumeration of a signed skeleton. Then we exhibit how to reduce
a signed tree with same skeleton but different enumeration into the tamed form using
signed KM acceptable moves. In the end, we arrive at

γ (1)(t1) =
∑

(μ∗,sgn∗) tamed

∫
TD(μ∗)

J (2k+1)
μ∗,sgn∗(γ

(2k+1))(t1, t2k+1)dt2k+1. (4.17)

which is an adaptation of representation (4.10).

Definition 4.12 We call 2 j ≥ 4 is tier of q if

μq(2 j) = 1 but μq−1(2 j) > 1
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where μq = μ ◦ · · · ◦ u, the composition taken q times. We write t(2 j) for the tier
value of 2 j9.

Definition 4.13 A pair (μ, sgn) is tamed if it meets the following four requirements:

(1) If t(2l) < t(2r), then 2l < 2r .
(2) If t(2l) = t(2r), μ2(2l) = μ2(2r), sgn(μ(2l)) = sgn(μ(2r)) and μ(2l) <

μ(2r), then 2l < 2r .
(3) If t(2l) = t(2r), μ2(2l) = μ2(2r), sgn(μ(2l)) = +, sgn(μ(2r)) = −, then

2l < 2r .
(4) If t(2l) = t(2r), μ2(2l) �= μ2(2r), μ(2l) < μ(2r), then 2l < 2r .

Conditions (2), (3), and (4) specify the ordering for 2l and 2r belonging to the same
tier. More precisely, rule (2) says that the ordering of middle child is prior to the one
of right child and the ordering follows the parental ordering if two different parents
belong to the same left branch with the same sign. Rule (3) says that if the parents
belong to the same left branch, a positive parent dominates over a negative parent.
Finally, if the parents do not belong to the same left branch, rule (4) says that the
ordering follows the parental ordering regardless of the signs of the parents.

Example 4.14 The pair (μ∗, sgn∗) in the following chart

2 j 2 4 6 8 10 12 14 16 18 20 22 24 26
μ∗(2 j) 1 1 1 1 1 6 6 7 2 3 10 13 18
sgn∗(2 j) − − + + − − + + − + + − +
t(2 j) 1 1 1 1 1 2 2 2 2 2 2 3 3

is tamed. We illustrate an algorithm for determining the unique tamed enumberation
of a signed skeleton tree.

9 The tier value of 2 j equals to the number of the arrows from node 2 j to node 1. That is why we use
arrows to link the middle/right child.
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We start with the skeleton (on the right) of the tree generated by (μ∗, sgn∗) with only
the signs indicated.

1

−

−

+

+

−

−

+

+

− +

+

−

+

We consider the left branch attached to node 1 where there are five nodes. Then we
label the left branch in order with 2, 4, 6, 8, 10.

1

2−

4−

6+

8+

10−

−

+

+

− +

+

−

+

Now, we set a queue where we list the nodes + first and then the − nodes

Queue : 6+, 8+, 2−, 4−, 10−

Then we work along the queue from left to right. Since 6+ has both a middle and
right child, we first label the middle child and its left branch with the next available
number 12 and 14 and add these numbers to the queue putting the + nodes before the
− nodes

Queue : 6+, 8+, 2−, 4−, 10−, 14+, 12−
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Next we label the right child with number 16 and add it to the queue

Queue : 6+, 8+, 2−, 4−, 10−, 14+, 12−, 16+

1

2−

4−

6+

8+

10−

12−

14+

16+

− +

+

−

+

Since we have already dealt with 6+, we can pop it from the queue

Queue : 8+, 2−, 4−, 10−, 14+, 12−, 16+

Subquently, we come to the next node in the queue which is 8+. Since the node 8+
has no child, we skip and pop it from the queue

Queue : 2−, 4−, 10−, 14+, 12−, 16+

Then, we come to the node 2−, which has both a middle and right child. We first label
the middle child with 18 and then the right child with 20.
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1

2−

4−

6+

8+

10−

12−

14+

16+

18− 20+

+

−

+

From the queue, we pop 2− and add 18−, 20+:

Queue : 4−, 10−, 14+, 12−, 16+, 18−, 20+

Since 4− has no child, we pop it and proceed to 10−, which has a middle child. We
label it with 22. The queue is updated:

Queue : 14+, 12−, 16+, 18−, 20+, 22+

By turn, we arrive at the fully enumberated tree.
1

2−

4−

6+

8+

10−

12−

14+

16+

18− 20+

22+

24−

26+

Here is the general algorithm to generate a tamed tree from a given signed skeleton
tree.

Algorithm 9 (Generate a Tamed tree)

(1) Start with a queue that first contains only 1.
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(2) If the queue is empty, then stop. If not, dequeue the leftmost entry l of the queue
and go to step (3).

(3) If there is a middle child of l, pass to the middle child of l, and label its left branch
with the next available label 2 j, 2( j + 1), ..., 2( j + q). If not, go to step (5).

(4) Take the left branch enumerated in step (3) and first list all + nodes in order from
2 j, 2( j + 1), ..., 2( j + q) and add them to the right side of the queue, and then
list in order all − nodes from 2 j, 2( j + 1), ..., 2( j + q) and add them to the right
side of the queue. Set the next available label to be 2( j + q + 1), and go to step
(5).

(5) If there is a right child of l, pass to the right child of l, and label its left branch
with the next available label 2 j, 2( j + 1), ..., 2( j + q). If not, go to step (2).

(6) Take the left branch enumerated in step (5) and first list all + nodes in order from
2 j, 2( j + 1), ..., 2( j + q) and add them to the right side of the queue, and then
list in order all − nodes from 2 j, 2( j + 1), ..., 2( j + q) and add them to the right
side of the queue. Set the next available label to be 2( j + q + 1), and go to step
(2).

Next, we will explain how to execute a sequence of signed KM acceptable moves to
bring a collapsingmap pair (μ, sgn) into the tamed form.After presenting an example,
we will give the general form of the algorithm.

Example 4.15 We consider the following collapsing map

2 j 2 4 6 8 10 12 14 16 18 20 22 24 26
μ(2 j) 1 1 1 6 1 6 7 1 2 16 9 18 3
sgn(2 j) − − + − + + + − − + − + +

ByAlgorithm 6, it generates T (μ, sgn) as shown in Fig. 3, which has the same signed
skeleton tree with the collapsing map (μ∗, sgn∗) in Example 4.14.

Comparing Fig. 3 T (u, sgn) with Fig. 4 T (μ∗, sgn∗), we note that the node 8 on
the T (μ∗, sgn∗) is the first one that differs from the one on the T (μ, sgn), which is
labeled 10. To change node 10 into node 8, we do KM(8,10) on (μ, sgn).

The KM(8,10) move is

μ1 = (8, 10) ◦ (9, 11) ◦ μ ◦ (8, 10) ◦ (9, 11),

sgn1 = sgn ◦ (8, 10) ◦ (9, 11).

It gives that

2 j 2 4 6 8 10 12 14 16 18 20 22 24 26
μ1(2 j) 1 1 1 1 6 6 7 1 2 16 11 18 3
sgn1(2 j) − − + + − + + − − + − + +

Next, we compare Fig. 5 T (u1, sgn1) with Fig. 6 T (μ∗, sgn∗) and find that the
next different node is 10 in the tree T (u∗, sgn∗), which is corresponding to node
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1

2−

4−

6+

10+

16−

8−

12+

14+

18− 26+

20+

22−

24+

Fig. 3 T (μ, sgn)

1

2−

4−

6+

8+

10−

12−

14+

16+

18− 20+

22+

24−

26+

Fig. 4 T (μ∗, sgn∗)

1

2−

4−

6+

8+

16−

10−

12+

14+

18− 26+

20+

22−

24+

Fig. 5 T (μ1, sgn1)
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1

2−

4−

6+

8+

10−

12−

14+

16+

18− 20+

22+

24−

26+

Fig. 6 T (μ∗, sgn∗)

1

2−

4−

6+

8+

10−

12−

14+

16+

18− 26+

20+

22−

24+

Fig. 7 T (μ2, sgn2)

16 in the tree T (u1, sgn1). Hence we do KM(14,16), KM(12,14) and KM(10,12) on
(μ1, sgn1). Then we have

(μ2, sgn2) = KM(10, 12) ◦ KM(12, 14) ◦ KM(14, 16)(μ1, sgn1)

and

2 j 2 4 6 8 10 12 14 16 18 20 22 24 26
μ2(2 j) 1 1 1 1 1 6 6 7 2 10 13 18 3
sgn2(2 j) − − + + − − + + − + − + +

Comparing Fig. 7 T (u2, sgn2) and Fig. 8 T (μ∗, sgn∗), we find that the next differ-
ent node is 20 in the tree T (μ∗, sgn∗), which is corresponding to node 26 in the tree
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1

2−

4−

6+

8+

10−

12−

14+

16+

18− 20+

22+

24−

26+

Fig. 8 T (μ∗, sgn∗)

T (μ3, sgn3). Hence, we do KM(24,26), KM(22,24) and KM(20,22) on (u2, sgn2) to
obtain

(μ3, sgn3) = KM(20, 22) ◦ KM(22, 24) ◦ KM(24, 26)(μ2, sgn2)

and

2 j 2 4 6 8 10 12 14 16 18 20 22 24 26
μ3(2 j) 1 1 1 1 1 6 6 7 2 3 10 13 18
sgn3(2 j) − − + + − − + + − + + − +

We see that (μ3, sgn3) is just the tamed pair (μ∗, sgn∗) as shown in Example 4.14.

Here is a general algorithm to bring a collapsing map (μ, sgn) into the tamed form.

Algorithm 10 (Tamed form)

(1) Given a collapsing map pair (μ, sgn), by Algorithm 6, we obtain a signed admis-
sible tree T (μ, sgn). From the signed skeleton tree, by Algorithm 9, it generates
a tamed tree α.

(2) Set counter j = 1.
(3) If the node 2 j in the tame tree α is corresponding to 2l in the tree T (μ, sgn), then

set

(u′, sgn′) = KM(2 j, 2 j + 2) ◦ · · · ◦ KM(2l − 4, 2l − 2) ◦ KM(2l − 2, 2l)(μ, sgn).

(4) Set (μ, sgn) = (μ′, sgn′). If j = k, then stop, otherwise set j = j + 1 and go to
step (3).

Next, we arrive at the main part, that is, the following adaptation of Proposition
4.6.
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Proposition 4.16 Within a signed KM-relatable equivalence class of collapsing map
pairs (μ, sgn), there is a unique tamed (μ∗, sgn∗). Moreover,∑

(μ,sgn)∼(μ∗,sgn∗)

I (μ, id, sgn, γ (2k+1)) =
∫
TD (μ∗)

J (2k+1)
μ∗,sgn∗ (γ (2k+1))(t1, t2k+1)dt2k+1 (4.18)

where TD(μ∗) is defined by (4.9). Consequently,

γ (1)(t1) =
∑

(μ∗,sgn∗) tamed

∫
TD(μ∗)

J (2k+1)
μ∗,sgn∗(γ

(2k+1))(t1, t2k+1)dt2k+1 (4.19)

where the number of tamed forms can be controlled by 16k .

Proof The existence and uniqueness follow from Algorithm 9. For (4.18), the proof
is the same as Proposition 4.6. As shown in (4.8), the number of different ternary tree
structures of k nodes can be controlled by 8k . By paying an extra factor of 2k , which
comes from the signs, there are at most 16k tamed forms. ��
The next stepwill be to rearrange the tamed pairs (μ∗, sgn∗) viawildmoves, as defined
and discussed in the next section. This will produce a further reduction of (4.19).

4.4 Wild Moves

We then introduce wild moves which keeps the tamed form invariant so that we can
partition the class of tamed pairs (μ, sgn) into equivalence classes of wildly relatable
forms.

Definition 4.17 Given a collapsing map pair (μ, sgn), define Gi = {2 j : μ(2 j) = i}
for i = 1, 2, ..., 2k−1. We call ρ ∈ P allowable with respect to (μ, sgn) if it satisfies
the following two conditions:

(1) ρ(Gi ) = Gi for i = 1, 2, ..., 2k − 1.
(2) If 2q < 2s, μ(2q) = μ(2s) and sgn(2q) = sgn(2s), then ρ(2q) < ρ(2s).

We denote the set of all allowable permutations ρ with respect to (μ, sgn) by
P(μ, sgn). Note that condition (1) is equivalent to μ ◦ ρ = μ ◦ ρ−1 = μ, which
leaves all left branchs invariant. Moreover, if (μ, sgn) is in tamed form, Gi will
be the form {2l, 2l + 2, ..., 2r}.

Definition 4.18 (Wild move) Given a signed collapsing map (μ, sgn) and ρ ∈
P(μ, sgn), then the wild move W (ρ) is defined as an action on a ternary (μ, σ, sgn),
where

(μ′, σ ′, sgn′) = W (ρ)(μ, σ, sgn)

with

μ′ = ρ ◦ μ ◦ ρ−1 = ρ ◦ μ,
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σ ′ = ρ ◦ σ,

sgn′ = sgn ◦ ρ−1.

It is fairly straightforward to show that wild moves preserve the tamed class by
using the definition of tamed form. It is noteworthy that the analogous statement for
upper echelon forms does not hold and it is the purpose of introducing the tamed class.

Proposition 4.19 Suppose (μ, sgn) is in tamed form, and W (ρ) is a wild move defined
as above. Then (μ′, sgn′) is also tamed.

Proof It follows from the definition of tamed form. ��
Thus we can say that two tamed forms (μ, sgn) and (μ′, sgn′) are wildly relatable if
there exists an allowable permutation ρ such that

(μ′, σ ′, sgn′) = W (ρ)(μ, σ, sgn).

This is an equivalence relation that partitions the set of tamed forms into equivalence
classes of wildly relatable forms.

The main result of this section is

Proposition 4.20 Given a signed collapsing map (u, sgn) in tamed form and ρ ∈
P(μ, sgn) as in Definition 4.17, let

(μ′, σ ′, sgn′) = W (ρ)(μ, σ, sgn).

Then for any symmetric density γ (2k+1), we have

J (2k+1)
μ′,sgn′ (γ (2k+1))(t1, σ

′−1(t2k+1)) = J (2k+1)
μ,sgn (γ (2k+1))(t1, σ

−1(t2k+1)). (4.20)

Consequently,

∫
σ [TD(μ)]

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1

=
∫

σ ′[TD(μ)]
J (2k+1)
μ′,sgn′ (γ (2k+1))(t1, t2k+1)dt2k+1 (4.21)

where σ [TD(μ)] is defined as follows

σ [TD(μ)] =: {tσ(2 j)+1 ≥ tσ(2l)+1 : 2l → 2 j in the tree T (μ)
}⋂{

t1 ≥ tσ(2)+1
}
.

Proof Since (μ, sgn) is a tamed pair, Gi will be the form {2p, 2p + 2, ..., 2q}. Then,
ρ ∈ P(μ, sgn) can be written as a composition of permutations

ρ = τ1 ◦ · · · ◦ τs
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with the property that each τ = (2l, 2l+2)◦(2l+1, 2l+3) and sgn(2l) �= sgn(2l+2).
Thus, it suffices to prove

U (2 j−1)(−t2 j+1)B
−
μ(2 j);2 j ,2 j+1U

(2 j+1)(t2 j+1 − t2 j+3)B
+
μ(2 j+2);2 j+2,2 j+3U

(2 j+3)(t2 j+3)

= U (2 j−1)(−t2 j+3)B
+
μ(2 j);2 j+2,2 j+3Ũ

(2 j+1)(t2 j+3 − t2 j+1)B
−
μ(2 j+2);2 j,2 j+1U

(2 j+3)(t2 j+1)

where Ũ (2 j+1)(t) = U (2 j−1)(t)e
it(�x2 j+2−�x ′2 j+2

)
e
it(�x2 j+3−�x ′2 j+3

)
.

Without loss, we might as well take j = 1 and μ(2) = μ(4) = 1 so that this
becomes

U (1)(−t3)B
−
1;2,3U

(3)(t3 − t5)B
+
1;4,5U

(5)(t5) = U (1)(−t5)B
+
1;4,5Ũ

(3)(t5 − t3)B
−
1;2,3U

(5)(t3). (4.22)

For simplicity, we take the following notations

U (1)(−t3) = U 1−3U
1′
−3,

U (3)(t3 − t5) = U 1
3,5U

1′
3,5U

2
3,5U

2′
3,5U

3
3,5U

3′
3,5,

U (5)(t5) = U 1
5U

1′
5 U 2

5U
2′
5 U 3

5U
3′
5 U 4

5U
4′
5 U 5

5U
5′
5 .

where Ul
± j = e±i t j�xl , Ul ′

± j = e
∓i t j�x ′l , Ul

j,k = Ul
jU

l
−k and U

l ′
j,k = Ul ′

j U
l ′
−k .

Expanding U (1)(−t3), U (3)(t3 − t5) and U (5)(t5) gives

U (1)(−t3)B
−
1;2,3U

(3)(t3 − t5)B
+
1;4,5U

(5)(t5)

= U1−3U
1′
−3B

−
1;2,3U

1
3,5U

1′
3,5U

2
3,5U

2′
3,5U

3
3,5U

3′
3,5B

+
1;4,5U

1
5U

1′
5 U2

5U
2′
5 U3

5U
3′
5 U4

5U
4′
5 U5

5U
5′
5

Since B−
1;2,3 acts only on the 2, 2′, 3, 3′ and 1′ coordinates, we exchange B−

1;2,3 with
U 1
3,5. In the sameway, B+

1;4,5 acts only on 4, 4
′, 5, 5′ and 1 coordinates, so we exchange

B+
1;4,5 with U

1′
3,5U

2
3,5U

2′
3,5U

3
3,5U

3′
3,5. Thus, we have

U (1)(−t3)B
−
1;2,3U

(3)(t3 − t5)B
+
1;4,5U

(5)(t5)

= U1−3U
1′
−3U

1
3,5B

−
1;2,3B

+
1;4,5U

1′
3,5U

2
3,5U

2′
3,5U

3
3,5U

3′
3,5U

1
5U

1′
5 U2

5U
2′
5 U3

5U
3′
5 U4

5U
4′
5 U5

5U
5′
5

Exchanging B−
1;2,3 with B+

1;4,5 gives

= U 1−3U
1′
−3U

1
3,5B

+
1;4,5B

−
1;2,3U

1′
3,5U

2
3,5U

2′
3,5U

3
3,5U

3′
3,5U

1
5U

1′
5 U 2

5U
2′
5 U 3

5U
3′
5 U 4

5U
4′
5 U 5

5U
5′
5

With U 1−3U
1′
−3U

1
3,5 = U 1−5U

1′
−5U

1′
5,3 and U

1′
3,5U

1
5U

1′
5 = U 1

5,3U
1
3U

1′
3 , we obtain

= U 1−5U
1′
−5U

1′
5,3B

+
1;4,5B

−
1;2,3U

1
5,3U

1
3U

1′
3 U 2

3U
2′
3 U 3

3U
3′
3 U 4

5U
4′
5 U 5

5U
5′
5
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Exchanging U 1′
5,3 with B+

1;4,5 and B−
1;2,3 with U

1
5,3U

4
3U

4′
3 U 5

3U
5′
3 , we have

= U 1−5U
1′
−5B

+
1;4,5U

1′
5,3U

1
5,3U

4
5,3U

4′
5,3U

5
5,3U

5′
5,3B

−
1;2,3U

1
3U

1′
3 U 2

3U
2′
3 U 3

3U
3′
3 U 4

3U
4′
3 U 5

3U
5′
3

= U (1)(−t5)B
+
1;4,5Ũ

(3)(t5 − t3)B
−
1;2,3U

(5)(t3).

Since γ (2k+1) is a symmetric density, one can permute

(x2, x3, x4, x5; x ′
2, x

′
3, x

′
4, x

′
5) ↔ (x4, x5, x2, x3; x ′

4, x
′
5, x

′
2, x

′
3).

Then it gives that

U (1)(−t5)B
+
1;4,5Ũ

(3)(t5 − t3)B
−
1;2,3U

(5)(t3) �−→ U (1)(−t5)B
+
1;2,3U

(3)(t5 − t3)B
−
1;4,5U

(5)(t3),

B±
μ(2l);2l,2l+1 �−→ B±

(2,4)◦(3,5)◦μ(2l);2l,2l+1, l ≥ 3,

which proves equality (4.20). ��
Example 4.21 Let us work with the following pair (μ1, sgn1)

2 j 2 4 6 8 10 12 14
μ1(2 j) 1 1 1 2 3 7 7
sgn1(2 j) + + − − + + −

There are six wild moves as follows:

(μ j , σ j , sgn j ) = W (ρ j )(μ1, id, sgn1),

2 4 6 12 14 2 4 6 12 14 ρ
−1
j [TD (μ j )]

ρ1 2 4 6 12 14 ρ
−1
1 2 4 6 12 14

{
t3 ≥ t5 ≥ t7, t7 ≥ t13 ≥ t15, t3 ≥ t9, t3 ≥ t11

}
ρ2 2 6 4 12 14 ρ

−1
2 2 6 4 12 14

{
t3 ≥ t7 ≥ t5, t7 ≥ t13 ≥ t15, t3 ≥ t9, t3 ≥ t11

}
ρ3 4 6 2 12 14 ρ

−1
3 6 2 4 12 14

{
t7 ≥ t3 ≥ t5, t7 ≥ t13 ≥ t15, t3 ≥ t9, t3 ≥ t11

}
ρ4 2 4 6 14 12 ρ

−1
4 2 4 6 14 12

{
t3 ≥ t5 ≥ t7, t7 ≥ t15 ≥ t13, t3 ≥ t9, t3 ≥ t11

}
ρ5 2 6 4 14 12 ρ

−1
5 2 6 4 14 12

{
t3 ≥ t7 ≥ t5, t7 ≥ t15 ≥ t13, t3 ≥ t9, t3 ≥ t11

}
ρ6 4 6 2 14 12 ρ

−1
6 6 2 4 14 12

{
t7 ≥ t3 ≥ t5, t7 ≥ t15 ≥ t13, t3 ≥ t9, t3 ≥ t11

}

The collapsing mappings (μ j , sgn j ) and corresponding trees are indicated below. We
notice that all (μ j , sgn j ) are tamed and also that wild moves, unlike the KM moves,
do change the skeleton.

2 j 2 4 6 8 10 12 14 2 4 6 8 10 12 14
μ1(2 j) 1 1 1 2 3 7 7 sgn1(2 j) + + − − + + −
μ2(2 j) 1 1 1 2 3 5 5 sgn2(2 j) + − + − + + −
μ3(2 j) 1 1 1 4 5 3 3 sgn3(2 j) − + + − + + −
μ4(2 j) 1 1 1 2 3 7 7 sgn4(2 j) + + − − + − +
μ5(2 j) 1 1 1 2 3 5 5 sgn5(2 j) + − + − + − +
μ6(2 j) 1 1 1 4 5 3 3 sgn6(2 j) − + + − + − +
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Tree for (μ1, sgn1)
1

2+

4+ 8− 10+

6−

12+

14−

Tree for (μ2, sgn2)
1

2+

4− 8− 10+

6+ 12+

14−

Tree for (μ3, sgn3)
1

2−

4+

8− 10+6+

12+

14−

Tree for (μ4, sgn4)
1

2+

4+ 8− 10+

6−

12−

14+

Tree for (μ5, sgn5)
1

2+

4− 8− 10+

6+ 12−

14+

Tree for (μ6, sgn6)
1

2−

4+

8− 10+6+

12−

14+

4.5 Reference Form and Proof of Compatibility

We will prove that, given a tamed class, there is a reference form representing the
tamed class. Moreover, the tamed time integration domain for the whole tamed class,
which can be directly read out from the reference form, is just the compatible time
integration domain introduced in Section 3.2.

Definition 4.22 A tamed pair (μ̂, ˆsgn) will be called a reference pair provided that in
every left branch, all the + nodes come before all the − nodes.

Example 4.23 The collapsing pair (μ1, sgn1) in Example 4.21 is a reference pair.

2 j 2 4 6 8 10 12 14
sgn1(2 j) + + − − + + −

From the table, we can see that the + nodes come before all the − nodes in left
branches (2, 4, 6) and (12, 14).

As we infer from the examples, each class can be represented by a unique reference
pair (μ, sgn). Exactly, we have the following proposition.
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Proposition 4.24 An equivalence class of wildly relatable tamed pairs

Q = {(μ, sgn)}

contains a unique reference pair (μ̂, ˆsgn). For every (u, sgn) ∈ Q, there is a unique
allowable permutation ρ ∈ P(μ̂, ˆsgn) such that

(μ, sgn) = W (ρ)(μ̂, ˆsgn).

Proof Note that wild moves will not destroy the left branch but permute the signs.
Thus, there exists an allowable permutation such that the + nodes come before all the
− nodes in every left branch. The uniqueness follows from the conditions (1) and (2)
in Definition 4.17. ��

Next, we get into the analysis of the main result.

Proposition 4.25 The Duhamel expansion to coupling order k can be grouped into at
most 16k terms:

γ (1)(t1) =
∑

re f erence (μ̂, ˆsgn)

∫
TR(μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1 (4.23)

where

TR(μ̂, ˆsgn) =
⋃

ρ∈P(μ̂, ˆsgn)

ρ−1[TD(ρ ◦ μ̂)]. (4.24)

and TD(μ) is defined by (4.9).

Proof Recall

γ (1)(t1) =
∑

(μ∗,sgn∗) tamed

∫
TD(μ∗)

J (2k+1)
μ∗,sgn∗(γ

(2k+1))(t1, t2k+1)dt2k+1

where the number of tamed forms can be controlled by 16k . In this sum, group together
equivalence classes Q of wildly relatable (μ, sgn).

γ (1)(t1) =
∑

class Q

∑
(μ,sgn)∈Q

∫
TD(μ)

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1.

There exists exact one reference (μ̂, ˆsgn) in each equivalence class Q. By Proposition
4.24, for each (μ, sgn) ∈ Q, there is a unique allowable ρ ∈ P(μ̂, ˆsgn) such that

(μ, sgn) = W (ρ)(μ̂, ˆsgn).
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Since W is an action, we can write

(μ̂, ρ−1, ˆsgn) = W (ρ−1)(μ, id, sgn).

Then by Proposition 4.20,

∫
TD (μ)

J (2k+1)
μ,sgn (γ (2k+1))(t1, t2k+1)dt2k+1 =

∫
ρ−1[TD(μ)]

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1.

Consequently, we obtain

γ (1)(t1) =
∑

re f erence (μ̂, ˆsgn)

∑
ρ∈P(μ̂, ˆsgn)

∫
ρ−1[TD(ρ◦μ̂)]

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1.

Since
{
ρ−1[TD(ρ ◦ μ̂)]} is a collection of disjoint sets, we obtain the equality (4.23).

��
We are left to calculate the time integration domain TD(μ) and TR(μ̂, ˆsgn).

Proposition 4.26 Let ρ ∈ P(μ̂, ˆsgn) and (μ, sgn) = W (ρ)(μ̂, ˆsgn), then

TD(μ) = {t2 j+1 ≥ t2l+1 : μ̂(2 j) = μ̂(2l), 2 j < 2l
}

⋂{
tρ(2 j)+1 ≥ tρ(2l)+1 : μ̂(2l) = 2 j or μ̂(2l) = 2 j + 1

}
, (4.25)

TR(μ̂, ˆsgn) = {t2 j+1 ≥ t2l+1 : 2 j < 2l, μ̂(2l) = μ̂(2 j), ˆsgn(2 j) = ˆsgn(2l)
}

⋂{
t2 j+1 ≥ t2l+1 : μ̂(2l) = 2 j or μ̂(2l) = 2 j + 1

}
. (4.26)

Proof Since μ = ρ ◦ μ̂, we can write

TD(μ)

= {t2 j+1 ≥ t2l+1 : μ̂(2 j) = μ̂(2l), 2 j < 2l
}⋂

{
t2 j+1 ≥ t2l+1 : μ(2l) = 2 j or μ(2l) = 2 j + 1

}
.

It remains to prove

{
t2 j+1 ≥ t2l+1 : μ(2l) = 2 j or μ(2l) = 2 j + 1

}
= {tρ(2 j)+1 ≥ tρ(2l)+1 : μ̂(2l) = 2 j or μ̂(2l) = 2 j + 1

}
. (4.27)

Actually, with μ = ρ ◦ μ̂ and μ̂ ◦ ρ−1 = μ̂, we have

μ(2l) = 2 j ⇐⇒ μ̂(ρ−1(2l)) = ρ−1(2 j),

μ(2l) = 2 j + 1 ⇐⇒ μ̂(ρ−1(2l)) = ρ−1(2 j) + 1,

which implies (4.27).
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Then by (4.25), we can rewrite

ρ−1[TD(ρ ◦ μ̂)] = {tρ−1(2 j)+1 ≥ tρ−1(2l)+1 : μ̂(2 j) = μ̂(2l), 2 j < 2l
}

⋂{
t2 j+1 ≥ t2l+1 : μ̂(2l) = 2 j or μ̂(2l) = 2 j + 1

}
.

It suffices to prove

⋃
ρ∈P(μ̂, ˆsgn)

{
tρ−1(2 j)+1 ≥ tρ−1(2l)+1 : μ̂(2 j) = μ̂(2l), 2 j < 2l

}
= {t2 j+1 ≥ t2l+1 : 2 j < 2l, μ̂(2l) = μ̂(2 j), ˆsgn(2 j) = ˆsgn(2l)

}
. (4.28)

For simplicity, we take the notations

A j,l(ρ) = {tρ−1(2 j)+1 ≥ tρ−1(2l)+1 : 2 j < 2l, μ̂(2l) = μ̂(2 j)
}
,

Bj,l = {t2 j+1 ≥ t2l+1 : 2 j < 2l, μ̂(2l) = μ̂(2 j), ˆsgn(2 j) = ˆsgn(2l)
}
,

where A j,l and Bj,l will be the full space if ( j, l) does not satisfy the corresponding
requirement. We are left to prove that

⋃
ρ∈P(μ̂, ˆsgn)

⋂
j,l

A j,l(ρ) =
⋂
j,l

B j,l .

Given ρ ∈ P(μ̂, ˆsgn), we will prove
⋂

j,l A j,l(ρ) ⊂ Bj0,l0 for every pair ( j0, l0)
which satisfies 2 j0 < 2l0, μ̂(2l0) = μ̂(2 j0) and ˆsgn(2 j0) = ˆsgn(2l0). Let 2 j1 =
ρ(2 j0) and 2l1 = ρ(2 j0). Since ρ ∈ P(μ̂, ˆsgn), we obtain μ̂(2l1) = μ̂(2 j1) and
2 j1 < 2l1. Hence, ⋂

j,l

A j,l(ρ) ⊂ A j1,l1(ρ) = Bj0,l0 .

Conversely, suppose that (t1, t3, ..., t2k+1) ∈ ⋂
j,l B j,l . Note that{

Gi = {2r : μ̂(2r) = i
}}2k−1

i=1 is a partition of {2, 4, ..., 2k}. Thus there exists a unique
σ ∈ P such that {

σ(Gi ) = Gi ,

tσ−1(2 j)+1 ≥ tσ−1(2l)+1.
(4.29)

where 2 j < 2l and μ̂(2 j) = μ̂(2l). It implies that (t1, t3, ..., t2k+1) ∈⋂ j,l A j,l(σ ).
We are left to prove that σ ∈ P(μ̂, ˆsgn). For any pair ( j0, l0) which satisfies

2l0 < 2 j0, μ̂(2l0) = μ̂(2 j0) and ˆsgn(2 j0) = ˆsgn(2l0), we have (t1, ..., t2k+1) ∈
Bj0,l0 , which implies that t2 j0+1 ≥ t2l0+1. Combining with (4.29), we obtain σ(2l0) <

σ(2 j0), which shows that σ ∈ P(μ̂, ˆsgn). ��
With Propositions 4.25 and 4.26, we arrive at the main result as follows.
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Proposition 4.27 The time integration domain obtained in (4.24) is compatible in the
sense that

TR(μ̂, ˆsgn) = TC (μ̂, ˆsgn) (4.30)

and hence

γ (1)(t1) =
∑

re f erence (μ̂, ˆsgn)

∫
TC (μ̂, ˆsgn)

J (2k+1)
μ̂, ˆsgn (γ (2k+1))(t1, t2k+1)dt2k+1 (4.31)

where TC (μ̂, ˆsgn) = {t2 j+1 ≥ t2l+1 : D(2l) → D(2 j)
}
is the compatible time integra-

tion domain defined by (3.4).

Proof From the definition of TC (μ̂, ˆsgn), we have that t2 j+1 ≥ t2l+1 if and only if
one of the following cases holds⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ̂(2 j) = μ̂(2l), ˆsgn(2 j) = ˆsgn(2l),

μ̂(2l) = 2 j, ˆsgn(2l) = +,

μ̂(2l) = 2 j, ˆsgn(2l) = −,

μ̂(2l) = 2 j + 1, ˆsgn(2l) = +,

μ̂(2l) = 2 j + 1, ˆsgn(2l) = −,

where 2l > 2 j is the the minimal index for which the corresponding equalities hold.
The requirement that 2l is the minimal index can be removed by induction argument.
Thus, these cases are respectively corresponding to

⎧⎪⎨
⎪⎩

μ̂(2l) = μ̂(2 j), ˆsgn(2 j) = ˆsgn(2l),

μ̂(2l) = 2 j,

μ̂(2l) = 2 j + 1,

which implies that TR(μ̂, ˆsgn) = TC (μ̂, ˆsgn). ��

5 U-V Multilinear Estimates

Our proof ofU -V multilinear estimates will focus on theT
d case, as it works the same

for R
d with the homogeneous norm.We recall the definition ofU -V spaces in Section

3.3 and use the following tools to prove U -V multilinear estimates.

Lemma 5.1 [37,Propositions 2.11] For f ∈ L1(0, T ; Hs(Td)), we have

∥∥∥ ∫ t

a
ei(t−τ)� f (τ, ·)dτ

∥∥∥
Xs ([0,T ))

≤ sup
g∈Y−s ([0,T )):‖g‖Y−s =1

∣∣∣ ∫ T

0

∫
Td

f (t, x)g(t, x)dtdx
∣∣∣,
(5.1)

for all a ∈ [0, T ).
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Lemma 5.2 (Strichartz estimate on T
d [4, 46]) For p >

2(d+2)
d ,

‖P≤Mu‖L p
t,x

� M
d
2 − d+2

p ‖P≤Mu‖Y 0([0,T )) (5.2)

Lemma 5.3 Let M be a dyadic value and let Q be a(possibly) noncentered M-cube in
Fourier space

Q = {ξ0 + η : |η| < M} .

Let PQ be the corresponding Littlewood-Paley projection, then by the Galilean invari-
ance, we have

‖PQu‖L p
t,x

� M
d
2 − d+2

p ‖PQu‖Y 0([0,T )) (5.3)

for p >
2(d+2)

d .

Lemma 5.4 (Bernstein with noncentered frequency projection) Let M and Q be as in
Lemma 5.3, then for 1 ≤ p ≤ q ≤ ∞

‖PQ f ‖Lq
x

� M
d
p− d

q ‖PQ f ‖L p
x
. (5.4)

Lemmas 5.3 and 5.4 are very well-known, and are available in many references, for
example, see [20].

5.1 Trilinear Estimates

To deal with the cubic energy-supercritical NLS, we prove the followingU -V trilinear
estimates at critical regularity. Let ũ ∈ {u, u}.

Lemma 5.5 On T
d with d ≥ 4 and s ∈ { d−6

2 , d−2
2

}
, we have the high frequency

estimate

∫∫
x,t

ũ1(t, x )̃u2(t, x )̃u3(t, x)g̃(t, x)dxdt � ‖u1‖Y s‖u2‖
Y

d−2
2

‖u3‖
Y

d−2
2

‖g‖Y−s ,

(5.5)

and the low frequency estimate

∫∫
x,t

ũ1(t, x)(P≤M0 ũ2)(t, x )̃u3(t, x)g̃(t, x)dxdt

� T
1

d+3 M
2(d+2)
3(d+3)
0 ‖u1‖Y s‖P≤M0u2‖Y d−2

2
‖u3‖

Y
d−2
2

‖g‖Y−s , (5.6)
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for all T ≤ 1 and all frequencies M0 ≥ 1. Then by Lemma 5.1, (5.5) and (5.6), we
have

∥∥∥ ∫ t

a
ei(t−τ)�(̃u1ũ2ũ3)dτ

∥∥∥
Xs

� ‖u1‖Y s‖u2‖
Y

d−2
2

‖u3‖
Y

d−2
2

(5.7)

and

∥∥∥ ∫ t

a
ei(t−τ)�(̃u1ũ2ũ3)dτ

∥∥∥
Xs

� ‖u1‖Y s

(
T

1
d+3 M

2(d+2)
3(d+3)
0 ‖P≤M0u2‖Y d−2

2
+ ‖P>M0u2‖Y d−2

2

)
‖u3‖

Y
d−2
2

. (5.8)

Proof It suffices to prove high and low frequency estimates (5.5) and (5.6). For sim-
plicity, we take ũ = u and g̃ = g.

For the high frequency estimate (5.5), decompose the 4 factors into Littlewood-
Paley pieces so that

I =
∑

M1,M2,M3,M4

IM1,M2,M3,M4

where

IM1,M2,M3,M4 =
∫∫

x,t
u1,M1u2,M2u3,M3gM4dxdt

with u j,Mj = PMj u j and gM4 = PM4g. By orthogonality, we know that these cases
are as follows

Mσ(1) ∼ Mσ(2) ≥ Mσ(3) ≥ Mσ(4)

where σ is a permutation on {1, 2, 3, 4}. By symmetry, we might as well assume
without loss that M2 ≥ M3.

First, we consider themost difficulty case, namely, CaseA.M1 ∼ M4 ≥ M2 ≥ M3.
Then, we need only to deal with one such as Case B. M1 ∼ M2 ≥ M4 ≥ M3, since
other cases can be treated in the same way.

Let IA denote the integral restricted to the Case A. Decompose the M1 and M4
dyadic spaces intoM2 size cubes. Due to the frequency constraint ξ2 ∼ −(ξ1+ξ3+ξ4),
for each choice Q of an M2 size cube within the ξ1 space, the variable ξ2 is constrained
to at most 3d of M2 size cubes. For convenience, we denote these cubes by a single
cube Qc that corresponds to Q. Then

IA �
∑

M1,M2,M3,M4
M1∼M4≥M2≥M3

∑
Q

‖PQu1,M1u2,M2u3,M3 PQc gM4‖L1t,x

�
∑

M1,M2,M3,M4
M1∼M4≥M2≥M3

∑
Q

‖PQu1,M1‖
L
3(d+3)
d+2

t,x

‖u2,M2‖
L
3(d+3)
d+2

t,x

‖u3,M3‖Ld+3
t,x

‖PQc gM4‖
L
3(d+3)
d+2

t,x
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where the factor corresponding to the smallest size cubes (here M3 size cubes) is put

in Ld+3
t,x and the others are put in L

3(d+3)
d+2

t,x . By (5.2) and (5.3),

�
∑

M1,M2,M3,M4
M1∼M4≥M2≥M3

∑
Q

M
d−2
2 − 1

d+3
2 ‖PQu1,M1‖Y 0‖u2,M2‖Y 0M

d−2
2 + 1

d+3
3 ‖u3,M3‖Y 0‖PQc gM4‖Y 0

Applying Cauchy-Schwarz to sum in Q,

�
∑

M1,M4
M1∼M4

M−s
1 Ms

4‖u1,M1‖Y s‖gM4‖Y−s

∑
M2,M3
M2≥M3

M
− 1

d+3
2 M

1
d+3
3 ‖u2,M2‖Y d−2

2
‖u3,M3‖Y d−2

2
(5.9)

Applying Cauchy-Schwarz,

�

⎛
⎝∑

M1

‖u1,M1‖2Y s

⎞
⎠

1
2
⎛
⎝∑

M4

‖g4,M4‖2Y−s

⎞
⎠

1
2

⎛
⎜⎜⎝ ∑

M2,M3
M2≥M3

(
M3

M2

) 1
d+3 ‖u2,M2‖2

Y
d−2
2

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝ ∑

M2,M3
M2≥M3

(
M3

M2

) 1
d+3 ‖u3,M3‖2

Y
d−2
2

⎞
⎟⎟⎠

1
2

�‖u1‖Y s‖u2‖
Y

d−2
2

‖u3‖
Y

d−2
2

‖g‖Y−s .

Case B. M1 ∼ M2 ≥ M4 ≥ M3. Decompose the M1 and M2 dyadic spaces into
M4 size cubes and we have

IB �
∑

M1,M2,M3,M4
M1∼M2≥M4≥M3

∑
Q

‖PQu1,M1 PQcu2,M2u3,M3gM4‖L1t,x

�
∑

M1,M2,M3,M4
M1∼M2≥M4≥M3

∑
Q

‖PQu1,M1‖
L
3(d+3)
d+2

t,x

‖PQcu2,M2‖
L
3(d+3)
d+2

t,x

‖u3,M3‖Ld+3
t,x

‖gM4‖
L
3(d+3)
d+2

t,x

By (5.2) and (5.3),

�
∑

M1,M2,M3,M4
M1∼M2≥M4≥M3

∑
Q

M
d−2
2 − 1

d+3
4 ‖PQu1,M1‖Y 0‖PQcu2,M2‖Y 0M

d−2
2 + 1

d+3
3 ‖u3,M3‖Y 0‖gM4‖Y 0
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Applying Cauchy-Schwarz to sum in Q,

�
∑

M1,M2
M1∼M2

(
M−s

1 M
− d−2

2
2 ‖u1,M1‖Y s‖u2,M2‖Y d−2

2

∑
M3,M4

M1∼M2≥M4≥M3

M
d−2
2 − 1

d+3+s
4 M

1
d+3
3 ‖u3,M3‖Y d−2

2
‖g4,M4‖Y−s

⎞
⎟⎟⎠

If s + d−2
2 = 0, it can be estimated in the same way as (5.9). Thus we need only to

treat the case s + d−2
2 > 0. Supping out ‖u3,M3‖Y d−2

2
and ‖gM4‖Y−s in M3 and M4,

we have

�‖u3‖
Y

d−2
2

‖g‖Y−s

∑
M1,M2
M1∼M2

M−s
1 M

− d−2
2

2 ‖u1,M1‖Y s‖u2,M2‖Y d−2
2

∑
M3,M4

M1∼M2≥M4≥M3

M
d−2
2 − 1

d+3+s
4 M

1
d+3
3

By the fact that d−2
2 + s > 0,

�‖u3‖
Y

d−2
2

‖g‖Y−s

∑
M1,M2
M1∼M2

M−s
1 M

− d−2
2

2 ‖u1,M1‖Y s‖u2,M2‖Y d−2
2
M

d−2
2 +s

2

=‖u3‖
Y

d−2
2

‖g‖Y−s

∑
M1,M2
M1∼M2

M−s
1 Ms

2‖u1,M1‖Y−s‖u2,M2‖Y d−2
2

Applying Cauchy-Schwarz,

�‖u1‖Y s‖u2‖
Y

d−2
2

‖u3‖
Y

d−2
2

‖g‖Y−s .

Case B requires that d−2
2 + s ≥ 0. If we exchange M1 and M4 in Case B, we find

another requirement that d−2
2 − s ≥ 0 is also needed. In this case, it becomes Case A

again if s = d−2
2 and it becomes similar but a bit different if s = d−6

2 as M1 and M2
are not symmetric.

Proof of the low frequency estimate (5.6). We first deal with the most difficult Case
A. M1 ∼ M4 ≥ M3 ≥ M2. Decompose the M1 and M4 dyadic spaces into M3 size
cubes, we have

IM1,M2,M3,M4 �
∑
Q

‖PQu1,M1 (P≤M0u2,M2 )u3,M3 PQc gM4‖L1t,x
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≤
∑
Q

‖PQu1,M1‖
L
3(d+3)
d+2

t,x

‖P≤M0u2,M2‖Ld+3
t,x

‖u3,M3‖
L
3(d+3)
d+2

t,x

‖PQc gM4‖
L
3(d+3)
d+2

t,x

where the factor corresponding to the smallest size cubes (here M2 size cubes) is put

in Ld+3
t,x and the others are put in L

3(d+3)
d+2

t,x .
By Hölder, Bernstein inequalities and (3.4),

‖P≤M0u2,M2‖Ld+3
t,x

�T
1

d+3 M
2

d+3
0 M

d−2
2 + 1

d+3
2 ‖P≤M0u2,M2‖L∞

t L2
x

�T
1

d+3 M
2

d+3
0 M

d−2
2 + 1

d+3
2 ‖P≤M0u2,M2‖Y 0

By (5.2) and (5.3),

IM1,M2,M3,M4

� T
1

d+3 M
2

d+3
0

∑
Q

M
d−2
2 + 1

d+3
2 M

d−2
2 − 1

d+3
3 ‖PQu1,M1‖Y 0

‖P≤M0u2,M2‖Y 0‖u3,M3‖Y 0‖PQcgM4‖Y 0

Applying Cauchy-Schwarz to sum in Q, we arrive at

IM1,M2,M3,M4

� T
1

d+3 M
2

d+3
0 M

d−2
2 − 1

d+3
3 M

d−2
2 + 1

d+3
2 ‖u1,M1‖Y 0‖P≤M0u2,M2‖Y 0‖u3,M3‖Y 0‖gM4‖Y 0 .

Then by M1 ∼ M4, we obtain

IM1,M2,M3,M4 �T
1

d+3 M
2

d+3
0 M

d−2
2 − 1

d+3
3 M

d−2
2 + 1

d+3
2 M−s

1 ‖u1,M1‖Y s M
− d−2

2
2 ‖P≤M0u2,M2‖

Y
d−2
2

M
− d−2

2
3 ‖u3,M3‖

Y
d−2
2

Ms
4‖gM4‖Y−s

�T
1

d+3 M
2

d+3
0 M

− 1
d+3

3 M
1

d+3
2 ‖u1,M1‖Y s ‖P≤M0u2,M2‖

Y
d−2
2

‖u3,M3‖
Y
d−2
2

‖gM4‖Y−s .

Thus, we have

IA �T
1

d+3 M
2

d+3
0

∑
M1,M2,M3,M4

M1∼M4≥M3≥M2

‖u1,M1‖Y s‖gM4‖Y−s M
− 1

d+3
3

M
1

d+3
2 ‖P≤M0u2‖Y d−2

2
‖u3,M3‖Y d−2

2

�T
1

d+3 M
2

d+3
0 ‖u1‖Y s‖P≤M0u2‖Y d−2

2
‖u3‖

Y
d−2
2

‖g‖Y−s
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Next, we deal with one such as Case B. M1 ∼ M2 ≥ M4 ≥ M3, since other cases
can be treated in the same way. Decompose the M1 and M2 dyadic spaces into M4
size cubes and we have

IM1,M2,M3,M4 ≤
∑
Q

‖PQu1,M1‖
L
3(d+3)
d+2

t,x

‖PQc P≤M0u2,M2‖
L
3(d+3)
d+2

t,x

‖u3,M3‖Ld+3
t,x

‖gM4‖
L
3(d+3)
d+2

t,x

By Hölder, Bernstein inequalities and (3.4),

‖PQc P≤M0u2,M2‖
L

3(d+3)
d+2

t,x

�T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 M

d−2
6 − 1

3(d+3)
4 ‖PQc P≤M0u2,M2‖L∞

t L2
x

�T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 M

d−2
6 − 1

3(d+3)
4 ‖PQc P≤M0u2,M2‖Y 0

By (5.2) and (5.3),

IM1,M2,M3,M4 �T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 M

d−2
2 − 1

d+3
4 M

d−2
2 + 1

d+3
3∑

Q

‖PQu1,M1‖Y 0‖PQc P≤M0u2,M2‖Y 0‖u3,M3‖Y 0‖gM4‖Y 0

Applying Cauchy-Schwarz to sum in Q, we arrive at

IM1,M2,M3,M4

� T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 M

d−2
2 − 1

d+3
4 M

d−2
2 + 1

d+3
3 ‖u1,M1‖Y 0‖P≤M0u2,M2‖Y 0‖u3,M3‖Y 0‖gM4‖Y 0

� T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 M−s

1 ‖u1,M1‖Y s M
− d−2

2
2 ‖P≤M0u2,M2‖

Y
d−2
2

M
1

d+3
3 ‖u3,M3‖

Y
d−2
2

M
d−2
2 − 1

d+3+s
4 ‖gM4‖Y−s

If s + d−2
2 = 0, it can be estimated in the same way as (5.9). Thus we need only to

treat the case s + d−2
2 > 0. Supping out ‖u3,M3‖Y d−2

2
and ‖gM4‖Y−s in M3 and M4,

we have

IB �
∑

M1,M2,M3,M4
M1∼M2≥M4≥M3

IM1,M2,M3,M4

�T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 ‖u3‖

Y
d−2
2

‖g‖Y−s

∑
M1,M2,M3,M4

M1∼M2≥M4≥M3

(
M−s

1 ‖u1,M1‖Y s M
− d−2

2
2 ‖P≤M0u2,M2‖Y d−2

2

M
1

d+3
3 M

d−2
2 − 1

d+3+s
4

)
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�T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 ‖u3‖

Y
d−2
2

‖g‖Y−s

∑
M1,M2
M1∼M2

M−s
1 ‖u1,M1‖Y s Ms

2‖P≤M0u2,M2‖Y d−2
2

Applying Cauchy-Schwarz,

�T
d+2

3(d+3) M
2(d+2)
3(d+3)
0 ‖u1‖Y s‖P≤M0u2‖Y d−2

2
‖u3‖

Y
d−2
2

‖g‖Y−s .

��

5.2 Quintilinear Estimates

Lemma 5.6 On T
d with d ≥ 3 and s ∈

{
d−5
2 , d−1

2

}
, we have the high frequency

estimate ∫∫
x,t

ũ1(t, x )̃u2(t, x )̃u3(t, x )̃u4(t, x )̃u5(t, x)g̃(t, x)dxdt

� ‖u1‖Y s‖u2‖
Y

d−1
2

‖u3‖
Y

d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s , (5.10)

and the low frequency estimate

∫∫
x,t

ũ1(t, x)(P≤M0 ũ2)(t, x )̃u3(t, x )̃u4(t, x )̃u5(t, x)g̃(t, x)dxdt

� T
1

2(d+3) M
2d+3
3(d+3)
0 ‖u1‖Y s‖P≤M0u2‖Y d−1

2
‖u3‖

Y
d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s ,

(5.11)

for all T ≤ 1 and all frequencies M0 ≥ 1. Then by Lemma 5.1, (5.10) and (5.11), we
have

∥∥∥ ∫ t

a
ei(t−τ)�(̃u1ũ2ũ3ũ4ũ5)dτ

∥∥∥
Xs

� ‖u1‖Y s‖u2‖
Y

d−1
2

‖u3‖
Y

d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

(5.12)

and

∥∥∥ ∫ t

a
ei(t−τ)�(̃u1ũ2ũ3ũ4ũ5)dτ

∥∥∥
Xs

� ‖u1‖Y s

(
T

1
2(d+3) M

2d+3
3(d+3)
0 ‖P≤M0u2‖Y d−1

2
+ ‖P>M0u2‖Y d−1

2

)
‖u3‖

Y
d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

. (5.13)

Remark 5.7 Notice that (5.10) for d = 3 is implied by [19,Lemma 5.15]. One can
compare the proof of the stronger L1

t H
s estimate with the proof here and see that the
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proof of the weaker U -V estimates are indeed much less technical, and the current
method to incorporate these weaker estimates is indeed stronger.

Proof For the high frequency estimate (5.10), decompose the 6 factors into Littlewood-
Paley pieces so that

I =
∑

M1,M2,M3,M4,M5,M6

IM1,M2,M3,M4,M5,M6

where

IM1,M2,M3,M4,M5,M6 =
∫∫

x,t
u1,M1u2,M2u3,M3u4,M4u5,M5gM6dxdt

with u j,Mj = PMj u j and gM6 = PM6g.
We first take care of themost difficult CaseA.M1 ∼ M6 ≥ M2 ≥ M3 ≥ M4 ≥ M5.

Then, we need only to deal with one such as Case B. M1 ∼ M2 ≥ M6 ≥ M3 ≥ M4 ≥
M5, since other cases can be treated in the same way. Decompose the M1 and M6
dyadic spaces into M2 size cubes, then

IA �
∑

M1,M2,M3,M4,M5,M6
M1∼M6≥M2≥M3≥M4≥M5

∑
Q

‖PQu1,M1 PQcu2,M2u3,M3u4,M4u5,M5gM6‖L1
t,x

�
∑

M1,M2,M3,M4,M5,M6
M1∼M6≥M2≥M3≥M4≥M5

∑
Q

(
‖PQu1,M1‖

L
6(d+3)
2d+3

t,x

‖u2,M2‖
L

6(d+3)
2d+3

t,x

‖u3,M3‖L2(d+3)
t,x

‖u4,M4‖L2(d+3)
t,x

‖u5,M5‖L2(d+3)
t,x

‖PQcgM6‖
L

6(d+3)
2d+3

t,x

)

where three factors corresponding to small size cubes (here M3, M4, M5 size cubes)

are put in L2(d+3)
t,x and the others are put in L

6(d+3)
2d+3
t,x . By (5.2) and (5.3),

�
∑

M1,M2,M3,M4,M5,M6
M1∼M6≥M2≥M3≥M4≥M5

∑
Q

(
M

d−1
2 − 3

2(d+3)
2 ‖PQu1,M1‖Y 0‖u2,M2‖Y 0M

d−1
2 + 1

2(d+3)
3 ‖u3,M3‖Y 0

M
d−1
2 + 1

2(d+3)
4 ‖u4,M4‖Y 0M

d−1
2 + 1

2(d+3)
5 ‖u5,M5‖Y 0‖PQc gM6‖Y 0

)
.

Applying Cauchy-Schwarz to sum in Q,

�
∑

M1,M6
M1∼M6

M−s
1 Ms

6‖u1,M1‖Y s ‖gM6‖Y−s
∑

M2,M3,M4,M5
M2≥M3≥M4≥M5

(
M

− 3
2(d+3)

2 M
1

2(d+3)
3 M

1
2(d+3)
4 M

1
2(d+3)
5

‖u2,M2‖
Y
d−1
2

‖u3,M3‖
Y
d−1
2

‖u4,M4‖
Y
d−1
2

‖u5,M5‖
Y
d−1
2

)
(5.14)
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Supping out ‖u4,M4‖Y d−1
2

and ‖u5,M5‖Y d−1
2

inM4 andM5, and then applying Cauchy-

Schwarz as shown in (5.9),

�‖u1‖Y s‖u2‖
Y

d−1
2

‖u3‖
Y

d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s .

Case B. M1 ∼ M2 ≥ M6 ≥ M3 ≥ M4 ≥ M5. Decompose the M1 and M2 dyadic
spaces into M6 size cubes and we have

IB �
∑

M1,M2,M3,M4,M5,M6
M1∼M2≥M6≥M3≥M4≥M5

∑
Q

‖PQu1,M1 PQcu2,M2u3,M3u4,M4u5,M5gM6‖L1t,x

�
∑

M1,M2,M3,M4,M5,M6
M1∼M2≥M6≥M3≥M4≥M5

∑
Q

⎛
⎝‖PQu1,M1‖

L
6(d+3)
2d+3

t,x

‖PQcu2,M2‖
L
6(d+3)
2d+3

t,x

‖u3,M3‖L2(d+3)
t,x

‖u4,M4‖L2(d+3)
t,x

‖u5,M5‖L2(d+3)
t,x

‖gM6‖
L
6(d+3)
2d+3

t,x

⎞
⎠

By (5.2) and (5.3),

�
∑

M1,M2,M3,M4,M5,M6
M1∼M2≥M6≥M3≥M4≥M5

∑
Q

(
M

d−1
2 − 3

2(d+3)
6 ‖PQu1,M1‖Y 0‖PQcu2,M2‖Y 0M

d−1
2 + 1

2(d+3)
3 ‖u3,M3‖Y 0

M
d−1
2 + 1

2(d+3)
4 ‖u4,M4‖Y 0M

d−1
2 + 1

2(d+3)
5 ‖u5,M5‖Y 0‖gM6‖Y 0

)
.

Applying Cauchy-Schwarz to sum in Q,

�
∑

M1,M2,M3,M4,M5,M6
M1∼M2≥M6≥M3≥M4≥M5

(
M

d−1
2 − 3

2(d+3)
6 ‖u1,M1‖Y 0‖u2,M2‖Y 0M

d−1
2 + 1

2(d+3)
3 ‖u3,M3‖Y 0

M
d−1
2 + 1

2(d+3)
4 ‖u4,M4‖Y 0M

d−1
2 + 1

2(d+3)
5 ‖u5,M5‖Y 0‖gM6‖Y 0

)

�
∑

M1,M2,M3,M4,M5,M6
M1∼M2≥M6≥M3≥M4≥M5

(
M−s

1 ‖u1,M1‖Y s M
− d−1

2
2 ‖u2,M2‖Y d−1

2
M

1
2(d+3)
3 ‖u3,M3‖Y d−1

2

M
1

2(d+3)
4 ‖u4,M4‖Y d−1

2
M

1
2(d+3)
5 ‖u5,M5‖Y d−1

2
M

d−1
2 − 3

2(d+3) +s

6 ‖gM6‖Y−s

)

If s = d−1
2 , it can be estimated in the same way as (5.14). Thus, we need only to treat

the case d−1
2 + s > 0. Supping out ‖u3,M3‖Y d−1

2
, ‖u4,M4‖Y d−1

2
, ‖u5,M5‖Y d−1

2
and
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‖gM6‖Y−s , in M3, M4, M5 and M6, we have

�‖u3‖
Y

d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s

∑
M1,M2,M3,M4,M5,M6

M1∼M2≥M6≥M3≥M4≥M5

(
M−s

1 ‖u1,M1‖Y s

M
− d−1

2
2 ‖u2,M2‖Y d−1

2
M

d−1
2 − 3

2(d+3) +s

6 M
1

2(d+3)
3 M

1
2(d+3)
4 M

1
2(d+3)
5

)

By the fact that d−1
2 + s > 0,

�‖u3‖
Y
d−1
2

‖u4‖
Y
d−1
2

‖u5‖
Y
d−1
2

‖g‖Y−s
∑

M1,M2
M1∼M2

M−s
1 ‖u1,M1‖Y s M

− d−1
2

2 ‖u2,M2‖
Y
d−1
2

M
d−1
2 +s

2

=‖u1‖Y s ‖u3‖
Y
d−1
2

‖u4‖
Y
d−1
2

‖u5‖
Y
d−1
2

∑
M1,M2
M1∼M2

M−s
1 ‖u1,M1‖Y s Ms

2‖u2,M2‖
Y
d−1
2

Applying Cauchy-Schwarz,

�‖u1‖Y s‖u2‖
Y

d−1
2

‖u3‖
Y

d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s .

Case B requires that d−1
2 + s ≥ 0. If we exchange M1 and M6 in Case B, we find

another requirement that d−1
2 − s ≥ 0 is also needed. In this case, it becomes Case A

again if s = d−1
2 and it becomes similar but a bit different if s = d−5

2 as M1 and M2
are not symmetric.

Proof of the low frequency estimate (5.11). At first, we deal with the most difficult
Case A. M1 ∼ M6 ≥ M5 ≥ M4 ≥ M3 ≥ M2. Decompose the M1 and M6 dyadic
spaces into M5 size cubes,

IM1,M2,M3,M4,M5,M6 �
∑
Q

‖PQu1,M1(P≤M0u2,M2)u3,M3u4,M4u5,M5 PQcgM6‖L1
t,x

≤
∑
Q

(
‖PQu1,M1‖

L
6(d+3)
2d+3

t,x

‖P≤M0u2,M2‖L2(d+3)
t,x

‖u3,M3‖L2(d+3)
t,x

‖u4,M4‖L2(d+3)
t,x

‖u5,M5‖
L

6(d+3)
2d+3

t,x

‖PQcgM6‖
L

6(d+3)
2d+3

t,x

)

where three factors corresponding to small size cubes (here M4, M3, M2 size cubes)

are put in L2(d+3)
t,x and the others are put in L

6(d+3)
2d+3
t,x .

By Hölder, Bernstein inequalities and (3.4),

‖P≤M0u2,M2‖L2(d+3)
t,x

�T
1

2(d+3) M
1

d+3
0 M

d−1
2 + 1

2(d+3)
2 ‖P≤M0u2,M2‖L∞

t L2
x

�T
1

2(d+3) M
1

d+3
0 M

d−1
2 + 1

2(d+3)
2 ‖P≤M0u2,M2‖Y 0
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By (5.2) and (5.3),

IM1,M2,M3,M4,M5,M6

� T
1

2(d+3) M
1

d+3
0

∑
Q

(
‖PQu1,M1‖Y 0M

d−1
2 + 1

2(d+3)
2 ‖P≤M0u2,M2‖Y 0M

d−1
2 + 1

2(d+3)
3 ‖u3,M3‖Y 0

M
d−1
2 + 1

2(d+3)
4 ‖u4,M4‖Y 0M

d−1
2 − 3

2(d+3)
5 ‖u5,M5‖Y 0‖PQc gM6‖Y 0

)

Applying Cauchy-Schwarz to sum in Q,

IM1,M2,M3,M4,M5,M6 �T
1

2(d+3) M
1

d+3
0 M

d−1
2 − 3

2(d+3)
5 M

d−1
2 + 1

2(d+3)
4 M

d−1
2 + 1

2(d+3)
3 M

d−1
2 + 1

2(d+3)
2

‖u1,M1‖Y 0‖P≤M0u2,M2‖Y 0‖u3,M3‖Y 0‖u4,M4‖Y 0‖u5,M5‖Y 0‖gM6‖Y 0 .

Then by M1 ∼ M6, we obtain

IM1,M2,M3,M4,M5,M6

� T
1

2(d+3) M
1

d+3
0 M

− 3
2(d+3)

5 M
1

2(d+3)
4 M

1
2(d+3)
3 M

1
2(d+3)
2

‖u1,M1‖Y s‖P≤M0u2,M2‖Y d−1
2

‖u3,M3‖Y d−1
2

‖u4,M4‖Y d−1
2

‖u5,M5‖Y d−1
2

‖gM6‖Y−s .

and hence

IA �T
1

2(d+3) M
1

d+3
0

∑
M1,M6
M1∼M6

‖u1,M1‖Y s‖gM6‖Y−s

∑
M2,M3,M4,M5

M5≥M4≥M3≥M2

(
M

− 3
2(d+3)

5 M
1

2(d+3)
4 M

1
2(d+3)
3 M

1
2(d+3)
2

‖P≤M0u2,M2‖Y d−1
2

‖u3,M3‖Y d−1
2

‖u4,M4‖Y d−1
2

‖u5,M5‖Y d−1
2

)

Estimating it in the same way as (5.14), we have

IA � T
1

2(d+3) M
3

2(d+3)
0 ‖u1‖Y s‖P≤M0u2‖Y d−1

2
‖u3‖

Y
d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s .

Next, we deal with one such as Case B. M1 ∼ M2 ≥ M3 ≥ M4 ≥ M5 ≥ M6, since
other cases can be treated in the same way. Decompose the M1 and M2 dyadic spaces
into M3 size cubes and we have

IM1,M2,M3,M4,M5,M6 ≤
∑
Q

‖PQu1,M1‖
L

6(d+3)
2d+3

t,x

‖PQc P≤M0u2,M2‖
L

6(d+3)
2d+3

t,x

‖u3,M3‖
L

6(d+3)
2d+3

t,x

‖u4,M5‖L2(d+3)
t,x

‖u4,M5‖L2(d+3)
t,x

‖gM6‖L2(d+3)
t,x

,
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By Hölder, Bernstein inequalities and (3.4),

‖PQc P≤M0u2,M2‖
L

6(d+3)
2d+3

t,x

�T
2d+3
6(d+3) M

2d+3
3(d+3)
0 M

d−1
6 − 1

2(d+3)
3 ‖PQc P≤M0u2,M2‖L∞

t L2
x

�T
2d+3
6(d+3) M

2d+3
3(d+3)
0 M

d−1
6 − 1

2(d+3)
3 ‖PQc P≤M0u2,M2‖Y 0

By (5.2) and (5.3),

IM1,M2,M3,M4,M5,M6

� T
2d+3
6(d+3) M

2d+3
3(d+3)
0 M

d−1
2 − 3

2(d+3)
3 M

d−1
2 + 1

2(d+3)
4 M

d−1
2 + 1

2(d+3)
5 M

d−1
2 + 1

2(d+3)
6

×
∑
Q

‖PQu1,M1‖Y 0‖PQc P≤M0u2,M2‖Y 0‖u3,M3‖Y 0‖u4,M4‖Y 0‖u5,M5‖Y 0‖gM6‖Y 0

Applying Cauchy-Schwarz to sum in Q,

�T
2d+3
6(d+3) M

2d+3
3(d+3)
0 M

d−1
2 − 3

2(d+3)
3 M

d−1
2 + 1

2(d+3)
4 M

d−1
2 + 1

2(d+3)
5 M

d−1
2 + 1

2(d+3)
6

‖u1,M1‖Y 0‖P≤M0u2,M2‖Y 0‖u3,M3‖Y 0‖u4,M4‖Y 0‖u5,M5‖Y 0‖gM6‖Y 0

�T
2d+3
6(d+3) M

2d+3
3(d+3)
0 M−s

1 M
− d−1

2
2 M

− 3
2(d+3)

3 M
1

2(d+3)
4 M

1
2(d+3)
5 M

d−1
2 + 1

2(d+3) +s

6

‖u1,M1‖Y s‖P≤M0u2,M2‖Y d−1
2

‖u3,M3‖Y d−1
2

‖u4,M4‖Y d−1
2

‖u5,M5‖Y d−1
2

‖gM6‖Y−s

If s + d−1
2 = 0, it can be estimated in the same way as (5.14). Thus we need only

to treat the case s + d−1
2 > 0. Supping out ‖u3,M3‖Y d−1

2
, ‖u4,M4‖Y d−1

2
, ‖u5,M5‖Y d−1

2

and ‖gM6‖Y−s in M3, M4, M5 and M6, we have

IB �T
2d+3
6(d+3) M

2d+3
3(d+3)
0 ‖u3‖

Y
d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s

∑
M1,M2,M3,M4,M5,M6

M1∼M2≥M3≥M4≥M5≥M6

(
M−s

1

‖u1,M1‖Y s M
− d−1

2
2 ‖P≤M0u2,M2‖Y d−1

2
M

− 3
2(d+3)

3 M
1

2(d+3)
4 M

1
2(d+3)
5 M

d−1
2 + 1

2(d+3) +s

6

)

By the fact that s + d−1
2 > 0,

�T
2d+3
6(d+3) M

2d+3
3(d+3)
0 ‖u3‖

Y
d−1
2

‖u4‖
Y
d−1
2

‖u5‖
Y
d−1
2

‖g‖Y−s
∑

M1,M2
M1∼M2

(
M−s
1 ‖u1,M1‖Y s

M
− d−1

2
2 ‖P≤M0u2,M2‖

Y
d−1
2

M
d−1
2 +s

2

)

�T
2d+3
6(d+3) M

2d+3
3(d+3)
0 ‖u3‖

Y
d−1
2

‖u4‖
Y
d−1
2

‖u5‖
Y
d−1
2

‖g‖Y−s
∑

M1,M2
M1∼M2

‖u1,M1‖Y s ‖P≤M0u2,M2‖
Y
d−1
2
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Applying Cauchy-Schwarz,

�T
2d+3
6(d+3) M

2d+3
3(d+3)
0 ‖u1‖Y s‖P≤M0u2‖Y d−1

2
‖u3‖

Y
d−1
2

‖u4‖
Y

d−1
2

‖u5‖
Y

d−1
2

‖g‖Y−s .
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Appendix A. Miscellaneous Lemmas

We provide the following lemmas under the T
d setting, as they work the same for the

R
d case with the homogeneous norm.

Lemma A.1 Let u1 and u2 be the C([0, T0]; Hsc ) solutions to (1.1) with the same
initial datum such that

u1(t, x)u1(t, x
′) = u2(t, x)u2(t, x

′). (A.1)

Then u1(t, x) = u2(t, x).

Proof From the proof of Corollary 2.3, we have obtained the uniqueness for the trivial
solution u ≡ 0, so we might as well assume that u1(t) �= 0 for all t ∈ [0, T0]. On the
other hand, we note that

〈∇〉scu1(t, x)‖〈∇〉scu1(t)‖2L2 = 〈∇〉scu2(t, x)〈〈∇〉scu2(t), 〈∇〉scu1(t)〉 (A.2)
which implies that

〈∇〉scu1(t) = a(t)〈∇〉scu2(t), (A.3)

where

a(t) = 〈〈∇〉scu2(t), 〈∇〉scu1(t)〉
‖〈∇〉scu1(t)‖2L2

.

Since u1 ∈ C([0, T0]; Hsc ), we have that

c0 := inf
t∈[0,T0]

‖〈∇〉scu1‖L2 > 0, (A.4)

which implies that a(t) is well-defined. We are left to prove a(t) = 1 for every
t ∈ [0, T0]. Taking differences gives that

P≤M (u2 − u1) = −i
∫ t

0
ei(t−τ)�P≤M (|u1|p−1u1)(τ, x)(a(τ ) − 1)dτ, (A.5)
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where we used (A.3) for u2.
On the one hand, by (A.3) and the UTFL property in Lemma 2.7, we obtain

‖P≤M (u2 − u1)‖Hsc = ‖P≤M (a(t) − 1)u1‖Hsc ≥ c0|a(t) − 1|
2

. (A.6)

On the other hand, by ‖P≤M 〈∇〉s f ‖L2 � Ms‖P≤M f ‖L2 and Sobolev embedding A.3
and (A.11), we get

∥∥∥ ∫ t

0
ei(t−τ)�P≤M (|u1|p−1u1)(τ, x)(a(τ ) − 1)dτ

∥∥∥
Hsc

�
∫ t

0
|a(τ ) − 1|‖P≤M (|u1|p−1u1)‖Hsc dτ

� M2
∫ t

0
|a(τ ) − 1|‖P≤M (|u1|p−1u1)‖Hsc−2dτ

� M2
∫ t

0
|a(τ ) − 1|‖u1‖p

Hsc dτ

≤ M2C p
0

∫ t

0
|a(τ ) − 1|dτ. (A.7)

Combining estimates (A.6) and (A.7), we have

|a(t) − 1| �
∫ t

0
|a(τ ) − 1|dτ (A.8)

which implies that a(t) ≡ 1 by Gronwall’s inequality. ��
Lemma A.2

‖ f g‖Hs (Td ) � ‖ f ‖Hs+s1 (Td )‖g‖Hs2 (Td ) + ‖ f ‖Hs̃1 (Td )‖g‖Hs+̃s2 (Td ) (A.9)

where s ≥ 0, si > 0, s̃i > 0, s1 + s2 = d
2 and s̃1 + s̃2 = d

2 .

Proof This has certainly been studied by many authors. For completeness, we include
a proof. We note that

PN (P<N−1 f P<N−1g) = 0

for N ≥ 2 and hence

PN ( f g) = PN
[
(P≥N−1 f )g + (P<N−1 f )(P≥N−1g)

]
.

We expand

‖ f g‖2Hs (Td )
�
∑
N=0

〈N 〉2s‖PN ( f g)‖2L2
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�‖ f g‖2L2 +
∑
N=2

〈N 〉2s‖PN
[
(P≥N−1 f )g + (P<N−1 f )(P≥N−1g)

] ‖2L2

�‖ f g‖2L2 + I 2 + I I 2

where

I = ‖〈N 〉s PN
[
(P≥N−1 f )g

] ‖l2L2 ,

I I = ‖〈N 〉s PN
[
(P<N−1 f )(P≥N−1g)

] ‖l2L2 .

For I I , by Hölder inequality, we have

I I =‖〈N 〉s PN
[
(P<N−1 f )(P≥N−1g)

] ‖l2L2

≤‖〈N 〉s(P<N−1 f )(P≥N−1g)‖l2L2

≤‖P<N−1 f ‖l∞L p1 ‖〈N 〉s P≥N−1g‖l2L p2 ,

where 1
2 = 1

p1
+ 1

p2
. Then by Sobolev inequality,

I I �‖ f ‖Hs1 ‖〈N 〉s〈∇〉s2 P≥N−1g‖l2L2

=‖ f ‖Hs1

∥∥∥ ∑
M≥N

〈N 〉s〈M〉−s〈∇〉s2〈M〉s PMg
∥∥∥
L2l2

where si ∈ (0, d
2 ) for i = 1, 2. By Young’s inequality,

I I � ‖ f ‖Hs1 ‖〈N 〉s〈∇〉s2 PN g‖L2l2 � ‖ f ‖Hs1 ‖g‖Hs+s2

I can be estimated in the same way as I I . ��
Lemma A.3 (Sobolev embedding)

‖ f1 f2 f3‖Hs (Td ) �
3∏
j=1

‖ f j‖
H

s+d
3 (Td )

(A.10)

‖ f1 f2 f3 f4 f5‖Hs (Td ) �
5∏
j=1

‖ f j‖
H

s+2d
5 (Td )

(A.11)

for s ∈ (− d
2 , d

2 ).

Proof For s = 0, it follows from Hölder and Sobolev inequalities.
For s ∈ (− d

2 , 0), by duality, we have

‖ f1 f2 f3‖Hs � ‖ f1 f2 f3‖
L

2d
d−2s

,

‖ f1 f2 f3 f4 f5‖Hs � ‖ f1 f2 f3 f4 f5‖
L

2d
d−2s

.
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Then by Hölder inequality and the Sobolev embedding,

‖ f1 f2 f3‖Hs �
3∏
j=1

‖ f j‖
L

6d
d−2s

�
3∏
j=1

‖ f j‖
H

s+d
3 (Td )

,

‖ f1 f2 f3 f4 f5‖Hs �
5∏
j=1

‖ f j‖
L

10d
d−2s

�
5∏
j=1

‖ f j‖
H

s+2d
5 (Td )

.

For s ∈ (0, d
2 ), we use Sobolev inequality (A.9). Taking f = f1 f2 and g = f3

with s1 = d−2s
6 , s2 = s+d

3 , s̃1 = d+4s
6 and s̃2 = d−2s

3 , we have

‖ f1 f2 f3‖Hs � ‖ f1 f2‖
H

d+4s
6

‖ f3‖
H

s+d
3

.

For ‖ f1 f2‖
H

d+4s
6

, using it again with s1 = d−2s
6 , s2 = s+d

3 , s̃1 = s+d
3 and s̃2 = d−2s

6 ,

we obtain

‖ f1 f2‖
H

d+4s
6

� ‖ f1‖
H

s+d
3

‖ f2‖
H

s+d
3

.

Taking f = f1 f2 and g = f3 f4 f5 with s1 = 3(d−2s)
10 , s2 = 3s+d

5 , s̃1 = 4s+3d
10 and

s̃2 = d−2s
5 , we obtain

‖ f1 f2 f3 f4 f5‖Hs �‖ f1 f2‖Hs+s1 ‖ f3 f4 f5‖Hs2 + ‖ f1 f2‖Hs̃1 ‖ f3 f4 f5‖Hs+̃s2

�
2∏
j=1

‖ f j‖
H

2(s+s1)+d
4

5∏
j=3

‖ f j‖
H

s2+d
3

+
2∏
j=1

‖ f j‖
H

2̃s1+d
4

5∏
j=3

‖ f j‖ s+̃s2+d
3

�
5∏
j=1

‖ f j‖
H

s+2d
5

.

��

Appendix B. Results for Some H1-subcritical Cases

Note that the proof of Theorem 1.1 works uniformly in all dimensions, d ≥ 4 for
quintic case and d ≥ 5 for cubic case. For completeness, we present some results for
low dimensions using our method. As we are limited by the Sobolev embedding in
Lemma A.3, the regularity requirements are higher than the critical scaling exponent
sc. Certainly, it is still an openproblem to push s down to sc for H1-subcritical problems
in both R

d and T
d .

Theorem B.1(a). There is at most one C([0, T0]; Ḣ d
4 (�d)) solution to (1.1) where

p = 3 and d = 2, 3.
(b). There is at most one C([0, T0]; Ḣ 2

3 (�2)) solution to (1.1) where p = 5.
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Lemma B.2 On T
2,∫∫

x,t
ũ1(t, x )̃u2(t, x )̃u3(t, x)g̃(t, x)dtdx � T

1
2 ‖u1‖

Y− 1
2
‖u2‖

Y
1
2
‖u3‖

Y
1
2
‖g‖

Y
1
2
,

(B.1)∫∫
x,t

ũ1(t, x )̃u2(t, x )̃u3(t, x)g̃(t, x)dtdx � T
1
2 ‖u1‖

Y
1
2
‖u2‖

Y
1
2
‖u3‖

Y
1
2
‖g‖

Y− 1
2
.

(B.2)

On T
3,∫∫
x,t

ũ1(t, x )̃u2(t, x )̃u3(t, x)g̃(t, x)dtdx � T
1
4 ‖u1‖

Y− 3
4
‖u2‖

Y
3
4
‖u3‖

Y
3
4
‖g‖

Y
3
4
,

(B.3)∫∫
x,t

ũ1(t, x )̃u2(t, x )̃u3(t, x)g̃(t, x)dtdx � T
1
4 ‖u1‖

Y
3
4
‖u2‖

Y
3
4
‖u3‖

Y
3
4
‖g‖

Y− 3
4

(B.4)

Proof By the symmetry of u1 and g, it suffices to prove (B.1) and (B.3). For simplicity,
we take ũ = u and g̃ = g. Decompose the 4 factors into Littlewood-Paley pieces so
that

I =
∑

M1,M2,M3,M4

IM1,M2,M3,M4

where

IM1,M2,M3,M4 =
∫∫

x,t
u1,M1u2,M2u3,M3gM4dxdt

with u j,Mj = PMj u j and gM4 = PM4g.
It suffices to consider the most difficult case A. M1 ∼ M2 ≥ M3 ≥ M4 while other

cases can be dealt with in a similar way. Decompose the M1 and M2 dyadic into M3
size cubes.

IA �
∑

M1,M2,M3,M4
M1∼M2≥M3≥M4

∑
Q

‖PQu1,M1 PQcu2,M2u3,M3gM4‖L1
t,x

�
∑

M1,M2,M3,M4
M1∼M2≥M3≥M4

∑
Q

T
1
2 ‖PQu1,M1‖L∞

t L2
x
‖PQcu2,M2‖L5

t,x
‖u3,M3‖L5

t,x
‖gM4‖L10

t,x

By (5.2)and (5.3),

�
∑

M1,M2,M3,M4
M1∼M2≥M3≥M4

123



The unconditional uniqueness for the energy-supercritical NLS Page 75 of 82    14 

∑
Q

T
1
2 ‖PQu1,M1‖Y 0M

1
5
3 ‖PQcu2,M2‖Y 0M

1
5
3 ‖u3,M3‖Y 0M

3
5
4 ‖gM4‖Y 0

Applying Cauchy-Schwarz to sum in Q,

�T
1
2
∑

M1,M2
M1∼M2

M
1
2
1 M

− 1
2

2 ‖u1,M1‖Y− 1
2
‖u2,M2‖Y 1

2

∑
M3,M4

M1∼M2≥M3≥M4

M
− 1

10
3 M

1
10
4 ‖u3,M3‖Y 1

2
‖gM4‖Y 1

2

Applying Cauchy-Schwarz,

�T
1
2

⎛
⎝∑

M1

‖u1,M1‖2
Y− 1

2

⎞
⎠

1
2
⎛
⎝∑

M2

‖u2,M2‖2
Y

1
2

⎞
⎠

1
2

⎛
⎜⎜⎝ ∑

M3,M4
M3≥M4

(
M4

M3

) 1
10 ‖u3,M3‖2

Y
1
2

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝ ∑

M3,M4
M3≥M4

(
M4

M3

) 1
10 ‖gM4‖2

Y
1
2

⎞
⎟⎟⎠

1
2

�T
1
2 ‖u1‖

Y− 1
2
‖u2‖

Y
1
2
‖u3‖

Y
1
2
‖g‖

Y
1
2
.

For d = 3, we have that

IA �
∑

M1,M2,M3,M4
M1∼M2≥M3≥M4

∑
Q

‖PQu1,M1 PQcu2,M2u3,M3gM4‖L1
t,x

�
∑

M1,M2,M3,M4
M1∼M2≥M3≥M4

∑
Q

‖PQu1,M1‖L4
t,x

‖PQcu2,M2‖L4
t,x

‖u3,M3‖L∞
t L2

x
‖gM4‖L2

t L∞
x

By (5.3) and Bernstein,

�
∑

M1,M2,M3,M4
M1∼M2≥M3≥M4

∑
Q

M
1
4
3 ‖PQu1,M1‖Y 0M

1
4
3 ‖PQcu2,M2‖Y 0‖u3,M3‖Y 0T

1
4 M4‖gM4‖Y 0

Applying Cauchy-Schwarz to sum in Q,

�T
1
4
∑

M1,M2
M1∼M2

M
3
4
1 M

− 3
4

2 ‖u1,M1‖Y− 3
4
‖u2,M2‖Y 3

4

∑
M3,M4

M1∼M2≥M3≥M4

M
− 1

4
3 M

1
4
4 ‖u3,M3‖Y 3

4
‖gM4‖Y 3

4
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�T
1
4 ‖u1‖

Y− 3
4
‖u2‖

Y
3
4
‖u3‖

Y
3
4
‖g‖

Y
3
4
.

��
Lemma B.3 On T

2,∫∫
x,t

ũ1(t, x )̃u2(t, x )̃u3(t, x )̃u4(t, x )̃u5(t, x)g̃(t, x)dtdx

� T
1
3 ‖u1‖

Y− 2
3
‖u2‖

Y
2
3
‖u3‖

Y
2
3
‖u4‖

Y
2
3
‖u5‖

Y
2
3
‖g‖

Y
2
3
. (B.5)∫∫

x,t
ũ1(t, x )̃u2(t, x )̃u3(t, x )̃u4(t, x )̃u5(t, x)g̃(t, x)dtdx

� T
1
3 ‖u1‖

Y
2
3
‖u2‖

Y
2
3
‖u3‖

Y
2
3
‖u4‖

Y
2
3
‖u5‖

Y
2
3
‖g‖

Y− 2
3
. (B.6)

Proof Decompose the 6 factors into Littlewood-Paley pieces so that

I =
∑

M1,M2,M3,M4,M5,M6

IM1,M2,M3,M4,M5,M6

where

IM1,M2,M3,M4,M5,M6 =
∫∫

x,t
u1,M1u2,M2u3,M3u4,M4u5,M5gM6dxdt

with u j,Mj = PMj u j and gM6 = PM6g.
In the same way as trilinear estimates in Lemma B.2, it suffices to take care of the

most difficult case A. M1 ∼ M6 ≥ M2 ≥ M3 ≥ M4 ≥ M5. Decompose the M1 and
M6 dyadic spaces into M2 size cubes, then

IA �
∑

M1,M2,M3,M4,M5,M6
M1∼M6≥M2≥M3≥M4≥M5

∑
Q

‖PQu1,M1 PQcu2,M2u3,M3u4,M4u5,M5gM6‖L1
t,x

�
∑

M1,M2,M3,M4,M5,M6
M1∼M6≥M2≥M3≥M4≥M5

∑
Q

(
‖PQu1,M1‖

L
9
2
t,x

‖u2,M2‖
L

9
2
t,x

‖u3,M3‖L9
t,x

‖u4,M4‖L9
t,x

‖u5,M5‖L9
t,x

‖PQcgM6‖
L

9
2
t,x

)

By (5.2)and (5.3),

�
∑

M1,M2,M3,M4,M5,M6
M1∼M6≥M2≥M3≥M4≥M5

∑
Q

(
M

1
9
2 ‖PQu1,M1‖Y 0M

1
9
2 ‖PQcu2,M2‖Y 0

T
1
9 M

7
9
3 ‖u3,M3‖Y 0T

1
9 M

7
9
4 ‖u4,M4‖Y 0T

1
9 M

7
9
5 ‖u5,M5‖Y 0M

1
9
2 ‖gM6‖Y 0

)
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Applying Cauchy-Schwarz to sum in Q,

�T
1
3
∑

M1,M6
M1∼M6

M
2
3
1 M

− 2
3

6 ‖u1,M1‖Y− 2
3
‖gM6‖Y 2

3

∑
M2,M3,M4,M5

M2≥M3≥M4≥M5

M
− 1

3
2 M

1
9
3 M

1
9
4 M

1
9
5 ‖u2,M2‖Y 2

3
‖u3,M3‖Y 2

3
‖u4,M4‖Y 2

3
‖u5,M5‖Y 2

3

�T
1
3 ‖u1‖

Y− 2
3
‖u2‖

Y
2
3
‖u3‖

Y
2
3
‖u4‖

Y
2
3
‖u5‖

Y
2
3
‖g‖

Y
2
3
.

��

Appendix C. AMore Usual Proof for the R
d Case

With the dual Strichartz estimate and the existence of a better solution, we could give
a more usual proof of the unconditional uniqueness under the energy-supercritical set-
ting for R

d case. Such an argument has been used by many authors and we summarize
it below, but it does not work for the T

d case. For simplicity, we prove it for the cubic
case, as it works the same for the quintic case. At first, we need the following lemmas.

Lemma C.1 (Strichartz Estimate) Let I be a compact time interval, and let u : I ×
R
3 �→ C be a Schwartz solution to the forced Schrödinger equation

i∂t u + �u =
M∑

m=1

Fm

for some Schwartz functions F1,..., Fm. Then

‖|∇|su‖Lq
t Lrx

� ‖|∇|su0‖L2
x
+

M∑
m=1

‖|∇|s Fm‖
L
q′
m
t L

r ′m
x

for s ≥ 0 and any admissible exponents (qi , ri ) for i = 1, 2, ...,m, where p′ denotes
the dual exponent to p.

Lemma C.2 (Leibniz Rule [33]) Let s ≥ 0 and 1 < r , r1, r2, q1, q2 < ∞ such that
1
r = 1

ri
+ 1

qi
for i = 1, 2. Then,

‖|∇|s( f g)‖Lr � ‖ f ‖Lr1 ‖|∇|sg‖Lq1 + ‖|∇|s f ‖Lr2 ‖g‖Lq2 .

Let u be a maximal-lifespan solution constructed in [47] and v be a C([0, T ); Ḣ sc )

solution to NLS with the same initial datum. We write w = v − u and observe that w
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obeys a difference equation, which we write in integral form as

w(t) = − i
∫ t

0
ei(t−s)�(|u + w|2(u + w)(s) − |u|2u(s))ds

=
∫ t

0
ei(t−s)�

2∑
j=0

∅(u j (s)w3− j (s))ds, (C.1)

where∅(u jw3− j ) is a finite linear combination of expressionswhich could be possibly
replaced by their complex conjugates.

By Sobolev inequality, we have

‖|∇|sc−1w‖
L

2d
d−2
x

� ‖|∇|scw‖L2 ,

and hence ‖|∇|sc−1w‖
L2
t L

2d
d−2
x

is finite. Then by Strichartz estimate in Lemma C.1, we

have that

‖|∇|sc−1w‖
L2
t L

2d
d−2
x

�
1∑
j=0

‖|∇|sc−1(u jw3− j )‖
L2
t L

2d
d+2
x

+ ‖|∇|sc−1(u2w)‖L1
t L2

x

:=I0 + I1 + I2.

For I0, by Lemma C.2, we have that

I0 = ‖|∇|sc−1(|w|2w)‖
L2
t L

2d
d+2
x

�‖|∇|sc−1w‖
L2
t L

2d
d−2
x

‖w‖2L∞
t Ld

x

Then by Sobolev inequality,

� ‖|∇|sc−1w‖
L2
t L

2d
d−2
x

‖|∇|scw‖2L∞
t L2

x
.

For I1, by Lemma C.2, we have that

I1 =‖|∇|sc−1(uw2)‖
L2
t L

2d
d+2
x

�‖|∇|sc−1u‖
L∞
t L

2d
d−2
x

‖w2‖
L2
t L

d
2
x

+ ‖u‖L∞
t Ld

x
‖|∇|sc−1(w2)‖L2

t L2
x

�‖|∇|sc−1u‖
L∞
t L

2d
d−2
x

‖w2‖
L2
t L

d
2
x

+ ‖u‖L∞
t Ld

x
‖|∇|sc−1w‖

L2
t L

2d
d−2
x

‖w‖L∞
t Ld

x

By Hölder and Sobolev inequalities,

� ‖|∇|scu‖L∞
t L2

x
‖|∇|sc−1w‖

L2
t L

2d
d−2
x

‖|∇|scw‖L∞
t L2

x
.
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For I2, by Lemma C.2, we obtain

I2 =‖|∇|sc−1(u2w)‖L1
t L2

x

�‖|∇|sc−1(u2)‖
L2
t L

2d
d−2
x

‖w‖L2
t Ld

x
+ ‖u‖2

L4
t L2d

x
‖|∇|sc−1w‖

L2
t L

2d
d−2
x

�‖|∇|sc−1u‖
L4
t L

2d
d−3
x

‖u‖L4
t L2d

x
‖w‖L2

t Ld
x
+ ‖u‖2

L4
t L2d

x
‖|∇|sc−1w‖

L2
t L

2d
d−2
x

By Sobolev inequality,

�‖|∇|scu‖2
L4
t L

2d
d−1
x

‖|∇|sc−1w‖
L2
t L

2d
d−2
x

.

where (4, 2d
d−1 ) is a Strichartz pair.

Together with the above estimates, we get

‖|∇|sc−1w‖
L2
t L

2d
d−2
x

� ‖|∇|sc−1w‖
L2
t L

2d
d−2
x(

‖|∇|scw‖2L∞
t L2

x
+ ‖|∇|scu‖L∞

t L2
x
‖|∇|scw‖L∞

t L2
x
+ ‖|∇|scu‖2

L4
t L

2d
d−1
x

)

Note that w ∈ C0
t Ḣ

sc and w(0) = 0, so we can ensure ‖|∇|scw‖L∞
t L2

x (I×Rd ) ≤ ε

by choosing I sufficiently small. Also, from the Strichartz analysis in [47,Theorem

3.1 and Remarks. 1.] , |∇|scu has finite S0 norm, and in particular it has finite L4
t L

2d
d−1
x .

Thus we can also ensure that ‖|∇|scu‖
L4
t L

2d
d−1
x

(I ×R
d) ≤ ε by choosing I sufficiently

small. From our choice of I , we have

‖|∇|sc−1w‖
L2
t L

2d
d−2
x

≤ Cε‖|∇|sc−1w‖
L2
t L

2d
d−2
x

,

which implies that w vanishes identically on I × R
d provided that ε is sufficiently

small.
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24. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii hierarchy for the dynamics of

Bose-Einstein condensate. Comm. Pure Appl. Math. 59(12), 1659–1741 (2006)
25. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from

quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)
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