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Abstract

We consider the cubic and quintic nonlinear Schrodinger equations (NLS) under the
R? and T¢ energy-supercritical setting. Via a newly developed unified scheme, we
prove the unconditional uniqueness for solutions to NLS at critical regularity for all
dimensions. Thus, together with [19, 20], the unconditional uniqueness problems for
H'-critical and H'-supercritical cubic and quintic NLS are completely and uniformly
resolved at critical regularity for these domains. One application of our theorem is
to prove that defocusing blowup solutions of the type in [59] are the only possible
C([0,T); H S¢) solutions if exist in these domains.
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1 Introduction

We consider the nonlinear Schrodinger equation (NLS)

idu =—Au=+ulP " u, (t,x)el0,T]xA? (L)

(0, x) = uo(x) '
where A4 = R? or T? and + denotes defocusing/focusing. In Euclidean spaces, the
NLS (1.1) enjoys the scaling invariance

2
u)(t,x) = rr-1

u(At, rx), A >0. (1.2)

which preserves the homogeneous Sobolev norm ||ugl| 75 Where the critical scaling
exponent is given by

d 2
== - —. 1.3
Sc ) p—1 (1.3)

Accordingly, the initial value problem (1.1) for ug € H*¢ can be classified as energy
subcritical, critical or supercritical depending on whether the critical Sobolev exponent
s¢ lies below, equal to or above the energy exponent s = 1.

In this paper, we focus on the cubic and quintic cases under the energy-supercritical
setting (s, > 1) where

|52 ford=5, p=3,
se=142 (1.4)
S ford =>4, p=>5.

In the energy-supercritical setting, the global well-posedness of (1.1) is fully open,
away from the classical local well-posedness and L2-supercritical blowup results [5,
30]. But it has been, for a long time, believed that, even under the energy-supercritical
setting, the defocusing version of (1.1) is globally well-posed and the solution scatters
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The unconditional uniqueness for the energy-supercritical NLS Page 3 of 82 14

when A = R, just like the energy-critical and subcritical cases, especially after the
breakthrough [3, 22, 32, 45, 621" on the R? energy-critical cubic and quintic cases.
(See, for example [47].) Surprisingly, the recent work [59] unexpectedly constructed
the first instance of finite time blowup solution for the defocusing energy-supercritical
NLS. Thus it is of interest to know if there could exist a scattering global solution in

H¢ but may not be in C([0, T); H¢) N Lﬁ§d+2)/2 when blowups of this type exist.
There are certainly multiple routes for such a problem. But one way is the classical
unconditional uniqueness theorem in H* which itself has remained open at least for
T<. With an unconditional uniqueness result, we know that there could be at most one
solution in C ([0, T'); H*) regardless of auxiliary spaces. One application is to prove
that blowup solutions of the type in [59] is the only possible C ([0, T); H*) solution
if exist in these domains. In this paper, we prove the H* unconditional uniqueness

for (1.1) as follows and address this issue.

Theorem 1.1 2 Let s, > 1 and p = 3 or 5. There is at most one C ([0, Ty]; H% (A%))3
solution to (1.1).

The fundamental concept of unconditional uniqueness was first raised by Kato in
[43,44] when proving well-posedness in Strichartz type spaces had made vast progress.
InR?, these unconditional uniqueness problems at critical regularity are usually proved
by showing any solution must agree with the Strichartz solution, if exists, using the
inhomogeneous (retarded) Strichartz estimate. Such a method has been proven to be
successful even in the R? quintic energy-critical case, see for example [22]. (This is
a very active field, see for example [1, 29, 34, 50, 54, 60, 61, 69] and the reference
within for work on other dispersive equations along this line.)

However, such arguments for the Euclidean setting are no longer effective if (1.1)
is posed on T, as the Strichartz estimate is rather weak in the periodic case. The Li
Strichartz estimate does not hold in the periodic case and hence the dual Strichartz
estimate also fails. On the other hand, the well-posedness on T9 is more intricate,
such as using the X, j, space [2] and the atomic U? and V? spaces [37, 42]. Thus the
unconditional uniqueness problems on T¢ under the critical setting are much more
difficult to handle. Nevertheless, a unified method has recently unexpectedly arisen
from the study of the derivation of (1.1) on the T¢ case in [36] and under the energy-
critical setting in [19, 20]1.4

We find that one could use the scheme of [20] to perfectly solve the unconditional
uniqueness problem under the energy-supercritical setting for both R? and T¢. The
proof comes from the Gross-Pitaevskii(GP) hierarchy, which seems to be weaker than
the NLS analysis, as it originates from the derivation of NLS. However, we will see
that such an argument is also powerful and worthy for further study. Here, we focus on

1 See [23] for a more detailed survey.

2 One could extend the domain A¢ to more general manifolds, as long as the multilinear estimates which
relies on Fourier analysis and Strichartz estimates in Section 5 hold.

3 We consider H' for the T case and H*¢ for the R¥ case as H* does not generate much differences
for the T¢ case.

4 We mention [36] Ist here and in the related places in the rest of the paper. Even though [19] was posted
on arXiv one month before [36], X. Chen and Holmer were not aware of the unconditional uniqueness
implication of [19] until [36].
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the quintic GP hierarchy, also see [20] for the cubic case. The quintic GP hierarchy is
a sequence {y(k) (1) };:il which satisfies the infinitely coupled hierarchy of equations:

k k
ioy® = Z[—ij RAE N D Tripr a2l — x1)8(xj — xiq2), y &1 (1.5)
j=I j=1

where bg is some coupling constant, = denotes defocusing/focusing. Given any solu-
tion u of (1.1), it generates a solution to (1.5) by letting

y® = Ju) (| (1.6)

in operator form or

k
y O, xix) = [ Ju, xpuc, x))
j=1

in kernel form where x;, = (x1, ..., X¢).

The hierarchy approach was first suggested by Spohn [67] for the derivation of NLS
from quantum many-body dynamic. Around 2005, it was Erdos, Schlein, and Yau who
first rigorously derived the 3D cubic defocusing NLS from a 3D quantum many-body
dynamic in their fundamental papers [24-28]. The proof for the uniqueness of the
GP hierarchy was the principal part and also surprisingly dedicate due to the fact
that it is a system of infinitely many coupled equations over an unbounded number
of variables. With a sophisticated Feynman graph analysis in [25], they proved the
H'-type unconditional uniqueness of the R3 cubic GP hierarchy. The first series of
ground breaking papers have motivated a large amount of work.

Subsequently in 2007, with imposing an additional a-prior condition on space-
time norm, Klainerman and Machedon [52], inspired by [25, 51], gave an another
proof of the uniqueness of the GP hierarchy in a different space of density matrices
defined by Strichartz type norms. They provided a different combinatorial argument,
the now so-called Klainerman-Machedon (KM) board game argument, to combine the
inhomogeneous terms effectively reducing their numbers and then derived a space-time
estimate to control these terms. At that time, it was open to prove that the limits coming
from the N-body dynamics satisfy the space-time bound. Nonetheless, [52] has made
the delicate analysis of the GP hierarchy approachable from the perspective of PDE.
Later, Kirkpatrick, Schlein, and Staffilani [48] obtained the KM space-time bound
via a simple trace theorem in both R? and T2 and derived the 2D cubic defocusing
NLS from the 2D quantum many-body dynamic. Such a scheme also motivated many
works [8, 13, 16, 18, 31, 63, 65, 68] for the uniqueness of GP hierarchies.

Later in 2008, T. Chen and Pavlovi¢ [8] initiated the study of the quintic GP hier-
archy and provided a proof for the quintic KM board game argument, which laid the
foundation for the further study of the quintic GP hierarchy. They also showed that the
2D quintic case, which is usually considered the same as the 3D cubic case since they
share the same scaling criticality, satisfied the KM space-time bound while it was still
open for the 3D cubic case at that time. To attack the problem, they also considered
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the well-posedness theory with more general data in [7, 9, 11]. (See also [12, 56-58,
65, 66]). Then in 2011, they proved that the 3D cubic KM space-time bound holds for
the defocusing § < 1/4 case in [10]. The result was quickly improved to 8 < 2/7
by X. Chen in [14] and then extended to the almost optimal case, 8 < 1, by X. Chen
and Holmer in [15, 17]. Around the same period of time, Gressman, Sohinger, and
Staffilani [31] studied the uniqueness of the GP hierarchy on T3 and proved that the
sharp space-time estimate on T needed an additional ¢ derivatives than the R> setting
in which one derivative is needed. Later, Herr and Sohinger generalized this fact to
more general cases in [35].

In 2013, by introducing quantum de Finetti theorem from [55], T. Chen, Hainzl,
Pavlovi¢ and Seiringer [6] provided a simplified proof of the L‘;"HX1 -type 3D cubic
uniqueness theorem in [25]. With the quantum de Finetti theorem, one can replace
the space-time estimates by Sobolev multilinear estimates. The scheme in [6], which
consists of the KM board game argument, the quantum de Finetti theorem and the
Sobolev multilinear estimates, is robust to deal with such uniqueness problems. Fol-
lowing the scheme in [6], Sohinger [64] solved the aforementioned &-loss problem for
the defocusing T3 cubic case. In [40], Hong, Taliaferro, and Xie used the scheme to
obtain unconditional uniqueness theorems in R4, d =1,2,3,with regularities match-
ing the NLS analysis. Then in [41], they proved H' small solution uniqueness for the
R quintic case. For other refined uniqueness theorems, see also [21].

The uniqueness analysis of GP hierarchy started to unexpectedly yield new NLS
results with regularity lower than the NLS analysis all of a sudden since [36] and [19,
20]. In [36], with the scheme in [6], Herr and Sohinger discovered new unconditional
uniqueness results for the cubic NLS on T4, which covered the full scaling-subcritical
regime for d > 4. (See also the later work [49] using NLS analysis.)

On the other hand, the T3 quintic energy-critical case at H' regularity was not
known until recently [19]. By discovering the new hierarchical uniform frequency
localization (HUFL) property for the GP hierarchy, X. Chen and Holmer established
anew H'-type uniqueness theorem for the T3 quintic energy-critical GP hierarchy.
The new uniqueness theorem, though neither conditional nor unconditional for the GP
hierarchy implies the H' unconditional uniqueness result for the T> quintic energy-
critical NLS. Then in [20], they proved the unconditional uniqueness for the T* cubic
energy-critical case by working out new combinatorics and extending the KM board
game argument. As the previously used Sobolev multilinear estimates fail on T*,
they develop the new combinatorics which enable the application of U-V multilinear
estimates, which is indeed weaker than Sobolev multilinear estimates. The scheme
in [20], which effectively combines the quantum de Finetti theorem, the U-V space
techniques, the multilinear estimates proved by using the scale invariant Strichartz
estimates / [>-decoupling theorem and the HUFL properties, provides a unified proof
of the large solution uniqueness.
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14 Page 6 of 82 X.Chenetal.

2 Proof of the Main Theorem
2.1 Outline of the Proof

Our proof will focus on the T4 case, as it works the same for R?.5 QOur argument
follows the scheme of [20] where an extended version of KM board game argument
which is compatible with U-V estimates was discovered. We summarize our proof
below, especially for the quintic case.

To conclude the uniqueness for NLS (1.1), one usually proves that

w) =u1(t,x) —uyt,x) =0

where u| and uy are two solutions to (1.1) with the same initial datum. Instead, we
turn to prove that

k k
y®O @) = [Jui. xpin @, xj) = [ [ uatt, xma(e, x)), 2.1

J=1 j=1

which is a solution to (1.5) with zero initial datum, vanishes identically on [0, Tp].
The formulation (2.1) endows the NLS (1.1) with an extra linear structure via the GP
hierarchy so that one could iteratively use multilinear estimates to yield smallness,
instead of constructing a closed inequality in some Strichartz space.

Hence, we first prove Theorem 2.2, which is a uniqueness theorem for the GP
hierarchy, and then Theorem 1.1 comes as a corollary of Theorem 2.2 and Lemma 2.7.
As Theorem 2.2 requires the uniform in time frequency localization (UTFL) condition,
we prove that every C ([0, Tp]; H*¢) solution to (1.1) satisfies UTFL condition by
Lemma 2.7. Thus we would have established Theorem 1.1 once we have proved
Theorem 2.2.

The GP hierarchy argument does not require the dual Strichartz estimate or the
existence of a Strichartz solution. However, we have to carefully combine and estimate
the (2k — 1)!12¥ summands in iterated Duhamel expansions. More precisely,

yOuy= ) f JEHED PV @1, by DAty 22)
(11,581 N2132>10k+1

with Loyl = (t3, t5, ..., ok+1) and

2k+1 sgn(2 4
Jl(t,szjn '), toer) =U V01 - 13)321&2;)(;2),3[](3)03 - [5)3151%)(:2,5
_ 2%k
U D (1 - 12k+1)B;f’zg;(();z)k,%“V(2k+1)(12k+1)

2.3)

where U ?/*D(t) is the propagator and szj 2j+1 is the collapsing operator, and thus
there are (2k — 1)!12¥ terms in ™V (¢;). Hence handling the (2k — D!12% terms in the

5 By using the classical methods, we also give a more usual proof for the R4 case at the appendix.
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critical setting is the main difficulty. Now, we divide the proof of Theorem 2.2 into
two main parts.

Part 1: The Estimate Part. Usually, one employs the original KM board game argu-
ment to sort the (2k — 1)!12F summands of (! into a sum of KM upper echelon
forms with a time integration domain, which is a union of a very large number of high
dimensional simplexes. As Sobolev type multilinear estimates work regardless of the
time integration domain, one can iteratively use them to yield smallness. Nevertheless,
if we have some combinatorics which is compatible with space-time type multilinear
estimates, we could exploit the multilinear estimates in U-V spaces. Indeed, based on
the combinatorics part (Part 2), we can write

1 (2k+l) 2k+1
y WD) = / I P by Dty 24
Tc(j1,58n)

refLremc (f1,s8n)

where the number of reference pairs in Definition 4.22 can be controlled by 16,
which is substantially smaller than the original (2k — 1)!!12F. More importantly, the
time integration domain T¢ ({1, sgn) is compatible with space-time type multilinear
estimates. Hence it comes down to how to estimate

/ ;EZIY{;:D(V(%rI))(Il Doy )l 1 (2.5)
Te(w,sgn)

In Section 3.1, we start with a Duhamel tree to represent the Duhamel expansion.
Then in Section 3.2, we introduce the time integration domain 7¢ (u, sgn) which is
compatible with space-time type multilinear estimates. Subsequently in Section 3.3,
after giving a short introduction to U-V spaces, we show how to apply the U-V
multilinear estimates to estimate (2.5). We will use the following U-V multilinear
estimates.

[=$)A >~~~ o~
| / D8 G ingigiigiis)ds |, < Cllun s e s e gl e sl e (2.6)
a
‘/ i¢ T)A(ﬁlﬁzﬁﬂﬁs)df‘ v
a X
N3
(d+3)
< Clurllys (7275 M3 | poygyuallxse + 1P psguallxse ) Busllse gl s e
2.7

where @7 € {u,u} and s € {s., s. —2}. The proof highly relies on the scale invari-
ant Strichartz estimates / [2>-decoupling theorem [4, 46] and hence is postponed to
Section 5. Compared with Sobolev multilinear estimates, the proof of U-V multilin-
ear estimates is simpler and less technical. (Although the representation (2.4) is also
compatible with X » multilinear estimates, they need an additional ¢ derivatives in
time and hence cannot be used to deal with the critical problem.) On the one hand, to
prove Sobolev multilinear estimates, the L3° H ~* space, which is usually used in the
duality argument, is an endpoint case in Littlewood-Paley theory and does not carry
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14 Page8of82 X.Chenetal.

any Strichartz regularity. On the other hand, U-V techniques have been proven to be
successful and adaptive for NLS in many different general domains.

Together with assumptions in Theorem 2.2, we are able to prove the following key
estimate.

Se— Se— (2k+1) . (2k+1) k
A\ El N Al R <5
H 1 X Te (i sén) n,sgn + + L?CL»%l Lz

(2.8)

where 6(T, €, Co, My) can be sufficiently small by properly choosing these parame-
ters. More specifically, the smallness comes from the UTFL property, that is,

(V)% Ps preyull oo

2 <¢
.71 Lx =

By iteratively using (2.7) at least %‘k times, we obtain the factor of smallness as follows

1 2d+3 %k
<TM+3>M02("+3) Co+ 5) :

Thus, we are left to prove the representation (2.4), especially, the compatibility part.

Part 2: The Combinatorics Part. In Section 4, by working out new combinatorics
to reconstruct the quintic KM board game argument from the ground up, we could
represent 1 in the form of (2.4), which is compatible with the U-V multilinear
estimates. The combinatorics analysis is independent of the multilinear estimates or the
regularity settings, so it could be applied for more general cases. Such a representation
(2.4), which enables the application of U-V multilinear estimates, would also be
helpful for further study of GP hierarchy.

In Section 4.1, we first give a brief review of the quintic KM board game argument as
in [8, 52]. Then, we give an introduction to an admissible tree diagram representation
used to represent collapsing map pairs. For example®, given a collapsing map pair
(w1, sgny) as follows,

2j |2 4 8 10
w |1 1 1 3 6
sgny |+ + — — +

we generate the following trees in turn by Algorithm 6.

6 We will not use this example again in the paper, as we can generate as many as we want.
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] NS
SN I

6— 10+

Such a tree diagram reprentation could provide a more elaborated proof of the original
quintic KM board game argument as well.

In Section 4.2, we give the signed Klainerman-Machedon acceptable moves in
Chen-Pavlovi¢ format (signed acceptable moves), which sorts (2k — 1)!12¥ collapsing
map pairs (i, sgn) into various equivalence classes, the number of which can be
controlled by 16X. Moreover, the signed acceptable moves preserve the signed tree
structures. Here are all the collapsing map pairs and the corresponding trees equivalent

to (1, sgny).

2j |2 4 6 8 10 2j |2 4 6 8 10 2j |2 4 6 8 10
o 1 1 1 6 3 w3 1 1 3 1 38 s 1 3 1 1 38
sgny + + - + - sgn3 + + - - + sgny + - + -
1 1 1
| | I
2+ 2+ 2+
4+ 10— 4+ 6— 6+ 4—
6— 8— 8—
| | |
8+ 10+ 10+

(Notice that the above trees have the same skeleton.)

However, extending to signed move is not sufficient for our proposes. To be com-
patible with the U-V multilinear estimates, we have to further combine the integrals
and enlarge the time integration domain. For this purpose, we need the wild moves
defined by (4.18). The wild moves, unlike the signed acceptable moves, do change
the tree structure. However, KM upper echelon forms are not invariant under the wild
moves.
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14 Page 10 0of 82 X.Chenetal.

Thus in Section 4.3, we prove that there exists a unique special form, for which we
call the tamed form, in each equivalent class and hence arrive at

y D) = Z / J,ﬁ’fj,;l,)*(ya"“))(n, L)l (29)
(15,58n4) tamed Tp(ps)

where Tp(u«) can be read out from the corresponding tree. Here, (i1, sgny) is the
unique tamed form in the equivalent class {(u;, sgni)}?zl.

Subsequently in Section 4.4,we exploit wild moves for a further reduction of (2.9),
which keeps the tamed form invariant, to sort the tamed forms into tamed classes. All
the tamed forms and trees wildly relatable to (i1, sgn) are shown as follows.

2j |2 4 6 8 10 2j |2 4 6 8 10 2j |2 4 6 8 10
m |1 1 1 3 6 ws |1 1 1 3 4 me | L 1 1 5 2
sgny + + — - + sgns + - + - + sgne — + + -
1 1 1
| [ [
2+ 2+ 2—
4+ 8— 4— 8— 4+ 10+
6— 6+ 10+ 6+ 8—
I
10+

(Notice the changes on the tree structures under the wild move.)

Finally, in Section 4.5, we prove that, given a tamed class, there exists a unique
reference form representing the tamed class, and the time integration domain for the
whole tamed class can be directly read out from the reference form. Moreover, the
time integration domain is compatible. For instance, as (w1, sgnp) is also the unique
reference form, we could directly read T¢ (i1, sgnp) out as follows

Tc(ui, sgn) ={t = 13,13 > 15,17 > 111, 13 = to},

which is indeed compatible with U-V multilinear estimates. (See Example 3.7 on how
to estimate.) Hence, we arrive at the representation (2.4).

At the end, we have justified the representation (2.4) and the key estimate (2.8) is
now valid. Hence, we have

[V 2V 2y V)|

< (168)]‘ — 0ask — oo,
LPLE L2,
1

which implies that () = 0 which finishes the proof of Theorem 2.2.

@ Springer



The unconditional uniqueness for the energy-supercritical NLS Page 11 of 82 14

To sum up, we prove unconditional uniqueness for solutions to the R¢ and T¢
energy-supercritical cubic and quintic NLS at critical regularity for all dimensions via
a newly developed unified scheme. Thus, together with [19, 20], the unconditional
uniqueness problems for H!'-critical and H '-supercritical cubic and quintic NLS are
completely and uniformly resolved at critical regularity for these domains. The novelty
of this paper is that our procedure works uniformly in all dimensions regardless of the
domain.

2.2 The Uniqueness for GP Hierarchy

In this section, we first prove Theorem 2.2, which is a uniqueness theorem for the GP
hierarchy. Theorem 1.1 then comes as a corollary of Theorem 2.2 and Lemma 2.7.
Here, we consider the T¢ case with the inhomogeneous norm H*, as the homogeneous
norm H is special for the R case.

Definition 2.1 ([6]) A nonnegative trace class symmetric operator sequence I" =
{y® }OQ is called admissible if for all k, one has

k=1’
Try® =1, y® = Try g y*D. (2.10)

Here, a trace class operator is called symmetric, if, written in kernel form

y®O e, o i X1y e X)) = Y O], oy X5 X1, o, XE),
y(k)(xn(l), e X (k) x;[(l), - x;T(k)) =y ®O @y, .. X Xy eees X1,

for all permutations 7 on {1, 2, ..., k}. Let H* = H* (A?) denote the set of all sym-
metric operator sequences {y(k) }zi] of density matrices such that, for each k € N

k k

[TV |y ® TV | € Li

j=1 j=1
where E}( denotes the space of trace class on L>(A%* x AK).

Theorem 2.2 LetT = {y(k)} € Dy C (0, Tol; Hi") be a solutionto (1.5) in [0, Ty]
in the sense that

(1) T is admissible in the sense of Definition 2.1.
(2) T satisfies the kinetic energy condition that 3 Cy > 0 such that

k k
sup Tr [ [TV | v® [ [TVe)* ) =g @1
t€l0,To] j=1 j=1
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14 Page 12 0f 82 X.Chenetal.

Then there is a threshold n(Co) > 0 such that the solution is unique in [0, Ty]
provided that

k k
sup Tr [ []PL (Vi) | v®@ [ [T Py (Ve | = (212
te[0,To] j=1 j=1

for some frequency M, which is allowed to depend on y & but must apply uniformly
on [0, Ty)]. Here, Pi 1 I8 the projection onto frequencies > M acting on functions
oij.

By letting y® = |u) (u|®¥, we could obtain Corollary 2.3, which is a special case
of Theorem 2.2 as follows.

Corollary 2.3 Given an initial datum uy € H*, there is at most one C ([0, Tp]; H')
solution to (1.1) satisfying the following conditions

(1) There is a Co > 0 such that

sup u(@®)llmse < Co
t€l0,Ty]

(2) There is some frequency M such that

sup || Pspu(®)lgse < n(Co)
1€[0,To]

for the threshold n(Cyp) > 0 concluded in Theorem 2.2.

Before the proof, we set up some notations. We rewrite y ¥) in Duhamel form

t
y® @) =U0®@)y® o) Fi /0 U@ —5)BEDy & (5)as  (2.13)

it(Ay,—A)

where U® (1) = ]_[]]‘-=1 e J”and
B(k+2)y(k+2)
k
= Z Bj;k+1,k+2)/(k+2)

.
I
N

(k+2)

Il
™M~

+ -
(Bj;k+1,k+2 - Bj;k+l,k+2> Y
1

~.
Il

(k+2)

Il
'M”

~
I
_

Trpq1,642 (S(Xj — Xk 1)8(X; — xp42)y

—y D5 = xir B0 — 342 )
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In the above, products are interpreted as the compositions of operators. For example,
in kernels,

Tr41,k+2 (V(HZ)S(XJ' — X 1)8(xj — xk+2)) (Xk: Xp.)

_ (k+2) / / o / / / / / / /
= /V (ks X 15 Xy 25 Koo X 10 Xy 2)0 O = 24 D8O — x5 p)dxg g dxg o

where x; = (x1, ..., Xg).
. . o) _ [0 :
We will prove that if I'y = jy, - and I' = 1y, are two solutions

to (2.13), with the same initial datum and assumptions in Theorem 22, then I =
{y(k) = yl(k) — yz(k)} is identically zero. We start using a representation of I given

by the quantum de Finetti theorem.

Lemma 2.4 (quantum de Finetti Theorem [6, 55]) 7 Let {y (k) };i | be admissible. Then

there exists a probability measure d ., (¢) supported on the unit sphere of L*(A?) such
that

YO (6 = / 16)(61%* dyus (9).

By Lemma 2.4, there existd 1 ; and d u; ; representing the two solutions I'y and I';.
Then the Chebyshev argument as in [6,Lemma 4.5] turns the assumptions in Theorem
2.2 to the support property that d ; ; is supported in the set

s={o es@ @) 1PV o2 < o) (V{# € SL2AD) I8 lase = Co}-
(2.14)

Let the signed measure dju; = dpy,; — dua,, we have

rO0 = (1" =) 0 = [ 19101 da @) @.15)

and du, is supported in the set S defined in (2.14).

It suffices to prove y (U (r) = 0 as the proof is the same for the general k case. For
notational convenience, we set the &= in (2.13) to be 1. Since (2.13) is linear, I" is a
solution to (2.13) with zero initial datum. Thus after iterating (2.13) k times, we can
write

1 13 k-1
YDty = / / / JED QAN Ddty, (216)
0 0 0

where

7 We in fact do not need Lemma 2.4 to prove Theorem 1.1, but it is the origin of the ideas of this proof.
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J(ZHU(V(ZHI))(IL£2k+1)
=UY 1t —)BPUD (13 — 15)BO
U Dty — o) BTy FHD (1 4) (2.17)

with o1 = (13, t5, vy B2k41)-
We notice that there are (2k — 1)!!2]‘ summands inside y(l)(tl ). Exactly,

Y= [ IO GO 0, 1y iy g (218)
(14,58n) N2 20k41

where

2 4
I DY @, ) =U D (0 - t3)ng(;)(2)3U(3 (3 — t5)B;fEZ)(25

n(2k
- UHD (y 1—t2k+1)Bu(2k) 2)k 2k+17/(2k+1)(t2k+1)

(2.19)

with s gn meaning the signature array (sgn(2), sgn(4), ..., sgn(2k)) and Bﬁgg]z),z it
stands for B 1(2)):24.2j+1 O B (2)):2) 241 depending on the sign of the 2 j-th signature
element. Here, {Mf is a set of maps from {2, 4, ..., 2k} to {1, 2, ..., 2k — 1} satisfying
that w(2) = 1 and u(2j) < 2j forall j.

Now, we get into the proof, which spans Section 3-Section 5, so we first state two
propositions which are the main results in Section 3 and Section 4.

In Section 3, the main result is the following proposition.

Proposition 2.5 Let y® (1) = [ |¢)(#|®*d i (¢). Then we have
a0 [ DG 0 by |
H X X Te(u.sgn) n,sgn 2k+1 2k+1 L%OL,%l Lig

4k

k B2 22(313) >
<C / /||¢| sdT <T2("”)M ||P<Mo¢|| +||P>Mo¢|| r12>

d|M12k+1 | (¢)dt2k+l

where T (., sgn) is the compatible time integration domain defined by (3.2).
In Section 4, our goal is to represent y (1 as follows.

Proposition 2.6 We can write

1 (2k+1) 2k+1
y D)) = / DGO iy, (220)
Tc(f,s8n)

refcrencc (fL,s8n)

where the number of reference pairs in Definition 4.22 can be controlled by 16, which
is substantially smaller than the original (2k —1)!12%. More importantly, the summands
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are endowed with the time integration domain T¢ (L, sgn), which is compatible with
the estimate part in Section 3.

With the above two propositions, we could complete the proofs of Theorem 2.2 and
Corollary 2.3.

Proof of Theorem 2.2 By Proposition 2.6, we can write

1 2k+1
y D) = / J,i sén 'y F D)@, Lojp )l q
reference (fL,s8n) Te (jr.s8n)

where the number of reference pairs can be controlled by 16%. Then we have

[ (Va2 (v 12y Ve

L;CL%IL2
-2 —2 (2k+1) 2k+1
D N (Tl Al Tt
reference (ji,sgn) Te(ft.sgn)
(11, Loy Ay H
L?"L)Z(]Li,l

By Proposition 2.5,

4k
5

o[ v 744
=(16C) / |I¢||ch (TZ“J“)M CNPMebl e + I|P>M0¢|IH%)
0

d|/“Lt2k+1 |(¢)dt2k+l
Put in the support property (2.14),

k

il

16, 2d+3
<2r(160)cy " (T2<d+3JM2“’“>C + e>
1 2d+3 ik
<2TCj (TWM()Z(d+3’ C’Cy + czcgg)

for all k. Select & small enough such that C 2Cé e < 4—1‘ and then select T small enough
2d+3

1
such that T 2@+ M) SaRle 2C0 4, we thus have for T small enough,

(V0 29,2y

1

k
_2TC0 — 0ask — oo.
L°°L2 L2 2

We can then bootstrap to fill the whole [0, Tp] interval. O
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Proof of Corollary 2.3 Given the solution u of (1.1), it generates a solution to the GP
hierarchy (1.5) taking the following form

k o]

[ Jut. xpuc, x) : 2.21)

J=1 k=1
Thus, one could just apply the proof of Theorem 2.2 to the special case

k k

a0 =f 1)@ d i (9) = [ [ur . xmi (2. x5) = [ [ wae, xpyiaate, x)).
j=1 j=1
where u1 and uy are two solutions to (1.1) and u; is the signed measure 8, , — dy, -

Especially, when k = 1, we have proved that
i (1, x)u (1, x') = ua(t, X)ua(t, x'), (222)

which directly implies the uniqueness for the trivial solution # = 0. Then by Lemma
A.1 which concludes that the phase difference is zero, we complete the proof. O

As Corollary 2.3 requires condition (2), uniform in time frequency (UTFL) condition,
we prove that every C ([0, To]; H*¢) solution to (1.1) satisfies UTFL condition by
Lemma 2.7. Immediately, Theorem 1.1 follows from Corollary 2.3 and Lemma 2.7.

Lemma 2.7 Let u be a C([0, Tol; H%) solution, then u satisfies uniform in time fre-
quency localization (UTFL) , that is, for each ¢ > 0 there exists M (¢) such that

2 <e (2.23)

(V)% P>M(5)M||L[°§TO]

Proof We compute

|8/ [1{V)* P<pue]| 72 | =2\ Im / Py (V) u - Pepg (V) (jul”~ u)dx
<2 Pt (V) ull 21l P<ar (V) (ulP~ u) | 2.

Noting that || P<p(V)* fll;2 < M*||P<p f || 12, then by Sobolev embedding A.3 and
(A.11), we have

|8, 1{V)* Pepuel| 2| S2M2 1| P<pa (V) *ull 12| P<pa (V)72 (el P~ ) 2

20, 1 P+1
S2M ull e -

Hence there exists 8’ > 0 such that for any 7y € [0, Tp], it holds that for r € (zp —
8 10 +8) N[0, T,

||<V)S(‘P 2 _ Sc 2 i 2
<mu®ll7> — V) P<puto)ll»| = T (2.24)
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On the other hand, since u € C([0, Typ]; H*), for each 1y, there exists 8" > 0 such
that for any z € (9 — 8", 19 + 8”) N [0, To],

1
< —¢&2. (2.25)

19 I, = 19y uto) 3| < =

Let § = min (8’, 8”). Then we have that for any ¢t € (z9 — 8, tp + 8) N [0, Tp],

g2,

EII,

[1V) P12, = 1V Pyt I3

<
For each ¢t € [0, Tp], there exists M, such that
Se 1
1V)* o0l 2 < Se.

By the above, there exists §; > 0 such that on (¢ — &;, t + ;) N [0, Tp], we have

Sc <
I1KV) P>M’u||L(°rc—5,,t+5,)m[o,ro1L;2c =&

Since the collection of interval (t — &, t + 6;) N [0, Tp], as ¢ ranges over [0, Tp], is an
open cover of [0, Tp]. By compactness, we might as well assume that

(t1 = 8¢, 11 + 81) N[O, Tol, ..., (&) — &, 5 + 8:,) N[O, Tp]
be a finite open cover of [0, Tp]. Letting
M= (M, ... M),

we have established (2.23). O

3 Estimates for the Compatible Time Integration Domain
3.1 Duhamel Expansion and Duhamel Tree

We start the analysis of the Duhamel expansions. We will create a Duhamel tree
(we write D-tree for short) and show how to obtain the Duhamel expansion J ;52,52;11)
from the D-tree. At first, we present an algorithm to generate a Duhamel tree from a
collapsing map pair (i, sgn) and then show this by an example. Subsequently, we are
able to calculate the Duhamel expansion by a general algorithm. Finally, we exhibit

an example by employing the above algorithms.
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Algorithm 1 (Duhamel Tree)

(1) Let D© be a starting node in the D-tree. Find the pair of indices / and r so that
[>1,r>1and

uh =1, sgn2l) =+,
u@r)y =1, sgn2r) = —,

and moreover / and r are the minimal indices for which the above equalities hold.
Then place D) or D7) as the left or right child of D© in the D-tree. If there is
no such [ or r, place F| 4 or Fy _ as the left or right child of D© in the D-tree.
(2) Set counter j = 1.
(3) Given Jj, find the indices {ki}f: 1 so thatk; > j and

w(Zki) = u(2j), sgn(Zky) = sgn(2j),

w(2kz) =2j, sgn(Zkz) = +,

n(2k3) =2j, sgn(2k3) = —, (3.1)
URky) =25+ 1, sgn(ks) = +,

n(2ks) = 2j + 1, sgn(2ks) = —,

and k; is the minimal index for which the corresponding equalities hold. Then place
D@ki) a5 the i-th child of D@/ in the D-tree. If there is no such kilkylkslkalks,
then place F#(Zj),sgn(Zj)/FZj,+/F2j,—/F2j+1,+/F2j+1,— as the i-th child of D@/
in the D-tree.

(4) If j = k, then stop, otherwise set j = j + 1 and go to step (3).

Example 3.1 Let us work with the following example

2j 2 4 6 8 10 12 14
w(2j) 1 1 1 2 3 6 6
sgn2j) |+ + — — + + -
o Let D© be a starting node in the D-tree, so we need
D to find the minimal [ > 1, r > 1 such that u(2/) =
1,sgn2l) = 4+ and u2r) = 1, sgn(2r) = —. In
the case, itis 2/ = 2 and 2r = 6 so we put D® and
PO D© D© as left and right children of D respectively,

in the D-tree as shown in the left.
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Now we start with counter j = 1 so we need to
find the minimal k; > j such that

DO 1(2k) = p(2), sgn(2ky) = sgn(2),
/ \ w(2ky) =2, sgn(2ky) = +,
n(2ks) =2, sgn(2kz) = —,
D® DO (k) =3, sgn(2ks) =+,

// \\ j(2ks) =3, sgn(2ks) = —.

D® 4 p® pao) F3_ We find 2k; = 4, 2k3 = 8, 2k4 = 10 and there
is no such k; and ks. Thus,
we put DD /F, . /D® /DD /F3  asthei-th
child of D® (shown at left).

Next, the counter turns to j = 2 and we find that there is no k; satisfying (3.1), so we
put Fy /Fy /Fy _/Fs_/Fs __ as the i-th child of D®. Then we move to j = 3 and
find that 2k, = 12 and 2k3 = 14 satisfy (3.1) sowe put F| /D2 /DY /F; | /F;
as the i-th child of D© shown as follows.

N R

@ F, p® pao F_ F_ pay pad Fp, Fy_

T INN

Fi yFy  Fy _F5 F5 _
Finally, by repeating the above step, we jump to the full D-tree shown as follows
where we use F to replace F; + for short.

Next, we present the following algorithm to obtain the Duhamel expansion from
the D-tree. For convenience, let Uy = eLiliA,

N / Do \ N
pw~ F D‘(S) \.m P 4/ DJM) F\ F
e /N A e

Fig.1 Duhamel Tree
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Algorithm 2 (From D-tree to Duhamel expansion)
(1) Set Fj + =U_gk—1¢, F;,— =U_ogp—_1 fori = 1,2, ..., 2k. If sgn(2k) = +, set
D (111) = U—z1 (161*9),
if sgn(2k) = —, set
D (t41) = U_si—1(191%).

(2) Setcounter! =k — 1.
(3) Givenl, if sgn(2l) = +, set

D@ (ty41) = U_y—y [(U21+1C1) (U2+1C2) <U21+1C_3) (U21+1C4) (U21+1C_5)]
if sgn(2l) = —, set
D (ty41) = U_gi—1 [(U2141C1) (U231 C2) (U2i41C3) (U2i41Ca) (U2141Cs) |

where C; is the i-th child of D@ in the D-tree.
@) Setl=1—1.1If] =0, set

D11, tyyyp) = UICH D) U1 T (x)),
where C;/C, is the left/right child of D in the D-tree, and stop, otherwise go to
step (3).

Proposition 3.2 By Algorithm 2 (From D-tree to Duhamel expansion), we have

TEED ) (012D 11, 1y ) = DO (11, 154)).
Proof 1t follows from Algorithms 1 and 2. O

Example 3.3 We calculate the Duhamel expansion in Example 3.1. By Algorithm 1
and 2, we obtain

DM (115) = U_15(1¢[*¢),

DD (113,115) = U_13(|U13,1501* U13,159),

D111y, 115) = U_11(|U11,15¢1*U11,159).

D® (19, 115) = U_9(|Us,15¢|*Uo,15¢),

DOy, 13, 115) = U7 | (U7,150) (U7 DI) (U DI) (Ur.156) (Ur159) |,
DW(1s, 115) = U_5(|Us,15¢|*Us,159),

DA (13,15, t9, 111, 115) = U_3 [(U3D(4))(U3,15¢)(U3D(8))(U3D(10))(U3,15¢)] ,

where U; j == U;U_;.
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On the one hand, expanding D© (¢, 1, 5) gives the Duhamel expansion

D(O)(fl,Lls)
= U DP)(U;D©)

= <U1,3 [(U3D(4))(U3,15¢)(U3W)(U3D(10))(U3,15¢)])

(1.7 [@r.150) @ DT W DTN @ 1581 W7.150)]

=Uy3 [(U3,5(\U5,15¢|4U5,15¢))(|U3,15¢|2>(U3,9(|U9,15¢|4U9,15¢))(U3,11(|U11,15¢|4U11,15¢))]

-U1,7 [(|U7,15¢|2U7,15¢)(U7,13(|U13.15¢\4U13.15¢))(U7,15(\¢|4¢))]

On the other hand, we calculate J,ﬁf;nﬂqb) (@121 (1, 5,4 1) by step. Note that

T80 () (@12P) . 1y5)

_yWpt y®p+ y®p- yDpg- y®
- U1,3B1;2,3U3,SBI;4,5U5,7Bl;6,7U7,9BZ;8,9U9,11

B 10110013 Be 12,1303 15 B 14,15 (160 (121,
At first,
U3 s Bora 15 (10) @121 =(U13,156) (x6) (V13,15 (161°0)) (1) |U13,156)(U13,156® 1.
Adding Ul({ll)g Bg;_l2,13 gives

(Un1.13(1U13,1501*U13,156)) (x6) (U11.15 (19 1*0)) (x6) |U 11,150 ) (U11,156|21°.

Then adding U7(79) B g 9U9(91)1B3Jf10 | gives

(U7,150) (x2)(U7,9(|1U9,15¢|*Us, 15¢)) (x5)
(U7,11(1U11,1581* U11,158)) (x3) (U7,150) (x3)
(U7.13(1U13,1501* U13.150)) (x6) (U7.15 (19 1*$)) (x4) | U7.150) (U7,156 | ©*

Finally adding U1(13) BI’_’Z 3U3(35) BL 5U5(57) B¢ 7 gives

Ui [(Us.s(|U5,15¢|4U5.15¢))(|U3,15¢|2)(U3,9(\U9,15¢|4U9,15¢))(U3,11(|U11,15¢|4U11,15¢))] (x1)

(17[002159P V1150 U7 300151501 V31590 s 19190 ) ()
which shows that J. 3, (16)(@1%') (11, £,5) = DO (11, 1,5).

@ Springer



14 Page220f 82 X.Chenetal.

3.2 Compatible Time Integration Domain
To enable the application of U-V multilinear estimates, we have to take into account the
compatible time integration domain. Combining with the Duhamel tree, we present

a general algorithm to compute the Duhamel expansion with the compatible time
integration domain.

Definition 3.4 Define the compatible time integration domain as follows
Te(u, sgn) = {201 = 1 : D — DRV}, (3.2)

where D@D — p@Jj) denotes that D@ is the child of D@/, Moreover, we say that
D@ ig the offspring of D@D if there exist 211,...,21, such that D@ . pCh)
— D@ 5 p@h.

Example 3.5 Continuing the Example 3.3, we will expand

fT ) I (1) (@1®1) (11, 115)dt 5.

From the D-tree (Fig. 1), the compatible time integration domain is as follows

1 1 2} 13 13 t7 17
/ﬁ_zo /,7=o /t5=o /t9=0 /m=0 /m:o /115=0

Write fftlli _o on the outside and hence ft?:() changes into ft§l=t15‘ Then it turns to

ftl /[lftl \/IS/IS\/I3 /t7
t15=0 J13=0 Jt7=t15 J15=0 J19=0 J#11=0 Jt13=0

So we can rewrite

/ I (1)1 )1, 115)d1 5
Tc

13 3 3
/ / / / / U, D@ / / U, D©
15=0 | J13 15=0 J19=0 J11= t7=ty5 J113=0
13 t3 13 10—
f / Ui / DW ) U3 159 3/ D®) U%/ DU ) T3 156
115=0J13 15=0 19=0 111=0

3] 17
/ Uiz {(U7,15¢) ‘ U7/ D(lz)) (U7D(14))(U7,15¢>)(U7,15¢)}
=115 113=0

where D7) is shown in Example 3.3. We can see that all the Duhamel structures are
fully compatible with U-V multilinear estimates, which we will show in Section 3.3.

Next, we give a general form of the algorithm.
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Algorithm 3 (From D-tree to Duhamel integration)

(1) Let
0% (ta 1) = D (131 41).

and replace D® by Q¥ (124 1) in the D-tree.

(2) Setcounter! =k — 1.

(3) Given [, there exists only one j such that D@D — D@J) Then there will be four
cases as follows.
Case 1. D@X s the offspring of D?) and sgn(2[) = +. Then set

0@ (12j+1, 02k+1)

Dj+1 — —
=/t ’ U_—1 [(U21+1C1) (Ua141C2) (U21+1C3) (Uai4+1Cs) <U21+1C5>] diyiy1.
204+1=12k+1

Case 2. D@M s the offspring of D?) and sgn(2[) = —. Then set

Q(2l)(f2j+1, k+1)

0j+1 —
= fl U_i—1 [(U2141C1) (Ui 41C2) (U2141C3) (U2141C4) (Uni41Cs) |dra 11

20+1=02%+1

Case 3. D is not the offspring of D) and sgn(2l) = +. Then set

Q(Zl)(t2]'+1, 0k+1)

Dj+1 —_— —
=/t . U_gi—1 [(U21+101) (U 41C2) (U21+1C3) (Un41C4) (U21+1C5)} dnyyy.
2014+17

Case 4. D@P is not the offspring of D) and sgn(2[) = —. Then set

0@ (72 +1, 22k+1)

Dj+1 — —
= /t U_21-1 [(U241C1) (U2141C2) (U2141C3) (U2141Cs) (U2141Cs) |dtos41.

21+1=0

In the above, C; is the i-th child of D@ in the D-tree.
(4) Update the D-tree by using Q) (t2j+1, tk+1) to replace D@,
5) Setl=1—1.1Ifl =0, set

tl ———
0V m) = / U1CH(UIC)die1
1k+1=0
where C; or C, is the left or right child of D in the updated D-tree, and stop,

otherwise go to step (3).

Hence, we arrive at a representation as follows.
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Proposition 3.6

f JEED D)1 FTD) (1, 1y Dty gy = 0O 11). (3.3)
Tc
Proof 1t follows from Algorithm 3. O

3.3 Estimates using the U-V multilinear estimates

Referring to the standard text [53] for the definition of UP and V/”, we define
X*([0,T)) and Y*([0, T)) to be the spaces of all functions u : [0, T) +— H* (T9)

such that for every &€ € Z< the map 1 +— e~i8y(t)(£) is in U%([0, T); C) and
Vrzc([O, T); C), respectively, with norms given by

1/2
lullxsqo.ry = | Y & lle ™ Bud @Il |
tezd
1/2
lullysqo.ry = | D€ le " 2u@)@)l3.

tezd

as in [37, 38, 42, 46]. In particular, we have the usual properties,

Nl oo s < lullys < Nullxs, (34
e fllys < €™ Fllxs < I s, 3.5)
which were proved in [37,Propositions 2.8-2.10].

By quintilinear estimates in Lemma 5.6 and the trivial estimate |lu|ys < |lu|xs,
we have that

t
/61(’_‘Y)A(ﬁlﬂzﬁ3ﬁ4ﬁs)ds e
a X2
< Cllu —s ||u —1 ||u —1 ||u —1||u _ 3.6
=C| 1|IX%II 2||X%|I 3IIX%|I 4||X%|I 5||X% (3.6)
t
/el(t_xm(ﬁlﬁzﬁﬁﬁs)ds d-1
a X 2
< Cllu —1|lu —1 ||u _1 ||u —1||u _ 3.7
=C| 1||XziTl|| 2IIX%|I 3||XdTl|| 4”)(%” 5||X% (3.7

X 2

t
/ el(t_s)A(ﬁ] UrU3t4Uus)ds || as
a

1 2d+3
< B IEE=)) 2(d+3) 3 3 3
< Cllulllxde <T My IIPsMouzllxdﬁrl + ||P>M0M2||X% IIM3IIX¢TI

luall gzt llusll oo (3.8)
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dfl
2

2d+3
2(d+3
< C||M1|| <T2("“>M @ ||P<M0u2|| 1+ || P> ppuzll dz') ||u3||X@

gl astllusll acs (3.9

where u € {u, u}.

Before moving into the estimate part, we first mark the D-tree as a preparation,
as we will use the above U-V multilinear estimates according to the marked D-tree.
Here, we give a general algorithm to mark a D-Tree.

Algorithm 4 (Marked D-Tree)

(1) We put a subscript R at DR thatis, ng). Here, we use the subscript R to denote
the roughest term.

(2) Setcounter! =k — 1. If D@ is the offspring (see Definition 3.4) of D@D, puta
subscript R at D@V that is, Dgl). Moreover, if one of the children of D@ is F,
then put a subscript ¢ at D@V that is, Dfl) Dq(bﬂ)

(3) Setl =1—1.If ] = 0, then stop, otherwise go to step (2).

Example 3.7 We estimate the Duhamel expansion in Example 3.3 with the correspond-
ing time integration domain to show how to apply the U-V multilinear estimates. First,
Applying Algorithm 4 to the D-tree in Fig. 1, we obtain a marked D-tree as in Fig. 2.

Next, we get into the estimate part. By Proposition 3.6, it suffices to estimate
0O ). Combining the D-tree (Fig. 1) and Algorithm 3, we obtain

tl T —————
0O ) =/ 0(U1Q(2)(11,t15))(U1Q(6)(t1,t15))dt15,
f5=

0.5 = [ U [(U3Q(4)) (Us159) (U3Q<8>> (v:0"7) (Ts.156 :|dt3,

13=0

0911, 115) = /tl U_7 [(U7,15¢) (U7 Q(lz)) (U7 Q(”)) (U7,159) (U7,15¢)]df7-

t7=t15

141

o — : T DL
Do 4 o \,m o (u)/ . \\ )

Fig.2 Marked Duhamel Tree
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At first, we use Minkowski to obtain
d—5

o 0O
Ve 2 (Vi) 2 QD) Loz 12,
1

T -
@ U1 0O (11, 115) -
< [ 0P @l w1000l asdns

L3 | i X/I

Note that Df) carries no R subscript, so we can bumpitto H 2z and then use estimate
(3.4) to get

T JE—
< U1 0@ (11,1 LU 0Oy, ¢ sdt
< [ 1010119l 10 QO 1) s

By multilinear estimate (3.9),

101091 a1 <CIUsQ|

+ m‘k

(TwwM“ TIP<woUs1s@llast + I1P-agUs 150 at )
1U30® et U3 Q"N act [1Us 1581l aca .
As D( ‘g carries subscript ¢ and R, we use multilinear estimate (3.8) to get
© 4 004
1T QP azs =CIU7QVP s
+3

(TﬂMM““” 1P<pgU7158 1l az1 + 1Pty Ur 1501 a5 )

(12)
16797 a1 1U7.15@1 | a1 1U7.15¢1] | a1

From Algorithm 3, we have

13 —_—
oW = L U= [(Us,150) (Us,150) (Us,159) (Us,15¢) (Us.15¢)] dts.
n
0¥ = / U [(Us,15¢) (Uo.158) (Us.15¢) (Us,15¢) (Uo.15)]dto,
13
00 = / . U_11 [(Ui1,15¢) (Ui1.15¢) (Ui1.15¢) (U11.15¢) (Ur1,150) ] di,
=

7 N —_—
0" = / . U_13[(U13,159) (U13,159) (U13,159) (U13,159) (U13,159) | dt13,
113=

0" = U_i5(Ipl49).
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Notice that Dg) Df), Df) and Dgo) only carry subscript ¢, so we use multilinear
estimate (3.9) to obtain

1UsQPN| a1 <ClIUs 15 as

2d+3
<T2<d+3>M2“‘+” 1P<poUs1s@ll azs + 1Pty Us 1501 a5 )

II1Us, 15¢|| a1 II1Us, 15¢II a1 |Us, 15¢|I a1
2d+3
<C||¢>|| (TﬂMM“““) 1P<mo®ll a1 + IP-poll, )
||U3Q(8)|IX% <ClUs15¢ll
m
<T2<d+*> Mg Py Uo 15l as1 + 1P-ayUo 15l d2>
1T, 15¢>|| 1||U9 15¢>|| ||U9 15¢>||
2d+3
<C||¢|| <T2(d+3)M2(d+3) ||P<Mo¢|| +||P>M0¢>|| (12>
(10)
U5 Q IIXdEI <C|Ui1,15¢|l il
(Tz(”’“)M <+’||P<M0U11 15¢|| a1+ 1P~ pmoUtt,159 |l d2>
U1, 15¢|| ||U11 15¢>|| ||U11 15¢||
2d+3
=CliglI" (T2<d+*>M2“’“> IP<mo®ll 51 + IPprg dz)
107021 a1 §C||U13,15¢||
2d+3
(TW) My [ PetgUr3.159 1| azy + 1| Poarg Urs s | dz)

||U1315¢|| 1||U1315¢>|| 1||U1z15¢||

2d+3
=CliglI" (T2<d+*>M2“’”>||P<MO¢|| L+ 1Pyl dz)

Finally, to deal with the roughest term Q(14), we use Sobolev inequality (A.11),
||U7Q(14)II azs = U7, 15(1gl* ¢>)II x5 = Il ¢|I azs = C||¢||5

Together with the above estimates, we arrive at

v T O
1{Vx;) 2 <in> 0 (tl)”L?CLglLZ,

2d+3 6
< C7/0 ||¢||24 (TZ(d+?)M2(d+3) IP<mo@ll ast + 1P po @ dz> dtys.
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From Example 3.7, one can immediately tell that a decay power comes from esti-
mates (3.8) and (3.9). Actually, such a decay power is at least proportional to k.

Definition 3.8 ([19, 20]) For/ < k, we say the [-th coupling is an unclogged coupling,
if one of the children of DY is F. If the [-th coupling is not unclogged, we will call
it a congested coupling.

Lemma 3.9 [19,Lemma 5.14] For large k, there are at least %k unclogged couplings
in k couplings.

The main result of this section is the following proposition.

Proposition 3.10 Let y X (1) = [ |¢)(¢|®*d 11, (¢). Then we have

d=>5 d

d=5 d=5
(V)T (v /T TEED ) @1, 1y ity |

k Pht2 P
=C / /I|¢>I Sdz (T““’”)M (+)IIP<M0¢>I|
4k
5

) dlttg @i,

c0r2 12
LT LXILXi

1Pl e

Proof We rewrite

d=5 2k+1
1(Va) T (v, 0 /T 15 Dy, s Wtk 012 12,
1
L 2k+1
=[{Vy;) 2 / / 125 (16) @I, to DR Dt o2 12
X
1

By Proposition 3.6, we then use Minkowski and estimate (3.4)

T -
5/0 /I|U1Cl(l1,t2k+1)|| o as UGt i DI aos dl gy [(@)d ket

11 xg o

T —_—
< UCi(ty,t s |ULCr (21, ¢ sd dt .
_/0 /II 1Ci(t1, 2k+1)||X¢75|| 1C (81, 2k+1)||Xde [ eyt (P 2k 11

where C; or C, is the left or right child of Q® by Algorithm 3. Only one of C; and
C, carries the subscript R, so bump the other one into X o

We can now present the algorithm which proves the general case.

Algorithm 5 (Estimate)

(1) Setcounter! = 1. '

(2) Given [, there exists only one j such that D@) — D@/ There will be four
cases as follows.
Case 1. D@D = Dq(}%l[)e. Then apply estimate (3.8), put the factor carrying the

subscript R in X 2 and replace all the X T norm of U ¢ by H 7 norm of ¢.
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Case 2. D) = D;ZI). Then apply estimate (3.9) and replace all the X " norm
of U¢ by H" norm of ¢.
Case 3. D) = IDSgZ). Then apply estim:tt? (3.6), put the factodr lcarrying the
subscript R in X 2~ and replace all the X Z norm of U¢ by H 2 norm of ¢.
Case 4. D@D = D@D Then apply estimate (3.7) and replace all the X “* norm
of U¢ by HT" norm of ¢.

(3) Setcounter!/ =1+ 1.If] < k, go to step (2), otherwise go to step (4).

(4) We are now at the k-th coupling and would have applied (3.8) and (3.9) at least
%‘k times, so we arrive at

d=s d=s
”WXI) 2 (Vi) 2 / I ¢y F D)@, _2k+1)d£2k+1H cop2 12
Tc L7 Llex/l
4k

k—1 Q-3 pIES) s
=C f /||¢|| ST (TZ(d+3)M ||P<Mo¢|| +||P>M0¢|| 512)

lgl* Il ass dl by [(@)dt2k1

Apply Sobolev inequality (A.11) to || |¢|4¢||Hd55

4k

k 156’<+ ) >
<C ||¢|| Tz“’”)M ||P<M0¢|| 1+ IPsmy @l gt

d|ltr2k+1 |(¢>)dl2k+1 .

|
4 Existence of Compatible Time Integration Domain
In this section, our main goal is to prove that
2%+1
y D) = / J;(L s;,)(V(ZkH))(tl Lopp DAy, (A1)
Tc(fi,sgn)

reference (f1,s8n)

where the number of reference pairs can be controlled by 16¥, and the summands are
endowed with the compatible time integration domain T¢ ({1, sgn) that we introduce
in Section 3.2. We divide this section into two main parts. In Section 4.1, we first recall
the quintic KM board game argument and then give an introduction to an admissible
tree diagram representation as a preparation for the subsequent sections. Such type
of tree also gives an elaborated proof of the quintic KM board game argument. Then
in Section 4.2- 4.5, we prove the extended quintic KM board game argument, which
allows to sort the summands in the initial Duhamel-Born expansion y (! into a sum
of reference forms with the compatible time integration domain.
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4.1 Admissible Tree

We first give a brief review of the quintic KM board game argument as in [8, 52]. In
short, one could sort (2k — 1)!12% summands into a sum of upper echelon forms with
the time integration domain, denoted by D,,, which is a union of a very large number
of high dimensional simplexes. The number of upper echelon forms can be controlled
by 8%. Then, we give an introduction to an admissible tree diagram representation
which could provide an elaborated proof of the quintic KM board game argument.
Besides, one could use it to calculate D, explicitly, which was unknown.

Recall that {u} is a set of maps from {2, 4, ..., 2k} to {1, 2, 3, ..., 2k — 1} satisfying
n(2) = 1 and pn(2l) < 2I for all 2/. For convenience, we extend the domain to
{2, 3,4, ..., 2k} and define

nl+1):=pn@l) lefl,2,.. k—1}. “4.2)

Moreover, if u satisfies n(2j) < n(2j +2) for 1 < j < k — 1, then it is in upper
echelon form as they are called in [8, 52].

Let P = {p} be a set of permutations of {2, 4, ..., 2k}. To be compatible with the
definition (4.2), we also extend the domain to {2, 3, 4, ..., 2k + 1} and define

pQRl+1):=pQRD)+1, 1e{l,2, .. k}. (4.3)

We note that P is closed under the composition and inverse operations.
Associated to each i and o € P, we define the Duhamel integrals

I(j, 0, fOHD) = / J,(sz+l)(f(2k+l))(flv Dy )iy (44)
12tg3)= 2o (2k+1)
where
J(2k+l)(f(2k+]))(t ¢ )—U(l)(l‘ — )B U(3) —t)B
) _ 1 topy)) = 1 —13)Bu2):2,3 (13 —15) By (4):4,5
- UFD ( — o) Buanys ok 2kt £ D (i)
and f @D is a symmetric density.
Definition 4.1 For fixed j € {2,3, ..,k — 1} and a permutation p = (2j,2j +2) o

2j+1,2j+3) e P,if u(2j) # n2j +2) and n(2j +2) < 2j, we define the
action as follows:

wW=2j,2j+2)0@2j+1,2j+3)opno2j,2j+2)02j+1,2j+3),
o' =Q2j,2j+2)o2j+1,2j+3)oo0.
We call the action induced by p, which we simply denote K M (p), a Klainerman-
Machedon acceptable move in Chen-Pavlovi¢ format of 1, or an acceptable move of

wu for simplicity.
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For general case, we also call a permutation p a Klainerman-Machedon acceptable
move in Chen-Pavlovi¢ format of u, if p = p, o p,_1 o - - - 0 p; wWhere p; is an
acceptable move of i and p; = (2j;,2j; +2) o (2j; + 1,2j; + 3) is an acceptable
move of u; = KM (pj—1)o---0o KM(p1)(u) for 2 < i < r. Moreover, we define the
action (1, 0’) = KM (p)(i, 0):

w=pouop'
o' =poo.

If v and p are such that there exists p as above for which (i, 0’) = KM (p) (i, o)
then we say that u’ and w are KM-relatable. This is an equivalence relation that
partitions the set of collapsing maps into equivalence classes.

Now, we could describe the quintic KM board game argument in [8, 52]. Namely,
for every u, there is exactly one w,, in upper echelon form, which is KM-related to u
and the number of upper echelon forms can be controlled by 8. Moreover, it follows
from [8,Lemma 7.1] that

I(M,U, f(2k+l)) — I(/L/,O'/, f(2k+1))- (45)

With the equality (4.5), one has

> I id,y ) = /D N R A [T PV Y2/ 2V SR C X0
M~ e m

where the time integration domain D,, is a union of the simplexes {t1 > te@3) =
> to(2k+1)}-

The time integration domain Dy, is obviously very complicated for large k, as it is
a union of a very large number of simplexes in high dimension. To calculate D,,, we
construct a ternary tree with the following algorithm.

Algorithm 6 (1) Set counter j = 1.
(2) Given Jj, find the indices [, m, r sothat! > j,m > r,r > j and

nQ@2l) = n(2j),
n2m) =2j,
n@2r) =2j+1,

and /, m and r are the minimal indices for which the above equalities hold. Then
place 21/2m/2r as the left/middle/right child of node 2; in the tree. If there is no
such I/m/r, the node 2 j will be missing a left/middle/right child.

(3) If j = k, then stop, otherwise set j = j 4 1 and go to step (2).

Since it requires @(2j) < 2j, one can check that every node 2 has a parent by
induction argument. Hence, the generated tree by w, which we denote by 7' (w), is
a connected ternary tree with child node’s label strictly larger than its parent node’s
label.
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Example 4.2 Let us work with the following example

By Algorithm 2, we start with j = 1 and note that ;(2) = 1. For the left, middle
and right child of node 2, we need to respectively find the minimal a > 1,5 > 1
and ¢ > 1 such that £ (2a) = 1, u(2b) = 2 and u(2c¢) = 3. In the case, itis a = 2,
b =4and c =5, so we put 2, 8, and 10 as left, middle and right children of node 2,
respectively, in the tree®.

%
4/1\10

Next we turn to j = 2. Since u(4) = 1, we find the minimal a > 2, b > 2 and
¢ > 2 such that u(2a) = u(4) = 1, u(2b) = 4 and u(2c) = 5. We find a = 3 and
there is no such b or ¢ satisfying the above condition, so we only put 6 as the left child
of node 4 in the tree.

/TN

00— D) — —

10

/

6

Since all indices appear in the tree, it is complete.

Definition 4.3 A ternary tree is called an admissible tree if every child node’s label is
strictly larger than its parent node’s label. For an admissible tree, we call, the graph
of the tree without any labels in its nodes, the skeleton of the tree.

For example, the skeleton of the tree in Example 4.2 is shown as follows.

8 We use aline to link the left child and an arrow to link the middle/right child, as we would like to emphasize
the differences between the left child and the middle/right child. Besides, by this way, it is convenient to
calculate the tier value which we introduce in Section 4.3.
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@
f

/CT)\
O 0O O
/
O

Given an admissible ternary tree, we can uniquely reconstruct a collapsing map u
that generates it. For notational convenience, we take the following notations.

uL 2j : node 21 is the left child of node 2j,
21 i 2j : node 2! is the middle child of node 2,

21 £ 2j : node 2! is the right child of node 2,
2] — 2j : node 2! is a child of node 2.

Algorithm 7 (From admissible tree to collapsing map)

(1) Setcounter j = 1 and u(2) = 1.

(2) Given j, in the admissible tree c,
if there exists 2k; such that 2k i> 2j, then uw(2ky) := n(2j);
if there exists 2k, such that 2k, 2% 2, then 1 (2ka) = 2,

if there exists 2k3 such that 2k3 > 2, then w(2k3) := 2j + 1.

Otherwise, go to step (3).
() Set j = j + 1.If j = k, then stop, otherwise go to step (2).

Since it is an admissible tree «, one can see that, if j = [, we have defined w(2i) for
1 <i <1land u(2i) < 2i by the step (2). Especially, when j = k, we generate a
collapsing map . Moreover, one has that 7 (1) equals to tree .

Example 4.4 Suppose we are given the tree as follows.

1 At first, let u(2) = 1. As there are left, middle and right
T children of node 2, we define w(4) = 1, u©(8) = 2, and
) 1 (10) = 3. Next, turn to node 4. There only exists the
/ T ’\ left child and hence we define 1 (6) = 1 (4) = 1. Finally
we arrive at
4 8 10
/ 2j |2 4 6 8 10
6 w2j) ‘ 1 1 1 2 3
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Note that the upper echelon form p,, is unique in every equivalent class. Given a
skeleton tree, there also exists a unique upper echelon tree. We give an algorithm to
uniquely produce an upper echelon tree.

Algorithm 8 (Generate an upper echelon tree)

(1) Given a skeleton tree with k + 1 nodes, label the top node with 1 and set counter
j=1

(2) If the node labeled 2 j has a left child, then label that left child node with 2(j + 1),
set counter j = j + 1 and go to step (4). If not, go to step (3).

(3) In the already labeled nodes which has an unlabeled middle or right child, search
for the node with the smallest label. If such a node has an unlabeled middle child,
label the middle child with 2(j + 1), set counter j = j + 1, and go to step (4). If
such a node has no unlabeled middle child but an unlabeled right child, label the
right child with 2(j + 1), set counter j = j + 1, and go to step (4). If none of the
labeled nodes has an unlabeled middle or right child, then stop.

(4) If j = k, then stop, otherwise go to step (2).

Next, we are able to show that acceptable moves preserve the tree structures but
permute the labeling under the admissibility requirement.

Proposition 4.5 Two collapsing maps v and 11/ are KM-relatable if and only if the trees
corresponding to w and ' have the same skeleton. Moreover, if /' = KM (p)(w),
then T (') has the same skeleton to T () with node 2 j replaced by p(2j).

Proof Without loss, we might as well assume that p = (2o, 2 jo+2)o(2jo+1, 2jo+3)
and W' = KM (p)(w). With node 2 in the tree T () replaced by p(2), it generates
a tree o” with the same skeleton as T'(w). Since p € P is an acceptable move with
respect to i, we have u(2jo + 2) < 2jo and w(2jo) # w(2jo + 2), which implies
that o is also an admissible tree. By Algorithm 7, it generates a collapsing map u” .
Thus it suffices to prove u’ = w”, or equivalently, u” = K M (p)(u). Note that

L/M/R L/M/R
2 MM 2j in the tree T (1) <= p(2) M( 0(2j) in the tree .

By Algorithm 7, it implies that

n@) =pn2j) = u"(p2h) =un"(p2))),
w2l =2j = w(p2D) = p2)), 4.7
ph=2j+1 < 1 (pQ2h) =p2j)+1.

With 1(2) = 1”(2) = 1, by induction argument we obtain
pou2) = pn"(p2D),
thatis, u’ = KM (p)(1).

Conversely, we suppose that 7' (i) has the same skeleton as T (u'). By Algorithm
8 and Algorithm 7, it generates a unique collapsing map pt; which is in upper echelon
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form for the skeleton of 7' (w). On the other hand, there exist an acceptable move
o with respect to p as well as u,,, which is in an upper echelon form, such that
Um = KM(o)(u). Since T (i) also has the same skeleton as T (u), it gives that
Um = Ws. In the same way, we also have u), = u,, which implies that u and p” are
KM-relatable. O

Given k, we would like to have the number of different ternary tree structures of
k nodes, which equals to the number of equivalent classes. This number is exactly
defined as the generalized Catalan number (see [39]), that is,

1/ 3k
E(k - 1) “4.8)

which can be controlled by 8¢ by Stirling’s approximation to k!. Hence, we just provide
a proof of the quintic KM board game argument.

Now, let us get to the main part, namely, how to compute D,, for a given upper
echelon class. We define a map Tp which maps an admissible tree 7'(u) to a time
integration domain

Tp(w) = {41 = g1 : 20 —> 2j inthe ree T()} [ {1 = 6} (4.9)

where 2/ — 2j denotes that node 2/ is a child of node 2.

Proposition 4.6 Given a [, in upper echelon form, we have

2k+1) ., (2k+1
Z/ Jl(L D () ( +))(t1’£2k+1)d£2k+]
U~y ¢ NZBZ 2041

= / TEHD (DY 1y, by Dty
Tp (pm)
and hence

y P = > f T2 D) (1, e Ddtyyg g (4.10)
Tp (tm)

Wm upper echelon form

Proof Let X (u,,;) be the set of all acceptable moves with respect to it,,,. Then by the
equality (4.5), we have

Z I(H.,ld,}/(ZkJrl)) — Z I(Mm,,o_l’y(ZkJrl))-
K™~ m PEX(m)

By Proposition 4.5, we see that

Y(um) ={p € P:pQ2j) <pl, if 2l — 2j in the tree T ()} 4.11)
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Table 1 Acceptable moves and Time integration domain

2j 2 4 6 8 10 2j 2 4 6 8 10 Time integration domain
p1(2j) 2 4 6 8 10 pfl(Zj) 2 4 6 8 10 {y=t3=t5=1t7>19>111}
p@) 2 4 6 10 8 pyl@p) 2 4 6 10 8 (n=n=t5>1>1210)
p3(2j) 2 4 8 6 10 p§1(2j) 2 4 8 6 10 {n=n=2t5>19>1t7>111}
pa2j) 2 4 8 10 6 p;'@) 2 4 10 6 n=n2=1520 201210
ps2j) 2 4 10 6 8 psl@j) 2 4 8 10 6 (n=nzt5=19>1 1)
pe2j) 2 4 10 6 pg'2j) 2 4 10 6 {n=zpz15210=10>10)
p1(2j) 2 6 8 4 10 p{l(Zj) 2 8 4 6 10 {r>2m3>t9>1t5>17>11}
ps2j) 2 6 8 10 4 pgl2j) 2 10 4 6 8 (nznzit5=17=1)
p(2j) 2 6 10 4 8 p9_1(2j) 2 8 4 10 6 {n=n=2t9=>1t5>1]>1}
p102j) 2 6 10 8 4 pit@p 2 10 4 8 6 (nznznzi5>19>10)
p11(2j) 2 8 10 4 6 pﬂl(Zj) 2 8 10 4 6 {n=n=2t9>t >t5>1n}
p122j) 2 8 10 6 4 ppl@p) 2 10 8 4 6 (n=nn>t9>15>10)
and hence

U {n=t,15) = = t-10041)} = To(m). (4.12)

PEZ (Um)

Example 4.7 Let us demonstrate Proposition 4.6 by an example. Recall the upper
echelon tree T (1) in Example 4.2.

There are 12 acceptable moves with respect to 11 such that

u; = KM(p;)(1).

Here are all the admissible trees equivalent to 7 (u1).
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2j 2 4 6 8 10 2j 2 4 6 8 10  2j 2 4 6 8 10
wm@H [ 1T 1 1 2 3 wejp |1 1 1 3 2 wep|1 1 3 1 2
1 1 1
l 1 1
/ /TN /
4 1\10 4 ITO 8 4 1\10
/ / /
6 6
2j 2 4 6 10 2j 2 4 6 8 10 2j 2 4 6 8 10
ma@j) |11 3 1 2 pus@p [T 1 2 3 1 p@H |1 1 3 2 1
1 1 1
l l l
/TN /TN /TN
4 ITO 6 4 1 8 4 l 6
/
8 10/ 10/
2j |2 4 6 8 10 2 |2 4 6 8 10 2 [2 4 6 8 10
w@H [ 1 2 1 1 3 w@ph |1 3 1 1T 2 pwejp|l 2 1 3 1
1 1 1
l l l
/ TN TN
6 I1’\10 6 ITO 4 6 1 8
/ /
8 8 10/
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2j |2 4 6 8 10 2j |
po@p) |13 1T 2 1 un@)j) |

— N
~
W[ o
o
=
o

2j |2 4 6 8 10
23 1 1 wp@p |1

/ / /

10 10 10
From the above time integration domains in Table 1, we have

U [“ Zhte 2o Zhrta T o) = tp,f‘(n)}
pi€X(p1)

={th=2n,13>15>1,13>1,13>11}.
By the definition,
Tp(u) ={t1 = 13,13 >1t5 > 17,13 > 19,13 > 111} .

Hence,

U {“ =l Z e 2ty 2 o) 2 tp,.“(u)} = To(p)-
piex(u)

4.2 Signed KM Acceptable Moves

In Section 4.1, we provide a method to compute Tp(u). A nontrivial application
is that, the original KM board game argument is not compatible with space-time
multilinear estimates. Indeed, depending on the sign combination in the Duhamel
expansion J,%nkﬂ) (y DY (11, 15 41)> one could run into the problem that one needs
to estimate the x part and the x’ part using the same time integral. (See [20,Example
4].) To be compatible with the estimate part in Section 3, we restart with the signed
collapsing pair (i, sgn).
First, we rewrite

yO = " I id, sgn,y®*), (4.13)
(p,58n)
where
I(w, 0, sgn, y 3+ =/ J;(Lz,]s(;zl)()/akH))(fla£2k+1)d52k+1 (4.14)
N2lg3)Z 2o (2k+1)
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and

2U+1 sgn(@ sgn(d
T P 1) =U D (0 =) B0 U (3~ 15) B 5

_ 2k
U D —t2k+1)Biig](c);z)klk_,_lV(2k+l)(l‘2k+1) (4.15)

where the notations have been introduced in (2.19).
For convenience, we define

sgn(2l + 1) := sgn(2l)

forl € {1,2, ..., k).

Definition 4.8 Let p be an acceptable move of . We define a signed version of the
KM acceptable move in Chen-Pavlovi¢ format, still denoted by K M (p), as follows:

(', o', sgn")y = KM(p)(u, o, sgn)

where
/ —1
W=popop !
o' =poo,
sgn' =sgnop .

If (u, 0, sgn) and (', o', sgn’) are such that there exists p as above for which
(', o', sgn"y = KM(p)(i, 0, sgn)

then we say that (i, o, sgn) and (i, o', sgn’) are KM-relatable. With a slight modi-
fication of the argument in [8, 52], we also have

(W, o' sgn',y @Dy = I(u, 0, sgn, y D). (4.16)

Example 4.9 We consider the following pair (w, sgn)

2j |2 4 8 10
w2j) 1 1 1 2 3
sgn(2j) | — + — — +

By Algorithm 6, with adding the sign, it generates a signed admissible tree as
follows
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1

[
4+/8T:\10+
S

Definition 4.10 For a skeleton tree, we call it the signed skeleton tree if we add the
sign. For example, the signed skeleton of the tree in Example 4.9 is shown as follows.

@
:

-
/O/(g\Q -
-

Similarly, the signed acceptable moves also preserve the signed tree structures.

Proposition 4.11 Two collapsing map pairs are KM-relatable if and only if they have
the same signed skeleton tree.

Proof By Proposition 4.5, it suffices to prove that p keeps the sign invariant. Indeed,
we note that node 2j in the tree T (w) is corresponding to node p(2) in the tree T (1)
and hence sgn’(p(2))) = sgn(2j). O

4.3 Tamed Form

We will prove that there exists a unique special form, which we call the tamed form,
in every equivalent class. First, through an example, we present an algorithm for
producing the tamed enumeration of a signed skeleton. Then we exhibit how to reduce
a signed tree with same skeleton but different enumeration into the tamed form using
signed KM acceptable moves. In the end, we arrive at

yOey= > T P (W, 1y DLy, (417)
(J+,5gn5) tamed Tp (1)

which is an adaptation of representation (4.10).

Definition 4.12 We call 2 > 4 is tier of ¢ if

ui(2j)=1 but p?'@2j)>1
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where u? = p o - - - o u, the composition taken g times. We write 7(2) for the tier
value of 2°.

Definition 4.13 A pair (i, sgn) is tamed if it meets the following four requirements:

(1) If£(21) < £(2r), then 2 < 2r.

() If t21) = t2r), p*@1) = p>Q2r), sgn(u2l)) = sgn(u(2r)) and w2l <
n(2r), then 2/ < 2r.

3) If t2l) = t(2r), W2l = p*Q2r), sgn(nl)) = +, sgn(u(2r)) = —, then
21 < 2r.

@) If 12D = 12r), W2 Q21) # u2Q2r), wl) < w(2r), then 21 < 2r.

Conditions (2), (3), and (4) specify the ordering for 2/ and 2r belonging to the same
tier. More precisely, rule (2) says that the ordering of middle child is prior to the one
of right child and the ordering follows the parental ordering if two different parents
belong to the same left branch with the same sign. Rule (3) says that if the parents
belong to the same left branch, a positive parent dominates over a negative parent.
Finally, if the parents do not belong to the same left branch, rule (4) says that the
ordering follows the parental ordering regardless of the signs of the parents.

Example 4.14 The pair (i, sgny) in the following chart

2j \ 2 4 6 8§ 10 12 14 16 18 20 22 24 26
w(2j) 1 1 1 1 1 6 6 7 2 3 10 13 18
sgn(2j) | — — + + — - + 4+ - + + - +
t(2)) 1 1 1 1 1 2 2 2 2 2 2 3 3

is tamed. We illustrate an algorithm for determining the unique tamed enumberation
of a signed skeleton tree.

9 The tier value of 2 J equals to the number of the arrows from node 2 to node 1. That is why we use
arrows to link the middle/right child.
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We start with the skeleton (on the right) of the tree generated by (ui«, sgn.) with only
the signs indicated.

/
N
N

I

+

We consider the left branch attached to node 1 where there are five nodes. Then we
label the left branch in order with 2, 4, 6, 8, 10.
1

TN

+t— 1 —
+

6+/
W IO\,
10—/+/ \

|

+

Now, we set a queue where we list the nodes + first and then the — nodes
Queue : 6+,8+,2—,4—, 10—

Then we work along the queue from left to right. Since 6+ has both a middle and
right child, we first label the middle child and its left branch with the next available
number 12 and 14 and add these numbers to the queue putting the + nodes before the
— nodes

Queue : 6+,8+,2—,4—, 10—, 14+, 12—
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Next we label the right child with number 16 and add it to the queue

Queue : 6+,8+4+,2—,4—,10—, 144, 12—, 16+

]

6+/ I
8+ 11\—\16+
SN

10— 14+

|

+

Since we have already dealt with 6+, we can pop it from the queue

Queue : 84+,2—,4—, 10—, 144, 12—, 16+

Subquently, we come to the next node in the queue which is 8+. Since the node 8+

has no child, we skip and pop it from the queue

Queune : 2—,4—, 10—, 144, 12—, 16+

Then, we come to the node 2—, which has both a middle and right child. We first label

the middle child with 18 and then the right child with 20.
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/T\

18—

T
/T’\

12—

//\
T

+

From the queue, we pop 2— and add 18—, 20+:
Queue : 4—, 10—, 14+, 12—, 16+, 18—, 20+

Since 4— has no child, we pop it and proceed to 10—, which has a middle child. We
label it with 22. The queue is updated:

Queue : 14+, 12—, 164, 18—, 20+, 22+

By turn, we arrive at the fully enumberated tree.
1

1
/T\

18— 20+

T

+/j+_\ 26+
NN
[

Here is the general algorithm to generate a tamed tree from a given signed skeleton
tree.

Algorithm 9 (Generate a Tamed tree)
(1) Start with a queue that first contains only 1.
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(2) If the queue is empty, then stop. If not, dequeue the leftmost entry / of the queue
and go to step (3).

(3) If there is a middle child of /, pass to the middle child of /, and label its left branch
with the next available label 2j, 2(j 4 1), ..., 2(j + ¢). If not, go to step (5).

(4) Take the left branch enumerated in step (3) and first list all + nodes in order from
27,2(j + 1), ...,2(j + ¢g) and add them to the right side of the queue, and then
list in order all — nodes from 2, 2(j + 1), ..., 2(j + ¢) and add them to the right
side of the queue. Set the next available label to be 2(j + g + 1), and go to step
5).

(5) If there is a right child of /, pass to the right child of /, and label its left branch
with the next available label 2, 2(j + 1), ..., 2(j + ¢). If not, go to step (2).

(6) Take the left branch enumerated in step (5) and first list all + nodes in order from
27,2(j + 1), ...,2(j + ¢g) and add them to the right side of the queue, and then
list in order all — nodes from 2, 2(j + 1), ..., 2(j + ¢) and add them to the right
side of the queue. Set the next available label to be 2(j 4+ g + 1), and go to step
2).

Next, we will explain how to execute a sequence of signed KM acceptable moves to
bring a collapsing map pair (i, sgn) into the tamed form. After presenting an example,

we will give the general form of the algorithm.

Example 4.15 We consider the following collapsing map

2j \ 2 4 6 8 10 12 14 16 18 20 22 24 26
w(2j) 1 1 1 6 1 6 7 I 2 16 9 18 3
sgn2j) | — — + — + + + - - + - + 4+

By Algorithm 6, it generates T (i, sgn) as shown in Fig. 3, which has the same signed
skeleton tree with the collapsing map (w«, sgny) in Example 4.14.

Comparing Fig. 3 T'(u, sgn) with Fig. 4 T (u, sgn.), we note that the node 8 on
the T (x, sgny) is the first one that differs from the one on the T (u, sgn), which is
labeled 10. To change node 10 into node 8, we do KM(8,10) on (i, sgn).

The KM(8,10) move is

n1=1@8,10)0(9,11) oo (8,10)0 (9, 11),
sgn; =sgno(8,10)0 (9, 11).

It gives that
2j ‘24 8 10 12 14 16 18 20 22 24 26

6
n1(2j) 1 1 1 1 6 6 7 1 2 16 11 18 3
sgm2j) | — — + + - + + - - + - 4+ +

Next, we compare Fig. 5 T (u1, sgny) with Fig. 6 T (u, sgny) and find that the
next different node is 10 in the tree T (u, sgn.), which is corresponding to node
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:
2_
TN
i- 18— 26+
e T
6+ 24+
TN
R
P AN
16— 12+ 29
T
20+
Fig.3 T(u, sgn)
1
:
2_
RN
4— 18— 20+
e T
6+ 26+
RN
12— 16+
PN
10— 14+ 24—
T
22+
Fig.4 T (px, sgns)
1
;
2_
TN
4— 18— 26+
e T
6+ 24+
AN

Fig.5 T(un1,s8n1)
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1
T
9
TN
4— 18— 20+
/ T
6+ 26+
PN
8+ 12— 164
P N
7
224
Fig.6 T (jx,sgns)
1
T
2—
TN
4— 18—
o
6+ 24+
RN
8+ 12— 16+
P AN
10— 14+ 22—
T
20+

Fig.7 T (u2,sgn2)

16 in the tree T (11, sgn1). Hence we do KM(14,16), KM(12,14) and KM(10,12) on
(1, sgny). Then we have

(2, sgnz) = KM(10,12) o KM (12, 14) o KM (14, 16) (11, sgn1)

and
2j \ 2 4 6 8 10 12 14 16 18 20 22 24 126
w2 (2j) 1 1 1 1 1 6 6 7 2 10 13 18 3
sgna2j) | — — + + — — + 4+ - + - + +

Comparing Fig. 7 T (u2, sgno) and Fig. 8 T (w4, sgn.), we find that the next differ-
ent node is 20 in the tree T (i4, sgh.), Which is corresponding to node 26 in the tree
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1
1

92—
TN
P

6+ 26+
T
8+ 12— 16+

PPN
10— 14+ 24—

7
22+

Fig.8 T (jx,sgn«)

T (u3, sgn3). Hence, we do KM(24,26), KM(22,24) and KM(20,22) on (u3, sgnz) to
obtain

(3, sgn3) = KM(20,22) o KM (22,24) o KM (24, 26) (12, sgna)

and
2j \ 2 4 6 8 10 12 14 16 18 20 22 24 26
n3(2j) 1 1 1 1 1 6 6 7 2 3 10 13 18
sgn3(2j) | — - + + — — + 4+ - + + - 4+

We see that (3, sgn3) is just the tamed pair (u«, sgn,) as shown in Example 4.14.
Here is a general algorithm to bring a collapsing map (i, sgn) into the tamed form.

Algorithm 10 (Tamed form)

(1) Given a collapsing map pair (i, sgn), by Algorithm 6, we obtain a signed admis-
sible tree T (i, sgn). From the signed skeleton tree, by Algorithm 9, it generates
a tamed tree «.

(2) Setcounter j = 1.

(3) Ifthe node 2; in the tame tree « is corresponding to 2/ in the tree T (u, sgn), then
set

', sgn’y = KMQj,2j+2)o---0o KMQ2l —4,2l —2) o KMl —2,20) (i, sgn).

(4) Set (u, sgn) = (u/, sgn’). If j = k, then stop, otherwise set j = j + 1 and go to
step (3).

Next, we arrive at the main part, that is, the following adaptation of Proposition
4.6.
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Proposition 4.16 Within a signed KM-relatable equivalence class of collapsing map
pairs (1, sgn), there is a unique tamed ([, Sgny). Moreover,

. 2k+1
Z I(,id, sgn, y @Dy = / j/(l,*,;;rl)* (V(Zkﬂ))(fl,L2k+1)dlzk+1 (4.18)
(14,581~ (s, 58M%) Tp ()

where Tp (i) is defined by (4.9). Consequently,

yOey= Y / T PN 11, 1y Ddtyy, (4.19)

(tts-5gn) tamed * T0 (1)

where the number of tamed forms can be controlled by 16F.

Proof The existence and uniqueness follow from Algorithm 9. For (4.18), the proof
is the same as Proposition 4.6. As shown in (4.8), the number of different ternary tree
structures of k nodes can be controlled by 8%. By paying an extra factor of 2¥, which
comes from the signs, there are at most 16* tamed forms. O

The next step will be to rearrange the tamed pairs (1., sgn,) via wild moves, as defined
and discussed in the next section. This will produce a further reduction of (4.19).

4.4 Wild Moves

We then introduce wild moves which keeps the tamed form invariant so that we can
partition the class of tamed pairs (i, sgn) into equivalence classes of wildly relatable
forms.

Definition 4.17 Given a collapsing map pair (u, sgn), define G; = {2j : u(2j) =i}
fori =1,2,...,2k—1. Wecall p € P allowable with respect to (i, sgn) if it satisfies
the following two conditions:

(D) p(Gi) =Gjfori=1,2,..,2k—1.

2) If2q < 25, u(2q) = (2s) and sgn(2q) = sgn(2s), then p(2g) < p(2s).
We denote the set of all allowable permutations p with respect to (u, sgn) by
P (i1, sgn). Note that condition (1) is equivalent to ;o p = p o p~! = p, which
leaves all left branchs invariant. Moreover, if (i, sgn) is in tamed form, G; will
be the form {2/, 2] 4+ 2, ..., 2r}.

Definition 4.18 (Wild move) Given a signed collapsing map (u,sgn) and p €
P(u, sgn), then the wild move W (p) is defined as an action on a ternary (u, o, sgn),
where

(', o', sgn’)y = W(p)(u, o, sgn)
with
1

W=popop  =pou,
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/
o =poo,

sgn' =sgnop .

It is fairly straightforward to show that wild moves preserve the tamed class by
using the definition of tamed form. It is noteworthy that the analogous statement for
upper echelon forms does not hold and it is the purpose of introducing the tamed class.

Proposition 4.19 Suppose (w, sgn) is in tamed form, and W (p) is a wild move defined
as above. Then (', sgn’) is also tamed.
Proof 1t follows from the definition of tamed form. O

Thus we can say that two tamed forms (u, sgn) and (i, sgn’) are wildly relatable if
there exists an allowable permutation p such that

W, o', sgn’) = W(p)(n, o, sgn).
This is an equivalence relation that partitions the set of tamed forms into equivalence

classes of wildly relatable forms.
The main result of this section is

Proposition 4.20 Given a signed collapsing map (u, sgn) in tamed form and p €
P(u, sgn) as in Definition 4.17, let

(' o', sgn"y = W(p) (i, o, sgn).

Then for any symmetric density y ***D we have

2k+1 — —
I DY @, 0 g 0)) = TEED P (11, 07 (). (420)
Consequently,

1) (241
/ TSV PN (1, ey Dty
o[Tp(w)]

2k+1) - (2k+1
= f T san N o DAty (4.21)
o’[Tp(w)]

where o[Tp ()] is defined as follows

o[To(w)] =: {toj)+1 = toiy41 : 2L — 2j in the tree T (1)} ﬂ [t = te)1} -

Proof Since (i, sgn) is a tamed pair, G; will be the form {2p, 2p + 2, ..., 2g}. Then,
p € P(u, sgn) can be written as a composition of permutations

p=T| 0 +-0T
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with the property thateach t = (21, 2I+2)o(2[+1, 2]+43) and sgn(2l) # sgn(21+2).
Thus, it suffices to prove

@j-1) QD pt Q@j+3) . .
U™ (=01 0B 00 241U T gt = 12430 B0 40)0 7402430 7 (1243)
—y2i—-D_4,. 2itD . ot - 2j+3) (4, .
=U (=12j+3)B2jy2j 12,2430 (2j+3 = 102j+0B 5510y 2j41U (t2j+1)

_Axéﬁz)eiz(AijH—A )

where U@ (1) = U@i=D (e 2+ 2j43

Without loss, we might as well take j = 1 and w(2) = w(4) = 1 so that this
becomes
UD (=3B}, ;U (15— 15)B1f, sUO (15) = UV (—15) BT, sTD (15 — 13) B, ;U (13). (4.22)

For simplicity, we take the following notations

U0 (1) = ULUL5,
U3 —15) = U31,5U31,/5U32,5U32,,5U33,5U33,/51
U s) = vivtviu?vivdvivd vius .

where UL, = % Ul = ™™ Ul = Ulut, and UV, = UV U,

Expanding UM (—n), U(3)(t3 —15) and U(S) (t5) gives

UD (=3B, ;U (13 - 15)B], U (t5)
ol U p— 3 + Ly V202 13053 A4 1505
= U73U73Bl;2,3U3,5U3$5U3,5U3,5U3,5U3 531 .45UsUs UsUs UsUs UsUs UsUs
Since B, 3 acts only on the 2, 2/, 3, 3’ and 1’ coordinates, we exchange B, 3 with
U3l 5. In the same way, B]JT 4.5 acts onlyon4,4’,5,5 and I coordinates, so we exchange

+ H 1 772 2 173 3
B, 5 with U; ;U3 sU5 sU5 sU3 5. Thus, we have

UD (=3B, U (13 - 15)B], U (t5)

= vl vl ul By, B, sUdsUR U2 U3 sudsudud viu? vivd viud uiud
Exchanging B, 5 with Blf4’5 gives
= U13Ui/3U31531+4 sB1o, 3U3'sU3 U3 sU3 sU3 sUS Us UZUZ U3U3 USUS USUS
with U0} s = U, UUd 5 and U UL UL = UL UL UY, we obtain
= U15U1/5U513B1+4 5B12.3Us 3U3 Ui v3U3 Ujus vdus usug
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Exchanging Uslf3 with Blf4’5 and By, ; with U51’3U§‘U§‘/ U35 U35,, we have

Ul b U il 4 & 5 105 e gl V22 303 pd 55
= U_sU_sB\y sUs 3Us 3Us 3Us 3U5 3U5 3B, 3U3 U3 UsUs UsUs U3 Uz UsU3
=UW(=15)B, UV (15 — 13) B, ;U (13).

Since y ®**1D is a symmetric density, one can permute

Then it gives that

A A A A A A
(-x23 X3, X4, X5 XZ,XS,X4, xs) <~ (x47-x57-x21 X35 .X4,.XS, x27-x3)‘

U (5B, UV 15 — 13)B1, ;U (13) — U (—15) B, ;U (15 — 13)B1, sUP (13),

+ +
Bonia+1 7 Baayei sioncna s 123
which proves equality (4.20). O
Example 4.21 Let us work with the following pair (@1, sgnp)
2j |2 4 6 8 10 12 14
w1(2j) 1 1 1 2 3 7 7
sgm2j) |+ + — — + + -
There are six wild moves as follows:
(nj,o5,sgn;) = W(pj)(1,id, sgny),
2 4 6| 12 14 H ‘ 2 4 6 ‘ 12 14 ‘ pjfl[TD(ﬂj)]
P2 4 6] 12 14 pl_l 2 4 6|12 14| {g=t5>t7.07 213> 15.13 219,13 > 1]}
r) 2 6 4 12 14 p{l 2 6 4 12 14 {3 =17 >15.17 2113 = 115.13 = 19,13 > 171 }
r3 4 6 2 12 14 p;l 6 2 4 12 14 {t7 >13 > 15,17 2113 > 15,13 > 19,13 Zt“}
ps |2 4 6] 14 12 p4_l 2 4 6 | 14 12| {g=t5=t7.07215=13.13 219,13 = 1]}
s 2 6 4 14 12 pgl 2 6 4 14 12 {3 =17 215,17 2115 = 113.13 = 19,13 = 171 }
6 4 6 2 14 12 pgl 6 2 4 14 12 {t7 213 >15.17 =115 = 113.13 = 19,13 > 171 }

The collapsing mappings (i j, sgn ;) and corresponding trees are indicated below. We
notice that all (u;, sgn ;) are tamed and also that wild moves, unlike the KM moves,
do change the skeleton.

2j |2 4 6 8 10 12 14| |2 4 6 8 10 12 14
n1(2j) 1 1 1 2 3 7 7 sgni(2j) + + — — + + _
maj) |11 1 2 3 5 5 || sgm@) |+ - + — + o+ —
n3(2j) 1 1 1 4 5 3 3 sgn32j) | — + + - + + —
paj) |11 1 2 3 7 7 || sgm@) |+ + — — + — 4+
ns(2j) 1 1 1 2 3 5 5 sgns(2j) + -+ = + - +
mej) |1 1 1 4 5 3 3 || sgne@)) | - + + — + — 4+
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Tree for (1, sgni) Tree for (w2, sgns) Tree for (u3, sgns)
1 1 1
I | i
2+ 2+ 2—
AN AR RN
4+ 8§— 10+ 8— 10+ 4+ 12+

/ N T N

6— 6+ - 10+ 14—
AN S
12+ 14—
14 /
Tree for (w4, sgnq) Tree for (us, sgns) Tree for (e, sgne)
1 1 1
| I i
2+ 2+ 2—
PN VAN N
4+ 8— 10+ 4— 8— 10+ 4+ 12—
S PN VN /
6— 6+ 12— 6+ 8— 10+ 14+
AN e
12— 14+
e
14+

4.5 Reference Form and Proof of Compatibility

We will prove that, given a tamed class, there is a reference form representing the
tamed class. Moreover, the tamed time integration domain for the whole tamed class,
which can be directly read out from the reference form, is just the compatible time
integration domain introduced in Section 3.2.

Definition 4.22 A tamed pair (i, sgn) will be called a reference pair provided that in
every left branch, all the 4+ nodes come before all the — nodes.

Example 4.23 The collapsing pair (111, sgn1) in Example 4.21 is a reference pair.

2j |2 4 6[8]10]12 14
sgn1(2j)‘+ +

From the table, we can see that the + nodes come before all the — nodes in left
branches (2, 4, 6) and (12, 14).

As we infer from the examples, each class can be represented by a unique reference
pair (w, sgn). Exactly, we have the following proposition.
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Proposition 4.24 An equivalence class of wildly relatable tamed pairs

0 ={(u,sgn)}

contains a unique reference pair (i, sgn). For every (u, sgn) € Q, there is a unique
allowable permutation p € P({i, sgn) such that

(1, sgn) = W(p) (i, sgn).
Proof Note that wild moves will not destroy the left branch but permute the signs.
Thus, there exists an allowable permutation such that the 4+ nodes come before all the

— nodes in every left branch. The uniqueness follows from the conditions (1) and (2)
in Definition 4.17. O

Next, we get into the analysis of the main result.

Proposition 4.25 The Duhamel expansion to coupling order k can be grouped into at
most 16* terms:

2k+1
y D) = / JEED @Y @1, by Dty (423)
reference (f1,s8n) Tr(j.sgn)
where
Tr(p.sém = |J  »7' T o @, (4.24)
pEP(fL,sgn)

and Tp () is defined by (4.9).

Proof Recall

1 2k+1 2k+1
y D) = Z / TEDL (P, 1y DAy
(t5,58n4) tamed Tp (1)

where the number of tamed forms can be controlled by 16X, In this sum, group together
equivalence classes Q of wildly relatable (u, sgn).

Y=Y Y [ a6 s
class Q (u,sgn)eQ Tp(w)

There exists exact one reference ({1, sgn) in each equivalence class Q. By Proposition
4.24, for each (u, sgn) € Q, there is a unique allowable p € P(ji, sgn) such that

(i, sgn) = W(p)({a, sgn).

@ Springer



The unconditional uniqueness for the energy-supercritical NLS Page 55 of 82 14

Since W is an action, we can write

1

(L, p~ ", sgn) = W(p~ ), id, sgn).

Then by Proposition 4.20,

Qk+1) . (2k+1) _ k+1) . (2k+1)
Jii. (y Yt tog)dtyy 1—/ Jmoa (Y Yt top)dtr -
/TDm) rosn T fo i oy s AR

Consequently, we obtain

1 2k+1 2k+1
yP ) = Z Z /_1 A J,é’sg,,)(y( ) D
reference (Qu,sén) peP(fi,sgn) ” " (T (poft)]

Since {,(f1 [Tp(p o /l)]} is a collection of disjoint sets, we obtain the equality (4.23).
O

We are left to calculate the time integration domain Tp () and Tg (L, sgn).
Proposition 4.26 Let p € P(f1, sgn) and (i, sgn) = W(p)(ii, sgn), then
Tp(u) ={nj+1 = g1 2 1(2)) = (21, 2j < 21}
(Mtoeh+1 = toanr - £QD =2j or p21) =2j + 1},  (4.25)
Tr(fL, sgn) ={t2j41 = ta1 2 2j < 21, (1) = (2)), sgn(2j) = sgn(2)}
({2541 = ta41 = 421 =2j or 421) = 2j + 1} . (4.26)

Proof Since (1 = p o [, we can write

Tp(p)
= {njq1 = tuy1 1 f2)) = [1(21), 2j < 21} ﬂ
{r2js1 =ty ) =2j or ) =2j + 1}.

It remains to prove

{1 = a1 D) =2j or p2l) =2j + 1}
= {tp@jr+1 = tpan1 - 4QH =2j or p2D) =2j +1}.  (4.27)

Actually, with &t = p o ft and 1 0 p~! = /1, we have

w2l =2j < p(p~ ') = p~ '),
w@) =2j+1 < il '@ =p~ ' @) + 1,

which implies (4.27).
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Then by (4.25), we can rewrite

P~ To(0 0 W] =ty 1)1 = 1 * A2)) = A2D, 2] <21}
(M {r2j+1 = t41 - Q2D =2j or p21) =2j + 1},

It suffices to prove

U {1041 = 141 =+ (2)) = 1Q2D), 2 < 21}
pEP(j1,58n)

= {nj1 = 11 :2j < 20, 1Q21) = 0(2)), sgn(2j) = sgn2D}.  (4.28)
For simplicity, we take the notations

Aj1(p) = {t,-12)y41 = tom1y41 1 20 < 2L 12D = 12 )},
Bji={tjs1 = tug1 :2j <21, Q2D = 4(2)), sgn2j) = sgn2D)},

where A;; and Bj; will be the full space if (j, /) does not satisfy the corresponding
requirement. We are left to prove that

U mAj,l(P) = O Bj.
J:

pEP(fu,s8n) Jj.l

Given p € P(f, sgn), we will prove ﬂj,z Aj1(p) C Bjy,, for every pair (jo, lo)
which satisfies 2jy < 2o, 4 (2ly) = 1(2jo) and sgn(2jo) = sgn(2ly). Let 2j; =
0(2jo) and 2I; = p(2jo). Since p € P(ii, sgn), we obtain 1 (2[1) = [(2j1) and
2j1 < 2. Hence,

mAj,l(,O) C Aji.i(p) = Bjy.iy-
il
Conversely, suppose that (#1,13,...,0k+1) € ﬂj’l Bj;. Note that

{Gi={2r:pn@r) = z}}f:1 is a partition of {2, 4, ..., 2k}. Thus there exists a unique
o € P such that

0(Gi) = Gi,

lo=12j)+1 Z lo=120)+1-

(4.29)

where 2j < 2/ and A(2j) = 1(21). It implies that (¢1, 73, ..., f2k+1) € ﬂj’[ Aj (o).
We are left to prove that o € P(jt, sgn). For any pair (jo, lo) which satisfies
2lp < 2jo, 2ly) = [1(2jo) and sgn(2jo) = sgn(2lp), we have (t1, ..., fag+1) €
Bj, 1y, which implies that #; j, 11 > #2;,+.1. Combining with (4.29), we obtain o (2lp) <
o (2jo), which shows that o € P (i, sgn). O

With Propositions 4.25 and 4.26, we arrive at the main result as follows.
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Proposition 4.27 The time integration domain obtained in (4.24) is compatible in the
sense that

Tr(ft,sgn) = Tc(ft, sgn) (4.30)
and hence
2k
y P = > / .58 J;g,sgvl)(y(zﬂl))(ll,£2k+1)d£2k+1 (4.31)
Tc (e sgn)

reference (ji,sgn)

where Tc (i1, sgn) = {t2j+1 > ty41 : D@ — D(zj)} is the compatible time integra-
tion domain defined by (3.4).

Proof From the definition of Tc(ji, sgn), we have that 15,11 > #y41 if and only if
one of the following cases holds

AQj) = p@D, sin(2)) = sgnQl),
AQI =2j,sgn@l) = +,

AQl =2j,sgn@l) = —,

aR2lh =2j+1,sgn2l) = +,

AL =2j+1,5n2D) = —,

where 2/ > 2j is the the minimal index for which the corresponding equalities hold.
The requirement that 2/ is the minimal index can be removed by induction argument.
Thus, these cases are respectively corresponding to

w2l = 1(2j), sgn2j) =sgn2l),
Rl =2j,
ARl =2j + 1,

which implies that Tg (i1, sgn) = Tc ([, sgn). O

5 U-V Multilinear Estimates

Our proof of U-V multilinear estimates will focus on the T4 case, as it works the same
for RY with the homogeneous norm. We recall the definition of U-V spaces in Section
3.3 and use the following tools to prove U-V multilinear estimates.

Lemma 5.1 [37,Propositions 2.11] For f € LI(O, T; HS (Td)), we have

r
/ez(t—r)Af(T’.)dr
a

T
) < sup //f(t,x)g(t,x)dtdx,
(0.7 geYﬂ([o,T)):ngHyﬂ:J 0 Jrd ‘
5.1

foralla € [0, T).
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Lemma 5.2 (Strichartz estimate on T4 [4, 46]) For p > @,

o

d_d+2
IP<mullp < M2 7 | P<pullyogo,r)) (5.2)

Lemma 5.3 Let M be a dyadic value and let Q be a(possibly) noncentered M -cube in
Fourier space

O={+n:Inl <M}.

Let Py be the corresponding Littlewood-Paley projection, then by the Galilean invari-
ance, we have

d_ d+2
| Poullp < M2~ | Poulyoqo,r) (5:3)
2(d+2)
forp > ==.

Lemma 5.4 (Bernstein with noncentered frequency projection) Let M and Q be as in
Lemma 5.3, then for 1 < p <qg <00

d_d
IPo fllpg SM?P | Pofllp. (5:4)

Lemmas 5.3 and 5.4 are very well-known, and are available in many references, for
example, see [20].

5.1 Trilinear Estimates

To deal with the cubic energy-supercritical NLS, we prove the following U-V trilinear
estimates at critical regularity. Let & € {u, u}.

Lemma5.5 On T¢ withd > 4 and s € {d%(’, d%z} we have the high frequency
estimate

[ mnm o 0F @ ndxd S il oz iz gl
x,t

(5.5)
and the low frequency estimate
[[ @ e a0z, dxdr
x,t
ey 3
STH My urllys I P<mpuall as2 luzll a2 glly=s. (5.6)
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forall T < 1 and all frequencies My > 1. Then by Lemma 5.1, (5.5) and (5.6), we
have

H / WO | S il el ez el a2 5D

and

t
H / el(t_r)A(’ﬁl’ﬁz’IZﬁdT
a X?

2(d+2)
. 3d+3
S lluyllys <T‘”3M @+ ||P<M0M2|| 2+ || P> ppuz |l ”’2) ||M3|| 2. (5.8)

Proof 1t suffices to prove high and low frequency estimates (5.5) and (5.6). For sim-
plicity, we take ¥ = u and g = g.

For the high frequency estimate (5.5), decompose the 4 factors into Littlewood-
Paley pieces so that

I = E Ity Mo M3 My
My, My, M3, My

where
Ivy My, M3, My = // W1, M U2, My U3, My 8 My dXdE
x,t

with u M= PMju j and gy, = Puy,g. By orthogonality, we know that these cases
are as follows

Msy ~ Mo > Ms3) > Mo

where o is a permutation on {1, 2, 3, 4}. By symmetry, we might as well assume
without loss that M, > M3.

First, we consider the most difficulty case, namely, Case A. M| ~ My > M, > M3.
Then, we need only to deal with one such as Case B. M} ~ M, > My > M3, since
other cases can be treated in the same way.

Let 14 denote the integral restricted to the Case A. Decompose the M; and My
dyadic spaces into M3 size cubes. Due to the frequency constraint &, ~ —(§;+&3+&4),
for each choice Q of an M, size cube within the &| space, the variable &; is constrained
to at most 3¢ of M, size cubes. For convenience, we denote these cubes by a single
cube Q. that corresponds to Q. Then

a3 > > IPQu vy u2, 543,05 Po, 8y ey,
My, My, M3, My Q
M{~My>Mr>M3

S > > IPgui | sy 02,01y | 36043 105,03 431 P 8 | 3104
My My M3,My  Q Lt.x Lt,x Lt.x

Mi~My>Mr>M3
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where the factor corresponding to the smallest size cubes (here M3 size cubes) is put

3d+3)
n lejf and the others are put in Llf;“ .By (5.2) and (5.3),

1 d—2 1
7 7+7
d+ 2 d+
< > ZM 3 1Pgut,my lyo luz,a, llyo My
My, My M3.My  Q
M{~Mq>Mr>M3

d—
a—z_
||M3 M3 ”YO”‘ 0c8My ”YO

Applying Cauchy-Schwarz to sum in Q,

S Y MU MG un oy Ny gy ly—

My, My
Mi~My
+3 +3
D My M g a2 s | a2 (5.9)
M, M3
M>>M3

Applying Cauchy-Schwarz,

2 2
SUD Sl 15 | D llgam -
M My
1 1
2 2
1 1
S () 2 P3) ™ s a2
—_— Uz M. Z — U3, M-
M2 2 d2 M2 3 d22
My, M3 My, M3
Mr>Ms3 Mr>Ms3
Shurllysluall a2 lusl as2 ligly—-

Case B. M1 ~ M> > My > M3. Decompose the M| and M, dyadic spaces into
My size cubes and we have

Ip S > > IPQuipy Poota, vy 43,0580y ),

My, My M3, My Q
My~My=>=My>M3

S > > IPouy p s 1Poc2, iy | s W vty s Nenny | s
MMy M3.My  Q L? L, & L?

,X ,x
Mi~My>=My>=M3

By (5.2) and (5.3),

1 d=2, 1
7 7+7
a+ 7 tar
S > > M, S NPout,umy llyo | Po,uz, iy llyo My
My My M3,.My  Q
M{~My>Ms>M3

d—
a—Z<__
”u3 ,M3 ”YO ”gM4 ”YO
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Applying Cauchy-Schwarz to sum in Q,

—2
s> (M My N s Nz | a2

My, M>
Mi~M,
Gt s
Yo M7 T UM sl e gyl
M3, My

Mi~My>Ms>M;

Ifs + % = 0, it can be estimated in the same way as (5.9). Thus we need only to
treat the case s + % > 0. Supping out [|u3, pm, ||Y% and || gm,lly—s in M3 and My,
we have

2
Shusll a2 gy Y MMy 7 lluray v llua.an | a

T
My,M,
Mi~M;
d-2 1 1
7_7_’_3* _
2 d+3 d+3
> M My
M3, My
Mi~My>M4s>M3
By the fact that 452 + 5 > 0,
Slhusll a2 llgly= Y My My ||u1M1||Ys||u2M2|| 2 M,
My, M>
Mi~M,
=lusll jas2ligly= Y My M3llura ly= luzmnl a2
My, M,
Mi~M;

Applying Cauchy-Schwarz,
<|Ibt1||1/°||u2|| a2 llusll az2 lIglly=s-

Case B requires that % + s > 0. If we exchange M| and M, in Case B, we find

another requirement that u — s > 0 is also needed. In this case, it becomes Case A

again if s = d 2 and it becomes similar but a bit different if s = ;6 as M and M;

are not symmetrlc.

Proof of the low frequency estimate (5.6). We first deal with the most difficult Case
A. My ~ My > M3 > M. Decompose the M| and M, dyadic spaces into M3 size
cubes, we have

Iy Mo M3 My S Z 1 Pouy my (P<myu2,p,)u3,Mm5 PO 8M, IIL}X
o ,
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<Y IPouyull s 1P<tge2,y g3 Wesans | siwsn 1Pyl s

d+2
Q Lt,x Ly, Lz,x

where the factor corresponding to the smallest size cubes (here M, size cubes) is put
3(d+3)

7 and the others are putin L, i .
By Holder, Bernstein inequalities and (3.4),

d+3
Ll X

2 d—2

1 —+L
| P<pgytt2, M2||Ld+3 <Td+3Md+3M o ||P<Mo"‘2 Mz||L°CL2

u_‘_L

<Td+?M"+3M SN Papouz, iyl yo
By (5.2) and (5.3),
IM] My, M3, My
e Sram g, T

< T M 2 > M, M, | Pout, my llyo

Q

| P<mou2,m, llyollus ass llyoll Po, gy llyo

Applying Cauchy-Schwarz to sum in Q, we arrive at

IMy My M3, My
2

d-2_
<Td+;Md+3M 2

L d—2, 1
I — 7+7
d+3 2 d+3

M, Noeer, pay Ilyo | P<nagu2, ay llyo lusz g llyo g azy llyo-

Then by M| ~ My, we obtain

2 d=2 _ 1 d=2 1 _d=2

12 o2 L o2y
gy A3y 2 di3 g, 2 Td
IMy My M3, My STd+3MOJr M, + M, +3 Ty M ”YyM 2 HPEMOMZMZ”Y%
_d=2
My 2 ||u3,M3HY%MngM4||y—s
L T T T
ST MG My MG Ny pg, llys | P<pguz, vy H 2 lluz, py Hy% llgatylly—s-

Thus, we have

a1 2 L
Ia STTEMEE >0 g s llgm ly— My

My, My, M3, My
Mi~My>M3>M,

d+?

||P<M0M2II 2||”3M;|| a2
N ,%
STTE M ||u1|va||P<M0u2|| 2|IM3|I dzllgllys
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Next, we deal with one such as Case B. M| ~ M, > M4 > M3, since other cases
can be treated in the same way. Decompose the M and M, dyadic spaces into My
size cubes and we have

Iny My M3 My < Z IPout I 3@+3) 1P P<myuz,m, |l ECER) llu3, g ||Ld+3 lgayll 3+

d 2
0 Lt L, Lyt
By Holder, Bernstein inequalities and (3.4),
2(d+2) d—2 1
3d+3) T 3@+
1. P<mottz. il swn) ST My M, 1Po. P<mou2,m, Il oo 2

Lt,x

a2 2@+2)  d=2_ __1
3(d+3) 6 3d+3)
ST My M, | Po. P<myu2,m, llyo

By (5.2) and (5.3),

a2 SR P -ah,, Pt
3d+3 + +
Doty Mo, M3, My ST 5@ MG My, M,

> NPou uy llyoll Po, P<otiz, vy llyo llu3, a3l yo ll gz llyo
0

Applying Cauchy-Schwarz to sum in Q, we arrive at

Ingy My M3 My

a2 s -
+3
< T3EH My, M, M 1, py llyo | P<agguz, my llyo llus, as lyo llgay llyo
442 2(d+2) d—2

3(d+3 — -T2
< T3 MG M7 Ny llys My 2 1 P<pgia vy |l a2
Yy 2

1 d—-2 1

=l
3 7 a3
M5 s g d22M *

lgaty ly—s

Ifs + % = 0, it can be estimated in the same way as (5.9). Thus we need only to
treat the case s + % > 0. Supping out [|u3 p, ”y% and ||gp, |ly-s in M3 and My,
we have

Ip S Z Ingy My M54

My, My, M3, M4
Mi~Mr>Mys>M3

12 2d+2)
<T*<d+3>M3““> lusll, az2 ligly—
d—2
> (M1 lenan, llys My > || P<tytezi || a2

My, M, M3, M4
M~Mr>My4>M3

1 d-2 1
- [CAmD N S
d+3 2 d+3
MIP M, )
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" 2(d+2)

—_— 3(d+3)
<T@ M,

lusll a2 llglly—s My py lys M | P<proua, i || a2
Y2 v%
My, M)
Mi~M,

Applying Cauchy-Schwarz,

2(d+2)

3(d+3
ST MG sl Peagyizl] a2 sl a2 glly-s.

5.2 Quintilinear Estimates

estimate

Lemma5.6 On T withd > 3 and s € {dgs, %} we have the high frequency

// w1 (t, x)up(t, x)us(t, x)ua(t, x)us(t, x)g(t, x)dxdt
x,t

< , _ _ _ _ _
S |Iu1||yv||uzlly%llu3lly% ||u4llydlelluslly% llglly-s, (5.10)

and the low frequency estimate

/f w1 (t, x)(P<pyti2)(t, x)Uu3(t, x)ua(t, x)s(t, x)g(t, x)dxdt
Xt

L 3(d+3
T 3 )
5 2(d+3) MO

luglys ||P§Mou2||y% ||M3IIY% ||M4||y% IIMslly% llglly-s,

(5.11)
forall T <1 and all frequencies My > 1. Then by Lemma 5.1, (5.10) and (5.11), we
have

t

IE—T)A f~ ~ o~~~ ” < v

e UlUuU3U4Us)dT uplys|lu d-1||lu d-1 ||u d-1 ||u
H/a (t1uru3u4us) o lurllysl 2||YT|| 3||YT|| 4||YT|| 5|l

d—1

2

Y
(5.12)
and

1 2d+3
S lluillys (

T 2@ M9 || p -1 + || P — _
0 I §M0u2||ydTl I >M0M2||y7d21 ||M3||ydT1

_ 1. 1
||M4||YdT1||M5||Y% (5 3)

Remark 5.7 Notice that (5.10) for d = 3 is implied by [19,Lemma 5.15]. One can
compare the proof of the stronger Ltl H° estimate with the proof here and see that the
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proof of the weaker U-V estimates are indeed much less technical, and the current
method to incorporate these weaker estimates is indeed stronger.

Proof For the high frequency estimate (5.10), decompose the 6 factors into Littlewood-
Paley pieces so that

I= E i Iny, My, M3, My, M5, Mg
My, M»,M3,M4,M5,Mg

where
Imy My, M3, My, M5, M5 = // ul,Ml“2,M2u3,M3u4,M4u5,M5gMedth
x,t

with ujm; = PMjuj and Mg = PMﬁg.

We first take care of the most difficult Case A. M| ~ Mg > My > M3 > My > Ms.
Then, we need only to deal with one such as Case B. M1 ~ My > Mg > M3 > My >
Ms, since other cases can be treated in the same way. Decompose the M; and Mg
dyadic spaces into M size cubes, then

Ia < Z Z | Pour,m, Po 2, myU3,M314, My U5 Ms &Ml 11

My, My, M3,M4,M5,Ms QO
Mi~Me>Mr>M3>Ms>Ms

< Z Z Pou 6d+3) ||U 6d+3) || U 2d+3
N | Poui,m, IIL @y | 2,M2||L @ | 3,M3||L1,<X+)
My, Mz, M3, M4, M5, M Q 1% 1%

Mi~Me>M>>M3>Ms>Ms

leea, paall 2 s s || 2040 11 Po. 8 ||L 6+

tx

where three factors corresponding to small size cubes (here M3, M4, M5 size cubes)

6(d+3)
are put in L?};HS) and the others are putin L,’{" . By (5.2) and (5.3),

d—1 3 d—1 1
al_ +
27 T 2d+3) 2 T2d+3)
S > > <M2 I1PQu 1, ay llyo llua, ay | yo My N3, 0151l yo
My, My, M3,M4,M5. Mg  Q
Mi~Me=Mr>M3>M4>Ms
G s
2@+3) 2@+3)
M, T Mg, vy llyo My llus msllyoll Po.gmgllyo | -
Applying Cauchy-Schwarz to sum in Q,
3 dl dl
- 2(d+3) 2(d+3) 2(d+3) 2(d+3)
S 2 MM lyslgmglly-s Y My T M M
My, Mg My, M3, M4, Ms
M~Mg My=M3>=Ms=Ms
luo, | a1 N3 aay | a1 g gyl a=1 llus ps @) (5.14)
y 2 Ty 2 y 2 >y 2
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Supping out ||u4, pm, || a1 and |Jus ps |l y4t in M4 and M5, and then applying Cauchy-
Schwarz as shown in (5 9),

Slurllysluzll jasllusll asslluall e llusll asrllgly=s-

Case B. M| ~ M> > Mg > M3 > M4 > Ms. Decompose the M| and M, dyadic
spaces into Mg size cubes and we have

Ip S > D IPQu1 py POt vy U3, by U, My s, M5 Mg Iy
My My M3, M4, M5, Mg Q '
M ~My>Mg>M3>My>Ms5

S > > [ 1Pgura | s | Pociea, | 62(g+;> I3, 1 20+
My My M3 My Ms. Mg Q L3 L
Mi~My>Mg>M3>M4>Ms5

lua myll 2643 s ps |l 243 18 M6 1L 6a+3)
tx rx L 243
t

By (5.2) and (5.3),

d—1 3 d 1
13 Ly
2 2(d+3) 2(d+3)
b > > (M(, I1Pouta, Ilyol Poouz iy llyo My * 3,515 1l yo
My .My, M3,.M4,M5. Mg~ Q
M1~M2>M6>M3>M4>M5
dzl
M,

d—
G

1
+
plokzy 2d+3)
T Mg, vy llyo My llus, msllyollgag Iyo>-

Applying Cauchy-Schwarz to sum in Q,

d— d—1 1
Sy
2(d+3) 7 T 2a+)
S E <M6 w1, a, llyolluz, m, |l yo My lu3, a5l yo
My, M, M3,M4q,Ms,M¢
M1~M2>M()>M3>M4>M5
d—1 d
+ =iy
2 2(d 3) 2 2(d 3)
M, T s, by llyo M - ||”5M5||Y0||8M6||Y0)
d7 2(1+3>
a
S E ( Ny pgy lysMy 2 lua, ol ast My Nluz s o

My, M, M3,M4,Ms,Mg
Mi~My>Me>M3>Ms>Ms

1 1 d—1 3
S Teamy &l +s
2(d+3) 2(d+3) 2 2(d+3)
M gy as MIT s, | a1 Mg [ ||Ys)

Ifs = 1t can be estimated in the same way as (5.14). Thus, we need only to treat
the case 451 + s > 0. Supping out oz sl a5t Meeapagll s s sl a1 and
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lgmqlly—s, in M3, My, M5 and Mg, we have

Shual st lueall asa llusl)asa lglly=s > (M e, s
My, My, M3,M4,Ms,M¢
Mi~Mr>Me>M3>Ms>Ms

L %—2(1113)““ 2(d1+3) SAFT) 4 g T

: ||”2M2|| M6 ’ M3 ‘M4 \Ms >

M,

By the fact that % +s5 >0,

_d-1 d—1
+s
<||u3|\ a5 1||u4|| a5 1||u5|| d— 1Hg||y 5 Z M gy llysMy 2 Huzlel a1 My
My, M> o
Mi~My
—||M1HYA||M3|| HM4|| d=t llusll a-1 Z M uy gy s M3 lluz, M2|| a5l
M. M
Mi~M>
Applying Cauchy-Schwarz,
Sluillys lzll azsllusll,acslluall i llusll azsliglly=s-

Case B requires that 451 + s > 0. If we exchange M7 and Mg in Case B, we find
another requirement that %~ —s > Ois also needed. In this case, it becomes Case A
again if s = d21 and it becomes similar but a bit different if s = ;5 as M1 and M»
are not symmetric.

Proof of the low frequency estimate (5.11). At first, we deal with the most difficult
Case A. M1 ~ Mg > M5 > My > M3z > M,. Decompose the M| and Mg dyadic
spaces into M5 size cubes,

vy Mo M3 My M5 Mg S Z 1Pour my (P<ptgt2, 1, U3, M3 14, My US, M5 PchMf:”L[lx
Qo

<Z Pou 6d+3) || P u 2d+3) ||u 2(d+3
=2 | Pout,m ||L2<d13> 1P<poti2, 1ol 209 1143, 015 1 26049
t,x

u 2d+3) ||u o@+3 || Po. 6(d+3
g, ol 2 5,M5||L @ | thM()”L 0+

tx t,x

where three factors corresponding to small size cubes (here M4, M3, M, size cubes)

243 6(d+3)
2d+3
Ly Lt,x

are putin L; and the others are put in
By Holder, Bernstein inequalities and (3.4),

| 1 A1

d 2 Z(d 3)

| P<mtot2, M, ||Lt2u+3> <T@ MJ M, N Peptoiz, o2
WX

1 1odly 1
>R d+3 2 2(d+3)
ST 2@+3) My M, | P<pmou2, M, llyo
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By (5.2) and (5.3),

Iny Mo, M3, My, M5 Mg

1 d1+1

2 T2(d+3
s ayllyo

1
=1y
2 T 2(d+3)
||P<M0u2 My ||y0M3

T2(d+%> Md+3 Z <|PQu1 My llyo M,
0

d— d—
G G-

3
2d+3 2(d+3
MyE P g g oM S )||u5,M5|Y0||PQCgM6||Y0>

Applying Cauchy-Schwarz to sum in Q,

! 4 Gt 2(4131) dT+2(d ) T G
@3 v a3 + +
oy by 3. My s Mg ST 4D Mg MS M, M;
Nt pay llyo l P<naguz, my llyo s pagllyo llwa sy llyo llus ars llyollgag llyo-

Then by M| ~ Mg, we obtain

Iy, My, M3, Ma, M5, M

1 __3 1 1 1
< T 3@ M Mg T g T g 28D 20

loer e, s WP<mmouz.mo | aso s aas |z llwamasl aso lles, aas |l o N8 s lly -

and hence

1 _1
A3 d+3
Ip STZ@ M E loer aay llys 1§ v Nl y—

My, Me
Mi~Msg
— 5@ 2(d13 @ 3) @
(d+3) +3) (d+ (d+3)
> (M5 M M7 M,
M>,M3,M4,Ms
Ms>My>M3>M>
| Pemtotz it st s s |t T v oo Nas gl o)

Estimating it in the same way as (5.14), we have

Zd 3
Ia S TW“)M e lrllys | P<asouzll azs llusll acs fluall acrllusll acrliglly-s-

Next, we deal with one such as Case B. M| ~ My > M3 > My > Ms > Mg, since
other cases can be treated in the same way. Decompose the M and M, dyadic spaces
into M3 size cubes and we have

Ipgy, My, M3, My M5, Mg < Z | Poui, m, ||L62<3¢§) I P, PsMouz,lelLﬁéﬁg) ||u3,M3||L62<31§>
o 1,x 1,x 1,x

loaa.pas W 200w, aas Nl 200 18 N 20
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By Holder, Bernstein inequalities and (3.4),

2443 243 dol

1
3(d+3) T 2(d+3)
I1Po. P<mou2,m, 62<g¢;> STOT MG M3 | Po, Pgua.ms e
L,

2‘” 32(3+2) dT 2(d] 3
¥ T
ST 0@ My My | Po. P<mou2,m, llyo

By (5.2) and (5.3),

Iy, My, M3, My, M5, My

2d+3 d—1_ 1y Ly d=1
< Tﬁ(d+3)M3(d+3>M 2 2(d+3)M 2 2(d+3)M 2 2(d+3)M 2 2(d+3)

< Y " N1Pou,m, lyoll Po, P<ntytt. s Il yollues aas |l yo llwa. aay lyo s, ass llyoll g ll yo
0

Applying Cauchy-Schwarz to sum in Q,

T3 T T 4, T T 4, T 1 T s
<T6(d+;)M(+)M (+)M4 (+)1‘45 (+)M6 (d+3)

1,00, 1l yo | P<atou2, M, |Iy0 llu3, 5 ||y0 llua, M4 llyollzs, ps ||y0 ||gM6 llyo
443 2443 1y +s
<T6(d+3)M3(d+3)M—rM 2 M 2(d+3) Mz(d-H)MZ(dH)M 2 2(d+3)

llze1, a1y lys Il P<mot2, m5 || ||M3 M; || ||M4 My || ||M5 Ms || ||8M6||Y -

Ifs + % = 0, it can be estimated in the same way as (5.14). Thus we need only

to treat the case s + d; > 0. Supping out |[u3, M3|| S lua, M4|| S llues, pas || a1

and || gy lly—s in M3, M4, M5 and Mg, we have

3d3 —
IB<T6<d+3>M<“||u3|| szt sl o llusll ozt lgly— > (M

My, My, M3,M4,Ms,M¢
M]NM2>M3>M4>M5>M6

—dl
1,y [lys M. I|P<Mou2 ml a1 My

2(d+3)M2(d+3) M2(d+3)M & +2<d+3)+‘)

By the fact that s + 415,

2d+43
3(d+3) —s
<T6<d+*>M sl asi gl asa sl azillglly—s > (Ml llwr ary llys
Y My, Mp
M~M

M, | P<pqu2,m, Hy% M, )

23 R
STOEED M s Szt el azalusl oy lgly—s > lunmy llys I P<ptge, | )
Y

My, M
My~M,
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Applying Cauchy-Schwarz,

25 FT
<T 6d+3) N ) _ _ _ _ s
ST My ug | ys ||P§M0u2||y% ||u3||y% ”M”y% Iluslly% llglly-s.

]
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Appendix A. Miscellaneous Lemmas

We provide the following lemmas under the T setting, as they work the same for the
R? case with the homogeneous norm.

LemmaA.1 Let u; and uy be the C ([0, Tyl; H*¢) solutions to (1.1) with the same
initial datum such that

ui(t, x)u1(t, x') = ua(t, x)ua(t, x). (A.])

Then u(t, x) = us(t, x).

Proof From the proof of Corollary 2.3, we have obtained the uniqueness for the trivial
solution u = 0, so we might as well assume that u1(¢) # O for all # € [0, Tp]. On the
other hand, we note that

(VY ur(t, ) (VY eur )7, = (VYeua(t, (V) eur (), (V)*ur (1)) (A2)
which implies that

(V)*ur(t) = a@)(V)*ua (1), (A.3)

where

(V)eua (1), (V) ur (1))
(V)Seur )12,

a(t) =

Since u; € C([0, Tyl; H*), we have that

= inf V)se 0, A4
co IE%&TO] (V) uill 2 > (A.4)

which implies that a(¢) is well-defined. We are left to prove a(f) = 1 for every
t € [0, Tp]. Taking differences gives that

t
Pop(uy —uy) = —i / e CTOAP_y (lun 1P uy) (z, x) (a(n) — Dde,  (AS)
0
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where we used (A.3) for uj.
On the one hand, by (A.3) and the UTFL property in Lemma 2.7, we obtain

cola(®) — 1
| Past iz — ) e = | Pepg(@(t) = Diay 1z = % (A6)

On the other hand, by || P<p(V)* fll;2 < M*||P<py f || ;2 and Sobolev embedding A.3
and (A.11), we get

t
Hf I Py () (@ ) () — e |
0 e
t
< [ 1@ = PGl
0
t
S0 [ la@) = 1P P ) e 2de
0
t
<02 [ Ja@) = i e
0
t
< Mzcg/ la(t) — 1|d. (A7)
0

Combining estimates (A.6) and (A.7), we have

t
la(n) — 1] < / la(2) — 1|dt (AS)
0
which implies that a(¢) = 1 by Gronwall’s inequality. O
Lemma A.2
178l s cray S WS W as+si vay 1€ o2 eray + 1L 1 s epay 181l gs+32 (e (A9)

wheres >0,s; > 0,5 > 0, s +S2=%and§'1 +'s“2=%.

Proof This has certainly been studied by many authors. For completeness, we include
a proof. We note that

Py(P<n-1fP<n-18) =0
for N > 2 and hence
Px(fg) = Py [(Pon—1/)8 + (P<n—1f)(P=n-18)].

We expand

12

(NY* (1PN (f9)1172
N=0

2
||fg||HA(']1‘L])
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SIfglT2 + Y (NZIPy [(Pan-1 )8 + (Pan—1 ) (Pon—19)] 172
N=2

SIfgl2, + 12 +11°

where

I=(N) Py [(Pn—1/)g] 212,
11 = (N Py [(P<n-1/)(Psn-18)] ll212-

For 11, by Holder inequality, we have

11 =[[{N)* Py [(P<n—1 /)(P=n=18)] 212
<IUNY (P<n—1 ) (P=n-18) 212
<IP<N=1fllicorr NN Psn_18ll121025

where % = % + %. Then by Sobolev inequality,

TSI s KN (VY2 Pon 18l g2
= fll s Z (NY(M)5 (V)2 (M)* Py g
M>N

L2]2

where s; € (0, %) fori = 1, 2. By Young’s inequality,

IS flas AN (V)2 P gz S L e gl st

I can be estimated in the same way as /1. O

Lemma A.3 (Sobolev embedding)

LA 2 fall s ray S H 17l st (A.10)

3(T9)

If1faf3 fafslgseray S l_[ £ s (A.11)

Td)

d d
fors € (=3, 3).

Proof For s = 0, it follows from Holder and Sobolev inequalities.
For s € (—%, 0), by duality, we have

I f1f2f3llms S ||f1f2f3|| 2
I fifofsfafslas S ||f1f2f3f4f5||LagL
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Then by Holder inequality and the Sobolev embedding,

At fsllas S ]_[Ilf/II S l_[”ff“ 5 ey’

j=1

If1 fofs fa s <]_[||f,|| <]_[||f,||

For s € (0, %), we use Sobolev inequality (A.9). Taking f = f1f> and g = f3

with s; = d_62s, §7 = #,31 d“;“s and 5, = ¢ 32S we have

§ < d+4s d
| fifzafsllms S |If1f2||H + ||f3||Hi

. . . . d—2s K d—2s
For ||f1f2||Hng4s , using it again with s1 = “=, 50 = 34,5 = ¢ and sy = ==,
we obtain

Ififall asss S UAN st lfoll sga

Taking f = f1f> and g = f3 fa fs withs] = %, = %,'sﬁ = % and

5 = d—52x , we obtain

If1f2f3 faf51 B <||f1 ol s+t |If3f4f5||H»fz + 11 lelHﬂ /3 faf51l s+

< H 1l awtrea 1"[ 15l e + H Il i H I £l s

Jj=1 Jj=3 Jj=1 Jj=3

5
l_[ IF51l se2a -

Appendix B. Results for Some H'-subcritical Cases

Note that the proof of Theorem 1.1 works uniformly in all dimensions, d > 4 for
quintic case and d > 5 for cubic case. For completeness, we present some results for
low dimensions using our method. As we are limited by the Sobolev embedding in
Lemma A.3, the regularity requirements are higher than the critical scaling exponent
sc. Certainly, it is still an open problem to push s down to s.. for H ' -subcritical problems
in both R? and T?.

Theorem B.1(a). There is at most one C([0, Tyl; H%(Ad)) solution to (1.1) where
p=3andd =2,3.
(b). There is at most one C ([0, Ty]; H% (A?2)) solution o (1.1) where p = 5.
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LemmaB.2 On T?,

1
ur(t, x)ur(t, x)us(t, x)g(t, x)dtdx S T2 ,
[] om0 076 v S T, el sl
(B.1)

1
o ol
f/ i (¢, 0 0T (1 0 Ddrdx S Tl gl sl gl -y -
(B.2)

on T3,

1

uy(t, x)ur(t, x)us(t, x)g(t, x)dtdx STH
[[ e omeomse 76 v < Tl gl gl sl ;.
(B.3)

1
~ ~ ~ ~ < 7l
[[ e o o 70 v S Tl gl s el
(B.4)
Proof By the symmetry of | and g, it suffices to prove (B.1) and (B.3). For simplicity,

we take # = u and g = g. Decompose the 4 factors into Littlewood-Paley pieces so
that

I= E Ivy, Moy M3, My
My, M, M3, M4

where
Ivy Mo, M3,y = // W1, M U2, My U3, My 8 My dXdE
x,t

with ujm; = PMjuj and gm, = Py, 8.

It suffices to consider the most difficult case A. M| ~ M, > M3 > M, while other
cases can be dealt with in a similar way. Decompose the M and M, dyadic into M3
size cubes.

Ih > > I1Pou1,my Po,uz, vyt vy 8yl )

My, My M3,My Q
My~My>M3>My

1
S Y Yo TAPouim g2 I Poua s N lps llgallp o

My, My M3.My Q
Mi~My>M3>My

By (5.2)and (5.3),

~EY
~Y
My, M>, M3, My
Mi~My>M3>My
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1 1 1 3
> T2 Pour | yo M5 1| Po,ua. aay llyo M3 13 aasllyo Mg 11y llyo
0
Applying Cauchy-Schwarz to sum in Q,

1 1
> 2 2
ST Y MMy w2l g

My, M,
Mi~M;y

10 g 10
Yo MM sl sl
M3, My

Mi~My>M3>My

Applying Cauchy-Schwarz,
1

2

[~

2
1 2 2
ST E Nt w17 E luz, a1, 117 1
Y Y2
M, M,

=
|—
=

sy, M3
3,My
M3>My M3>My

1
My 10 ) M4\ 10 )
> (—) otz 1 > (E [EPA

~

1
<T2|u u u .
I 1||Y_%|| 2||Y%|| 3||Y%||g||Y%

For d = 3, we have that

Iy ’S Z Z ”PQullePchz,M2u3,M3gM4”Lt1x

My, My,M3,My Q
Mi~My>M3>My

Yo DI Pouralips IPou2 s Nluzlloer gl 2o

My, My M3, My Q
Mi~My>M3>My

S

By (5.3) and Bernstein,

<

~

1 1 1
S > MEPouiumy llyo M5 | Po,uz any llyollus, aasllyo T % Mallga, |l yo

M, My,M3,My QO
My~My>M3>My

Applying Cauchy-Schwarz to sum in Q,

} 11 ~1 53
STH Y0 MMy Hluan | s luaanll s D0 My M sl sl
My, M M3, My
Mi~M>=M3>M,

Mi~M,
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<T7|u u u .
STA| 1||y,%|| 2||y%|| 3||y%||g||y%

o
LemmaB.3 On T2
/ f Byt )Tt )3 (1 )Tt )T (0 )F(E, ) drdx
x,t
1
< T3
ST3 ||M1||Y,% ||M2||Y% ||M3||y% ||M4||y% ||u5||Y% ||g||y%- (B.5)
// w1 (t, x)up(t, x)us(t, x)ug(t, x)us(t, x)g(t, x)dtdx
x,t
1
< T3
S T*||u1||Y§||142||Y§||143||Y§||M4||Y%||M5||Y§ ||g||Y,%~ (B.6)

Proof Decompose the 6 factors into Littlewood-Paley pieces so that

I'= Z IMI,M23M3,M4,M5,M6
My, My, M3, M4, Ms,Mg

where
Ivy My, M3, My, M5, Mg = // U1, My U2, My U3, M3 U4, My US, MsEMd X dt
x,t

with ujm; = PMjuj and gy, = Pumy8-

In the same way as trilinear estimates in Lemma B.2, it suffices to take care of the
most difficult case A. M1 ~ Mg > M > M3 > My > Ms. Decompose the M and
Mg dyadic spaces into M> size cubes, then

Ia < > > IPgui Po ua my 3 myud, s, Ms8Mell 1

My, My M3, My, M5,Ms  Q
Mi~Me>=Mr>M3>Ms>Ms

S > Yo Poui il g lwzall g s aslpo
L Ly x

My, My, M3,My,M5,Ms  Q %
Mi~Me>M>>M3>Ms>Ms

lua gl lusmslipo 1Po.gmell g
3 X t,x L2

1,x

By (5.2)and (5.3),

1 1
< > > (M; 1Pour Il yo My 1| Po,ua,may |l yo
My, Mz, M3, M4, M5, M Q
Mi~Me>=Mr>M3>M4>Ms

17 1.7 17 1
T M3 \|uz msllyo T M lua myllyo T 9 M3 \|us ps |l yo My ||8M6||Y0)
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Applying Cauchy-Schwarz to sum in Q,

1

<T3 M Mg |M1M1|| -2 lgmsll 2
M1, Mg
Mi~Msg
S
Do My MMM uzanl sl g sl g llus sl g
Mo, M3, M4, M5
My>M3>My>Ms

1
<T3
STS Nl gl 3 sl 2 sl 2 sz gl

Appendix C. A More Usual Proof for the R? Case

With the dual Strichartz estimate and the existence of a better solution, we could give
a more usual proof of the unconditional uniqueness under the energy-supercritical set-
ting for R? case. Such an argument has been used by many authors and we summarize
it below, but it does not work for the T¢ case. For simplicity, we prove it for the cubic
case, as it works the same for the quintic case. At first, we need the following lemmas.

Lemma C.1 (Strichartz Estimate) Let I be a compact time interval, and let u : I X
R3 > C be a Schwartz solution to the forced Schridinger equation

M
i0iu + Au = ZFm

m=1
for some Schwartz functions Fy,..., Fy,. Then

M
NVEullor S NVEuollz + Y NVE El

m=1

q rh
L my m

for s > 0 and any admissible exponents (q;, r;) fori = 1,2, ..., m, where p' denotes
the dual exponent to p.

Lemma C.2 (Leibniz Rule [33]) Let s > Oand 1 < r,r1,12,q1,q2 < 00 such that
= % + %fori =1, 2. Then,

r

NVEDI SNl lIVEglea + NVE fll2ligliie-

Let u be a maximal-lifespan solution constructed in [47] and v be a C ([0, T); HSe)
solution to NLS with the same initial datum. We write w = v — u and observe that w
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obeys a difference equation, which we write in integral form as
t .
w(t) =—i / I (u 4+ wP(u + w)(s) — |ulPuls))ds
0

; 2
- / PAGRDE Z@(u/’ ($)w> 7 (s))ds, (C.1)

0 =0

where @ (u/ w3~/ is a finite linear combination of expressions which could be possibly
replaced by their complex conjugates.
By Sobolev inequality, we have

o —1 Se
VP wll 20 S NIVEFwlg2,
La-

X

and hence |||V [~ w|| e is finite. Then by Strichartz estimate in Lemma C.1, we
L2Ld-

t=x

have that

NV w2
27 d=-2
=X

1
< se—1¢ j. 3—j se—1,..2
SEMIPT @ w D IV Wl
j:O tLx
=g+ 11 + L.
For Iy, by Lemma C.2, we have that

12 -1 2

Io=NIVI* (wlmw)ll 20 SHVIFTwll - 2a wll}oo,a
LZLd+2 L2Ld—2 t =x
=X =X

Then by Sobolev inequality,

< VsC—l vV [5¢ 2 )
SUVFtwl g 11wl
7Ly

For I, by Lemma C.2, we have that

d+2
7Lx

—1 2

I=NVE )l
L2
SHVE ] lw?ll g+ vt w?
S 2wl g Dl e gV @)l 2
L®LI LiL;

NI w? Ve w w

SIVITtul 0%, g 4 Ml NVl Il

1 x t t=x

By Holder and Sobolev inequalities,

—1
SNV ull o2 1191wl a0 IVFwll o2

t=x

@ Springer



The unconditional uniqueness for the energy-supercritical NLS Page 79 of 82 14

For I, by Lemma C.2, we obtain

se=1¢ 2
L =[[[VI* @ w12

SHVE @I 20 w2 + lulZ e, 0 VI w2
=a_ L7L 472d —=a_

~ 12082 i LiLs 12182

< Se—1 2 se—1

SIVIul gzl rg + el o IVI ol L,

t=x LI L-’C

By Sobolev inequality,

02 -1
SHVEull™ = o NIV wll - 2
LA g L

where (4, %) is a Strichartz pair.
Together with the above estimates, we get

VI wl
L2L8?
se—1

SV w||L2 2

d=2
rbx

Se 2 Se Se Se o112
VWl + VUl IV Fwl + VP o

LiLd=

Note that w € C,()Hsf and w(0) = 0, so we can ensure |||V|wa||LtocL%(1XRd) <e
by choosing I sufficiently small. Also, from the Strichartz analysis in [47,Theorem
2d
3.1 and Remarks. 1.], |V|*u has finite S° norm, and in particular it has finite LfL,‘f" .
Thus we can also ensure that ||| V|5 u|| A (I x R?) < ¢ by choosing I sufficiently
LiLd-

tbx

small. From our choice of I, we have

NV w2 < CellVIetwl| 2,
121472 27 d-2

=X t=x

which implies that w vanishes identically on I x R provided that ¢ is sufficiently
small.
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