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ABSTRACT: A Cu complex featuring a hexadentate ligand was synthesized C'-o°n"‘é'i'tii%:ts
and evaluated as a redox shuttle in dye-sensitized solar cell (DSC) devices,

which exhibited excellent performance under low-light conditions. Cu-based
redox shuttles (RSs) have been shown to perform remarkably well under low-
light conditions; however, most of the known Cu-based RSs employ bidentate
pyridyl ligands and often require bulky flanking groups adjacent to the nitrogen Bright
donors of these ligands to prevent distortion and binding of exogenous Lewis conditions
bases such as 4-tert-butylpyridine (TBP) that are added to enhance cell
performance. Without the bulky substituents, the bidentate ligands are  pge=4.909
susceptible to ligand exchange with TBP. In this context, we have developed

a Cu-based RS with a preorganized multidentate ligand designed to facilitate

efficient electron transfer kinetics and high stability via the chelate effect. The Cu system, [Cu(bpyPY4)]**’*, reported here is
supported by the hexadentate polypyridyl ligand bpyPY4 (6,6'-bis(1,1-di(pyridine-2-yl)ethyl)-2,2’-bipyridine) and examined as a RS
in DSCs. From X-ray crystallography and variable-temperature 'H NMR studies, bpyPY4 provides a dynamic coordination
environment around the metal center. Cyclic voltammetry and UV—visible and NMR spectroscopy indicate that noncoordinated
pyridyl donors block binding of TBP to copper. DSC devices using [Cu(bpyPY4)]*/* as the redox electrolyte gave a power
conversion efficiency (PCE) value of 4.9% under 1 sun illumination (100 mW/cm?). Strikingly, the device performance increased to
11.11% when irradiated with 2400 lux (0.5 mW/cm?) via a fluorescent lamp light source and improved further to 15.2% PCE at
13500 lux (2.10 mW/cm?). The Cu redox shuttle is an intriguing candidate for implementation with narrow band gap sensitizers
with low oxidation potentials, which are important for high photocurrent DSC devices.

PCE=15.2%
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H INTRODUCTION ion, and a two-electron redox couple that results in significant
energy losses.'*~'°

Transition metal complexes have been proven to be a
successful replacement for the I"/I;~ redox couple where the
solar-to-electric power conversion efficiencies (PCEs) have
increased from 11% for 17/I;" to >14% for Co™'based
RSs.'”™** Inspired by copper-containing metalloenzymes
known as blue copper proteins, which are czépable of highly
efficient single-electron transfer reactions,”**° Fukuzumi and
co-workers tested model copper complexes as RSs for the first
time in DSCs.”” Following this study, a number of Cu-based
RSs have been developed, exhibiting significant improvements
in terms of efficiency.'”**™* Cu-based RSs have also been

The need to generate carbon neutral energy has led to the
development of new technologies that utilize renewable
sources such as wind and solar energy."” Photovoltaic cells
are capable of harnessing sunlight for solar-to-electrical energy
conversion.” > Dye-sensitized solar cells (DSCs) serve as an
attractive photovoltaic technology, which are inexpensive and
have high photon-to-current conversion efficiencies under all
lighting conditions.””"" A DSC is composed of a chromophore
anchored to a semiconducting mesoporous metal oxide
surface, which upon photoexcitation, injects an electron into
the conduction band of the semiconductor. The oxidized
chromophore (or dye) is then reduced back to its initial state
by a redox shuttle (RS) in the solution, a process known as
regeneration. The injected electron then traverses an external Received: January 31, 2022
circuit to the counter electrode, where the oxidized redox Accepted:  April 18, 2022
shuttle is reduced to complete the circuit.””'* The classically Published: May 4, 2022
used iodide/triiodide (I7/I;7) RS system has several short-

comings such as its corrosive nature, lack of tunability,

competitive absorption in the visible region by the triiodide
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successfully employed as hole transport materials (HTMs) in
solid-state DSCs with impressive PCE values.'”*%*° Recently,
DSCs with Cu-based RSs have been shown to perform
exceptionally well under ambient light conditions, thus making
it a promising technology for indoor applications such as
sensors, wearable devices, and autonomous Internet of Things
(IoT) devices.”'”*°>* An initial report on the cosensitization
of dyes in conjunction with a Cu-based RS in DSCs, as a
strategy to achieve better efficiencies, led to high open circuit
voltages (Voc) of up to 1.1 V with a PCE of 28.9% at 1000 lux
intensity under ambient light conditions.” Later, an exceptional
Voc of 1.24 V with a different set of cosensitized dyes in
association with a Cu-based RS set a record PCE of 34.5% at
1000 lux intensity under fluorescent lighting.>®

The I"/I;” redox couple involves an overall two-electron
redox process that typically results in a lower theoretical
maximum photovoltage output from DSC devices relative to
one-electron redox processes.'®”” On the other hand, Co™!L
based RSs present a challenge where a large inner-sphere
reorganization energy is often associated with the electron
transfer process in going from a high spin, d’ (Co") system to
a low spin, d® (Co™) system.’*> This affects the kinetics of
dye regeneration as the available driving force for electron
transfer is limited.”” Indeed, Cu-based RSs have been proven
to be on par with the classical I7/I;~ and Co™"-based RSs,
which has been possible due to their lower inner-sphere
electron transfer reorganization energies.33’44’56 Copper com-
plexes are known to adopt multiple geometries based on the
metal oxidation state and ligand environment. Cu" (d°)
complexes often feature six-coordinate (octahedral or
tetragonal), five-coordinate (square pyramidal or trigonal
bipyramidal), or four-coordinate (tetrahedral or square planar)
geometries.””” Similarly, Cu' (d'°) complexes usually attain
four-coordinate (tetrahedral) geometries.26 Most Cu RSs used
in DSCs to-date employ bidentate bipyridine or phenanthro-
line”*-based ligands with bulky groups flanking the nitrogen
donors in order to minimize structural changes between the
Cu" and Cu' redox states. Freitag and co-workers introduced a
tetradentate Cu"!' redox shuttle in DSCs that was found to
have high stability due to the chelate effect and lower
photovoltage losses (VSE) arising from a lower inner-sphere
reorganization energy for electron transfer.”” We recently
reported Cu”! RSs with rigid tetradentate ligands that
promoted lower inner-sphere reorganization energies leading
to improved short-circuit current densities (Js¢), high stability,
and a decrease in VIS&*

Cu-based RSs bearing pentadentate ligands were recently
employed in DSC devices by Sun and co-workers.”® The
advantage of having a pentadentate Cu" complex and its effect
on the coordination of commonly used Lewis base additive 4-
tert-butylpyridine (TBP) was investigated. Exceptional long-
term stability was observed with DSC devices using the
[Cu(tme)]**/* (tme = N-benzyl-N,N’,N'-tris(6-methylpyridin-
2-ylmethyl)ehtylenediamine) RS, and added TBP was shown
to not bind to [Cu(tme)]*.*®* We have been focused on
developing Cu-based RSs supported by preorganized multi-
dentate ligands to facilitate efficient electron transfer kinetics
and high stability in DSCs.** Herein, we report the
implementation of a Cu(Il/I) redox system bearing a
hexadentate polypyridyl ligand (6,6'-bis(1,1-di(pyridine-2-yl)-
ethyl)-2,2"-bipyridine, bpyPY4) as a RS in DSCs.
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B RESULTS AND DISCUSSION

Synthesis and Characterization. The synthesis of the
ligand, bpyPY4, has been previously reported,59 where 1,1-
bis(2-pyridyl)ethane® is deprotonated using n-BuLi followed
by addition of the electrophile, 6,6'-dibromo-2,2’-bipyridine.®'
The metalation is carried out using an equimolar ratio of the
appropriate Cu salt (either [Cu(CH;CN),](PFy) or Cu(OTf),
where OTf = trifluoromethanesulfonate) with bpyPY4 in
acetonitrile (CH3CN) to afford [Cu(bpyPY4)](PF,) or
[Cu(bpyPY4)](OTf),, respectively. The complexes were
purified by slow diffusion of diethyl ether into concentrated
CH;,CN solutions and characterized by 'H and "*C{'H} NMR
spectroscopy (Figures S1—S4) and high-resolution mass
spectrometry.

Solid-state structures of the Cu complexes were determined
by single crystal X-ray diffraction. Thermal ellipsoid plots of
the cations are shown in Scheme 1. Crystal structure

Scheme 1. Syntheses of the [Cu(bpyPY4)]**/* Complexes
and Crystal Structures of the Cations of the Cu' Species
(Left) and Cu" Species (Right) with Thermal Ellipsoids
Shown at the 50% Probability Level”

[Cu(CH,CN),](PF.)
dry CH,CN, rt

Cu(OTH),
dry CH,CN, rt

“Hydrogen atoms have been omitted for clarity.

information and refinement parameters are provided in Table
S1. The hexadentate ligand enforces a five-coordinate
geometry around the Cu'' center with five of the six pyridine
donors of the bpyPY4 scaffold bound to copper. In contrast, a
four-coordinate geometry is enforced around the Cu' center
where two of the pyridine donors of bpyPY4 are not bound to
the metal. Geometric indices, 75 and 7,, have been developed
for five-coordinate and four-coordinate complexes, respec-
tively, to describe the degree of distortion between ideal
geometries where the 7 value in each case will range from 0 to
1.°%% For a five-coordinate complex, a 75 value of 0 is
associated with an ideal square pyramidal geometry and a value
of 1 denotes an ideal trigonal bipyramidal geometry.é2 The 7
value for the Cu" complex is 0.62, which corresponds to a
distorted trigonal bipyramidal geometry. The bipyridine (Ny,,)
fragment of the k>-bpyPY4 ligand occupies both an axial and an
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equatorial position around the Cu" ion with the other sites
occupied by pyridine (N,,) donors. The distortion in the five-
coordinate Cu'' complex is apparent by the displacement of the
Cu" ion from the plane defined by the three equatorial donors.
The Cu® ion lies above the plane, toward the axial pyridine
(N,,) donor (trans to the axial N-donor of the bipyridine
group), at a displacement distance of 0.225 A. The angles
formed by the axial N, donor, the Cu" ion, and the equatorial
donors are slightly greater than 90° due to the displacement of
the Cu" ion toward the apical pyridine donor. The bipyridine
fragment has a nearly planar geometry and exhibits a torsion
angle between its pyridine rings of —6.38°.

For a four-coordinate complex, an ideal square planar
geometry has a 7, value of 0 and an ideal tetrahedral geometry
has 7, = 1.°> The Cu' complex features a highly distorted
tetrahedral geometry with a calculated 7, value of 0.63. The *-
bpyPY4 ligand binds the Cu' ion with the bipyridine unit
occupying two of the coordination sites, while the other two
sites are occupied by one pyridine from each of the 1,1-bis(2-
pyridyl)ethane fragments. The average Cu-Ny,, bond distance
is 2.055(7) A around the Cu' ion and is comparable to other
known tetrahedral Cu' complexes bearing bipyridine li-
gands.64_66 However, the average Cu-N,, bond distance is
shorter in comparison at 1.990(2) A. The bipyridyl group in
this case exhibits significant distortion with a torsion angle
between its pyridine rings of 19.73°.

The 'H NMR spectrum of [Cu(bpyPY4)](PFs) was
recorded in CD;CN at room temperature where 14 aromatic
protons are observed following integration (Figure 1). Two

30°C j\
0°c

wems K

40°C

R UV U G

85 8.0 75 7.0 6.5 6.0

1 (ppm)

Figure 1. Variable temperature '"H NMR spectra of [Cu(bpyPY4)]*
in CD,CN.

broad peaks of equal intensity are observed at 6 = 7.17 and
7.73 ppm that integrate for a total of eight protons (four
protons each). Sharp resonances, consisting of two doublets
and a triplet, are observed further downfield in the aromatic
region, which together integrate to six protons (two protons
each) and correspond to the bipyridine unit. However, the
bpyPY4 framework has 22 aromatic protons. As seen in the
solid-state structure of the Cu' complex (Scheme 1), two
pyridines, accounting for eight aromatic protons, are not
coordinated to the metal center. We reasoned that at room
temperature, the two broad resonance peaks and the eight
“missing” aromatic protons are due to rapid exchange on the
NMR timescale between the noncoordinated and coordinated
pyridine donors where the protons associated with the
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noncoordinated pyridines appear as a single broad peak at
7.17 ppm and those of the coordinated pyridines appear as a
single broad peak at 7.73 ppm. To probe this hypothesis,
variable-temperature '"H NMR spectroscopy was performed.
Spectra at temperatures ranging from —30 to 40 °C are stacked
in Figure 1 and Figure SS that confirm the dynamic
coordination behavior in solution. Upon lowering the temper-
ature, several broad resonance peaks begin to appear at S °C,
and eight new broad peaks emerge where distinct peak splitting
becomes apparent as the temperature reaches —30 °C. The
eight new peaks integrate to a total of 16 protons (two protons
each) and arise from the four terminal pyridines as shown in
Figure S1. The eight chemically distinct signals are consistent
with two different chemical environments for the exchanging
pyridines. We hypothesize that two of the fluxional pyridines,
one from each dipyridylethane “arm”, are noncoordinated and
in equivalent environments, each having four unique aromatic
protons. Likewise, the other two pyridines are coordinated and
chemically equivalent and account for the four remaining
peaks. A 'H-'H 2D gradient-selected COSY (gCOSY)
experiment was carried out at —30 °C to assign the chemical
shifts arising from the coordinated and noncoordinated
pyridines (Figure S3). Analysis of this spectrum confirms
two sets of pyridine environments. The chemical shifts for the
noncoordinated pyridines do not line up strictly with the free
ligand, but similar studies have shown a downfield shift for
dissociated heterocycles that are part of a coordinated ligand
framework.”%® A free energy of activation (AGY) for the
exchange process is estimated to be ~14 kcal/mol; details of
our analysis are provided in the Supporting Information.

The UV—visible—NIR spectra of the Cu complexes were
recorded in anhydrous CH;CN, and the molar absorptivities
(&) of the observed bands were determined by serial dilution
(Figure S7). Intense absorption peaks in both complexes are
observed at 193 nm followed by absorption bands of moderate
intensity from 249 to 324 nm with molar absorptivities ranging
from 22,700 to 11,400 M~ cm™. Lower intensity shoulders
are observed at 329, 391, and 450 nm for the Cu! complex with
molar absorptivities of 4260, 2920, and 1730 M em™,
respectively. A small shoulder peak corresponding to a metal-
to-ligand charge transfer (MLCT) band is observed at 538 nm
(e =1000 M™' cm™). The Cu" complex exhibits two relatively
weak bands corresponding to d—d transitions at 616 (& = 152
M~ cm™) and 845 nm (114 M~ cm™"), which are indicative
of a structure that favors a square pyramidal geometry in
solution,*”~"*

The redox properties of the Cu' complex were then
investigated by cyclic voltammetry. The cyclic voltammogram
(CV) of the complex is shown in Figure S8, where a Cu'"!
redox couple is observed at —0.43 V versus the ferrocenium/
ferrocene (Fc™/®) couple (0.21 V vs NHE).”*”* The redox
couple is fairly reversible with a peak splitting value of 90 mV.
This redox potential is surprisingly negative relative to most
previously reported Cu"! redox couples. Rorabacher and co-
workers showed that the potential of a Cu™! redox couple is
correlated with the stability of the Cu(Il) form of the redox
couple.” The relationship is Nernstian with a 0.059 V negative
shift in potential for each 10-fold increase in the stability
constant. Thus, the negative redox potential indicates a very
stable Cu"" complex.

Lewis bases, such as TBP and N-methylbenzimidazole
(NMBI), are frequently used as additives in DSC devices to
enhance the overall cell performance.”*””® The enhancement

https://doi.org/10.1021/acsaem.2c00344
ACS Appl. Energy Mater. 2022, 5, 5964—5973


https://pubs.acs.org/doi/suppl/10.1021/acsaem.2c00344/suppl_file/ae2c00344_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsaem.2c00344/suppl_file/ae2c00344_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsaem.2c00344/suppl_file/ae2c00344_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsaem.2c00344/suppl_file/ae2c00344_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsaem.2c00344/suppl_file/ae2c00344_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsaem.2c00344/suppl_file/ae2c00344_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00344?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00344?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00344?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00344?fig=fig1&ref=pdf
www.acsaem.org?ref=pdf
https://doi.org/10.1021/acsaem.2c00344?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Energy Materials

www.acsaem.org

observed with added Lewis bases is attributed to shifting the
titania conduction band edge to more negative potentials and
reducing the interfacial charge recombination rates by surface
adsorption.””””~*" With most of the reported Cu-based RSs,
TBP is known to coordinate with the Cu" species and even
displace polydentate ligands, which has a significant impact on
the redox potential as multiple redox species are produced,
affecting the maximum achievable photovoltage and electron
transfer kinetics.””*"***>7% In this context, the effect of TBP
on the [Cu(bpyPY4)]**/* redox couple was evaluated in the
presence of different concentrations of the Lewis base. TBP
was added in excess of 10 equivalents relative to [Cu-
(bpyPY4)]** in solution to match the conditions used in the
devices described below. Importantly, the addition of TBP
shows no significant influence on the Cu"' redox couple
(Figure S9). The effect of TBP was further evaluated using
UV—vis spectroscopy where spectra were recorded as a
function of added TBP (Figure S10). No significant change
was observed in the UV—visible absorption spectra, confirming
that TBP does not bind to the metal center of this RS. Finally,
the effect of TBP was evaluated using "H NMR spectroscopy
in which the [Cu(bpyPY4)]*" sample was titrated with TBP
(Figure S11). As TBP was added, no signals associated with
free bpyPY4 were observed, indicating that no ligand
substitution occurs. The transient, noncoordinated, proximal
pyridines of the hexadentate ligand presumably block any open
coordination sites on the metal to avoid deleterious binding of
exogenous Lewis bases. This finding is also in agreement with
the very high stability of the Cu" species indicated by the Cu"/"
redox potential.

Stopped-flow spectroscopy was utilized to measure the
cross-exchange electron transfer rate constant, kj,, between
[Cu(bpyPY4)]*" and decamethylferrocene (Fe(Cp*),). The
stopped-flow measurements were carried out in the manner
previously reported and detailed in the Supporting Informa-
tion."” Following this method, the self-exchange rate for the
[Cu(bpyPY4)]2+/ * couple was determined to be 8.78 + 0.96
M~ s7! (see Table S4). This self-exchange rate constant is
surprlsmgly slow, which is due to a large inner-sphere
reorganization energy, which was calculated to be approx-
imately 1 eV per molecule (calculation detailed in the
Supporting Information), due to the change in geometry and
coordination number upon electron transfer as shown in
Scheme 1.%%

Photovoltaic Performance. DSC devices were fabricated
with [Cu(bpyPY4)]>*/* as the RS in conjunction with a
poly(3,4-ethylenedioxythiophene) (PEDOT) counter elec-
trode and commercial dyes XY1b and Y123 as the cosensitized
light-harvesting component (Figure S13). These sensitizers
were selected due to a well-established record of efficient
electricity generation and superior insulation of injected
electrons in TiO, from the electrolyte.'”*>>* Electrochemical
investigation of the RS revealed favorable energetics for use
with the XY1b/Y123 dye system with a high thermodynamic
driving force of regeneration (AGreg) in excess of 800 mV
(Figure 3). The devices were characterized by current density
versus voltage (J—V) analysis for determination of the PCE
given by the equation: PCE = (Jg¢ X V¢ X FF)/I,, where Jgc
is the short-circuit density, FF is the fill factor, and I is the
incident light intensity set to 1 sun at AM1.5G (100 mW/cm?)
unless otherwise noted.

Devices constructed using the abovementioned materials
gave respectable performance with a Jgc of 13.3 mA/cm?® and
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an overall PCE of 4.9% (Table 1). The observed photocurrent
is the result of panchromatic electricity generation from 400 to

Table 1. Summary of DSC Device Performance Metrics

power (mW/cm?) Vo Jke FF PCE
source lux (mV)  (mA/cm?) (%) (%)
AM1.5G 100 580 13.3 58.8 4.90
fluorescent 0.50 (2400) 406 0.221 622 111
fluorescent 1.44 (10000) 466 0.695 653 147
fluorescent 2.10 (13500) 485 1.001 65.4 15.2

650 nm as shown by the incident photon-to-current
conversion efficiency (IPCE) spectrum, maintaining a peak
IPCE value of ~70% (Figure 4). In addition, the [Cu-
(bpyPY4)]**/* RS shows negligible absorption in this region of
the spectrum, therefore minimizing competltlve light absorp-
tion between the sensitizers and RS (Figure 2).*’

800004 —— [Cu(bpyPY4)](PF)
—— [Cu(bpyPY4)](OTf),
60000 1200 — [CulbpyPY4)I(PF,)
:'\ —— [Cu(bpyPY4)](OTf),
£
G
S 40000 -
N
w
20000 -

520 650 780 910 1040

Wavelength (nm)

T T T
400 600 800

Wavelength (nm)

1000

Figure 2. UV—visible—NIR spectra of the Cu redox shuttle in
anhydrous CH;CN.

The V¢ parameter is a key metric that is largely determined
by semiconductor and RS selection. The maximum theoretical
photovoltage (V3&) for DSC devices is defined as the
energetic difference between the semiconductor (TiO,)
conduction band and the RS oxidation potential. Taking the
TiO, CB to be the commonly used value in the literature of
—0.5 V versus NHE, """ then the V3 for the system in this
study is 710 mV. An observed photovoltage (V) of 580 mV
was obtained for these devices, which corresponds to a
photovolte{ge loss (VSE) of only 130 mV according to the
equation VSE = VB — VS if no shift in the TiO, CB has
occurred. A small V§g is possible when minimal recombination
loss from electrons in T102 with the electrolyte is present. Low
V8% values have also been correlated to small inner-sphere
electron transfer reorganization energies as pointed out in
earlier work involving Cu-based redox shuttles supported by
multidentate ligands.””

Electrochemical impedance spectroscopy (EIS) measure-
ments were subsequently performed in the dark at an applied
potential of 580 mV (which corresponds to open circuit
potential under illumination) in order to further investigate the
recombination pathway. The data was fitted using a template
circuit and then used to generate the Nyquist and Bode plots
(Figure S and Figure S14). Charge transfer resistance at the
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(bpyPY4)]**/*, and the TiO, conduction band.
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and Bode (secondary axis, blue) plots are shown. The small semicircle
in the Nyquist plot represents Rz, while the large semicircle
corresponds to R,

counter electrode (Rcg) was low with the PEDOT counter
electrodes used here at 4 Q, which indicates that PEDOT is a
suitable counter electrode for use with the [Cu(bpyPY4)]**/*
redox shuttle. Resistance at the TiO,-dye-electrolyte interface
(Rye) is desirably higher for a functional DSC device at 59 Q.
From the fitted circuit (Figure S14), the lifetime of electrons in
TiO, (7r0,) was calculated to be 16 ms according to the

equation 77;0,= R, X C,, where C, is the capacitance at the

TiO,-dye-electrolyte interface (Figure S and Table SS).
Photocurrent dynamics measurements conducted by shutter-
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ing varied irradiation intensities on and off were performed
(Figure S15). These studies reveal inadequate electrolyte
diffusion rates at 1 sun intensity (100 mW/cm?) to sustain the
initial current flow as the shutter opens, which is seen as a
sharp spike in the photocurrent response before the
equilibrium is reached at higher light intensities. At
approximately S0 mW/cm?* (0.50 sun intensity), the diffusion
rate of the electrolyte is adequate for transporting charge
without current limitations as no spike upon shutter opening is
observed. This suggests more efficient use of photons at lower
light intensities, which is consistent with reported observations
of other Cu-based redox shuttle systems.””*° Notably,
diffusion limits or mass transport limits at higher light
intensities have been noted in the literature with high light
intensities and Cu-based redox shuttles.**”> The [Cu-
(bpyPY4)]**/* redox shuttle has a notable spike in current,
visible as low as 79% of AM1.5G intensity (79 mW/cm?). This
may be due in part to a non-Cu coordinating pyridine group
binding to TiO, limiting the mass transport rate. The RS was
also tested as a solid-state hole transporting material by slow
evaporation of the electrolyte solvent under inert (glovebox)
and ambient conditions. Solar cells fabricated under these
conditions resulted in nonoperative devices. This observation
is consistent with the slow self-exchange kinetics.”

DSC devices are well known in the literature for enhanced
performance under reduced illumination intensities making
them suitable for indoor lighting applications. Indoor/ambient
lighting characterization was performed by J—V analysis using
an Osram 011318-L36W/930 fluorescent tube as the
illumination source as has been used in the literature.” The
light intensity was determined prior to each measurement
using a digital lux meter in combination with a solar power
meter and varied by changing the distance between the light
source and the device under study. The J—V plots for devices
measured at 2400, 10000, and 13500 lux are presented in
Figure 6 and tabulated in Table 1 and Table S6. Under 2400
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Figure 6. -V curves for DSC devices under fluorescent lighting.

lux illumination, the [Cu(bpyPY4)]**/*-based devices reached
a PCE of 11.1 + 0.8%. The observed PCE corresponds to
device output power (P,,) = 55.5 yuW/cm?, Vo = 406 + 9
mV, Jsc = 221 + 19 yA/cm?, and FF = 62.2 + 0.4%. Increasing
the intensity of the incident fluorescent lighting to 13500 lux
resulted in better performing devices, reaching a maximum
PCE of 15.2% with P, = 319 yW/cm?, Vo = 485 mV, Joc =
1006 uA/cm? and FF = 65.4% (champion cell PCE of 15.5%).
The high performance under fluorescent lighting illustrates the
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importance of RSs such as the hexadentate Cu redox couple
presented here.

B CONCLUSIONS

We have developed a copper-based redox shuttle bearing a
hexadentate polypyridyl ligand, bpyPY4, and applied it to
cosensitized DSCs using commercial benchmark dyes XY1b
and Y123. The experimental results indicate that the transient,
noncoordinated, proximal pyridines of the hexadentate ligand
prevent coordination of TBP, a common additive in efficient
DSC devices. The self-exchange rate constant for [Cu-
(bpyPY4)]**/* was evaluated using stopped-flow spectroscopy,
and the results suggest a slower electron transfer rate due to
high inner-sphere electron transfer reorganization energy. DSC
devices fabricated using [Cu(bpyPY4)]**/* as the electrolyte
gave a PCE of 4.9% (~70% peak IPCE) as a result of efficient
photogenerated electricity and minimal energy losses with a
low-potential redox shuttle. We note that the hexadentate Cu
RS was not suitable as a solid-state hole transporting material
under the conditions tested. A unique advantage of DSCs over
traditional photovoltaic technologies is enhanced performance
under low-light illumination. Indeed, device metrics increased
dramatically when irradiated with a fluorescent lamp light
source compared to 1 sun illumination. This resulted in a PCE
improvement from 4.9% at 1 sun (100 mW/cm® solar
simulated spectrum) to 15.2% at 13500 lux with a fluorescent
light source. Given the relatively low oxidation potential of the
Cu RS, this RS is a suitable candidate for implementation with
narrow band gap sensitizers for high photocurrent DSC
devices. Future studies will focus on coupling this RS with NIR
absorbing sensitizers and developing new hexadentate ligand
designs to vary the energetics of the Cu species.

B EXPERIMENTAL SECTION

Materials and Methods. Unless otherwise stated, all synthetic
manipulations were carried out under an inert atmosphere using
Schlenk techniques or in an MBraun glovebox under an nitrogen
atmosphere. Acetonitrile (CH;CN) used for synthesis and electro-
chemistry was freshly distilled from CaH, and stored over molecular
sieves under an inert atmosphere. Tetrahydrofuran (THF) and diethyl
ether used for synthesis were dried using a Pure Process Technology
solvent purification system. Compounds were obtained from the
following sources: 2,6-dibromopyridine from OxyChem, 2-fluoropyr-
idine from Chem-Impex International, 2-ethylpyridine from Alfa
Aesar, tetrakis(acetonitrile)copper(I) hexafluorophosphate ([Cu-
(CH4CN),]PFy) from TCI, anhydrous copper(II) chloride (CuCl,)
from Strem Chemicals, and n-butyllithium (2.3 M solution) from
Acros Organics. All commercially obtained chemicals were used
without further purification. "H and *C NMR spectra were recorded
on a Bruker Ascend-400 NMR spectrometer and the obtained spectra
were calibrated to residual protiated solvent peaks with chemical shifts
reported in parts per million (ppm). The "H-'"H 2D gradient-selected
COSY (gCOSY) experiment was obtained at —30 °C on a Bruker
Ascend-400 spectrometer. The variable temperature NMR studies
were performed on a Bruker Avance III HD 500 MHz spectrometer
equipped with a S mm Prodigy H/F-BBO cryoprobe, BCU-I
temperature controller. High-resolution electrospray ionization mass
spectra (HR-ESI-MS) were obtained with a Waters SYNAPT XS mass
spectrometer utilizing nanospray ionization. UV—visible spectra were
recorded on an Agilent/Hewlett-Packard 8453 UV—vis spectropho-
tometer.

X-ray Crystallography. Single crystals of [Cu(bpyPY4)](OTf),
and [Cu(bpyPY4)](PF,) were secured to a fiber loop micromount
and transferred to the goniometer head of a Bruker APEX-II CCD
diffractometer or a Bruker Quest diffractometer, respectively. Both
instruments were equipped with an Oxford Cryosystems low-
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temperature device. Examination and data collection were performed
with Cu K radiation (4 = 1.54178 A) at 173 K for [Cu(bpyPY4)]-
(OTf), or at 150 K for [Cu(bpyPY4)](PFs). Data was collected,
reflections were indexed and processed, and the files were scaled and
corrected for absorption using APEX3.”* The space group was
assigned, and the structure was solved by direct methods using
XPREP within the SHELXTL suite of programs’’® and refined by
full matrix least squares against F* with all reflections using
Shelx2018°7°® and the graphical interface Shelxle.”” All non-
hydrogen atoms were refined anisotropically. Additional data
collection and refinement details can be found in Table S1.

The crystallographic data have been deposited with the Cambridge
Crystallographic Data Centre in the CIF format. CCDC 1976837
([Cu(bpyPY4)](OTY),) and 2145397 ([Cu(bpyPY4)](PFs)) contain
the supplementary crystallographic data for this work. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Electrochemical Measurements. Electrochemical measure-
ments were performed using a Bioanalytical Systems, Inc. (BASi),
Epsilon potentiostat. Cyclic voltammetry studies were carried out
using a typical three-electrode set-up equipped with a glassy carbon
disk working electrode (3 mm diameter, CH Instruments), a platinum
wire counter electrode, and a silver wire quasi-reference electrode,
which was referenced versus ferrocene as an internal standard at the
end of experiments, where Fc*/® = 0.64 V vs NHE.”>”* Anhydrous
CH;CN containing 0.1 M tetra-n-butylammonium hexafluorophos-
phate (Bu,NPF() as the supporting electrolyte was used for
electrochemical studies.

Synthesis. Starting materials 1,1-bis(2-pyridyl)ethane® and 6,6'-
dibromo-2,2"-bipyridine®' and the final ligand, bpyPY4, were
synthesized according to published procedures.>

[Cu(bpyPY4)](OTf),. A mixture of bpyPY4 (100 mg, 0.19 mmol)
and Cu(OTf), (68.7 mg, 0.19 mmol) were dissolved in anhydrous
CH,CN (S mL) and stirred overnight at room temperature. The
solution was concentrated under reduced pressure, and the complex
was precipitated from solution with the addition of diethyl ether. The
pure complex was obtained by crystallization. Single crystals were
grown by slow diffusion of diethyl ether into a concentrated CH;CN
solution. Yield 114 mg (67%). Elem. Anal. calc. for
Cy6HysNgF406S,Cu: C, 49.01; H, 3.20; N, 9.53. Found: C, 48.76;
H, 3.23; N, 9.41. HR-ESI-MS m/z calc. for [Cu(bpyPY4) + (OTf)]*,
732.1292; found, 732.1092.

[Cu(bpyPY4)](PF,). Anhydrous CH;CN (S mL) was added to a
mixture of bpyPY4 (100 mg, 0.19 mmol) and [Cu(CH,;CN),](PFy)
(70.8 mg, 0.19 mmol) inside a glovebox, and the resulting solution
was stirred overnight at room temperature. The solution was
concentrated under reduced pressure before diethyl ether was
added to induce precipitation of the complex. Pure complex was
obtained by crystallization. Single crystals were grown by slow
diffusion of diethyl ether into a concentrated CH;CN solution. Yield
=108 mg (77%). '"H NMR (400 MHz, CD;CN): § = 8.44 (d, ] = 4.8
Hz, 2H), 8.35 (d, ] = 7.9 Hz, 2H), 8.15 (t, ] = 7.8 Hz, 2H), 8.07 (d, J
= 8.0 Hz, 2H), 7.98 (d, ] = 8.2 Hz, 2H), 7.88 (t, ] = 8.0 Hz, 2H), 7.56
(t, J = 8.0 Hz, 2H), 7.34 (t, ] = 7.2 Hz, 2H), 7.00 (t, ] = 6.3 Hz, 2H),
6.80 (d, ] = 8.0 Hz, 2H), 6.07 (d, ] = 4.3 Hz, 2H), 2.20 (s, 6H).
BC{'H} NMR (75 MHz, CD,CN): § = 157.91, 151.80, 150.55,
138.74, 138.33, 125.07, 124.78, 123.26, 122.24, 59.51, 28.34, 1.27.
HR-ESI-MS m/z calc. for [Cu(bpyPY4)]*, 583.1771; found,
583.1768.

Cross-Exchange Kinetics Measurements. The cross-exchange
kinetics measurements were carried out using stopped-flow spectros-
copy. The stopped-flow measurements were performed in a manner
previously reported.®” Briefly, an Olis RSM 1000 DeSa rapid-scanning
spectrophotometer containing a dual-beam UV—vis was used, which
recorded to Olis SpectralWorks software. The instrument contained a
quartz cell with a 1 cm path length. The analyzed sample was scanned
every millisecond at 1 nm resolution. The 150 W xenon arc lamp was
controlled using an LPS-220B lamp power supply and held to within
80—83 W during each measurement. The temperature was held at 25
+ 0.1 °C using a NESLAB RTE-140 chiller/circulator. The
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[Cu(bpyPY4)](TFSI), and [Fe(Cp*),] solutions were made neat
using dry acetonitrile. A 10-fold excess of [Fe(Cp*),] was used to
maintain pseudo-first-order conditions. The spectra were monitored
at 450 nm to follow the growth of the Cu(I) species. The reactant
concentrations are listed in the Supporting Information (see Table
S2). Scientific Data Analysis Software was used to provide fits for the
resulting observed pseudo-first-order rate constants, kg, using a
nonlinear least-squares regression. Twelve independent trials were
averaged to provide the measured kg, values. Absorbance plots for
each pseudo-first-order reaction were fit using A = A, + (4, — A,)
ekt The error in the k,, values was taken to be the standard
deviation of the independent trials. The minimal error in
concentration was propagated based on prepared stock solutions of
each reaction mixture. It is assumed that efficient mixing leads to
minimal deviations in the initial concentrations of the reactants.

Device Fabrication. DSC devices were prepared as previously
described in the literature.'” Chenodeoxycholic acid (CDCA) was
used as purchased from Chem-Impex International. TEC 10 glass was
used for the photoanode, and TEC 7 glass was used for the counter
electrode (Hartford Glass). The photoanode consists of a 3 um
mesoporous TiO, active layer (particle size, 30 nm, Greatcell Solar,
30NR-D) and a 5.0 gm TiO, scattering layer (particle size, 100 nm,
Solaronix R/SP). Sensitizing dyes XY1b (Dyenamo, batch L9M2) and
Y123 (Dyenamo, batch M2MS) were used as purchased. The working
photoanode was prepared by immersing the TiO, film into a XY1b/
Y123 cocktail dye solution for 16 h. The cocktail dye solution was
prepared by first making two separate solutions: a XY1b solution at
0.2 mM dye and 5 mM CDCA in 4:1 ethanol/tetrahydrofuran solvent
combination and a Y123 solution at 0.2 mM dye in a 1:1 acetonitrile/
tert-butanol solvent mixture. The final sensitizing cocktail solution was
prepared by mixing both dye solutions in a 1:1 ratio (v/v). The
electrolytes were 0.2 M Cu', 0.06 M Cu", 0.6 M TBP (4-tert-
butylpyridine), and 0.1 M LiTESI (lithium bis-
(trifluoromethanesulfonyl)imide) in acetonitrile solvent. PEDOT
(poly(3,4-ethylenedioxythiophene)) counter electrodes were pre-
pared followin§ the literature procedure and utilized for all devices
in this study.'®" DSC cell measurements were conducted as previously
reported.'” J—V curves were generated utilizing masked solar cells
with a circular active area of 0.1496 cm?® For low light studies, an
Osram lamp (model 011318-L36W/930) was used as the illumination
source. A digital lux meter (Dr. Meter model no. LX1330B) was used
in combination with an Amprobe solar power meter (Solar-100) in
order to quantify incident light intensity for low light studies.
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