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Abstract

Robust Reinforcement Learning (RL) focuses on
improving performances under model errors or ad-
versarial attacks, which facilitates the real-life de-
ployment of RL agents. Robust Adversarial Re-
inforcement Learning (RARL) is one of the most
popular frameworks for robust RL. However, most
of the existing literature models RARL as a zero-
sum simultaneous game with Nash equilibrium as
the solution concept, which could overlook the se-
quential nature of RL deployments, produce overly
conservative agents, and induce training instability.
In this paper, we introduce a novel sequential formu-
lation of robust RL — a general-sum Stackelberg
game model called RRL-Stack — to formalize the
sequential nature and provide extra flexibility for
robust training. We develop the Stackelberg Policy
Gradient algorithm to solve RRL-Stack, leveraging
the Stackelberg learning dynamics by considering
the adversary’s response. Our method generates
challenging yet solvable adversarial environments
which benefit RL agents’ robust learning. Our al-
gorithm demonstrates better training stability and
robustness against different testing conditions in the
single-agent robotics control and multi-agent high-
way merging tasks.

1 Introduction

Deep reinforcement learning (DRL) has demonstrated great
potential in handling complex tasks. However, its real-life de-
ployments are hampered by the commonly existing discrepan-
cies between training and testing environments, e.g., uncertain
physical parameters in robotics manipulation tasks [Zhao et
al., 2020; Xu et al., 2020] and changing hidden strategies of
surrounding vehicles in autonomous driving scenarios [Ding
et al., 2021; Xu et al., 2021]. To remedy the fragility against
model mismatches, recent advances in robust reinforcement
learning (RRL) [Morimoto and Doya, 2005] propose to learn
robust policies that maximize the worst-case performances
over various uncertainties.
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Figure 1: A high-level comparison between the existing RARL for-
mulation and our RRL-Stack formulation for robust RL. In RARL,
the RL agent (green car) is trained with an adversary (yellow car) that
generates extremely challenging and even unsolvable environments.
In RRL-Stack, the RL agent is trained with an adaptively-regularized
adversary that generates challenging yet solvable environments to
improve robustness against different testing environments.

One popular RRL framework is the Robust Adversarial
Reinforcement Learning (RARL) [Pinto e al., 2017], which
treats environment mismatches as adversarial perturbations
against the agent. RARL formulates a two-player zero-sum
simultaneous game between the protagonist who aims to find
a robust strategy across environments and the adversary who
exerts perturbations. Computational methods have been pro-
posed to solve this game and find a robust strategy for the
protagonist. Despite promising empirical performances in
many tasks, existing approaches under the RARL framework
have three potential limitations: 1) overlook the sequential
nature in the deployments of RL agents, 2) produce overly
conservative agents, and 3) induce training instability. These
limitations will be discussed in detail in Section 3.2.

In this paper, we propose a novel robust RL formulation —
Robust Reinforcement Learning as a Stackelberg Game (RRL-
Stack) to address these limitations. To formalize the sequential
structure that the protagonist is trained first and then deployed
in uncertain environments, we model robust RL as a Stack-
elberg game where the protagonist is the leader, and the ad-
versary is the follower. By assuming the adversary optimizes
a linearly combined objective of two extreme scenarios for
the protagonist, RRL-Stack enables the protagonist to learn a
robust policy in challenging yet solvable adversarial environ-
ments. RRL-Stack further provides extra flexibility to control
the protagonist’s conservativeness or accommodate more gen-
eral multi-objective training settings. We then leverage the
Stackelberg learning [Fiez et al., 2020] and develop the Stack-
elberg Policy Gradient (Stack-PG) method which has known
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convergence and stability guarantees to find the local surrogate
solutions of the RRL-Stack.

In summary, our main contributions are: a) introducing
RRL-Stack, a novel Stackelberg game-theoretical formulation
of RRL (Section 4.1), b) developing a Stack-PG, a policy
gradient method for solving the game (Section 4.2), ¢) demon-
strating that RRL-Stack formulation together with Stack-PG
reduces the training instability significantly compared with
existing methods, and agents learn robust but not overly con-
servative policies from challenging yet solvable adversarial
environments (Section 5).

2 Preliminaries

Markov Decision Process. We consider a Markov Deci-
sion Process (MDP) defined by the 5-tuple (S, A, P, 7,7, to),
where S is a set of states, A is a set of continuous or dis-
crete actions. P : S x A — A(S) is the transition proba-
bility (A(S) is the distribution over ), r : S x A — Ris
the reward function, + is the discount factor and pg is the
initial state distribution. The goal of RL is to find a policy
mp : S X A — R parametrized by 6 that maximizes the ex-

pected return E, ., [R(7)] := E;ror, [ZtT;Ol yir (s, at)} ,
where 7 denotes the trajectories sampled using the policy my.

For simplicity, we overload the symbol for policies as the
policy parameters E, g [R(7)] := Eror, [R (7)]-

Stochastic Game. A two-player stochastic game [Shapley,
19531 is defined by a tuple (S, Ay, As, P, r1,72,7, tio), Where
S is a set of states, A; and A, are action spaces of Agent 1
and 2, respectively. P : S x A; x As — A(S) is the transition
probability. 1,72 : S X A; X Ay — R is the reward function
for Agent 1 and Agent 2 respectively. p is the initial state
distribution. If r; = —r3, the stochastic game is zero-sum,
otherwise general-sum.

3 Related Work

3.1 Robust Reinforcement Learning via
Adversarial Training

The transition model in training and testing could sometimes
be different in RL applications. For example, in Sim2Real
transfer, the physical simulator has unavoidable modeling
errors, and the real world always has unexpected uncertainty
[Akkaya et al., 2019]. To address this issue, [Pinto et al.,
2017] proposes Robust Adversarial Reinforcement Learning
(RARL), which introduces an adversary to apply perturbations
to the environment dynamics, such as disturbing forces applied
to the robot’s joints, gravity constants, and friction coefficients.

RARL formulates a simultaneous zero-sum stochastic game.
More concretely, let 6 be the policy parameters of the protago-
nist who acts in an uncertain environment and v be the policy
parameters of the adversary who controls the environment
dynamics. RARL assumes that the protagonist maximizes
E, g,y [R (7)] while the adversary minimizes it. [Tessler et
al., 2019] introduces Noisy Robust MDP to apply perturba-
tions to the commanded action without access to the environ-
ment simulator. [Kamalaruban et al., 2020] adapts Langevin
Learning Dynamics to approach robust RL from a sampling
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perspective. In addition, most existing works use gradient-
descent-ascent-based algorithms to train agents.

3.2 Limitations of Existing Methods

Despite the empirical success in many tasks, there are a few
limitations in the existing formulation.

Overlooking the sequential nature. Most of the existing
methods use Nash equilibrium (NE) as the solution concept,
which means no agent can achieve higher rewards by deviating
from the equilibrium strategy. While NE is a standard solution
concept for simultaneous-move games, using NE for RRL
overlooks the sequential order of actual policy deployments,
as the protagonist’s policy is chosen first and then tested in a
range of uncertain environments [Jin et al., 2020]. Considering
this sequential nature, a more appropriate solution concept is
Stackelberg Equilibrium (SE). Although in the many zero-
sum games, NE also coincides with SE, it is not the case in
deep RARL as discussed by [Tessler et al., 2019; Zhang et al.,
2019]. One of the reasons is that with policy parametrizations
in Deep RL, e.g., using neural networks, the objectives of
stochastic games are nonconvex-nonconcave in the parameter
space, and as a result, maximin value is not equal to minimax
value in general. Different from most existing works, our
RRL-Stack adopts a sequential game-theoretical formulation
and solution concept, which formalizes the sequential order of
actual policy deployments.

Producing overly conservative agents. Existing work often
assumes that the protagonist and adversary play a zero-sum
game where the adversary minimizes the protagonist’s ex-
pected return. However, such a formulation encourages the
adversary to generate extremely difficult, even unsolvable en-
vironments for the protagonist. As a result, the protagonist
may choose an overly conservative strategy or even not be able
to learn any meaningful policies because the most adversarial
environment is completely unsolvable. [Dennis er al., 2020]
proposes PAIRED to mitigate this issue by replacing the return
in the objective with the minimax regret, which has the closest
relation to our proposed method. The protagonist’s regret is
defined as the difference between the maximum possible re-
turn and the current return, which can be seen as a special case
of our adversary’s objective. Some other literature [Shen et al.,
2020] dealing with state-robustness uses [, ball to constrain
the adversarial perturbation on the state.

Potential training instability. Besides the two aforemen-
tioned issues related to the game formulation, the gradient-
descent-ascent learning dynamics in RARL could lead to sig-
nificant training instability even in the simple linear-quadratic
system. The unstable training is partially due to the non-
stationarity of environments, as the environment controlled by
the adversary could be constantly evolving. Recent research
in RARL [Zhang et al., 2020; Yu et al., 2021] aims to tackle
this problem, yet only for linear-quadratic systems with the
zero-sum formulation. In contrast, our algorithm relying on
the Stackelberg learning dynamics [Fiez et al., 2020] can be
applied to more general RL settings.
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4 Method

We first introduce our proposed formulation, Robust Rein-
forcement Learning as a Stackelberg Game (RRL-Stack) in
Section 4.1. We then present our main algorithm, Stackelberg
Policy Gradient (Stack-PG) in Section 4.2.

4.1 Robust RL as a Stackelberg Game

Although formulated as simultaneous games in most of the
existing works, adversarial and robust training are in fact se-
quential [Jin ez al., 2020]. In robust RL via adversarial training,
the protagonist has to choose its policy first and then the adver-
sary chooses the best responding policy given the protagonist’s
policy. To formalize this inherently sequential structure, we
formulate robust RL as a Stackelberg game as follows:

maxErg,y [Rpro (T)] 50t
P € arg max Ermgp [—Rpro (T)]

where 6 and 1) parametrize the protagonist’s and the adver-
sary’s policy, respectively. E; gy [Rpro (7)] is the expected
return of the protagonist.

With the sequential game structure, we now aim to address
the limitations caused by the widely adapted zero-sum formu-
lation. It could result in an overly conservative protagonist’s
policy or even disable the protagonist’s effective learning since
the adversary is encouraged to produce a difficult, even com-
pletely unsolvable environment. To address this limitation,
we introduce an oracle term that encodes the highest possible
return of the protagonist in the current adversarial environ-
ment. Inspired by the alpha-maxmin expected utility in the eco-
nomics literature [Li ef al., 2019], we linearly combined this
oracle term with the original adversary’s objective. Formally,

max Ern,¢ [Rpo ()] s.t. (D)

) € arg 592’5 AFrgp [~ Rpro (T)] + (1 — a)V*(¢), (2)

where V*(¢)') is the highest possible return of the protago-
nist given the current adversarial environment ¢’. This term
is approximated by training an oracle RL agent that is locally
optimized. Let the oracle agent’s policy be parametrized by w,
V*(¢') := supy, Er ey [Rora (7)]. This term can be seen as
a regularization of the adversary’s objective. The adversary
is incentivized to generate environments that are challenging
to solve for the current protagonist but solvable for the oracle
agent. As the protagonist learns to solve the current environ-
ment, the adversary is forced to find harder environments to
receive a higher reward, adaptively increasing the difficulty of
the generated environments.

The coefficient & € [0, 1] balances how adversarial the
environment is and linearly combines two extreme scenarios:

* When a = 1, RRL-Stack’s solution corresponds to the
Maximin robust strategy.

* When a = 0.5, the solution corresponds to the strategy
when the adversary maximizes the protagonist’s regret,
which is defined by the difference between the maximum
possible return and the current return.
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* When a = 0, the solution corresponds to the Maximax
strategy, where the protagonist chooses a strategy that
yields the best outcome in the most optimistic setting.

Denote foro (0,%) 1= Erp,y [Rpro (7)] and faay (6,9) :=
g,y [—Rpro (T)] + (1 — @) V*(¢)"). The solution to the
Stackelberg game is the Stackelberg Equilibirium. We have
the following definition:

Definition 4.1 (Stackelberg Equilibrium). (SE) The joint strat-
egy (0%,¢*) € © x V¥ of the protagonist is a Stackelberg
equilibrium if

inf ro 9*7 > inf ro 9, ’
we;rzl(e*)fp (07, %) %1%(9)& 0,v)

WhereR(e) = {'(/}I ev | fadv (071//) > fadv (evw) 7V’¢ € \IJ}
is the best response set of the adversary, and * € R (6*)

We adapt Proposition 4.4 of [Basar and Olsder, 1998] to
formalize the relationship between the return at Stackelberg
Equilibrium and Nash equilibrium:

Vo € O,

Proposition 4.1. Consider an arbitrary sufficiently smooth
two-player general-sum game ( fpr, faay) 0N continuous strat-
egy spaces. Let fN* denote the supremum of all Nash equilib-

pro

rium return for the protagonist and [ﬁo denote an arbitrary
Stackelberg equilibrium return for the protagonist. Then, if
R(0) is a singleton for every 6 € O, ffm > fp/\,{,*

However, since one cannot expect to find the global solu-
tion of the Stackelberg game efficiently with a general non-
convex-non-concave objective, we define the following local
equilibrium concept using the sufficient conditions of SE.

Definition 4.2 (Differential Stackelberg Equilibrium). (DSE)
[Fiez et al., 2020] The joint strategy (6*,¢*) € © x U
with * = r(0*), where r is an implicit mapping defined by
Vo faav(8%,9*) = 0, is a differential Stackelberg equilibrium
if D fro(0%,7(6%)) = 0 and V? f5,, (6%, 7(0*)) is negative def-
inite (D(-) denotes the total derivative).

To this end, the key question is how to solve RRL-Stack.
We now explain how to develop Stackelberg Policy Gradi-
ent (Stack-PG) leveraging the Stackelberg learning dynamics,
which have known convergence and stability guarantees to
find the DSE under sufficient regularity conditions.

4.2 Stackelberg Policy Gradient (Stack-PG)

Stackelberg learning dynamics. [Fiez et al., 2020] assume
that there exists an implicit mapping from 6 to the best-
response . The protagonist updates its parameters based
on the total derivative (D fyro 1= d fpro (0,7 (8)) /d6) instead
of the partial derivative (Vg furo). Since the follower chooses
the best response ¢ = r*(6), the follower’s policy is an im-
plicit function of the leader’s. The leader therefore can take
the total derivative of its objective to update its policy:

Afpro (0.7 (0)) _ Ofpro (0,4) | dr* () O fpro (0, 9)
dg 0 dg n

The implicit differentiation term can be computed using the
implicit function theorem [Abraham et al., 2012]:

dr* (0) _ (anadv <e,w>) (_ O faay (W)l @
do 000 o2

3)
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Algorithm 1: StackelbergPolicyGradient (Stack-PG)

Algorithm 3: Solving RRL-Stack with Stack-PG

1 Input: {70}, {7ora}, 01, learning rate g
2 Ws,9 VGfpro (9»1/)) +
A~ A ~ -1 4
VoV fuae (6:0) (=V2 fuae (0,0) + AI) Vo foro (6,)

3 0 < Op—1 + Yows e
4 Output: 6y

Algorithm 2: MultiPolicyGradient

1 Input: {750 }M, {Tora }M , 1bi_1, learning rate v,
auto-tuning € {T'rue, False}, smoothing factor p

2 g1 < %E [7Rpr0 (T)} y g2 %E‘rww,w [Rora (T)]

3 if auto-tuning then

4 Find the optimal a* by solving (5)

5 a <+ pa+ (1—p)a*// Moving average

¢ end

7 wsy < agr+ (1 —a)ge

8 Yk Yp—1 + Ypws,y

9 Output: ¥y

By combining Eq.3 and Eq.4, we obtain the updating rule for
the protagonist. The Stackelberg learning dynamics provide
local convergence guarantees to DSE under regularity con-
ditions. We include a numerical example in the Appendix
B ! to demonstrate: 1) why SE is a more appropriate solu-
tion concept for robust learning than NE, and 2) how the
Stackelberg learning dynamics converge to DSE while the
gradient-descent-ascent algorithm fails to converge.

The computation of Hessian required by the Stackelberg
learning dynamics takes complexity O(n?), where n is the
number of policy parameters. It could be prohibitively slow
when n is large. There are some techniques for efficiently
computing unbiased Hessian approximations of deep neural
networks such as Curvature Propagation [Martens et al., 2012].
The computation of the inverse of Hessian is another burden
but can be alleviated by approximation methods such as con-
jugate gradient [Shewchuk and others, 1994] and minimal
residual [Saad and Schultz, 1986]. We leave integrating effi-
cient computation methods to future work.

Protagonist’s updating rule. Based on the Stackelberg
learning dynamics, we develop the update rule for the pro-
tagonist, Stackelberg Policy Gradient (Stack-PG), as shown
in Algorithm 1. Similar to the policy gradient algorithm, we
obtain unbiased estimators for the first-order and second-order
gradient information based on trajectory samples. Details for
the unbiased estimators are in Appendix A. We can also incor-
porate state-dependent baselines into the gradient estimators
to reduce variance. The regularization term Al ensures the
Hessian estimate is invertible, where \ is a scalar and [ is
the identity matrix. Note that as we increase the value of A,
the protagonist’s update first resembles LOLA [Foerster et al.,
2017] and eventually becomes the standard policy gradient.

"https://arxiv.org/abs/2202.09514

1 Input: Protagonist’s policy mg, Adversary’s policy my,

Oracle Agent’s policy 7, Number of trajectories M
2 Initialize learnable parameters 6, ¥, wo
sfork=1,2,..., Ny, do

4 | {70t < rollout(mg, , Ty, )
5 {Tora}M < rollout(my,, my, _,)
6 Hk —

StackelbergPolicyGradient({7pro } M, {7ora }M)
7 Y < MultiPolicyGradient({ 7y}, {7ora }™)
8 Train 7, in the environment given by 1

9 end

o Output: 0y,

iter

—

Adversary’s updating rule and auto-tuning a. The ad-
versary updates its parameters with a policy-gradient-based
algorithm. Since there are two terms in the adversary’s objec-
tive, it can be viewed from a multi-objective RL perspective.
Instead of manually tuning the value of «, we can dynami-
cally update it using the multiple-gradient descent algorithm
(MGDA) [Désidéri, 2012] for multi-objective learning. Let
g1 = %ET’\/G,’LZJ [_Rpro (T)] , 92 = %Efrww,w [Rora (7—)]
We want to find the a* that approximately maximizes the
minimal improvement of the two terms by solving the opti-
mization problem:

1
min o lagr + (1 — a)ga)?, st. o € [0, 1]. ®)
It is the dual form of the primal optimization problem:
max min {d, g;) , (6)
lall<1 i (9

where the optimal d* = («ag; + (1 — a)ga)/A and A is the
Lagrangian multiplier of the constraints ||d|| < 1. After solv-
ing for o*, we use exponential moving average to update «
smoothly. The updating algorithm of the adversary is shown
in Algorithm 2. Note that this « auto-tuning is not required
but is a tool for automatic hyper-parameter tuning.

Oracle agent’s updating rule. The oracle agent can be
trained using any on- or off-policy optimization algorithm. In
practice, we find that performing multiple policy optimization
steps for the oracle agent in each iteration usually serves the
purpose well.

The Algorithm 3 summarizes our main algorithm. At each
iteration, we first rollout trajectories using the protagonist’s
and adversary’s policy (Line 4), as well as trajectories using
the oracle agent’s and adversary’s policy (Line 5). Next, we
use the Stack-PG to update the protagonist’s policy parameters
(Line 6). Then we use the policy-gradient-based method to
update the adversary’s policy parameters (Line 7). Finally, we
train the oracle agent in the current adversarial environment
till reaching local convergence (Line 8).

5 Experiments

We conduct experiments to answer the following questions:
(Q1) Does our method produce challenging yet solvable envi-
ronments? (Q2) Does our method improve the robustness and
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No-Adv

zero-sum + Maximin

RRL-Stack + Stack-PG

Figure 2: Highway merging policy visualization during testing. The green car is controlled by the protagonist and the yellow car is controlled
by the adversary. Cars turning red mean collisions. The opaque lines represent the driving trajectories. The upper row contains moments close
to the beginning of the episode, and the lower row contains moments close to the end of the episode.

training stability? (Q3) How does the choice of « influence
the performance of the protagonist?

5.1 Benchmark Algorithms

We consider 2 game formulations: zero-sum and RRL-Stack,
and 3 existing learning algorithms as follows:

Gradient-descent-ascend (GDA). GDA alternates between
the policy gradient updates of protagonist and adversary at 1:1
ratio [Zhang et al., 2021].

Maximin operator. Maximin operator is similar to GDA,
but the difference is that the adversary updates multiple iter-
ations between each update of the protagonist [Tessler ez al.,
2019]. In the experiments, we use a ratio of 1:3 to alternate
between the updates of the protagonist and the adversary.

Learning with opponent-learning awareness (LOLA).
LOLA [Foerster et al., 2017] is a seminal work in consid-
ering the opponent while doing gradient ascent. We choose
LOLA for its similarity to the Stackelberg learning dynamics.

We consider several combinations of game formulations and
learning algorithms: zero-sum game formulation with GDA,
Maximin operator, and LOLA; RRL-Stack game formulation
with GDA, Maximin operator, and Stack-PG. Zero-sum +
GDA and zero-sum + Maximin operator are widely used in
existing works of RARL. We also include a non-robust training
baseline (No-Adv) to highlight the difference between robust
and non-robust training.

Without specific mention, the policies are parametrized by
MLPs with two hidden layers. All the agents are trained using
policy gradient algorithms with Adam optimizer and the same
learning rate. Each plot is computed with 5 policies generated
from different random seeds. The episodic reward is evaluated
over 48 episodes for each policy. More experiment details are
included in Appendix C.

5.2 Highway Merging Task

In highway merging tasks [Leurent, 2018], the protagonist
aims to control the ego vehicle (green) to merge into the main
lane while avoiding collision with the other yellow vehicle or
hitting the end of the ramp. At every timestep, the adversary
controls the aggressiveness of the yellow vehicle whose ac-
celeration is proportional to the aggressiveness. The yellow
vehicle can only drive in the middle lane, while the ego vehicle
can switch lanes.

In this experiment, we aim to answer (Q1) and (Q2). We
compare our method RRL-Stack + Stack-PG with o = 0.5,
against the benchmark method zero-sum + Maximin operator
and non-robust training (No-Adv) agents. To evaluate the
robustness against different environment parameters, we vary
the aggressiveness of the yellow vehicle from O to 10 and
compare the episodic reward of each method.

To answer (Q1) about whether RRL-Stack + Stack-PG pro-
duces challenging yet solvable environments and allows the
protagonist to learn robust policies, we visualize the trajec-
tories of the final policies in Fig. 2. For No-Adyv, since the
yellow car does not collide with the protagonist during the
training, the protagonist is unaware of the danger of the yellow
car. Therefore, No-Adv exhibits poor robustness during testing
in unseen environments. For zero-sum + Maximin operator,
the adversary quickly finds the policy to keep blocking the
main lane before the ego vehicle enters the lane, which makes
the environment completely unsolvable for the protagonist. In
this case, the protagonist cannot learn any robust policies but
only hits the end of the ramp.

In contrast, for RRL-Stack + Stack-PG with oo = 0.5, since
the adversary is not fully adversarial but maximizing the regret
of the protagonist, the resulting environments are challeng-
ing but still solvable. The protagonist learns robust policies
to switch to the middle lane and immediately switch to the
leftmost lane to avoid potential collisions. Therefore, RRL-
Stack + Stack-PG agents exhibit more robustness to the unseen
environments than the baselines.

No-Adv ——— zero-sum + Maximin ~—— RRL-Stack + Stack-PG, a=0.5

10

Episodic reward

0 50 100 150 200 250
training iterations

Figure 3: Training curve of highway merging. The x-axis is the
training iterations of the protagonist. The y axis is the episodic reward
evaluated in the environment without an adversary. The shaded area
represents the standard deviation
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No-Adv ~ —— zero-sum + Maximin ~ —— RRL-Stack + Stack-PG, a=0.5

10.0

9.5

: N

8.0

7.5

Episodic reward

7.0
6.5
6.0

0 2 4 6 8 10
Aggressiveness

Figure 4: Robustness against different aggressiveness levels. The
shaded area represents the standard deviation.

To answer (Q2) about whether our method improves the
robustness and training stability, Fig. 3 shows the rewards
through the training process. The rewards are evaluated in the
same environment without the adversary for a fair comparison.
The non-robust training (No-Adv) is stable and converges fast
because the protagonist is training and evaluating both in the
environment without the adversary (however we will observe
it is not robust against unseen environments). We observe
that after around 20 iterations, the adversary of zero-sum +
Maximin operator quickly learns to make the task unsolvable,
so the protagonist’s reward is driven to the lowest possible
value for the rest of the training. In contrast, RRL-Stack +
Stack-PG adjusts the difficulty of the environment adaptively
to ensure the task remains solvable and the protagonist keeps
learning robust policies.

Fig. 4 shows the rewards against different aggressiveness
levels. We observe that policies trained with No-Adv and zero-
sum + Maximin operator fail to be robust against different
aggressiveness levels. In contrast, RRL-Stack + Stack-PG
agents are much more robust against unseen environment pa-
rameters during testing. The mean reward of RRL-Stack +
Stack-PG outperforms the baselines by a large margin, and the
variance is significantly smaller.

5.3 LunarLander with Actuation Delay

Actuation delay is a common problem in robotic control [Chen
et al., 2021]. We modify the LunarLander environment in Ope-
nAI Gym [Brockman et al., 2016] to simulate the effects of
actuation delay. The protagonist in LunarLander has 4 discrete

No-Adv BN zero-sum + Maximin BN RRL-Stack + Stack-PG, a = 0.5(ours)

N zero-sum + GDA ~ EEE Zzero-sum + LOLA
0

: '
-500
-1000
-1500
-2000
—-2500
|
-3000
0 1 2 3 4

Action Delay Step
Figure 5: Episodic return with different action delay steps. The black
error bar indicates the standard deviation.

Episodic reward
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a=0.0 N a=04 l a=05 B a=0.6 mm a=10 B Auto-ar

0

- 1
-500 I

-1000 ’

-1500

—-2000 |
2500

-3000

0 1 2

3 4

Episodic reward

Action Delay Step
Figure 6: Effects of different o on the episodic rewards.

actions: shut off all engines, turn on the left engine, turn on
the right engine and turn on the main engine. The objective
is to train a protagonist that is robust to the commanded ac-
tion being delayed to execute by several steps. During the
adversarial training, at each time step, the adversary chooses a
number from {0, 1,2, ..., 10}, representing the delay steps of
the protagonist’s action. During testing, the delay step is fixed
throughout each episode.

In Fig. 5, we show the episodic reward against different
action delay steps, compared with the baselines. Only action
delay steps from O to 4 are shown here since the returns of
more delay steps are low for all methods and not meaningful
statistically. We find that RRL-Stack + Stack-PG outperforms
the baselines, particularly at delay step O to 3.

To answer (Q3) about the effects of « on the robust-
ness of RRL-Stack + Stack-PG, we study the robustness
of € {0.0,0.4,0.5,0.6,1.0} as well as our auto-tuning
a (Stack+Auto-a) in Fig. 6. When a = 0.4,0.5, the pro-
tagonist maintains highly robust against different action de-
lay steps, while @ = 0.0 results in non-robust agents and
a = 0.6, @ = 1.0 produce overly-conservative agents. With
Stack+Auto-a, the protagonist achieves comparable perfor-
mance to the best performing o = 0.4, 0.5 without fine-tuning.

To study whether Stack-PG helps stabilize the training, we
use the same RRL-Stack game formulation with oo = 0.5 but
apply different learning algorithms in Fig. 7. We test GDA,
Maximin and Stack-PG and observe that Stack-PG not only
stabilizes the training process but also reduces the variance of
performance significantly compared with GDA and Maximin,
which again answers (Q2). It is consistent with recent works
that have shown that opponent-aware modeling improves the
training process stability in Generative Adversarial Networks
[Schifer et al., 2019].

B RRL-Stack + GDA
N RRL-Stack + LOLA

BN RRL-Stack + Maximin

BN RRL-Stack + Stack-PG
)

-500

-1000

-1500

-2000

-2500

-3000
0 1 2 3 4

Action Delay Step
Figure 7: RRL-Stack formulation with different learning algorithms

Episodic reward
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6 Conclusion

In this work, we study robust reinforcement learning via ad-
versarial training problems. To the best of our knowledge,
this is the first work to formalize the sequential nature of
deployments of robust RL agents using the Stackelberg game-
theoretical formulation. We enable the agent to learn robust
policies in progressively challenging environments with the
adaptively-regularized adversary. We develop a variant of
policy gradient algorithms based on the Stackelberg learning
dynamics. In our experiments, we evaluate the robustness of
our algorithm on two tasks and demonstrate that our algorithm
clearly outperforms the robust and non-robust baselines in
single-agent and multi-agent tasks.
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