


convergence and stability guarantees to find the local surrogate
solutions of the RRL-Stack.

In summary, our main contributions are: a) introducing
RRL-Stack, a novel Stackelberg game-theoretical formulation
of RRL (Section 4.1), b) developing a Stack-PG, a policy
gradient method for solving the game (Section 4.2), c) demon-
strating that RRL-Stack formulation together with Stack-PG
reduces the training instability significantly compared with
existing methods, and agents learn robust but not overly con-
servative policies from challenging yet solvable adversarial
environments (Section 5).

2 Preliminaries

Markov Decision Process. We consider a Markov Deci-
sion Process (MDP) defined by the 5-tuple (S,A,P, r, γ, µ0),
where S is a set of states, A is a set of continuous or dis-
crete actions. P : S × A → ∆(S) is the transition proba-
bility (∆(S) is the distribution over S), r : S × A → R is
the reward function, γ is the discount factor and µ0 is the
initial state distribution. The goal of RL is to find a policy
πθ : S × A → R parametrized by θ that maximizes the ex-

pected return Eτ∼πθ
[R (τ)] := Eτ∼πθ

[

∑T−1
t=0 γtr (st, at)

]

,

where τ denotes the trajectories sampled using the policy πθ.
For simplicity, we overload the symbol for policies as the
policy parameters Eτ∼θ [R (τ)] := Eτ∼πθ

[R (τ)].

Stochastic Game. A two-player stochastic game [Shapley,
1953] is defined by a tuple (S,A1,A2,P, r1, r2, γ, µ0), where
S is a set of states, A1 and A2 are action spaces of Agent 1
and 2, respectively. P : S×A1×A2 → ∆(S) is the transition
probability. r1, r2 : S ×A1 ×A2 → R is the reward function
for Agent 1 and Agent 2 respectively. µ0 is the initial state
distribution. If r1 = −r2, the stochastic game is zero-sum,
otherwise general-sum.

3 Related Work

3.1 Robust Reinforcement Learning via
Adversarial Training

The transition model in training and testing could sometimes
be different in RL applications. For example, in Sim2Real
transfer, the physical simulator has unavoidable modeling
errors, and the real world always has unexpected uncertainty
[Akkaya et al., 2019]. To address this issue, [Pinto et al.,
2017] proposes Robust Adversarial Reinforcement Learning
(RARL), which introduces an adversary to apply perturbations
to the environment dynamics, such as disturbing forces applied
to the robot’s joints, gravity constants, and friction coefficients.

RARL formulates a simultaneous zero-sum stochastic game.
More concretely, let θ be the policy parameters of the protago-
nist who acts in an uncertain environment and ψ be the policy
parameters of the adversary who controls the environment
dynamics. RARL assumes that the protagonist maximizes
Eτ∼θ,ψ [R (τ)] while the adversary minimizes it. [Tessler et
al., 2019] introduces Noisy Robust MDP to apply perturba-
tions to the commanded action without access to the environ-
ment simulator. [Kamalaruban et al., 2020] adapts Langevin
Learning Dynamics to approach robust RL from a sampling

perspective. In addition, most existing works use gradient-
descent-ascent-based algorithms to train agents.

3.2 Limitations of Existing Methods

Despite the empirical success in many tasks, there are a few
limitations in the existing formulation.

Overlooking the sequential nature. Most of the existing
methods use Nash equilibrium (NE) as the solution concept,
which means no agent can achieve higher rewards by deviating
from the equilibrium strategy. While NE is a standard solution
concept for simultaneous-move games, using NE for RRL
overlooks the sequential order of actual policy deployments,
as the protagonist’s policy is chosen first and then tested in a
range of uncertain environments [Jin et al., 2020]. Considering
this sequential nature, a more appropriate solution concept is
Stackelberg Equilibrium (SE). Although in the many zero-
sum games, NE also coincides with SE, it is not the case in
deep RARL as discussed by [Tessler et al., 2019; Zhang et al.,
2019]. One of the reasons is that with policy parametrizations
in Deep RL, e.g., using neural networks, the objectives of
stochastic games are nonconvex-nonconcave in the parameter
space, and as a result, maximin value is not equal to minimax
value in general. Different from most existing works, our
RRL-Stack adopts a sequential game-theoretical formulation
and solution concept, which formalizes the sequential order of
actual policy deployments.

Producing overly conservative agents. Existing work often
assumes that the protagonist and adversary play a zero-sum
game where the adversary minimizes the protagonist’s ex-
pected return. However, such a formulation encourages the
adversary to generate extremely difficult, even unsolvable en-
vironments for the protagonist. As a result, the protagonist
may choose an overly conservative strategy or even not be able
to learn any meaningful policies because the most adversarial
environment is completely unsolvable. [Dennis et al., 2020]

proposes PAIRED to mitigate this issue by replacing the return
in the objective with the minimax regret, which has the closest
relation to our proposed method. The protagonist’s regret is
defined as the difference between the maximum possible re-
turn and the current return, which can be seen as a special case
of our adversary’s objective. Some other literature [Shen et al.,
2020] dealing with state-robustness uses lp ball to constrain
the adversarial perturbation on the state.

Potential training instability. Besides the two aforemen-
tioned issues related to the game formulation, the gradient-
descent-ascent learning dynamics in RARL could lead to sig-
nificant training instability even in the simple linear-quadratic
system. The unstable training is partially due to the non-
stationarity of environments, as the environment controlled by
the adversary could be constantly evolving. Recent research
in RARL [Zhang et al., 2020; Yu et al., 2021] aims to tackle
this problem, yet only for linear-quadratic systems with the
zero-sum formulation. In contrast, our algorithm relying on
the Stackelberg learning dynamics [Fiez et al., 2020] can be
applied to more general RL settings.
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4 Method

We first introduce our proposed formulation, Robust Rein-
forcement Learning as a Stackelberg Game (RRL-Stack) in
Section 4.1. We then present our main algorithm, Stackelberg
Policy Gradient (Stack-PG) in Section 4.2.

4.1 Robust RL as a Stackelberg Game

Although formulated as simultaneous games in most of the
existing works, adversarial and robust training are in fact se-
quential [Jin et al., 2020]. In robust RL via adversarial training,
the protagonist has to choose its policy first and then the adver-
sary chooses the best responding policy given the protagonist’s
policy. To formalize this inherently sequential structure, we
formulate robust RL as a Stackelberg game as follows:

max
θ∈Θ

Eτ∼θ,ψ [Rpro (τ)] s.t.

ψ ∈ arg max
ψ′∈Ψ

Eτ∼θ,ψ′ [−Rpro (τ)] ,

where θ and ψ parametrize the protagonist’s and the adver-
sary’s policy, respectively. Eτ∼θ,ψ [Rpro (τ)] is the expected
return of the protagonist.

With the sequential game structure, we now aim to address
the limitations caused by the widely adapted zero-sum formu-
lation. It could result in an overly conservative protagonist’s
policy or even disable the protagonist’s effective learning since
the adversary is encouraged to produce a difficult, even com-
pletely unsolvable environment. To address this limitation,
we introduce an oracle term that encodes the highest possible
return of the protagonist in the current adversarial environ-
ment. Inspired by the alpha-maxmin expected utility in the eco-
nomics literature [Li et al., 2019], we linearly combined this
oracle term with the original adversary’s objective. Formally,

max
θ∈Θ

Eτ∼θ,ψ [Rpro (τ)] s.t. (1)

ψ ∈ arg max
ψ′∈Ψ

αEτ∼θ,ψ′ [−Rpro (τ)] + (1− α)V ∗(ψ′), (2)

where V ∗(ψ′) is the highest possible return of the protago-
nist given the current adversarial environment ψ′. This term
is approximated by training an oracle RL agent that is locally
optimized. Let the oracle agent’s policy be parametrized by ω,
V ∗(ψ′) := supω Eτ∼ω,ψ′ [Rora (τ)]. This term can be seen as
a regularization of the adversary’s objective. The adversary
is incentivized to generate environments that are challenging
to solve for the current protagonist but solvable for the oracle
agent. As the protagonist learns to solve the current environ-
ment, the adversary is forced to find harder environments to
receive a higher reward, adaptively increasing the difficulty of
the generated environments.

The coefficient α ∈ [0, 1] balances how adversarial the
environment is and linearly combines two extreme scenarios:

• When α = 1, RRL-Stack’s solution corresponds to the
Maximin robust strategy.

• When α = 0.5, the solution corresponds to the strategy
when the adversary maximizes the protagonist’s regret,
which is defined by the difference between the maximum
possible return and the current return.

• When α = 0, the solution corresponds to the Maximax
strategy, where the protagonist chooses a strategy that
yields the best outcome in the most optimistic setting.

Denote fpro (θ, ψ) := Eτ∼θ,ψ [Rpro (τ)] and fadv (θ, ψ) :=
αEτ∼θ,ψ′ [−Rpro (τ)] + (1 − α)V ∗(ψ′). The solution to the
Stackelberg game is the Stackelberg Equilibirium. We have
the following definition:

Definition 4.1 (Stackelberg Equilibrium). (SE) The joint strat-
egy (θ∗, ψ∗) ∈ Θ × Ψ of the protagonist is a Stackelberg
equilibrium if

inf
ψ∈R(θ∗)

fpro (θ
∗, ψ) ≥ inf

ψ∈R(θ)
fpro (θ, ψ) , ∀θ ∈ Θ,

whereR (θ) = {ψ′ ∈ Ψ | fadv (θ, ψ
′) ≥ fadv (θ, ψ) , ∀ψ ∈ Ψ}

is the best response set of the adversary, and ψ∗ ∈ R (θ∗)

We adapt Proposition 4.4 of [Başar and Olsder, 1998] to
formalize the relationship between the return at Stackelberg
Equilibrium and Nash equilibrium:

Proposition 4.1. Consider an arbitrary sufficiently smooth
two-player general-sum game (fpro, fadv) on continuous strat-

egy spaces. Let fN∗
pro denote the supremum of all Nash equilib-

rium return for the protagonist and fSpro denote an arbitrary
Stackelberg equilibrium return for the protagonist. Then, if
R(θ) is a singleton for every θ ∈ Θ, fSpro ≥ f

N∗
pro .

However, since one cannot expect to find the global solu-
tion of the Stackelberg game efficiently with a general non-
convex-non-concave objective, we define the following local
equilibrium concept using the sufficient conditions of SE.

Definition 4.2 (Differential Stackelberg Equilibrium). (DSE)
[Fiez et al., 2020] The joint strategy (θ∗, ψ∗) ∈ Θ × Ψ
with ψ∗ = r(θ∗), where r is an implicit mapping defined by
∇ψfadv(θ

∗, ψ∗) = 0, is a differential Stackelberg equilibrium

if Dfpro(θ
∗, r(θ∗)) = 0 and∇2fpro(θ

∗, r(θ∗)) is negative def-
inite (D(·) denotes the total derivative).

To this end, the key question is how to solve RRL-Stack.
We now explain how to develop Stackelberg Policy Gradi-
ent (Stack-PG) leveraging the Stackelberg learning dynamics,
which have known convergence and stability guarantees to
find the DSE under sufficient regularity conditions.

4.2 Stackelberg Policy Gradient (Stack-PG)

Stackelberg learning dynamics. [Fiez et al., 2020] assume
that there exists an implicit mapping from θ to the best-
response ψ. The protagonist updates its parameters based
on the total derivative (Dfpro := dfpro (θ, r

∗ (θ)) /dθ) instead
of the partial derivative (∇θfpro). Since the follower chooses
the best response ψ = r∗(θ), the follower’s policy is an im-
plicit function of the leader’s. The leader therefore can take
the total derivative of its objective to update its policy:

dfpro (θ, r
∗ (θ))

dθ
=
∂fpro (θ, ψ)

∂θ
+

dr∗ (θ)

dθ

∂fpro (θ, ψ)

∂ψ
(3)

The implicit differentiation term can be computed using the
implicit function theorem [Abraham et al., 2012]:

dr∗ (θ)

dθ
=

(

∂2fadv (θ, ψ)

∂θ∂ψ

)(

−
∂2fadv (θ, ψ)

∂ψ2

)−1

(4)
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Algorithm 1: StackelbergPolicyGradient (Stack-PG)

1 Input: {τpro}
M , {τora}

M , θk−1, learning rate γθ
2 ωS,θ ← ∇̂θfpro (θ, ψ) +

∇̂θ∇̂ψfadv (θ, ψ)
(

−∇̂2
ψfadv (θ, ψ) + λI

)−1

∇̂ψfpro (θ, ψ)

3 θk ← θk−1 + γθωS,θ

4 Output: θk

Algorithm 2: MultiPolicyGradient

1 Input: {τpro}
M , {τora}

M , ψk−1, learning rate γψ ,
auto-tuning ∈ {True, False}, smoothing factor ρ

2 g1 ←
∂
∂ψ

E [−Rpro (τ)] , g2 ←
∂
∂ψ

Eτ∼ω,ψ [Rora (τ)]

3 if auto-tuning then
4 Find the optimal α∗ by solving (5)
5 α← ρα+ (1− ρ)α∗ // Moving average

6 end
7 ωS,ψ ← αg1 + (1− α)g2
8 ψk ← ψk−1 + γψωS,ψ

9 Output: ψk

By combining Eq.3 and Eq.4, we obtain the updating rule for
the protagonist. The Stackelberg learning dynamics provide
local convergence guarantees to DSE under regularity con-
ditions. We include a numerical example in the Appendix
B 1 to demonstrate: 1) why SE is a more appropriate solu-
tion concept for robust learning than NE, and 2) how the
Stackelberg learning dynamics converge to DSE while the
gradient-descent-ascent algorithm fails to converge.

The computation of Hessian required by the Stackelberg
learning dynamics takes complexity O(n2), where n is the
number of policy parameters. It could be prohibitively slow
when n is large. There are some techniques for efficiently
computing unbiased Hessian approximations of deep neural
networks such as Curvature Propagation [Martens et al., 2012].
The computation of the inverse of Hessian is another burden
but can be alleviated by approximation methods such as con-
jugate gradient [Shewchuk and others, 1994] and minimal
residual [Saad and Schultz, 1986]. We leave integrating effi-
cient computation methods to future work.

Protagonist’s updating rule. Based on the Stackelberg
learning dynamics, we develop the update rule for the pro-
tagonist, Stackelberg Policy Gradient (Stack-PG), as shown
in Algorithm 1. Similar to the policy gradient algorithm, we
obtain unbiased estimators for the first-order and second-order
gradient information based on trajectory samples. Details for
the unbiased estimators are in Appendix A. We can also incor-
porate state-dependent baselines into the gradient estimators
to reduce variance. The regularization term λI ensures the
Hessian estimate is invertible, where λ is a scalar and I is
the identity matrix. Note that as we increase the value of λ,
the protagonist’s update first resembles LOLA [Foerster et al.,
2017] and eventually becomes the standard policy gradient.

1https://arxiv.org/abs/2202.09514

Algorithm 3: Solving RRL-Stack with Stack-PG

1 Input: Protagonist’s policy πθ, Adversary’s policy πψ ,
Oracle Agent’s policy πω , Number of trajectories M

2 Initialize learnable parameters θ0, ψ0, ω0

3 for k = 1, 2, . . . , Niter do

4 {τpro}
M ← rollout(πθk , πψk−1

)

5 {τora}
M ← rollout(πω, πψk−1

)
6 θk ←

StackelbergPolicyGradient({τpro}
M , {τora}

M )
7 ψk ← MultiPolicyGradient({τpro}

M , {τora}
M )

8 Train πω in the environment given by ψk
9 end

10 Output: θNiter

Adversary’s updating rule and auto-tuning α. The ad-
versary updates its parameters with a policy-gradient-based
algorithm. Since there are two terms in the adversary’s objec-
tive, it can be viewed from a multi-objective RL perspective.
Instead of manually tuning the value of α, we can dynami-
cally update it using the multiple-gradient descent algorithm
(MGDA) [Désidéri, 2012] for multi-objective learning. Let
g1 := ∂

∂ψ
Eτ∼θ,ψ [−Rpro (τ)] , g2 := ∂

∂ψ
Eτ∼ω,ψ [Rora (τ)].

We want to find the α∗ that approximately maximizes the
minimal improvement of the two terms by solving the opti-
mization problem:

min
α

1

2
∥αg1 + (1− α)g2∥

2
, s.t. α ∈ [0, 1]. (5)

It is the dual form of the primal optimization problem:

max
∥d∥≤1

min
i
⟨d, gi⟩ , (6)

where the optimal d∗ = (αg1 + (1 − α)g2)/λ and λ is the
Lagrangian multiplier of the constraints ∥d∥ ≤ 1. After solv-
ing for α∗, we use exponential moving average to update α
smoothly. The updating algorithm of the adversary is shown
in Algorithm 2. Note that this α auto-tuning is not required
but is a tool for automatic hyper-parameter tuning.

Oracle agent’s updating rule. The oracle agent can be
trained using any on- or off-policy optimization algorithm. In
practice, we find that performing multiple policy optimization
steps for the oracle agent in each iteration usually serves the
purpose well.

The Algorithm 3 summarizes our main algorithm. At each
iteration, we first rollout trajectories using the protagonist’s
and adversary’s policy (Line 4), as well as trajectories using
the oracle agent’s and adversary’s policy (Line 5). Next, we
use the Stack-PG to update the protagonist’s policy parameters
(Line 6). Then we use the policy-gradient-based method to
update the adversary’s policy parameters (Line 7). Finally, we
train the oracle agent in the current adversarial environment
till reaching local convergence (Line 8).

5 Experiments

We conduct experiments to answer the following questions:
(Q1) Does our method produce challenging yet solvable envi-
ronments? (Q2) Does our method improve the robustness and
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6 Conclusion

In this work, we study robust reinforcement learning via ad-
versarial training problems. To the best of our knowledge,
this is the first work to formalize the sequential nature of
deployments of robust RL agents using the Stackelberg game-
theoretical formulation. We enable the agent to learn robust
policies in progressively challenging environments with the
adaptively-regularized adversary. We develop a variant of
policy gradient algorithms based on the Stackelberg learning
dynamics. In our experiments, we evaluate the robustness of
our algorithm on two tasks and demonstrate that our algorithm
clearly outperforms the robust and non-robust baselines in
single-agent and multi-agent tasks.
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