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Large language models have substantially advanced nuance and context understanding

in natural language processing (NLP), further fueling the growth of intelligent

conversational interfaces and virtual assistants. However, their hefty computational and
~ memory demands make them potentially expensive to deploy on cloudless edge
§ platforms with strict latency and energy requirements. For example, an inference pass
§ using the state-of-the-art BERT-base model must serially traverse through 12
~ computationally intensive transformer layers, each layer containing 12 parallel attention
& heads whose outputs concatenate to drive a large feed-forward network [1]. To reduce
% computation latency, several algorithmic optimizations have been proposed, e.g., a recent
ﬁ algorithm dynamically matches linguistic complexity with model sizes via entropy-based
S early exit [2]. Deploying such transformer models on edge platforms requires careful
S co-design and optimizations from algorithms to circuits, where energy consumption is
__m%a key design consideration.

:.f We present a 4.60mm? sparse transformer processor (STP) that efficiently accelerates
S transformer workloads by tailoring its latency and energy expenditures according to the
é complexity of the input query it processes. Key contributions of this work are as follows:
2 (1) A specialized datapath for entropy-based early exit assessment reduces BERT latency
w by up to 6.13x, e.g., inferences terminate early at an average early exit layer of 3.90 (out
i of 12) for the SST-2 NLP benchmark; (2) a mixed-precision (MP) FP4/FP8 MAC supports
& per-vector exponent biases during 4b floating point (FP4) computations, allowing the
i processor to double its throughput, while reducing its energy consumption and
o Mmaintaining high inference accuracy, depending on the entropy; and (3) a fine-grained
2 sentence-level power management scheme opportunistically scales the accelerator’s
qupply voltage and clock frequency while meeting an application’s end-to-end latency
o target. Together, the proposed STP achieves a peak efficiency of 65mJ/inf, a 7.14x energy
ES‘ improvement, on average, over conventional BERT inference without the key innovations.
o

=
3' Figure 22.9.2 lays out the STP’s overall architecture. The main computation engine
%comprises a mixed-precision MAC unit that selects between FP4 vs. FP8 execution based
«© on the entropy characteristics of the input sentence. The entropy information further
E guides the power management scheme, which dynamically adjusts the accelerator’s local
o supply voltage via cell-based PMOS power headers of a free running LDO (i.e. no
Ieedback loop). Sixteen pre-characterized look-up table (LUT) entries, stored in a 32KB
H auxiliary buffer of the special function unit (SFU), control the effective resistance of the
£ PMOS power headers. A configurable digitally-controlled oscillator (DCO) runs off of the
Y local supply voltage to ensure proper self-clocked operation. The SFU further contains
§ specialized datapaths to provide vectorized computations for various non-linear functions
g[i.e., softmax, layer normalization), element-wise addition, as well as the entropy
S computation. The SFU’s auxiliary buffer also stores normalization parameters and
£ attention pruning metadata which specify the span of each attention head. Notably, the
§STP entirely skips the computation of attention heads with null span, further cutting
Tinference latency and energy. A pair of bit-mask decoders and a bit-mask encoder
%decompress and compress sparse matrices, respectively, before and after each matrix-
& matrix multiplication, which enables compact storage of non-zero data along with their
= associated binary tags in the 256KB data SRAM and 32KB mask SRAM.

Solid-

® Enfropy is a statistical measure of classification confidence. Linguistically complex
2 sentences typically produce higher entropy values compared to simpler sentences. In
Ethis work, we leverage the computed entropy of each input query the accelerator
g processes in order to dynamically determine whether to compute subsequent
w transformer layers or to exit early (Fig. 22.9.1 bottom). The inference exits when the
@ calculated entropy value falls below a pre-defined threshold after the computation of
o each transformer layer. Furthermore, after executing the first transformer layer, the
& entropy of the query is employed to predicate on the precision (i.e., FP4 or FP8) of the

next layers’ computation and optimally scale the processor’s supply voltage and clock

frequency with the goal of minimizing energy consumption given a pre-defined latency
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target. Fig. 22.9.3 shows the algorithmic and hardware implementations of entropy-
based early exit computation. To avoid numerical instability during the calculation of
exponents, we reformulated the entropy algorithm by negatively scaling all elements in
the early exit vector by the max score. Fig. 22.9.3 also plots the per-sentence correlation
between the 1% layer's computed entropy and the achieved voltage and frequency scaling.

Figure 22.9.4 illustrates the details of the mixed-precision (MP) floating-point MAC unit
comprising 16 lanes of FP8 (E4M3) vector datapaths with coarse-grained per-tensor
exponent bias scaling, as well as 16 lanes of FP4/LOG4 (E3MO) datapaths with fine-
grained per-vector exponent bias scaling. Similar to recent work that leverages per-vector
scale factors during INT4 quantization [5], the STP uses per-vector exponent biases
during FP4 quantization to avoid steep accuracy loss. The SFU entropy unit conditionally
selects between the FP8 and FP4 datapaths. The FP4 MAC lanes increase throughput by
2x and achieve higher energy efficiency, compared to the FP8 MAC datapath, with its
larger vector size of 32 and the lack of mantissa multipliers. Both MAC datapaths can be
gated to skip computations for null vectors and save power.

The sparse transformer processor was fabricated using a 12nm FinFET technology. Fig.
22.9.5 presents the chip measurement results while executing the computations of BERT-
base on the sentiment analysis (SST-2) dataset. Co-designing the early exit (EE)
algorithm allows the accelerator to reduce latency and energy expenditures by 3.71x.

Attention head pruning (AP) further extends these savings by 1.5x. The addition of
mixed-precision (MP) predication enables the processor to achieve a minimum average

inference latency of 682ms. Assuming an end-to-end per-sentence latency constraint of
2 seconds, the STP can opportunistically derate its voltage and frequency (VFS) to further
reduce energy consumption, measured down to an average of 6bmJ per inference. The
horizontal histograms in Fig. 22.9.5 provide further details of the measured per-sentence
processing latency and energy results. Gombining EE, AP, and MP allows the majority
of sentences to execute under 1 second, while VFS allows the accelerator to process
most sentences under 50mJ/inf by relaxing the latency target to 2 seconds. In contrast,
a conventional implementation would require 4 seconds and 464mJ/inference.

Figure 22.9.6 summarizes evaluation results across three different NLP datasets,
demonstrating minimal accuracy loss when optimizations, EE, AP, and MP, are applied.
Because MNLI and QQP datasets contain more linguistically complex queries (i.e., higher
entropies) compared to SST-2, their average latency and energy consumption results
are consequently higher. Fig. 22.9.6 also plots the frequency vs. voltage operation of the
4.60mm? STP and the resulting computational efficiency presented in terms of
TFLOPS/W. Functional operation is verified across a 0.62-to-1.0V supply voltage range
with 77-to-717MHz clock frequency, while producing an energy efficiency range of 3.0-
8.24TFLOPS/W (FP8) and 6.61-18.1TFLOPS/W (FP4). Compared to a recently published
LSTM/RNN chip that supports attention [4], this work exhibits competitive figures of
merit while providing fine-grained latency and power management tailored to the
complexity of the input sentence. Compared to other prior transformer [5-6] accelerator
designs, this work supports floating-point operations to maintain higher model accuracy,
while exploiting fine-grained power management for further energy savings. Fig. 22.9.7
shows an annotated physical layout of the processor overlayed on a photograph of the
flip-chip packaged die.
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Figure 22.9.1: Conventional BERT inference vs. the proposed approach. The proposed

inference optimizes the NLP latency and energy consumption at a sentence
granularity via entropy-based early exit, atiention head pruning, mixed-precision

predication, and V/F scaling.
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Figure 22.9.3: Implementation of the entropy function whose value on the 17 layer .
transformer output is used to scale the accelerator’s supply voltage and clock Figure 22.9.4: Mixed-precision FP8/FP4 datapath with support for per-vector
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Figure 22.9.5: Measurement results for BERT inference on the SST-2 dataset,
highlighting the benefits of early exit (EE), attention head pruning (AP), mixed-

precision (MP), and latency-bounded V/F scaling (VFS).
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Figure 22.9.2: Overall architecture of the sparse transformer processor (STP).
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Figure 22.9.6: STP performance across datasets and during V/F scaling, along with

comparison with recently published transformer accelerators.
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Technology 12 nm FInFET
Accelerator Area 4.597 mm x 0.998 mm
Voltage (V) 0.62-1.0
Freq y (MHz) 7-T7
FP4 (E3MO)
Data Formats FP8 (E4M3)
SRAM (KB) 647
Power at 0.8V/Fmax 47.5 (FP4)
(mw) 52.2 (FP8)
0.734 (FP4)
Peak TFLOPS 0.367 (FP8)
Efficiency 6.61 = 18.1 (FP4)
(TFLOPS/W) 3.0-8.24 (FP8)
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Figure 22.9.7: Annotated die photo highlighting the physical layout of the STP, along
with a specification summary.
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