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Abstract

Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is contro-
versial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial
EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of
aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and
single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT
induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differen-
tial expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-spe-
cific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907
lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed
a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between
submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work sup-
ports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically
relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes
and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of poten-
tial roles in the lung epithelium in health and lung disease.
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INTRODUCTION

Epithelial-mesenchymal transition (EMT) is a dynamic
process in which epithelial cells transdifferentiate into mes-
enchymal cells (1, 2). First described in embryogenesis, EMT
has been shown in wound healing, cancer, and tissue fibrosis
(3). Evidence for EMT has been observed in lung diseases
where fibrosis has been implicated in lung pathobiology,
which include asthmatic airway remodeling, interstitial lung
disease (ILD), and chronic obstructive pulmonary disease
(COPD) (4–10). Moreover, TGF-b, a potent EMT activator,

and TGF-b signaling pathways are elevated in these lung dis-
eases (11–13). However, the role of EMT in lung fibrosis is still
a matter of debate (14). A central issue is the origin of the
myofibroblasts that accumulate in fibrotic tissues and drive
remodeling (15). It was originally proposed that myofibro-
blasts were produced through EMT (16); however, lineage-
tracing experiments suggest that this is unlikely (17).
Recently, single-cell RNA-Sequencing (scRNA-Seq) of ILD
lung tissue revealed a novel population of “aberrant basa-
loid” cells that display EMT characteristics but still maintain
key epithelial features (18). Such partial EMT phenotypes
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have been previously noted in ILD (19–23) and may repre-
sent an intermediate state termed epithelial-mesenchymal
plasticity (EMP) (24). Whether these cells play an active role
in ILD pathogenesis and/or pathobiology remains unclear.
Thus, a deeper understanding of the molecular mechanisms
controlling EMT in the lung is clearly required.

Long noncoding RNAs (lncRNAs) are powerful regulators
of cellular identity, function, and EMT (25–33). LncRNAs do
not encode proteins; rather, many produce functional RNA
transcripts, and they are frequently expressed in a more tis-
sue- or disease-specific manner than protein coding (PC)
genes (34–36), which makes them attractive biomarkers
and therapeutic targets. The catalog of lncRNAs is rapidly
expanding, and more than 96,000 have been mapped to the
human genome, significantly outnumbering protein coding
genes (37). However, very little is known regarding the
expression and/or function of lncRNAs in either the healthy
lung or in regulating lung epithelial EMT or EMP (38, 39). To
explore the transcriptional landscape of the differentiating
lung epithelium, we used bulk RNA-Seq and scRNA-Seq to
analyze primary human bronchial epithelial cells (HBECs)
grown in submerged cultures or at air-liquid interface (ALI).
Bulk RNA-Seq analysis revealed that epithelial differentia-
tion was associated with differential expression of 8,247 PC
and 1,621 lncRNA genes. Next, EMT was induced in ALI cul-
tures to evaluate the impact of EMT on the differentiated ep-
ithelium, which demonstrated differential expression of
6,020 PC and 907 lncRNA genes. This EMT-associated gene
signature shared a significant overlap withmultiple lung dis-
eases, including ILD. Interestingly, scRNA-Seq analysis
revealed no evidence of fibroblast/myofibroblast conversion.
Rather, we observed a gene signature consistent with EMP,
in which epithelial cells acquired mesenchymal markers yet
maintained much of their epithelial identity. These cells
closely resembled aberrant basaloid cells observed in ILD
(18), which suggests a common origin. We also identified
EMT-associated lncRNAs, and those specifically expressed
by aberrant basaloid cells, such as the lncRNA CASC15,
which we confirmed in ILD lung tissue. Thus, this work pro-
vides additional evidence that HBECs do not convert into
myofibroblasts and validates ALI cultures as a physiologi-
cally relevant and tractable system to study aberrant basa-
loid-like cells andmechanisms of EMT.

METHODS

Cells and Tissues

All primary human bronchial epithelial cells (HBECs) used
in this study were purchased from Lonza (Supplemental
Table S1; see https://doi.org/10.6084/m9.figshare.19093763).
Primary human tissues were obtained from patients with idio-
pathic pulmonary fibrosis (IPF) undergoing lung transplanta-
tion at University Hospital Leuven, Belgium, and from
healthy donor lungs that were not suitable for transplanta-
tion. Human lungs were collected following local hospital eth-
ical committee approval (ML6385) and written informed
patient consent. According to Belgian legislation, declined do-
nor lungs can be used for research purposes (Supplemental
Table S1).

Bronchial Air-Liquid Interface Cultures for Bulk RNA
Sequencing

HBECs were expanded and differentiated according to the
manufacturer’s protocols (Clonetics B-ALI air-liquid inter-
face cultures). Briefly, 1 � 106 HBECs were seeded into a T-75
flask containing 25 mL of prewarmed B-ALI growth medium
and were grown as submerged cultures. For ALI cultures,
80% confluent submerged cultures were harvested and
seeded (50,000 cells per 24-well insert) into the apical cham-
ber of inserts—coated with type-I rat tail collagen solution
(30 μg/mL), incubated for 2 h, and washed with 1� PBS to
remove excess collagen—in 100 μL of B-ALI growthmedium;
the basal chambers of the inserts were cell-free and
immersed in 500 μL of B-ALI growth medium. After 3 days,
B-ALI growth medium from the apical and basal chambers
was removed and 500-μL B-ALI differentiation medium was
added to the basal chamber only (airlift). On airlifting, me-
dium was replaced every other day with 500-μL B-ALI differ-
entiation medium only in the basal chamber until the
cultures reached full differentiation (day 25).

Bronchial Air-Liquid Interface Cultures for Single-Cell
RNA Sequencing

HBECs were expanded and differentiated according to
the manufacturer’s protocols (PneumaCult-ALI, Stem Cell
Technologies; Cat. No. 05001). Briefly, 1 � 106 HBECs were
seeded into T-25 flasks containing 5 mL of Rho Kinase (ROCK)-
inhibitor supplemented with PneumaCult-ALI Complete Base
Medium. When 80% confluence was achieved, cells were har-
vested and seeded (50,000 cells per 24-well insert) into the api-
cal chamber of inserts (precoated with collagen solution 30 μg/
mL) in 100 μL of ROCK-inhibitor supplemented PneumaCult-
ALI Complete Base Medium; the basal chambers of the inserts
were cell-free and immersed in 500 μL ofmedium. After 3 days,
the medium from the apical and basal chambers was removed
and 500-μL PneumaCult-ALI Complete Maintenance Medium
was added to the basal chamber only (airlift). On airlifting, me-
dium was replaced every other day with 500-μL PneumaCult-
ALI Complete Maintenance Medium only to the basal chamber
until the cultures reached full differentiation (day 25).

EMT Induction in Air-Liquid Interface Cultures

On day 25, the medium of the basal chambers of fully dif-
ferentiated ALI cultures was supplemented with 1� of
StemXVivo EMT Inducing Media (R&D; CCM017) or PBS.
Medium was replaced every other day with 500-μL complete
medium containing 1� of StemXVivo EMT Inducing Media
or PBS only to basal chambers. After treatment, samples
were collected on either day 0, day 1, day 5, day 7, or day 14.

TEERMeasurement

The transepithelial electrical resistance (TEER) was meas-
ured in differentiating ALI cultures using an EVOM2 epithelial
volt-ohm meter (World Precision Instruments). Resistance
readings were measured and quantified starting from day 7 af-
ter airlift to 21–28 days to confirm development and mainte-
nance of tight junctions. Briefly, medium was aspirated and
replaced with 500mL in the basolateral and 100 mL in the ap-
ical compartments. Cultures were equilibrated in the
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incubator for 30 min before measurement of TEER.
Apical medium was then aspirated, and basolateral me-
dium was replenished to restore ALI. TEER of blank—
insert and medium without cells—was subtracted from
measured TEER and Ω·cm2 calculated by multiplying by
the insert area.

Single-Cell Suspension of Cell Cultures

The ALI cultures were harvested using 0.05% trypsin/
EDTA (Fisher Scientific, Cat. No. 25–300-054), washed, and
pelleted (250 g, 5 min, room temperature). Whereas sub-
merged cultures were harvested and pelleted according to
the manufacturer’s protocols (PneumaCult-ALI, Stem Cell
Technologies; Cat. No. 05001). The pelleted cells were sus-
pended in 3–4 mL dispase I/DNase I solution [38 U dispase I,
20 mL 1� PBS, and 20 μL DNase I (100 mg/mL)] for 15 min at
37�C. The cell suspension was then filtered using 30-mm
MACS SmartStrainers (Miltenyi, Cat. No. 130-098-458) to
obtain single-cell suspension.

RNA Extraction, Sequencing, and Analysis

Total RNA was extracted using RLT buffer supplemented
with b-mercaptoethanol (Qiagen) according to the manufac-
turer’s instructions. Isolated RNA was quantified by spectro-
photometry, and RNA concentrations were normalized.
PolyA enriched RNA was sequenced on Illumina platform
generating paired-end reads of 150 bps. Fragments were
trimmed using Trim Galore software (https://github.com/
FelixKrueger/TrimGalore) and reads with quality <20 were
filtered out. Fragments were quasi-mapped to the human
transcriptome hg38 obtained from Gencode v25 using
salmon (40). Differential expression analysis was performed
using DESeq2 package in R (41). A custom-curated reference
transcriptome was compiled by merging the Gencode v25
and NONCODE v5 catalogs. NONCODE transcripts overlap-
ping with Gencode transcripts by �90% were filtered out
using bedtools intersect (https://bedtools.readthedocs.io/en/
latest/content/tools/intersect.html).

For downstream analysis, the cut-off for differentially
expressed (DE) genes was set at false discovery rate (FDR) �
0.05, jlog2FCj � 2, transcripts per million (TPM) � 1. DE
genes were then used for different analyses and plotting
using R, PCA using ggplots2 (42), Volcano plots using
EnhancedVolcano (43), GO analysis using g:Profiler (44),
and heatmaps using pheatmaps (45).

cDNA Synthesis and Quantitative RT-PCR

Isolated RNA was quantified by spectrophotometry,
and RNA concentrations were normalized. cDNA was
synthesized using SuperScript III Reverse Transcriptase
(ThermoFisher Scientific) according to the manufac-
turer’s instructions. Resulting cDNA was analyzed by
SYBR Green (KAPA SYBR Fast, KAPABiosystems) using
gene-specific primers. Primer sequences are listed in
Supplemental Table S2 (see https://doi.org/10.6084/m9.
figshare.19093730). All reactions were performed in trip-
licates using ViiA7 Real-Time PCR instrument (Thermo
Fischer Scientific). Data were log2 transformed before
heatmap generation.

Variance Analysis

We analyzed the PCA bulk-cell RNA-Seq data variability
using the within-cluster sum of squares and silhouette plots.
The within-cluster sum of squares quantifies the data vari-
ability of a cluster i as the sum of all pairwise (Euclidean) dis-
tances squared, divided by twice the number of points in
that cluster, that is,

SSi ¼ 1
2 � ni

X

xi;yi2ni
xi 	 yið Þ2

where ni is the number of observations in cluster i and xi, yi
are the (x, y-coordinates of the samples in i. In our study, we
analyzed two PCA clusters with n1 = n2 = n = 4, making SSi
directly comparable across clusters. To estimate and com-
pare the cluster silhouettes, we utilized the silhouette() func-
tion of the cluster R package. The technique provides a
measure of how well each sample is classified, i.e., how close
each sample in cluster i is to the samples of other clusters.
Typically, the silhouette coefficient of a sample si ranges in
[0,1] with large numbers indicating that s is well classified in
i. Mathematically, the coefficient has the form:

Silhsi ¼
bsi 	 asi

maxðasi ;bsiÞ
where asi is the average distance between si and all other
data within i whereas bsi is the average distance of si to all
samples belonging to the closest cluster j.

Ingenuity Pathway Analysis

Differentially expressed genes filtered on the adjusted P
values and fold-changes were used for the pathway analysis
with Ingenuity Pathway Analysis (IPA; QIAGEN Inc., https://
www.qiagenbioinformatics.com/products/ingenuity-pathway-
analysis). The ILD, asthma, and COPD gene lists were derived
from the associated molecules of the corresponding disease
in IPA software and manually curated to remove chemical
compounds and other molecules. These resulting genes lists
were then supplemented with differentially expressed genes
obtained from published lung scRNA-Seq from donors with
IPF and COPD (18).

NetAct and RACIPE Analysis

Transcription factor activity was determined from bulk
gene expression data using the NetAct method. NetAct inte-
grates transcription factor (TF)-target data from multiple lit-
erature-based resources (46–49) with the context-specific
gene expression data. In this method, the enriched TFs are
identified by the gene set enrichment analysis (50) using lit-
erature-based TF-target database and the activity of the
selected TFs’ is calculated from the gene expression of their
targets. The context-specific network was inferred by aggre-
gating interactions between enriched TFs. An interaction
between TFs was included in the inferred network if the
activities of the transcription factors are highly correlated
(Pearson’s correlation> 0.9) and the interaction is supported
by the database. Any TF in the network, which had only out-
going interactions, was removed from the network. This
inferred network was simulated using random circuit pertur-
bations (RACIPE) to verify whether the simulations resemble
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the activities or not. Correlation cutoff for selection of inter-
actions was adjusted for high agreement between simulated
and inferred activities. The final network interactions file
was loaded into Cytoscape for visualization (51).

EMT Quantification Analysis

EMT score was calculated using the method proposed by
Tan et al. (52). In this method, two-sample Kolmogorov–
Smirnov test score for difference between the estimated em-
pirical cumulative distribution function for epithelial and
mesenchymal gene sets is used as EMT score. The EMT score
varies between 	1 and 1 where a negative score for a sample
implies that it exhibits a more epithelial phenotype, whereas
a positive score reflects a more mesenchymal phenotype. We
used their cell lines gene set consisting of 218 genes (170 epi-
thelial and 48 mesenchymal genes) to compute the EMT
scores.

Single-Cell Hashing and Sequencing

To enable sample multiplexing, 1–2 million filtered single
cells were suspended in 100-μL staining buffer (2% BSA/
0.01% Tween in PBS) and blocked with 10-μL Fc blocking re-
agent (FcX, BioLegend) for 10 min at 4�C, then incubated
with 0.5 mg of a unique cell hashing antibody (BioLegend
TotalSeq-A anti-human Hashtag, Cat. No. A0251-A0256) for
20 min at 4�C. After that, cells were washed three times with
1 mL 1� PBS þ 0.04% BSA and pelleted at 4�C for 5 min at
350 g. The pellet was resuspended in 1� PBS þ 0.04% BSA
and cell viability was calculated using Countess II FL
(ThermoFisher). Labeled cells were pooled together (40,000
cells in total 
3,500 cells of each hashtagged sample) and
loaded onto one lane of a 10� Chromium Controller Chip.
Single-cell capture, barcoding, and library preparation were
performed using the 10� Chromium platform (53), version
3.1 chemistry, and according to the manufacturer’s protocol
(Cat. No. CG00052) with modifications for generating the
hashtag library (54). cDNA and libraries were checked for
quality on Agilent 4200 Tapestation, quantified by KAPA
qPCR, and pooled using a ratio of 95% gene expression
library and 5% hashtag library before sequencing; each gene
expression-hashtag library pair was sequenced at 50% of an
Illumina NovaSeq 6000 S2 flow cell lane, targeting 20,000
barcoded cells with an average sequencing depth of 50,000
reads per cell.

Illumina base call files for all libraries were converted to
FASTQs using bcl2fastq v2.20.0.422 (Illumina) and FASTQ
files associated with the gene expression libraries were
aligned to the GRCh38.93 reference genome [10� Genomics
GRCh38 reference 3.0.0 (including all transcribed unitary
pseudogenes)] using the version 3.1.0 Cell Ranger count
pipeline (10� Genomics). FASTQ files representing the hash-
tag libraries were processed into hashtag-count matrices
using CITE-Seq-Count (version 1.4.3) (https://zenodo.org/
badge/latestdoi/99617772).

Single-Cell RNA-Seq Data Processing and Analysis

The single-cell RNA-Seq data were generated in two ALI
culture libraries, AW20003 and AW21001, and one sub-
merged culture library, SC2100310. AW20003 contained the
data of donor ID 34 (11-yr-old Caucasian male). Hashtag-

oligos (HTOs) 5 and 6 labelled the day 0 cells (D0), HTOs 3
and 4 the day 1 (D1) cells and HTOs 1 and 2 the day 5 (D5)
cells. AW21001 combined the data of donor IDs 27 (60-yr-old
black male) and 54 (19-yr-old black female) in different
HTOs. HTOs 1 and 4 labelled the day 0 cells of each donor
respectively. Similarly, HTOs 2 and 5 and HTOs 3 and 6 held
the data of day 1 and day 5 cells. SC2100310 combined the
data of all three donors with HTO 1 marking the cells of do-
nor IDs 27, HTO 2 the cells of donor ID 34 andHTO 3 the cells
of donor ID 54.

Chromium 10� data processing.
The Illumina single-cell RNA sequencing base call files of
each of the two libraries were demultiplexed by cellranger
mkfastq that generated the raw fastq file which was proc-
essed with the standard cellranger-3.1.1 pipeline. The reads
were aligned to the Ensembl human genome GRCh38
(https://uswest.ensembl.org/Homo_sapiens/Info/Index) with
STAR for each of the 6,794,880 Gel bead-in Emulsions
(GEMs). The reads were confidently assigned into the exonic,
intronic, and intergenic categories according to the default
cellranger protocol. Those compatible with the exons of an
annotated transcript having a single gene annotation were
considered for unique molecular identified (UMI) counting.
For barcode calling the algorithm first identified the high
RNA content cells based on the total UMI count for each bar-
code and then applied the EmptyDrops background model to
filter out empty droplets and extract the final set of 15,929
(AW20003), 23,677 (AW21001), and 19,389 (SC2100310) barco-
des coming from nonempty GEMs.

HTO demultiplexing.
The hashtag demultiplexing of the six pooled HTO-distinct
ALI samples per library and the three HTOs in the submerged
sample was performed with Seurat’s HTODemux pipeline
(55). Briefly, the raw UMI counts of the 15,929, 23,677, and
19,389 barcodes, respectively, were normalized by the
Centered Log Ratio transform and subsequently separated
into k = 7 (in ALI) and k = 4 (in submerged) clusters by the k-
medoids algorithm. As expected, k-1 clusters were enriched
for expression of a particular HTO. For each HTO, the cluster
with the lowest average was considered as the negative group
and its data was modeled with a negative binomial distribu-
tion whose qth quantile was used to classify each cell into
HTO-assigned or HTO-unassigned (negative). We tested a se-
ries of quantile values in [0.95, 0.995] and selected q = 0.99,
exhibiting a plateau in the number of cells assigned to each
HTO at perplexity p = 100 (default Seurat parameter). Cells
assigned to more than one HTOs were annotated as doublets
and filtered out. In summary, of the starting 15,929 cells of
AW20003, 1608 (10.0%) were predicted as doublets and 2,146
(13.5%) as negatives leading to 12,175 HTO-specific singlets
with comparable HTO rates. Similarly, AW21001’s 23,677 start-
ing cell set featured 2,769 (11.7%) predicted doublets, 2,993
(12.5%) negatives and 17,915 HTO-specific cells, whereas
among SC2100310’s 19,389 cells we estimated 2,210 (11.4%)
doublets and 2,922 (15%) negatives.

Quality control.
Quality control analysis was performed iteratively using data
from each donor separately. We followed Seurat’s standard
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preprocessing workflow from data normalization to cell clus-
tering and investigated whether the low-quality cells, if any,
tend to cluster together (see Seurat clustering). The main
quality control pipeline was performed on the clustered data
in these steps:

1st step: We generated violin plots of the number of UMIs,
the number of expressed genes and the percentage of reads
mapped to the mitochondrial (MT) genome per cell (y-axis)
against the cluster IDs (x-axis) to determine appropriate cut-
offs for the low-quality cells. The dynamic range of the num-
ber of UMIs was [1k, 100k] whereas for the number of
expressed genes it was [0.5k, 10k]. We remove from further
analysis whole clusters with more than 95% of cells exhibit-
ing less than 2,000 expressed genes and less than 4,800
UMIs. In addition, we removed whole clusters with more
than 18% of reads mapped to the MT genome. For the rest of
the clusters, we simply applied the above cutoffs to remove
the low-quality cells. Not to discard meaningful data, we
checked that the low-quality clusters did not highly and uni-
formly express any marker gene (18, 56, 57). In ALI, we fil-
tered 2,736 cells from donor’s 34 data (22.5%), 2,925 from
donor’s 27 data (37%) and 3,053 cells from donor’s 54 data
(29%), whereas in the submerged library, the numbers of
low-quality cells were 367 (6.5%), 306 (6.5%), and 166 (4.3%),
respectively.

2nd step: We utilized Scrublet (58) and DoubletFinder (59)
to predict potential doublets (see Doublet estimation). We
flagged the cells whose doublet score was higher than the 95
quantiles of the doublet score distribution of eachmethod or
those predicted as doublets by both methods independently
of the score. In ALI, we removed 261 cells from AW20003, 121
from AW21001’s donor 27 and 216 cells from AW21001’s do-
nor 54. In submerged, the respective numbers per donor
were 58 (donor 34), 48 (donor 27), and 33 (donor 54).

3rd step: We utilized DecondX (60) to estimate and remove
the ambient RNA contamination in individual cells (see
Ambient RNA decontamination). Due to noticeable differen-
ces in the quality control metrics, DecontX was applied to the
data of each donor separately in both the ALI and the sub-
merged cultures. The decontaminated UMI matrices were
subjected to a second round of Seurat normalization, cluster-
ing, and filtering of low-quality cells. In ALI, we kept 8,221
high-quality cells from AW20003, 4,404 from AW21001 do-
nor 27, and 7,029 fromAW21001 donor 54 for further analysis.
In submerged, we kept 5,129 (donor 34), 4,227 (donor 27), and
3,626 (donor 54) high-quality cells. DecontX was also run in
themerged data set and obtained very similar results.

Seurat clustering.
The singlet expression profiles of each donor were SCT-nor-
malized using log-transform and variance stabilization
transformation (vst) (61). We derived the top 3,000 variable
features for downstream analysis. The raw counts were fitted
in a regularized negative binomial regressionmodel with the
sequencing depth included as a covariate for library size
adjustment. The model’s Pearson’s residuals were used to
calculate the scaled expression profiles. The scaled data of
the 3,000 variable features were fitted in the principal com-
ponents analysis (PCA) model for linear dimensionality
reduction. We visualized the PC loadings and the associated
heatmaps of gene expression to explore the primary sources

of heterogeneity and determine the optimal number of PCs.
We kept the first 100 PCs from which the Uniform Manifold
Approximation and Projection (UMAP) representation was
subsequently retrieved. We constructed a shared nearest
neighbor graph by calculating the neighborhood overlap
(Jaccard index) between every cell and its 20 nearest neigh-
bors obtained from the cell Euclidean distances. We clus-
tered the data with the Leiden method (62), which detects
well-connected communities in a network by maximizing
the difference between the actual number of edges in a com-
munity and the expected number of edges. The clustering re-
solution parameter was set to 1.

Doublet estimation.
We flagged potential doublets from the HTO data (see HTO
demultiplexing) and subsequently from the raw UMI matri-
ces of each donor using Scrublet (58) and DoubletFinder (59).
Both methods simulated multiplets from the observed tran-
scriptomes of clean data (HTO-doublets removed and com-
pletion of 1st step QC) and combined them with the real
scRNA-Seq data to predict the outcome. Scrublet utilized a
nearest neighbor algorithm to estimate the local density of
the simulated doublets and assigned a doublet score to each
observed cell i indicating i’s likelihood to be a doublet.
DoubletFinder integrated the artificial doublets into the
observed data at a user-defined proportion, pN, and defined
each cell’s neighborhood in gene expression space, pK. A
range of pN 2 0:15;0:25½ � and pK 2 0:05;0:4½ � value combi-
nations were iteratively tested (parameter sweep) and the
proportion of artificial nearest neighbors was estimated for
each observed cell, indicating as before each cell’s likelihood
to be a doublet.

Ambient RNA decontamination.
Ambient RNA is the pool of mRNAmolecules released in the
cell suspension likely from stressed or apoptotic cells. It is
incorporated into the droplets resulting in cross contamina-
tion of transcripts between different cell populations. We
estimated and removed contamination in individual cells by
DecontX’s Bayesian model (60) using the celda R package
(63). Briefly, DecontX fits to the raw UMIs of each cell a mix-
ture of two multinomial distributions, i.e., one that models
the native transcript counts from the cell’s actual population
and one that models the contaminating counts. The cells are
subjected to Seurat clustering and separated into k = 1, . . ., K
populations. Similar to a Bayesian hierarchical model, the
probabilities of gene g being expressed in population k and
gene g contamination population k0 are explicitly defined, as
well as the proportion of counts derived from the native
expression distribution for each cell. Each transcript count
has a hidden state that denotes transcripts t membership to
the native or the contamination expression distribution. The
joint posterior distribution is approximated with Variational
Inference deep learning that deconvolutes the two sources of
variation and subtracts the ambient profiles from the origi-
nal raw counts of each cell.

Data integration.
The data from the three donors were integrated with Seurat’s
SCTransform workflow (see Seurat clustering) that adjusted
for the percentage of MTmapping. In ALI, donors 34 and 27/
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54 come from different libraries and as such the donor inte-
gration strategy also accounted for the batch effects due to
the library preparation and the time of the experiment. In
submerged, the data of the three donors were separated
and subsequently integrated to account for the gender
differences.

The SCT-transformation was applied to the data of each
donor and the subsequent integration was performed with
integration anchors among the data of the three donors in
ALI and the submerged cultures separately. The anchors,
representing pairwise correspondences between individual
cells assumed to originate from the same biological state,
were used to adjust the donor-specific data sets and mini-
mize library-associated technical effects.

The data clustering analysis was carried out as in Seurat
clustering. The integrated data set was fed to Seurat’s pipe-
line and the clusters were estimated with the resolution pa-
rameter set to 1, returning 22 clusters in ALI and 13 in
submerged. In the former data set, we also separated the
data by day, D0, D1, and D5, and we repeated the same pro-
cedure to generate day-specific clusters with resolution pa-
rameter set to 1. We found 15 clusters for D0 and D13 in each
of D1 and D5 data, implying a higher resolution in our day-
specific estimates.

Differential expression analysis.
We identified cluster biomarkers from the day-specific inte-
grated and clustered data using Seurat’s differential expres-
sion model under the Likelihood Ratio test. The model
adjusted for the percentage of MT mapping. In ALI, we com-
pared the expression of 
20,000 expressed genes between
cluster kd versus all other day-specific clusters, where kd = 1,
. . ., Kd are the Seurat clusters estimated from day’s d, inte-
grated data, d 2 0; 1; 5f g, integrated data (see Data integra-
tion). We noticed that the day-specific data offered higher
cluster resolution and allowed us to identify important
markers and associated cell types with greater accuracy.
The differentially expressed genes were selected at
jlog2FC j � 0:2 and FDR � 5%. We estimated 9,512 differ-
entially expressed genes among all D0 clusters, 9,742
among all D1 clusters, and 10,466 among all D5 clusters. In
submerged, using the same cutoffs, we estimated 7,266 dif-
ferentially expressed genes.

Cell type estimation.
We estimated cell types from the day-specific data starting
from a set of 
3,800 literature-retrieved canonical markers
of healthy individuals and patients with IPF (18, 56, 57) The
list was reduced into gene signatures of markers found to be
highly differentially expressed in our analysis (FDR � 1e 	
5). We followed Garnett’s pipeline (53) to establish rules of
expression that, if needed, merged, and essentially labeled
the Seurat clusters according to the marker expression pat-
terns. In D0, we estimated seven cell types, i.e., Basal, Basal
Cycling, Basal Supranasal, Multiciliated, Deuterosomal,
Goblet, and Secretory cells. D1 and D5 exhibited three sub-
types transitional basaloid-like and two subtypes of aberrant
basaloid-like cells, respectively, as well as Multiciliated,
Deuterosomal, Goblet, and Secretory cells. The submerged
data consisted of two Basal subtypes, Basal 1 with 6,922

(53.3%) cells and Basal 2 with 2,938 (22.6%) cells, and a rela-
tively large cycling basal population of 3,122 (24%) cells.

Next, we applied Seurat’s differential expression model to
identify biomarkers for each day-specific and submerged
cell type at jlog2FC j � 0:2 and FDR � 5% (see Differential
expression analysis). For each day, we collected the top 500
genes of each cell type’s markers and refined the cell type
annotation with a novel iterative hierarchical clustering
strategy. In each iteration the cells of each cell type were
subjected to adaptive hierarchical clustering using the
dynamicTreeCut R package (64) that searched for subclus-
ters of minimum 20 cells. The iteration stopped when no
splits occurred across subsequent iterations. This procedure
split the D0 secretory cells into Secretory type 1 and
Secretory type 2. The cell type labels from the day-specific
analysis were transferred to the integrated data to complete
the annotation.

Cell type annotation by CelliD.
We used CelliD to perform automatic gene signature extrac-
tion and functional annotation for each individual cell of our
data set (65). CelliD is based on Multiple Correspondence
Analysis (MCA) and produces a simultaneous representation
of cells and genes in a low dimension space. Genes are then
ranked by their distance to each individual cell, providing
unbiased per-cell gene signatures.

First, we ran CelliD on the normalized D0 data. The per-
cell gene rankings were calculated from the gene-to-cell
Euclidean distances in the MCA space in an unbiased way, i.
e., blindly of the previously identified Seurat cell clusters or
cell type annotations. The gene signatures were obtained
from the differentially expressed genes as before (see Cell
type estimation). The enrichment of per-cell signatures was
evaluated through the hypergeometric test using the top
3,000 variable features across 50MCA dimensions.

To quantify the agreement between our annotation and
CelliD’s, we used the Fisher exact test. We considered our
annotation set p 2 [Basal, Basal Cycling, Basal Supranasal,
Multiciliated, Deuterosomal, Goblet, Secretory] and CelliD’s
set q 2 [Aberrant Basaloid, Basal, Basal_Cycling, Basal_Supra,
Basal_Supranasal, Multiciliated, Multiciliated_Nasal, Deutero-
somal, Fibroblast, Secretory, Secretory_Nasal, Goblet]. We
generated the 2 � 2 confusion matrices between pi versus qj
pairs of the same cell types and estimated the enrichment of
commonly annotated cells at a = 1%. All enrichment P values
were highly significant, thus reproducing our annotation with
an independentmethod.

In a similar way, we applied CelliD on the data of D1 using
the annotation set q without the transitional/aberrant basa-
loid cells (18). We reasoned that CelliD would be forced to as-
sociate our transitional and aberrant basaloid annotated
cells to the most similar cell type of q0, thus predicting their
cell type of origin. The results indicated that the transitional
and aberrant basaloid cells of our study likely originated
from Basal, Suprabasal, and Secretory cells.

Cell type annotation by SingleR.
We used SingleR (66) for the automatic annotation of day 1
and day 5 aberrant basaloid cells using as a reference the
large collection of bulk RNA-Seq and microarray expres-
sion data from the Human Primary Cell Atlas project (67).
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To annotate each single cell independently, SingleR corre-
lated each cell’s gene expression profiles with the profiles
of pure cell types (66). Briefly, a Spearman’s correlation
coefficient was calculated between each single cell’s and
each of the reference’s expression data. The multiple, cell-
specific correlation coefficients were aggregated to provide
a single value per cell type. The 80th percentile of the cor-
relation values was used to select the top, most likely cell
types and to prevent misclassification. The algorithm iter-
ated using only the cell types with correlations exceeding
the 80th percentile, and at each iteration, the most likely
cell type annotations were kept until only one cell type
annotation remained, i.e., the one with the highest corre-
lation to our single cell.

Raw Sequencing Data Availability and Data
Visualization

All RNA-Seq (bulk and single cell) data were submitted to
the Gene Expression Omnibus (GEO) database repository
(https://www.ncbi.nlm.nih.gov/geo/) and can be found with
the accession number GSE193684.

In addition, scRNA-Seq data were uploaded for visualiza-
tion in the USCS Cell Browser (https://bronc-epi-in-vitro.
cells.ucsc.edu/). This consists of three data sets, the “ALI day
0” representing the day 0 ALI cultures with PBS treatment,
the “Submerged” representing the submerged cultures, and
the “ALI days 0, 1, and 5” representing the integrated ALI
data before and after EMT induction.

Use of Published scRNA-Seq Data Sets

UMAP plots for AC245041.2, LINC02185, and SRGAP3	AS1
were generated using Lung single-cell atlas browser. The data
set was set to “grch38” gene annotation before gene search
and export. UMAP plots and violin plots for CASC15,MANCR,
TINCR, LINC00958, and WFDC21P were generated using IPF
cell atlas browser.

Tissue Immunofluorescence Staining

ALI cultures were embedded in optimal temperature com-
pound (OCT), cryosectioned (8 mm), and, consecutively, fixed
with 4% PFA, washed with PBS, permeabilized with Triton
100� 0.01%, and treated with Fc Receptor Block (Innovex
bioscience) for 40min with Background Buster (Innovex bio-
science) for 30 min. The sections were then stained with pri-
mary antibodies, diluted in PBS þ 5% BSA 0.1% Saponin for
1 h at room temperature, washed, and stained with the sec-
ondary antibodies at room temperature for 30 min. Nuclei
were counterstained with 4',6-diamidino-2-phenylindole
(DAPI; 1 mg/mL) and Phalloidin ATTO647N 1/2000 for 2 min.
Tissues weremounted in Fluoromount-Gmountingmedia.

Primary antibodies: anti-Vimentin (D21H3, Cell Signaling
Technology); anti-Cytokeratin 17 (E3, NJS Bioreagents); anti-
TP63 (HPA006288, Atlas Antibodies); anti-FN1 (HPA027066,
Atlas Antibodies); anti-FOXJ1 (HPA005714-25UL, Sigma);
anti-MUC5B (HPA008246-25UL, Sigma).

Secondary antibodies: goat anti-rabbit Alexa Fluor 488,
goat anti-mouse IgG2b Alexa Fluor 568 (ThermoFisher) 1/
2,000. Antibodies were validated and titrated on relevant
control tissues (lung). The staining pattern was then cross
referenced with existing data in the literature.

RNA in Situ Hybridization

RNA transcripts were visualized in OCT-embedded ALI
sections using the QuantiGene ViewRNA ISH tissue assay kit
(ThermoFisher) and “Nunc Lab-Tek II Chamber Slide
System” (154534PK) submerged cultures using ViewRNA cell
plus assay kit (ThermoFisher). For staining on lung tissue
samples, 4-μm microtome sections of formalin-fixed, paraf-
fin-embedded (FFPE) healthy and diseased IPF lungs were
collected on slides for staining and were visualized using
ViewRNA Tissue Assay Core-Fast Red Kit (ThermoFisher).
Human MALAT1, NRAV1, CASC15, and TINCR ViewRNA
type 1 probes were obtained from ThermoFisher. The
ViewRNA assay was performed according to the manufac-
turer’s protocol. Probes were detected at 550 nm.

Confocal Microscopy

Images were acquired on the Leica SP8 confocal micro-
scope and Leica SP5 (Leica Microsystems). Sequential acqui-
sition was performed with a �40 or �63/1.4 NA objective.
Images were analyzed with Imaris 9.7.2 software and ImageJ
bundle with Java 1.8.0. ViewRNA quantification was per-
formed with Imaris software, version 9.7.2, using the “spot”
function on the channel corresponding to CAS15 signal; the
threshold was based on signal “quality.”

Single Nucleotide Polymorphism Analysis

All single nucleotide polymorphisms (SNPs) both upstr-
eam and downstream (±800 kb) from the CASC15 TSS were
extracted from a genome-wide association study (GWAS) cat-
alog (68). SNPs with associations relevant to lung biology
were plotted, whereas all SNP associations were tabulated.

RESULTS

Differentiation of the Lung Epithelium in Vitro Induces
Differential Expression of Thousands of Genes Including
1,621 lncRNAs

Long noncoding RNAs (lncRNAs) are emerging as poten-
tial regulators of cellular identity and function and therefore
have significant potential as disease biomarkers and thera-
peutic targets. However, little is known regarding the role of
lncRNAs in lung biology. Defining the lncRNA landscape of
lung epithelium is the first step to understand how they con-
tribute to lung biology and disease pathogenesis. Primary
human HBECs are frequently used as an in vitro model of
the human lung epithelium that can be grown under two dif-
ferent culture conditions: 1) submerged cultures, thought to
consist of primarily undifferentiated cells or 2) ALI cultures,
which consist of multiple differentiated epithelial cell types
in a pseudostratified columnar structure. To map the tran-
scriptional landscape of lung epithelium in the aforemen-
tioned models, HBECs from eight donors (four normal and
four asthma, see Supplemental Table S1) were grown under
submerged and ALI culture conditions before analysis by
RNA-Seq (Fig. 1A). ALI cultures demonstrated a polarized ep-
ithelium with tight junctions (Supplemental Fig. S1, A and B,
see https://doi.org/10.6084/m9.figshare.19093703). Principal
component analysis (PCA) of RNA-Seq data revealed higher
heterogeneity between donors in ALI cultures than in
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submerged cultures (Fig. 1B and Supplemental Fig. S1C).
Differential gene expression (DGE) analysis revealed sub-
stantial transcriptional reprogramming (10,827 genes; FDR �
0.05 and jlog2FCj � 2) on epithelial differentiation in ALI

culture (Fig. 1C and Supplemental Table S3, see https://doi.
org/10.6084/m9.figshare.19093736). As expected, epithelial
cell subtype marker genes, such as FOXJ1 (multiciliated),
MUC5B (goblet), SCGB1A1 (club), were enriched in ALI
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cultures, whereas the basal cell marker TP63 was reduced
(Fig. 1, C andD). Gene ontology (GO) analysis revealed signif-
icant changes associated with ciliary organization, consist-
ent with epithelial differentiation (Supplemental Fig. S1D).
Analysis of noncoding genes revealed 1,621 differentially
expressed lncRNAs (FDR � 0.05; jlog2FCj � 2) lncRNAs (e.g.,
ZFAS1, BLACAT1, and LINC00950), none of which have been
investigated for their potential role in basal cell differentia-
tion (Fig. 1, C and E). As previously reported, lncRNAs were,
in general, less highly expressed than PC genes (Fig. 1, E
and F). Despite this, PCA analysis exclusively based on
lncRNA expression reproduced the higher heterogeneity
between donors in ALI cultures compared with submerged
cultures (Supplemental Fig. S1, E and F). To further map the
lncRNA landscape of the differentiating epithelium, RNA-
Seq data were aligned to a custom-curated reference tran-
scriptome. This revealed an additional 2,069 lncRNAs tran-
scripts (FDR� 0.05; jlog2FC j� 2), but most were substantially
less abundant than those already represented in the Gencode
catalog (Supplemental Fig. S1G and Supplemental Table S4,
see https://doi.org/10.6084/m9.figshare.19093724). In sum-
mary, differentiation of the human airway epithelium is asso-
ciated with extensive transcriptional reprogramming and
establishment of a distinct lncRNA landscape.

Single-Cell Analysis Reveals Epithelial Cell Type-
Specific lncRNAs

To ascribe lncRNAs to specific epithelial cell types,
scRNA-Seq of HBEC submerged and ALI cultures from three
normal donors was performed (Fig. 2A and Supplemental
Table S1). Cell identity was inferred based on expression of
known marker genes, which revealed that submerged cul-
tures consisted of two basal cell clusters and cycling-basal
cells (Fig. 2, B and C), whereas ALI cultures consisted of ba-
sal, cycling-basal, suprabasal, secretory (2 clusters), goblet,
multiciliated, and deuterosomal cells (Fig. 2, B–E, and
Supplemental Fig. S2, A–H, see https://doi.org/10.6084/m9.
figshare.19093700; Supplemental Table S5, see https://doi.
org/10.6084/m9.figshare.19093754; Supplemental Table S6,
see https://doi.org/10.6084/m9.figshare.19093727; and Supp-
lemental Table S7, see https://doi.org/10.6084/m9.figshare.
19093745). In addition, ALI culture annotations were further
validated using CelliD (Supplemental Table S6) (18, 56, 57).
As expected, we did not identify any small airway or immu-
nological cell clusters, or any mesenchymal cells, including
fibroblasts or myofibroblasts (Supplemental Table S6).
As lncRNA transcripts are frequently less abundant than
PC transcripts, their detection is limited with scRNA-Seq.
However, we were able to identify lncRNAs enriched in
different epithelial cell types in ALI cultures (Fig. 2, D and E,
Supplemental Fig. S3, see https://doi.org/10.6084/m9.figshare.

19093709, and Supplemental Table S7). Comparison with pub-
lished scRNA-Seq data from lung (69) confirmed cell-type-spe-
cific expression of multiple lncRNAs (Supplemental Fig. S3B).
Interestingly, several genes annotated as lncRNAs are known
to express micropeptides such as MRLN, NBDY, and MTLN
(Fig. 2D). These data indicate that ALI cultures effectively reca-
pitulate much of the cellular complexity of the airway epithe-
lium and allow for identification of epithelial cell-type-specific
lncRNAs.

Induction of EMT in ALI Cultures Induces a
Transcriptional Reprogramming Consistent with a
Partial EMT Phenotype

Although EMT is a common feature of fibrotic lung dis-
eases, its role in fibrogenesis is controversial. Recently, aber-
rant basaloid cells were identified in fibrotic lung tissue as a
novel epithelial cell type displaying a partial EMT pheno-
type, yet their developmental origin remains unknown. We
sought to determine the impact of EMT on the lung epithe-
lium and whether this contributes to the differentiation of
aberrant basaloid cells. To this end, we determined tran-
scriptome-wide changes associated with induction of EMT
in ALI cultures. As both TGF-b and WNT signaling pathways
have been implicated to have a significant role in fibrotic
lung diseases (11, 70–76), we used a cocktail containing
recombinant TGF-b1, WNT-5a, and neutralizing antibodies
against E-Cadherin, sFRP-1, and Dkk-1 to induce EMT (EMT
cocktail). Differentiated ALI cultures (four normal and four
asthma) were treated with this EMT cocktail (referred to as
EMT) before analysis by bulk RNA-Seq (Fig. 3A). PCA analy-
sis revealed less heterogeneity between donors treated with
EMT compared with PBS (Fig. 3B and Supplemental Fig.
S4D, see https://doi.org/10.6084/m9.figshare.19093712). A
total of 6,020 PC and 907 lncRNA genes were differentially
expressed (FDR � 0.05; jlog2FCj � 2) between PBS- and
EMT-treated ALI cultures (Fig. 3C and Supplemental Table
S8, see https://doi.org/10.6084/m9.figshare.19093742). This
included classical markers of EMT (e.g., CDH2, CDH11, VIM,
CDCK14, FGFR3, etc.; (Fig. 3, C and D and Supplemental Fig.
S4A). Consistent with the known phenotypic changes associ-
ated with EMT, GO analysis revealed that transcriptional
reprogramming correlated with changes in extracellular ma-
trix, cell adhesion, and cell motility (Supplemental Fig. S4B).
EMT can be incomplete, resulting in complex phenotypes
(77) and Network Activity (NetAct) analysis can be used to
evaluate these EMT phenotypes using bulk RNA-Seq data
(78). As expected, NetAct demonstrated activity of EMT-
associated transcriptional regulators such as TWIST1, NF-
κB1, STAT2, CTNNB1, and SMAD3 (Fig. 3E, Supplemental
Fig. S4C, and Supplemental Table S9, see https://doi.
org/10.6084/m9.figshare.19093733) in EMT-induced ALI

Figure 1. Differentiation of the lung epithelium in vitro induces differential expression of thousands of genes including 1,621 lncRNAs. A: bulk RNA-Seq
experimental design. HBECs from eight donors were cultured in submerged cultures and as ALI cultures before analysis by RNA-Seq. B: unbiased clus-
tering of all samples using principal component analysis (PCA). All genes with <1 TPM value (averaged across all samples) were removed before per-
forming PCA, n = 8 donors. C: volcano plot of expressed genes (TPM � 1) between submerged and ALI cultures, n = 8 donors. Red dots, adjusted P
value <10	6 and log2 fold-change >2; blue dots, adjusted P value <10	6 and log2 fold-change <2; black dots, adjusted P value >10	6 and log2 fold-
change >2; orange dots, >10	6 and log2 fold-change <2. D: lung epithelial markers, TPM values plotted as heatmap between submerged (SUB) and
ALI cultures, n = 8 donors. E: MA plot of protein coding (PC) and long noncoding RNA (lncRNA) expression between submerged and ALI cultures, n = 8.
F: density plot depicting expression of PC and lncRNAs. Plotted are log2 TPM values averaged across submerged and ALI cultures from all donors, n = 8
donors. ALI, air-liquid interface; HBECs, human bronchial epithelial cells; PC, protein coding.
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cultures. However, activity of key factors such as SNAI and
ZEB family members were notably absent, suggesting a par-
tial EMT phenotype. Networks inferred from these activities
revealed a complex web of potential interactions between
EMT factors (Supplemental Fig. S4C) and random circuit
perturbations (RACIPE) simulations of this network res-
embled the activity data (79, 80). Using a scoring method
that provides a quantitative measure of an EMT phenotype
through analysis of transcriptional data (52), we confirmed a
partial EMT phenotype of these cells (Fig. 3F). This contrasts
with the more complete EMT phenotype found in TGF-b1-
treated A549 cells (Supplemental Fig. S4E), which is consist-
ent with their known EMT potential (21, 81). Furthermore, an
extended 14-day EMT treatment of HBEC ALI cultures did
not show substantial changes in key epithelial and mesen-
chymal genes (Supplemental Fig. S4F).

Gene Signatures from EMT-Induced ALI Cultures
Overlap with Those from Different Lung Diseases

Further analysis of the RNA-Seq data revealed changes in
many immune-related genes, which include cytokines, che-
mokines, defensins, and protease activated receptors (Fig.
4A). These changes suggest that EMT could alter innate
immune lung epithelial responses to pathogens, allergens,
and toxins. To determine whether these transcriptional
changes displayed disease relevance, we performed an
Ingenuity Pathway Analysis (IPA) using manually curated
disease gene lists (Supplemental Table S10, see https://doi.
org/10.6084/m9.figshare.19093751). This revealed significant
enrichment in pathways for asthma, COPD, and IPF (Fig.
4B). Hepatic fibrosis was included as an unrelated disease in
which EMT has also been implicated. Interestingly, most of
the genes found (Fig. 4A) were associated with one or more
of the lung diseases (Fig. 4B). Furthermore, there were 17
overlapping genes between EMT ALI cultures, asthma, IPF,
and COPD (Fig. 4C). In conclusion, EMT in ALI cultures
induces potentially pathological transcriptional changes,
including those associated withmultiple lung diseases.

Single-Cell RNA-Seq of EMT in ALI Cultures Identifies
Aberrant Basaloid-Like Cells, but No Fibroblast or
Myofibroblast Conversion

To elucidate the impact of EMT at single-cell resolution,
scRNA-Seq was performed on ALI cultures (n = 3) treated
with PBS or EMT cocktail for 1 or 5 days (Fig. 5A). Most cells
were characterized into discrete clusters corresponding to
each timepoint, suggesting a progressive transcriptional
reprogramming following EMT induction (Fig. 5B and
Supplemental Fig. S5, A–D, see https://doi.org/10.6084/m9.
figshare.19093706). Interestingly, pairwise DGE analysis
across days showed that multiciliated cells were minimally
impacted by the EMT treatment, both in terms of relative

cell proportions and transcriptional profile (Fig. 5, C–E,
Supplemental Fig. S5E, and Supplemental Table S11, see
https://doi.org/10.6084/m9.figshare.19093739). In contrast,
there were not significant numbers of basal, secretory, or
goblet cells identified following EMT induction (Fig. 5, C and
E). Instead, we identified a large population of cells that dis-
played both EMT and epithelial cells markers, consistent
with epithelial-mesenchymal plasticity (EMP) (24) (Fig. 5,D–
F, and Supplemental Table S6). To identify their likely cell
type of origin, we utilized SingleR, which revealed contribu-
tions from basal, suprabasal, and secretory cells but not mul-
ticiliated or deuterosomal cells (Supplemental Fig. S5F,
Supplemental Table S7, and Supplemental Table S11).
Interestingly, following EMT induction, most basaloid-like
cells expressed high levels of TP63, which suggests dediffer-
entiation to a basal cell-like phenotype (Fig. 5, D and E).
Furthermore, these clusters were strikingly similar to aber-
rant basaloid cells recently identified in ILD lungs (18). For
example, similar to aberrant basaloid cells, these basaloid-
like cells coexpressed KRT17, TP63, FN1, VIM, HMGA2,
CDH2, CAMK2N1, EPHB2, and OCAID2 (Fig. 5, D–F,
and Supplemental Fig. S6A, see https://doi.org/10.6084/m9.
figshare.19093721) (18). Therefore, we categorized day 1 clus-
ters as “transitional aberrant basaloid-like” cells and day 5
clusters as “aberrant basaloid-like” cells. Using marker genes
for fibroblasts and myofibroblasts, previously identified in
scRNA-Seq analysis of human lung (18, 82, 83), we found no
evidence for the presence of either fibroblasts or myofibro-
blast in EMT-treated ALI cultures (Supplemental Fig. S6B).
This included the canonical myofibroblast marker a-SMA
(ACTA2) (Supplemental Fig. S6B). Collectively, these data
suggest that ALI cultures could provide a model to study the
biology of aberrant basaloid-like cells in vitro, which may
provide and important opportunity to reduce the need to
access tissue from patients with ILD.

EMT Induction Reprograms the lncRNA Landscape

Analysis of bulk RNA-Seq identified 907 differentially
expressed lncRNAs (FDR �0.05; jlog2FCj � 2; Fig. 6A and
Supplemental Table S8) following EMT induction in ALI cul-
tures (Fig. 6A). A number of these lncRNAs have previously
been associated with EMT (e.g., CASC15 and NKILA); how-
ever, most have yet to be studied in any system. To further
identify high-confidence lncRNAs in EMT-induced ALI cul-
tures, we performed a pseudo-bulk analysis of the scRNA-
Seq data (Supplemental Table S12, see https://doi.org/
10.6084/m9.figshare.19093757), which identified deferen-
tially expressed lncRNAs (FDR �0.05; jlog2FCj � 2): 651 at
Day 1 and 990 at Day 5 (Supplemental Table S12 and
Supplemental Table S13, see https://doi.org/10.6084/m9.
figshare.19093760), many of which were also captured in the
bulk RNA-Seq . A stringent analysis of the top 100 lncRNAs

Figure 2. Single-cell analysis reveals epithelial cell-type-specific lncRNAs. A: schematic representation of submerged and ALI cultures. Primary human
bronchial epithelial cells (HBECs) were dissociated from either submerged or ALI cultures before analysis by scRNA-Seq, n = 3 donors. B: UMAP plot of
the scRNA-Seq expression data highlighting the main cell clusters observed in (left) submerged cultures and (right) ALI cultures. C: expression data high-
lighting selected cell-specific markers for cell clusters in submerged cultures and ALI cultures. D: heatmap depicting relative expression (normalized and
scaled expression) of lncRNAs in each cluster in ALI cultures. All lncRNA names and their respective expression values are available in Supplemental
Table S7. E: immunofluorescence (MUC5B, TP63, and FOXJ1) and RNA in situ hybridization (MALAT1 and NRAV) demonstrating expression of selected
protein and RNA molecules in submerged and ALI cultures. Scales are depicted as micrometers; n = 2 donors, representative data from one donor is
shown. ALI, air-liquid interface; lncRNA, long noncoding RNA; scRNA-Seq, single-cell RNA-sequencing.
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Figure 3. Induction of EMT in ALI cultures induces a transcriptional reprogramming consistent with a partial EMT phenotype. A: bulk RNA-Seq experi-
mental design. Differentiated ALI cultures treated with PBS or EMT cocktail for 5 days before RNA-Seq analysis. B: unbiased clustering of all samples
using principal component analysis (PCA). All genes with <1 TPM value were removed before performing PCA, n = 8 donors. C: volcano plot of
expressed genes (TPM � 1) between PBS- and EMT-treated ALI cultures, n = 8. Red dots, adjusted P value <10	6 and log2 fold-change >2; blue dots,
adjusted P value <10	6 and log2 fold-change <2; black dots, adjusted P value >10	6 and log2 fold-change >2; orange dots, >10	6 and log2 fold-
change <2. D: EMT-associated markers, TPM values plotted as heatmap between PBS- and EMT-treated ALI cultures, n = 8 donors. E: NetAct analysis
depicting activity of enriched transcription factors (FDR� 0.01). Presence of TWIST1 and CTNNB1 but absence of major EMT markers like SNAI and ZEB
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(FDR�0.05; jlog2FCj � 2) between bulk (Supplemental Table
S8) and scRNA-Seq (Supplemental Table S13) identified 16
lncRNAs (Fig. 6C). In addition, a cluster-based analysis
revealed lncRNAs whose expression was enriched in transi-
tional basaloid-like cells and aberrant basaloid-like cells
(Supplemental Fig. S7, see https://doi.org/10.6084/m9.
figshare.19093718). Of particular interest was the lncRNA
CASC15, because it has been previously implicated in the
regulation of EMT (84–86). Expression of CASC15 was
enriched in transitional aberrant basaloid-like cells and aber-
rant basaloid-like cells (Fig. 6, D and E, and Supplemental
Fig. S8, A and B, see https://doi.org/10.6084/m9.figshare.
19093715). We then analyzed scRNA-Seq data (18) for expres-
sion of CASC15 in ILD lungs that reveled substantial expres-
sion in aberrant basaloid cells (Fig. 6F and Supplemental Fig.
S8C). In addition, RNA-FISH analysis of lung tissue samples
revealed higher expression of CASC15 in a donor with IPF
compared with a matched non-IPF control (Fig. 6G and
Supplemental Fig. S8D). Although the function of CASC15
in the lung is unknown, it is relatively highly expressed in
HBECs and multiple independent GWAS implicate the
CASC15 locus in lung biology (Supplemental Fig. S8, E and
F, and Supplemental Table S14, see https://doi.org/10.
6084/m9.figshare.19093748). Exploration of CASC15 and
other lncRNAs identified could provide novel insights into
the programming and function of aberrant basaloid cells
in EMT.

DISCUSSION

EMT is commonly observed in fibrotic lung disease,
although its contribution to disease is unclear. Here we
sought to elucidate the impact of EMT on human bronchial
epithelium by mapping EMT-induced transcriptional
changes at the population and single-cell level in ALI
cultures.

Analysis of submerged and differentiated ALI cultures
revealed a dramatic transcriptional reprogramming involv-
ing 8,247 PC and 1,621 lncRNA genes. These changes high-
light the potential limitations when interpreting data from
submerged cultures. The reason for these differences was
partially revealed by scRNA-Seq analysis of submerged cul-
tures compared with ALI cultures. Although ALI cultures
contained a complex mixture of different epithelial cell
types, submerged cultures consisted entirely of basal cells
and cycling basal cells. In addition, presumed equivalent cell
types in submerged and ALI cultures had noticeably distinct
transcriptional profiles, which potentially reflect differ-
ent medium composition or differences in oxygen levels
between submerged and ALI cultures. Unexpectedly, in
bulk RNA-Seq analysis, there were no observed differen-
ces between cells obtained from donors with, or without,
asthma. However, because asthma is a heterogenous disease
and the severity and donor endotypes were unknown (87,
88), it is possible that some, or all, of the donors used in this
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study had mild disease. Alternatively, disease phenotypes
may be influenced by cell culture conditions. Previously, sig-
nificant differences in asthmatic cell responses from donors
obtained from the same source have been observed (89).
Thus, it is likely that phenotypes are donor-dependent.

Experiments showed that epithelial cell differentiation
was accompanied by changes in the lncRNA landscape.
Although lncRNAs are generally less highly expressed
than PC genes, we were able to detect a subset using
scRNA-Seq, which revealed numerous lineage-specific
lncRNAs, with enrichment in multiciliated cells. For
example, expression of the lncRNA Negative Regulator of
Antiviral Response (NRAV) was highest in multiciliated
cells, which is interesting as these are target cells for re-
spiratory viral infections. The function of most lncRNAs
is completely unknown, and their study may reveal novel
and important roles in airway epithelial differentiation or
function. Interestingly, some lineage-specific transcripts
originally annotated as lncRNAs have been shown to gen-
erate small peptides, and their function in airway epithe-
lium is currently unknown.

Induction of EMT in ALI cultures was also associated with
broad PC and lncRNA gene transcriptional changes. Alt-
hough HBECs from donors with asthma have previously
been described to be more sensitive to EMT induction (90),
we did not find any differences based on disease status,
potentially for reasons discussed above. However, pathway
analysis revealed a significant overlap of the ALI-EMT gene
signature with genes associated with different lung diseases
that have characteristics of fibrosis implicated in their dis-
ease pathogenesis or pathobiology, which suggests some
commonality in underlying mechanisms. Indeed, EMT sig-
natures have been described in ILD, COPD, and asthma (4–
10). However, only 17 genes were common between EMT
induction in ALI cultures, asthma, IPF, and COPD, which
likely reflects differences in the timing and extent of pathol-
ogy in each of these diseases. Nevertheless, most of these
genes have been associated with EMT previously. The most
significant enrichment was with ILD. Although fibrosis is
recognized as a larger component of lung pathology in ILD
compared with asthma and COPD, this result was unex-
pected because ILD is generally thought to be associated
with alveolar epithelium and our cultured epithelial cells are
bronchial in origin. Yet recent evidence suggests that the
conducting airways are involved in ILD (91, 92), and our
results may suggest that common pathways are shared
between epithelium in different lung compartments.
Indeed, lung scRNA-Seq shows that nonalveolar cell types
also display altered transcriptional profiles in ILD (75, 93,
94), and these differentially expressed genes were integrated
into this studies’ pathway analysis, which may partially
explain their observed enrichment.

Bioinformatic analysis of bulk RNA-Seq data revealed a
partial EMT signature. Notably, NetAct reported a lack of
enrichment of the key EMT mediators such as SNAI1. This is
potentially due to limited SNAI1 expression by HBEC ALI
cultures. In support of partial EMT, scRNA-Seq did not
reveal any fibroblast or myofibroblast-like cells. Indeed,
transitional basaloid-like and aberrant basaloid-like cells
were either negative for most fibroblast/myofibroblast
markers or expressed them at a level similar to other epithe-
lial cell types. This underscores the prevailing hypothesis
that epithelial EMT is unlikely to directly contribute to the
myofibroblast population, which is replicated here in ALI
cultures. Instead, we saw gene signatures consistent with
partial EMT, known as epithelial-mesenchymal plasticity
(EMP), in which cells coexpress both epithelial and EMT
markers. EMP phenotypes have been found in ILD (19–23)
and were recently described as the hallmark of aberrant
basaloid cells found in IPF (18). Following EMT, ALI HBECs
expressed genes associated with aberrant basaloid cells. Day
1 cells had an intermediate phenotype, which we termed
transitional basaloid-like cells. One difference is that these
in vitro generated aberrant basaloid-like cells maintained
expression of Keratin 5. This may reflect a different cellular
origin, different EMT inducing signals, or differences that
occur depending on the duration of EMT treatment.
However, extending EMT cultures out to 14 days did not
result in additional EMT progression, which suggests that
timing alone is not the issue. Indeed, recent work suggest
that patient-derived aberrant basaloid cells maintain a par-
tial EMT phenotype when cultured in vitro (95).

Following EMT induction, basal, secretory, and goblet
cells were almost completely replaced by aberrant basaloid-
like cells. Subclusters that were apparent within the pool of
transitional and aberrant basaloid-like cells were predicted
to preferentially originate from basal, suprabasal, and secre-
tory cells. In contrast, a normal representation of multicili-
ated cells was clear even 5 days after EMT induction, and
there was little evidence that they contributed significantly
to the pool of aberrant basaloid-like cells. In addition, multi-
ciliated cells did not appear to be directly impacted by the
EMT induction and displayed a normal gene signature.
However, it is unclear why multiciliated cells would be re-
sistant to EMT induction because the scRNA-Seq data indi-
cate that these cells express TGFb receptor and WNT
receptors, although receptor expression could fluctuate over
time. Alternatively, multiciliated cells that responded to
EMT may have been lost via apoptosis, or they may have
converted to aberrant basaloid-like cells and lost all of their
original gene signature(s), rendering it impossible to deter-
mine from which population they originated. Even though
aberrant basaloid cells do not appear to contribute to the
myofibroblast pool, they may still play an active role in

Figure 5. Single-cell RNA-Seq of EMT in ALI cultures identifies aberrant basaloid-like cells but no fibroblast or myofibroblast conversion. A: scRNA-Seq
experimental design. Differentiated HBEC ALI cultures (25 days) were dissociated for scRNA-Seq analysis following EMT treatment for 0, 1, and 5 days,
n = 3 donors. B: UMAP plot of the scRNA-Seq expression data highlighting clusters defined by timepoints of EMT treatment. C: UMAP plot depicting clus-
ter annotations of day 0, day 1, and day 5 EMT ALI cultures. D: expression data for selected genes for each cluster. Transitional basaloid-like and aber-
rant basaloid-like cells express both basal and mesenchymal markers. E: heatmap depicting relative expression (normalized and scaled z-scores) of PC
genes in each cluster. All PC gene names, and their respective expression values is available in Supplemental Table S7. F: immunofluorescence demon-
strating colocalization of VIM and KRT17 in EMT-treated ALI cultures. Scale = 30 mm; n = 2 donors, representative data from one donor is shown. ALI, air-
liquid interface; EMT, epithelial-mesenchymal transition; HBECs, human bronchial epithelial cells; PC, protein coding.

GENERATION OF ABERRANT BASALOID-LIKE CELLS IN VITRO

L836 AJP-Lung Cell Mol Physiol � doi:10.1152/ajplung.00254.2021 � www.ajplung.org
Downloaded from journals.physiology.org/journal/ajplung (168.005.013.058) on June 1, 2023.

http://www.ajplung.org


fibrotic lung disease through altered differentiation and/or
autocrine/paracrine inflammatory responses. Evidence for
such a paradigm exists in kidney fibrosis where renal epithe-
lial cells undergo partial EMT and then release paracrine

signals that reshape the microenvironment to promote
inflammation and fibrogenesis (24).

EMT in ALI cultures resulted in a reprogramming of the
lncRNA landscape. Although the function of most lncRNAs
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is unknown, these lncRNAs could be explored as potential
biomarkers or even potential therapeutic targets. The
lncRNA CASC15 is particularly notable given the current
understanding of its role in EMT and connection to lung
biology implicated through GWAS (68, 96). However, its
function in the lung has yet to be explored. In summary, this
work provides additional evidence that HBECs do not con-
vert intomyofibroblasts. Furthermore, we show that ALI cul-
tures provide a physiologically relevant and tractable system
to study aberrant basaloid-like cells and mechanisms of
EMP. This may result in an important step in ILD research
given the limited access to ILD patient tissue, which typi-
cally reflects cells from end-stage disease. Thus, there is
potential to study EMP/EMT at earlier stages of disease in
this system, where the role for CASC15 can be further eluci-
dated. Finally, we provide a catalog of airway epithelial
lncRNAs and an interactive viewer for single-cell expression
data hosted by USCS for further exploration for their roles in
the lung during health and disease.
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