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Abstract  33 

In globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox 34 

energy landscapes created by reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes 35 

can disperse over thousands of kilometers and their characteristics are determined by geochemical 36 

sources from vents, e.g., hydrothermal inputs, nutrients, and trace metals. However, the impacts of 37 

plume biogeochemistry on the oceans are poorly constrained due to a lack of integrated understanding 38 

of microbiomes, population genetics, and geochemistry. Here, we use microbial genomes to 39 

understand links between biogeography, evolution, and metabolic connectivity, and elucidate their 40 

impacts on biogeochemical cycling in the deep sea. Using data from 36 diverse plume samples from 41 

seven ocean basins, we show that sulfur metabolism defines the core microbiome of plumes and drives 42 

metabolic connectivity in the microbial community. Sulfur-dominated geochemistry influences energy 43 

landscapes and promotes microbial growth, while other energy sources influence local energy 44 

landscapes. We further demonstrated the consistency of links among geochemistry, function, and 45 

taxonomy. Amongst all microbial metabolisms, sulfur transformations had the highest MW-score, a 46 

measure of metabolic connectivity in microbial communities. Additionally, plume microbial 47 

populations have low diversity, short migration history, and gene-specific sweep pattern after 48 

migrating from background seawater. Selected functions include nutrient uptake, aerobic oxidation, 49 

sulfur oxidation for higher energy yields, and stress responses for adaptation. Our findings provide the 50 

ecological and evolutionary bases of change in sulfur-driven microbial communities and their 51 

population genetics in adaptation to changing geochemical gradients in the oceans. 52 

Introduction 53 

Hydrothermal vents are abundant and widely distributed across the deep oceans. The mixing of hot 54 

hydrothermally-derived fluids rich in reduced elements, compounds, and gasses, with cold seawater 55 

forms hydrothermal plumes1, 2. Generally, plumes rise up to hundreds of meters from the seafloor and 56 

can disperse over hundreds to thousands of kilometers through the pelagic oceans3. Surrounding 57 

microbes migrate into the plume and thrive on substantial reductants as the energy sources, making 58 

plumes “hotspots” of microbial activity and geochemical transformations1, 2. Plumes constitute a 59 

relatively closed ecosystem that depends on chemical energy-based primary production and is mostly 60 

removed from receiving inputs of energy from the outside4, 5. Thus, plumes serve as an ideal natural 61 

bioreactor to study the processes and links between microbiome and biogeochemistry and the 62 

underlying ecological and evolutionary bases of microbial adaptation to contrasting conditions 63 

between energy-rich plumes and the energy-starved deep-sea2. 64 

 65 

The most abundant energy substrates for microorganisms in hydrothermal plumes include reduced 66 

sulfur compounds, hydrogen, ammonia, methane, and iron2. Amongst these, sulfur is a major energy 67 

substrate for diverse microorganisms in plumes across the globe2, 6, 7, 8. Sulfur transformations in 68 

plumes are dominated by oxidation of reduced sulfur species, primarily hydrogen sulfide and elemental 69 

sulfur. The metabolic pathways include oxidation of sulfide to elemental sulfur (fcc, sqr), oxidation of 70 

sulfur to sulfite (dsr, sor, and sdo), disproportionation of thiosulfate (phs) to hydrogen sulfide and 71 

sulfite, disproportionation of thiosulfate to elemental sulfur and sulfate (sox), thiosulfate oxidation to 72 

sulfate (sox, tst, and glpE), and sulfite oxidation to sulfate (sat, apr)7, 9, 10, 11. Complete oxidation of 73 



sulfur would involve oxidation of hydrogen sulfide all the way to sulfate. However, recent observations 74 

in other ecosystems indicate that individual microbes rarely possess a full set of the complete 75 

sulfide/sulfur oxidation pathway10, 12, instead individual steps are distributed across different 76 

community members. This likely suggests that sulfur oxidation is a microbial community-driven 77 

process that is dependent on metabolic interactions, and asks for revisiting sulfur metabolism and 78 

biogeochemistry based on a holistic perspective of the entire community. 79 

 80 

Recent microbiome-based ecological studies have focused on elucidating a genome-centric view of 81 

ecology and biogeochemistry7, 10, 12, 13, 14, 15. This approach has expanded our understanding of 82 

microbial diversity associated with specific energy metabolisms, including sulfur transformations in 83 

hydrothermal plumes, the deep sea, and beyond7, 14, 16, 17, 18, 19. However, the dynamics and 84 

microdiversity of the plume microbiome, and relevant biogeochemical impacts remain relatively 85 

underexplored20, 21, 22, 23, 24. Understanding how environmental constraints and selection shape the 86 

microdiversity and the genetic structure of plume microbial populations after migration from 87 

background seawater can provide fundamental insights into adaptation mechanisms. These insights 88 

can also inform future predictions of microbial responses to the changing oceans. 89 

 90 

Here, we characterized the ecological and evolutionary bases of the assembly of the plume microbiome, 91 

and their strategies for sulfur cycling-based energy metabolisms. We studied globally distributed 92 

hydrothermal plume datasets to define a core plume microbiome. We followed this up with synthesis 93 

of genome-resolved metagenomics, metatranscriptomics, and geochemistry from three hydrothermal 94 

vent sites (Guaymas Basin, Mid-Cayman Rise, and Lau Basin) to unravel community structure and 95 

functional links to biogeochemistry, metabolic connectivity within plume and deep-sea communities, 96 

and microdiversity in abundant microbial populations. We demonstrate that plume microbiomes have 97 

a distinctive community composition and function, that is adapted towards energy conservation, 98 

metabolic interactions, and stress response. 99 

Materials and methods 100 

Sample information and omics sequencing 101 

Hydrothermal plume and surrounding background samples were collected from the corresponding 102 

cruises: R/V New Horizon in Guaymas Basin, Gulf of California (July 2004), R/V Atlantis and R/V 103 

Falkor in Mid-Cayman Rise, Caribbean Sea (Jan 2012 and June 2013), two consecutive cruises on the 104 

R/V Thomas G Thompson in Eastern Lau Spreading Center (ELSC), Lau Basin, western Pacific Ocean 105 

(May-July 2009), and R/V Thomas G Thompson in Axial Seamount, Juan de Fuca Ridge, northeastern 106 

Pacific Ocean (Aug 2015). In brief, Guaymas Basin plume and background samples were collected by 107 

10 L CTD-Rosette bottles and N2-pressure filtered on board for microbial specimen collection by 0.2 108 

µm pore size, 142 mm polycarbonate membranes11. The samples were preserved immediately in 109 

RNAlater. Mid-Cayman hydrothermal plume and surrounding background samples were collected by 110 

Suspended Particulate Rosette (SUPR) filtration device25 mounted to the remotely operated vehicle 111 

Jason II. SUPR collected water in the volume of 10-60 L from different sampling locations, and these 112 

samples were in situ filtered for microbial specimens by 0.2 μm pore size SUPOR polyethersulfone 113 

membranes and preserved in RNAlater flooded conical vials and frozen at -80°C. For Lau Basin 114 

samples, SUPR collected samples were in situ filtered by SUPOR polyethersulfone membranes with 115 



0.8 μm and 0.2/0.8 μm pore size for geochemical analysis and microbial specimen collection, 116 

respectively26. Samples were preserved in RNAlater flooded conical vials and frozen at -80°C. For 117 

Axial Seamount samples, both plume and background samples were collected by a Seabird SBE911 118 

CTD and 10 L Niskin bottles27. Samples of 3 L were then transferred into cubitainers, filtered through 119 

0.22 μm Sterivex filters, and preserved for downstream analysis27. 120 

 121 

Details for sample collection, preservation, geochemical analysis, and 122 

metagenomic/metatranscriptomic sequencing refer to the previous publications22, 27, 28. Detailed cruises 123 

and sampling information refer to Supplementary Data 1. The geological map and schematic diagram 124 

represent the details of sampling locations (Fig. 1a, Fig. S1). The metagenomic DNA and 125 

metatranscriptomic cDNA were extracted and synthesized from corresponding samples and processed 126 

for HiSeq 2000/2500 (Illumina) sequencing as described previously11, 14, 18, 27, 29. The distribution of 127 

acquired metagenomes (DNAs, labeled as “D”) and metatranscriptomes (cDNA, labeled as “C”) was 128 

represented in Fig. S1b (only for samples with detailed location and physicochemical characterization; 129 

distribution of other samples refers to Supplementary Data 1). The raw reads (both DNA/cDNA reads) 130 

were dereplicated by SeqTools v4.28 (https://www.sanger.ac.uk/tool/seqtools/) and processed by 131 

Sickle v1.33 (https://github.com/najoshi/sickle) to trim reads of low quality with default settings. 132 

Command “reformat.sh” in BBTools (last modified on Feb 11, 2019; 133 

https://www.sourceforge.net/projects/bbmap/) was used to calculate fastq sequence and nucleotide 134 

numbers. 135 

 136 

Core hydrothermal plume microbiome analysis 137 

In total, 47 hydrothermal plume and background 16S rRNA gene datasets were used for analyzing the 138 

microbiome of hydrothermal plumes, within which 19 datasets were obtained in this study, containing 139 

datasets from samples of Mid-Cayman Rise, Guaymas Basin, Lau Basin (Supplementary Data 2). For 140 

hydrothermal plume and background samples with only metagenome datasets, 16S rRNA gene 141 

sequences were parsed out from metagenomes and these sequences were weighted according to their 142 

coverages. Simulated 16S rRNA gene datasets were used in subsequent analyses. The original datasets 143 

of paired-end reads were merged into combined 16S rRNA gene tags by FLASH v1.2.1130 with default 144 

settings. The bioinformatic analyses, including pre-analysis quality control, 16S rRNA gene chimera 145 

checking, open-reference OTU picking, taxonomy assignment, OTU table file ‘biom’ generation and 146 

rarefaction, OTU representative sequence filtering and alignment, alignment filtering, and 147 

phylogenetic tree reconstruction, were performed according to the instructions of QIIME v1.9.131, 148 

respectively. The 16S rRNA gene reference database used was 149 

“SILVA_138_SSURef_NR99_tax_silva”32. The resulting ‘biom’ (OTU table file), ‘tre’ (phylogenetic 150 

tree), and “map” (sample characterization map) files were imported into R (using R package ‘phyloseq’) 151 

for downstream analysis and visualization. Taxa summary and principal coordinates analysis (PCoA) 152 

were conducted accordingly to delineate the community structure and biogeographic pattern of 153 

hydrothermal plume and background seawater microbiome. Genus-level taxa summary table was used 154 

to find the core hydrothermal plume microbiome from 36 hydrothermal plume datasets by filtering 155 

genera that exist in > 66% plume datasets and have > 1% relative abundance on average. Core plume 156 

microbiome metabolic profiles were conducted by choosing MAGs (see the following sections for 157 

obtaining these MAGs) from this study that contain 16S rRNA genes affiliated to the core plume 158 

microbial genera. The approach for metabolic profiling of these MAGs is described in “MAG 159 

http://sourceforge.net/projects/bbmap/


phylogeny, genomic properties, and protein annotation”. 160 

 161 

Metagenomic assembly and genome binning 162 

QC-processed reads were assembled de novo by MEGAHIT v1.1.233 with settings as “--k-min 45 --k-163 

max 95 --k-step 10”. Hydrothermal plume and background metagenomes from the same hydrothermal 164 

site were assembled together. QC-processed reads were re-mapped to assemblies by Bowtie 2 v2.2.834 165 

with default settings. For each hydrothermal site, hydrothermal plume and background reads were 166 

mapped to corresponding assemblies separately; bam files by plume and background samples for 167 

individual assemblies were used for downstream binning. Subsequently, the assemblies were subjected 168 

to a MetaBAT v0.32.435 based binning with 12 combinations of parameters. Afterward, DAS Tool 169 

v1.036 was applied to screen MetaBAT MAGs, resulting in high quality and completeness MAGs. This 170 

MetaBAT/DAS Tool method enables a comprehensive “slice-layer profiling” for searching potential 171 

MAGs with a better outcome (in-house tested). CheckM v1.0.737 was used to assess MAG quality and 172 

phylogeny. Outlier scaffolds with abnormal coverage, tetranucleotide signals, and GC pattern within 173 

potential high contamination MAGs (by CheckM) and erroneous SSU sequences within MAGs were 174 

screened out and decontaminated by RefineM v0.0.2038 with default settings. Afterwards, further 175 

MAG refinement for decontaminating certain MAGs was conducted by manual inspection based on 176 

VizBin39. MAGs were picked using a threshold of < 10% contamination (namely genome redundancy) 177 

and > 50% completeness.  178 

 179 

MAG phylogeny, genomic properties, and protein annotation 180 

Genome phylogeny was determined by RefineM and GTDB-Tk v0.2.140 (GTDB database, release 83). 181 

Additionally, phylogenies of those genomes that could not be assigned to a meaningful microbial group 182 

were inferred from ribosomal protein (RP) trees using the phylogenetic reconstruction method 183 

described below. Genomic properties, including genome coverage, genome and 16S rRNA gene 184 

taxonomy, tRNAs, genome completeness, and scaffold parameters, were parsed from results that were 185 

calculated by CheckM and tRNAscan-SE 2.041. Relative genome coverages were normalized by 186 

setting each metagenomic dataset size as 100M paired-end reads. MAG ORFs were parsed out by the 187 

Prokka annotation pipeline v1.1242 with default settings. For ORF annotation, GhostKOALA v2.027, 188 

and KAAS v2.126 were applied to thoroughly annotate ORFs to KOs. When combining annotations 189 

from different software, we used the resulting KO from the first software as the final annotation; if 190 

there was no annotation from the first software, then we moved on to the next software accordingly. 191 

Annotation by NCBI nr database (Mar 6, 2017 updated) was conducted with default settings, and for 192 

each annotation the first meaningful hit (hit not assigned as ‘hypothetical protein’) was extracted. 193 

Genomic-specific metabolic traits were searched against TIGRfam, Pfam, Kofam, and custom HMM 194 

profiles using hmmscan43 and custom protein database using DIAMOND BLASTP44. For searching 195 

against custom HMM databases, noise cutoff values were determined according to previously reported 196 

settings12. For DIAMOND BLASTP searches, a stringent criterion of “-e 1e-20 --query-cover 65 --id 197 

65” was applied. Carbohydrate active enzymes (CAZymes) were searched against dbCAN2 with 198 

default settings45; Peptidases were searched against MEROPS ‘pepunit’ database with stringent 199 

DIAMOND BLASTP settings as “-e 1e-10 --subject-cover 80 --id 50”46.  200 

 201 

Phylogenetic tree reconstruction 202 

The syntenic block of universal 16 ribosomal proteins (RPs) (L2-L6, L14-L16, L18, L22, L24, S3, S8, 203 



S10, S17, and S19) were used for inferring RP phylogenetic tree, after hmmscan-based43 searches for 204 

RPs from all MAGs. The individual RP was pre-aligned with local custom RP database by MAFFT 205 

v7.123b47 and curated in Geneious Prime v2019.0.448 by manually masking out the beginning and end 206 

regions with lots of gaps. Out of 206 MAGs, 177 containing > 4 RPs were used; the concatenated and 207 

curated 16RP-alignment (7741 aligned columns) was used for phylogenetic inference by IQTREE-208 

based maximum likelihood method (IQ-TREE multicore v1.6.349) with settings of “-m MFP -bb 1000 209 

-redo -mset WAG,LG,JTT,Dayhoff -mrate E,I,G,I+G -mfreq FU -wbtl”. The resulting phylogenetic 210 

tree was rooted by archaea lineages and visualized by iTOL50. Functional traits were added accordingly 211 

to each MAG on the tree. Bacterial and archaeal SSU sequences (> 300 bp and the longest from 212 

individual MAG) parsed out by local pipeline (use CheckM ssuFinder37 to pick and RefineM to filter 213 

erroneous hits) were aligned in SINA aligner51 with default settings. The 16S rRNA gene taxonomy 214 

was checked by BLASTn searches against the “SILVA_138_SSURef_NR99_tax_silva” database32 and 215 

16S rRNA gene sequences with resulting taxonomy different from their MAG phylogeny (at the 216 

phylum level) were filtered due to the high possibility of contamination. IQTREE-based49 phylogenetic 217 

inference was conducted with settings of “-st DNA -m MFP -bb 1000 -alrt 1000”. The 16S rRNA gene 218 

tree based on the alignment of 85 sequences with 50000 columns was rooted by archaea lineages, 219 

visualized by iTOL50, and manually curated. 220 

 221 

Metagenomic and metatranscriptomic read mapping 222 

QC-passed metagenomic reads were mapped to MAGs separately (metagenomic datasets from 223 

Guaymas Basin, Mid-Cayman Rise, and Lau Basin sites were mapped individually to the 224 

corresponding MAGs) using Bowtie 2 v2.2.8 with default settings34. MetaBAT integrated 225 

“jgi_summarize_bam_contig_depths” script and homemade Perl scripts were used to calculate MAG 226 

coverage (normalized coverage with each metagenomic dataset size set as 100M paired-end reads). 227 

QC-passed metatranscriptomic reads (use the same QC-process as described above with an additional 228 

SortMeRNA v2.152 rRNA filtering step) were mapped to MAGs separately, with TPM (Transcripts Per 229 

Kilobase Million) calculated for individual genes within each genome. 230 

 231 

Statistical comparison of abundances of MAGs and functional traits 232 

Metagenome/metatranscriptome-based MAG mapping results and functional annotations for all the 233 

MAGs were summarized individually. Afterwards, significance tests on the differentiation pattern of 234 

MAG (also MAG taxonomic group) and functional trait abundances across all the 235 

metagenomic/metatranscriptomic samples were calculated by the R package DESeq253. Log2 Fold 236 

Change value with adjusted p value (by nbinomWaldTest) < 0.05 was considered as significant. 237 

Relative abundances of MAG (also MAG taxonomic group) and functional traits were visualized by 238 

R (using R package ‘pheatmap’) with the relative abundance being row normalized by removing the 239 

mean (centering) and dividing by the standard deviation (scaling). Sunburst figures were generated to 240 

depict the relative abundance of MAGs based on metagenomic/metatranscriptomic mapping results, 241 

with the significant Log2 Fold Change values labeled to individual MAGs that have differential 242 

abundances between different hydrothermal ecological niches (e.g., plume and background). 243 

 244 

To find taxa in microbial communities that are responsible for enriched functions (functions that are 245 

significantly enriched in each environment), major functions (including functions that are in the 246 

categories of carbon fixation, denitrification, sulfur cycling, hydrogen oxidation, methane oxidation, 247 



aerobic oxidation, iron oxidation, and manganese oxidation), and specific functions, custom Perl 248 

scripts were written to get the corresponding microbial community contribution information (scripts 249 

deposited in https://github.com/AnantharamanLab/Hydrothermal_plume_omics_Zhou_et_al._2021). 250 

Functional trait results of all MAGs, MAG coverage within the community (all the MAGs included), 251 

and targeted function list were used as inputs to conduct the calculation. For environments with 252 

metatranscriptomic reads, we also used active MAG coverage (calculated by metatranscriptomic reads 253 

mapping result) as the input to calculate microbial community contribution information based on 254 

metatranscriptomes. 255 

 256 

Bioenergetic and thermodynamic modeling 257 

Equilibrium thermodynamic reaction path modeling was used to predict chemical concentrations and 258 

activity coefficients resulting from the mixing of seawater with end-member vent fluids 259 

(Supplementary Table 1). Our thermodynamic modeling builds on the specific plume model 260 

implementation described in Breier et al54. The estimated temperature of bottom seawater was sourced 261 

according to previous reports10. The original chemical data is derived from Reeves et al55 and 262 

Anantharaman et al10. For each hydrothermal vent system, we choose at least one representative end-263 

member fluid sample(s), respectively (1 for Guaymas Basin, 2 for Mid-Cayman Rise, and 3 for Lau 264 

Basin) (Supplementary Table 1).  265 

 266 

Bioenergetic and thermodynamic modeling procedures were conducted as described in Anantharaman 267 

et al7 and Li et al18 (More details refer to Supplementary Information and Tables). Reaction path 268 

modeling was performed with REACT, which is a part of the Geochemist’s Workbench package56. 269 

Conductive cooling was neglected and mixture temperatures were a strict function of conservative 270 

end-member fluid mixing. Precipitated minerals were allowed to dissolve and their constituents to re-271 

precipitate based on thermodynamic equilibrium constraints. Thermodynamic data were predicted by 272 

SUPCRT9557 for the temperature range of 2°C to end-member vent fluid temperature and a pressure 273 

of 500 bar. The estimated biomasses and free energies of individual environments were calculated and 274 

their relative abundance changes along the temperature range (2 - 121°C) was visualized by R. Two 275 

temperatures (3.0 and 4.9°C) were picked to conduct the biomass and free energy estimation for 276 

representing typical plume temperatures in nature. 277 

 278 

Energy contribution and MAG growth rate calculation   279 

Based on metabolic prediction of each MAG, MAG gene coverage, and expression level within each 280 

environment, energy contribution for each electron donor was calculated based on gene 281 

coverage/expression level and free energy of each catabolic reaction. The contribution ratio of electron 282 

donor species was calculated for individual samples respectively. We also included influence of the 283 

presence of electron acceptors to energy contribution calculation. To simplify the hydrothermal 284 

condition, we only included two major electron acceptors (O2 and NO3
-) and used the ratio of these 285 

two electron acceptors to infer energy contribution of electron donors at different oxidative conditions.  286 

 287 

Microbial genome replication starts directionally from a single origin58. Based on metagenomic 288 

mapping, at a single time-point the coverage ratio between the replicating origin and terminus of a 289 

microbial genome can be used as a proxy to represent the replication rate/growth rate59, 60. The growth 290 

rate for each MAG was calculated by iRep v1.1059 with default settings. MAGs that are from the same 291 

https://github.com/AnantharamanLab/Hydrothermal_plume_omics_Zhou_et_al._2021


environments were pooled together as the input genomes. Sam files that were generated by 292 

metagenomic mapping described above were used as the iRep input. Bar charts that reflect the growth 293 

rate and significant difference test result (by t-test) of MAG taxonomic groups were generated using 294 

R packages ‘ggplot2’ and ‘PairedData’.  295 

 296 

Network complexity analysis 297 

For each community, a bipartite network was built based on reaction/substrate relationships and the 298 

percent energy yields for each reaction. Briefly, the plume chemical reaction table for each reaction 299 

was stored; within the table, the substrate and product for a reaction were recorded61. Then, for each 300 

community, reactions (represented as one set of nodes in the bipartite network) with different percent 301 

energy yields were connected with substrates and products in the network (represented as the second 302 

set of nodes) via directed edges between both sets of nodes. The energy yields are based on the result 303 

from “Bioenergetic and thermodynamic modeling” and are represented on the network as node size 304 

proportional to the percent energy yield. These networks were constructed using the Python package 305 

‘networkx’62 (https://networkx.org/).   306 

 307 

The network complexity change as a function of reaction energy yield was calculated by the following 308 

steps63. For each plume community network, the complexity of the network’s structure was measured.  309 

A node was taken from the network; as a consequence, the change in complexity (ΔC) before and after 310 

the node was taken was calculated accordingly. The ΔC was assigned to that node as a property 311 

representing that node’s contribution to the network’s overall complexity. Then this node was placed 312 

back and these steps were repeated for each reaction node63. 313 

 314 

In this study, complexity (C) was calculated by estimating the algorithmic complexity. Because 315 

algorithmic complexity cannot be directly computed, we used an estimate known as the Block 316 

Decomposition Method (BDM)64. The perturbation analysis to calculate each node’s complexity 317 

contribution (ΔC) is called Minimal Information Loss Selection, MILS32; in this study, successive edge 318 

deletion was replaced as node deletion which also works with good performance33. This method has 319 

been used to characterize complex properties of biological networks and is proven to be a good 320 

measure among many other algorithms63, 64. For all reaction nodes in each community plume reaction 321 

network, we conducted this measurement for each reaction node and came up with the scatterplots.  322 

 323 

Community-level metabolic analysis 324 

MAGs and plume metagenomic reads were used to conduct community-level metabolic analysis using 325 

METABOLIC-C v4.065 with default settings. For Guaymas Basin, Mid-Cayman Rise, and Lau Basin 326 

sites, all MAGs and plume metagenomic reads from each site were used separately. From 327 

METABOLIC-C regular MW-score results, a group of metabolic cycling steps that are important in 328 

reflecting the plume substrate metabolisms were specifically selected to make functional network 329 

diagrams (using R script ‘draw_functional_network.R’ from METABOLIC-C). For each site, MW-330 

score table and functional network diagram (based on both all and selected metabolic steps) were 331 

generated, respectively.  332 

 333 

Evolutionary analyses 334 

Metagenomic reads from mesopelagic Tara Ocean metagenomic datasets (with > 800m depth)66 were 335 



used as the regular ocean environment representatives to compare microdiversity characteristics with 336 

that of hydrothermal environments from this study. To simplify analyses, Tara Ocean reads from 337 

samples collected by filtration with various filter sizes at each station were pooled as one to represent 338 

all reads from that station. Both Tara Ocean reads and hydrothermal environment reads (including 339 

both background and plume environments; background and plume reads were also pooled together 340 

individually to simplify analyses and satisfy coverage requirement of each MAG) from this study were 341 

first mapped to hydrothermal environment MAGs recovered from individual sites by Bowtie 234 with 342 

default settings. After mapping, reads within resulting bam files were filtered according to the 343 

following rules to calculate downstream microdiversity parameters: (1) minimum percent identity of 344 

read pairs to reference > 95%; (2) maximum insert size between two reads < 3× median insert size and 345 

minimum insert size > 50bp (so only paired reads are retained). Filtering steps were either conducted 346 

by inStrain v1.4.167 or inStrain_lite v0.4.068 (for generating bam files) with the same rules. The 347 

software inStrain was further employed to calculate microdiversity parameters for each MAG in 348 

individual sites from this study. Subsequently, interesting parameters67 were picked and parsed 349 

accordingly from resulting folders, including ‘coverage’ (average coverage depth of all scaffolds of 350 

one genome), ‘breadth minCov’ (percentage of bases in the scaffold that have at least ‘min_cov’ 351 

coverage), ‘SNV count / (breadth minCov × length)’ (total number of SNVs called on one genome 352 

normalized by genome length and breadth minCov), ‘N/S SNV ratio’ (nonsynonymous to synonymous 353 

SNV ratio of one genome), ‘r2_mean’ (R2 mean between linked SNVs), ‘con freq mean’ (mean value 354 

of fraction of reads supporting the consensus base within one genome), ‘con freq mean for N SNV’ 355 

(mean value of con freq on all nonsynonymous SNV sites), and ‘con freq mean for S SNV’ (mean 356 

value of con freq on all synonymous SNV sites). MAGs that have breadth_minCov value < 50% or do 357 

not pass the ‘min_cov’ requirement by inStrain were removed from microdiversity analysis in each 358 

site. 359 

 360 

In order to identify gene-specific selective sweeps in hydrothermal environment, we further pooled 361 

reads together into two categories, one contains hydrothermal environment datasets (including both 362 

background and plume environment datasets) and the other contains Tara Ocean samples (all Tara 363 

Ocean sample datasets were pooled together). After read mapping and filtering as described above, FST 364 

(fixation index) between hydrothermal and Tara Ocean environments was calculated using scikit-allel 365 

package69 (Hudson method70) within inStrain_lite to identify genes with skewed allele frequencies 366 

across the whole genome. Subsequently, high FST genes from each MAG within each hydrothermal 367 

vent site were identified if they have FST value > FST mean (genome-wide FST average) + 2.5 × FST std 368 

(genome-wide FST standard deviation) and the lowest gene coverage in either hydrothermal and Tara 369 

Ocean environment samples was higher than 5×. Meanwhile, for each genome the threshold for 370 

number of genes with empty FST value was specified to not be more than half of all genes, else high 371 

FST genes were not taken into account for this genome. We set gene coverage in both environments to 372 

be at least 5× due to the fact that reduction of gene coverage (or loss of coverage in some genome 373 

regions) can also lead to low nucleotide diversity. Furthermore, to confirm that these genes are 374 

specifically selected in hydrothermal environment, additional requirements were added: (1) gene 375 

nucleotide diversity in hydrothermal environment < nucleotide diversity genome average in 376 

hydrothermal environment; (2) gene N/S SNV ratio in hydrothermal environment > N/S SNV ratio 377 

genome average in hydrothermal environment; (3) gene nucleotide diversity in hydrothermal 378 

environment < gene nucleotide diversity in Tara Ocean samples; (4) gene N/S SNV ratio in 379 



hydrothermal environment > gene N/S SNV ratio in Tara Ocean samples.  380 

 381 

To find sulfur metabolizing genes that have signals of being fixed after migration, a relatively less 382 

stringent set of criteria were used to screen gene FST values compared to the high FST gene identification 383 

method in the above paragraph. For each sulfur metabolizing gene (including genes of sat, aprA, sdo, 384 

oxidative dsrAB, and soxBCY) containing MAGs, the identified genes needed to meet the following 385 

criteria: (1) FST value > FST mean (genome-wide FST average) and both FST and FST mean should be 386 

positive values; (2) gene nucleotide diversity in hydrothermal environment < gene nucleotide diversity 387 

in Tara Ocean samples; (3) gene N/S SNV ratio in hydrothermal environment > gene N/S SNV ratio 388 

in Tara Ocean samples; (4) gene coverages in hydrothermal environments and Tara Ocean samples 389 

both > 5×. Sulfur metabolizing genes that meet all the four criteria were indicated to have positive 390 

gene fixation signals though the selective power across the genome did not reach the level of gene-391 

specific selective sweeps as indicated by the above method. 392 

Results 393 

We used publicly available microbiome data from hydrothermal vent plumes across the globe to (1) 394 

define the core plume microbiome, (2) investigate plume microbiome structure, function, and activity, 395 

and (3) identify links between plume microbiomes and geochemistry. To investigate the core 396 

microbiome, we studied publicly available 16S rRNA gene datasets of hydrothermal plumes (n = 36) 397 

and background deep-sea samples (n = 11) from seven ocean basins across the globe. To study the 398 

microbiome structure, function, and activity, we reconstructed metagenome-assembled genomes 399 

(MAGs, n = 206) from three hydrothermal vent sites (containing both plume and background samples 400 

from Guaymas Basin, Mid-Cayman Rise, and Lau Basin). We also mapped paired metatranscriptomes 401 

from the same sites for some samples (Fig. 1, Fig. S1, and Supplementary Data 1). To study links 402 

between biogeochemistry and the microbiome, we analyzed paired geochemical data from the above 403 

three hydrothermal vent sites. To provide clarity on the plume and background samples and 404 

DNA/cDNA libraries used in this study, we have provided a schematic diagram describing the 405 

locations of all samples in the context of a hydrothermal vent system (Fig. S1). 406 

 407 

Defining the core hydrothermal plume microbiome 408 

To identify and study the core hydrothermal plume microbiome, we used 16S rRNA gene datasets from 409 

47 hydrothermal plume and background deep-sea samples spread across seven ocean basins 410 

(Supplementary Data 2). Biogeographic patterns were delineated by UniFrac metrics of distance and 411 

PCoA-based ordination. Sample location influenced biogeographic patterns more than sample 412 

characteristics (plume/background) (Fig. S2, S3). Unweighted UniFrac PCoA plots indicated that 413 

paired plume/background deep-sea samples within the same site were closely correlated (Fig. S3). As 414 

revealed previously2, 26, 29, this supports the understanding that microorganisms in hydrothermal 415 

plumes are primarily derived from surrounding seawater with dispersal limitation having little effects 416 

locally.  417 

 418 

We then identified genus-level taxa distributed in plumes with high prevalence and relative abundance. 419 

The core plume microbiome consists of 14 microbial groups (Fig. 1a, b) (see Materials and methods). 420 

Next, we characterized metabolic profiles for the core plume microbiome by selecting MAGs from 421 



this study that were affiliated with the same taxa (Fig. 1c). These organisms demonstrated highly 422 

versatile metabolic potential for utilizing various plume substrates2, including HS-, S0, H2, CH4, 423 

methyl-/C1 carbohydrates, arsenite, and iron (Fig. 1c). We discovered that the majority of the members 424 

of the core plume microbiome likely originated from seawater, which is consistent with previous 425 

reports26 (Supplementary Table 3). We also observed a small number of vent 426 

chimney/seafloor/subsurface dwelling and endosymbiotic microorganisms that might be entrained in 427 

plumes2, 71 (Supplementary Table 3). Collectively, our data suggest that sulfur and other reduced 428 

organic/inorganic compounds shape the global core plume microbiome.  429 

          430 

Sulfur-dominated geochemistry influences energy landscapes and promotes microbial 431 

growth 432 

Previous thermodynamic modeling analyses have reflected energy landscapes for various 433 

hydrothermal ecosystems4, 7, 10, 16 by representing free energy yields for reactions of various energy 434 

sources for microbial metabolism in hydrothermal fluids. These studies have shown that 435 

thermodynamic modeling and omics-based biogeochemical estimations are consistent in individual 436 

ecosystems7, 10, 16. Here based on geochemical parameters and functional profiles of MAGs (Fig. S4, 437 

S5, S6, and Supplementary Data 3, 4), we conducted an across-site comparison of thermodynamic 438 

modeling and omics-based biogeochemical estimations to observe and reflect the influences of 439 

distinctive plume geochemical characteristics on plume microorganisms. We also performed growth 440 

rate analyses to identify and characterize microbial energy contributors which are favored with faster 441 

growth rates in response to distinct plume geochemistries. We first used thermodynamic modeling to 442 

reconstruct plume energy landscapes. (Fig. 2a). Guaymas Basin plume energy sources were mainly 443 

attributed to sulfur, methane, and hydrogen. Sulfur dominated as the major energy source among Lau 444 

Basin plumes, while methane, Mn/Fe, and other energy sources likely play minor roles in microbial 445 

metabolism. Finally at Mid-Cayman Rise, two distinct patterns were observed. Plume energy sources 446 

at the Von Damm site were hydrogen, methane, and sulfur, while at the Piccard site, plume energy 447 

sources were primarily hydrogen and sulfur. 448 

 449 

When comparing among sites, distinct geochemical characteristics support the predicted energy 450 

landscapes. Specifically, energy sources that are prevalent at high concentrations frequently show high 451 

contributions to the energy landscape. Methane was the highest in end-member fluids from Guaymas 452 

Basin (63.4 mmol/kg)7, which supported the dominance of methane oxidation in the Guaymas Basin 453 

plume in the thermodynamic model (Fig. 2a); additionally, significant contributions of methane 454 

oxidation in metagenomics datasets of Guaymas Basin were also found (~40.5%) (Fig. 2b). Meanwhile, 455 

Lau Basin hydrothermal fluids had high Mn and Fe concentrations (Mn: 3.9-6.3 mmol/kg, Fe: 3.8-13.1 456 

mmol/kg)72, 73 in the Mariner hydrothermal field compared to other samples. This manifested in Fe and 457 

Mn oxidation contributing the highest fractions (Mn: ~4-5%, Fe: 13%) in thermodynamic modeling 458 

(Fig. 2a) and the highest fractions (Mn: 0.3-6.4%, Fe: 6.7-66.6%) in omics-based energy estimations 459 

of Mariner across all sites at Lau Basin (Fig. 2b). Similarly in Mid-Cayman Rise, high hydrogen 460 

concentrations in the vent fluids were associated with high contribution of hydrogen oxidation in the 461 

thermodynamic model and omics-based estimations (Fig. 2a, 2b, Supplementary Table 1). Overall, 462 

reduced sulfur was the primary energy source in all three sites, as evidenced by thermodynamic 463 

modeling and omics-based biogeochemical estimations. However, individual plume geochemical 464 

conditions, on the other hand, vary with several diverse minor energy sources such as iron, manganese, 465 



methane, and hydrogen, resulting in different energy landscapes mediated by microorganisms. 466 

 467 

To study whether microorganisms conducting biogeochemical transformations in each site were also 468 

growing actively, we predicted microbial growth rates from metagenomic data using iRep59. iRep can 469 

calculate the difference in read abundance between the origin and terminus of a genome, which is a 470 

proxy for the organism’s replication or growth rate58, 59, 60. Certain sites showed a consistent pattern 471 

that microorganisms depending on main energy sources in plumes such as sulfur have higher predicted 472 

growth rates. For instance, members of LS-SOB and Thiomicrospirales (previously SUP05 cluster as 473 

listed in Fig. 1; Thiomicrospirales in GTDB R83 or PS1 in GTDB R202) both had the capacities for 474 

sulfur and iron oxidation, and were predicted to have a higher growth rate than other microorganisms 475 

in the Guaymas Basin plume (Fig. 2c). Similarly, members of Methylococcales and Chromatiales had 476 

capacities for iron, methane, and sulfur oxidation in Lau Basin (Abe plume) and their growth rates 477 

were higher than other organisms (Fig. 2c). Manganese-oxidizing members of Marinimicrobia had a 478 

higher growth rate than other organisms in the Lau Basin Mariner plume, consistent with 479 

thermodynamic modeling-based and omics-based results that Mariner had the highest energy 480 

contributions from Mn oxidation among all ecosystems (Fig. 2). Collectively, we discovered a 481 

consistent pattern indicating that microorganisms depending on the primary energy sources in plumes 482 

have higher predicted growth rates, possibly as a result of their ability to respond to varying 483 

geochemistry in hydrothermal plumes. 484 

 485 

Consistency of links among geochemistry, function, and taxonomy 486 

MAGs reconstructed from hydrothermal vents in the Guaymas Basin, Mid-Cayman Rise, and Lau 487 

Basin, as well as corresponding omics-based profiling, allowed for taxonomic and functional 488 

comparisons across the three sites (Fig. S4, S5, S6, and Supplementary Data 3, 4). Across-site analyses 489 

of functional traits in MAGs showed that different functions were significantly enriched in different 490 

plumes in accordance with the underlying geochemistry, e.g., arsenate reduction and long-chain alkane 491 

(C6+) degradation in the Lau Basin; CO and methanol oxidation in the Mid-Cayman Rise; and toluene 492 

and benzene degradation in the Guaymas Basin (Fig. 1c, Fig. S7b). Consistent with the differentially 493 

enriched functions, the distribution and abundance of some microbial groups were also significantly 494 

enriched in the corresponding samples suggesting linkages between function, distribution, and 495 

abundance of microbial groups in plumes (Fig. S7a) Examples include arsenate reduction in 496 

background deep-sea samples from Lau Basin which was attributed to members of Bacteroidetes and 497 

Thiomicrospirales while the same function in Lau Basin plumes was attributed to only members of 498 

Thiomicrospirales. CO oxidation in Mid-Cayman plumes was attributed to members of Chloroflexi, 499 

and toluene and benzene degradation in Guaymas Basin plume were attributed to members of 500 

Methylococcales and Pseudomonadales (Supplementary Data 5). These observations are consistent 501 

with hydrothermal vent fluid geochemistry, e.g. Lau Basin hydrothermal vents have high arsenic end-502 

member concentrations74 (ranging from 2.1-11 μmol/kg) and Guaymas Basin fluids contain aromatic 503 

hydrocarbons (primarily benzene and toluene)75.  504 

 505 

As for within-site comparisons, the data indicated that the top three contributing taxa for major 506 

functions (including eight categories of carbon fixation, denitrification, sulfur cycling, hydrogen 507 

oxidation, methane oxidation, aerobic oxidation, iron oxidation, and manganese oxidation) are largely 508 

shared between plume and background deep seawater in Mid-Cayman Rise and Lau Basin, indicating 509 



functional consistency which was linked to taxonomy (Supplementary Data 5). Nonetheless, the 510 

abundance of taxa varied between plumes and the background deep sea (Supplementary Data 5, 6). It 511 

is possible that the differences in taxa underlie functional differentiation and they are both triggered 512 

by plume geochemical stimulus. For example, members of Thiomicrospirales are the major 513 

contributors to Rubisco form I-based carbon fixation, oxygen metabolism, nitrate/nitrite reduction, 514 

sulfur oxidation, and thiosulfate oxidation based on metatranscriptomic profiling, and these functional 515 

traits had higher expression in the Mid-Cayman Rise Von Damm plume compared to the background 516 

deep sea. Consistently, members of Thiomicrospirales have higher expression levels in Von Damm 517 

plume compared to the background (Fig. S8b, c, Supplementary Data 6, 7, and more evidence can be 518 

found within it). Our results suggest the adaptation of the plume microbiome to its local geochemical 519 

environment, and demonstrate the consistency of links between taxonomy, function, and geochemistry. 520 

 521 

Sulfur cycling drives microbial metabolism and metabolic interactions in hydrothermal 522 

plumes 523 

Building on our findings from both thermodynamic modeling and omics-based biogeochemical 524 

estimations which indicated the importance of sulfur-based metabolisms, we studied microbial 525 

metabolic interactions associated with sulfur cycling in all plumes. We recently developed a metric, 526 

metabolic weight score (MW-score)65 to measure the contribution of metabolic/biogeochemical steps, 527 

and their metabolic connectivity in a microbial community. More frequently shared functions and their 528 

higher abundances in a microbial community lead to higher MW-scores65. Both metagenomics and 529 

metatranscriptomic data for microbial communities in individual hydrothermal vent sites showed 530 

elemental sulfur oxidation to be the key reaction in the sulfur cycle (Fig. 3a). In each community, sulfur 531 

oxidation had the highest MW-score (Fig. 4b, Fig. S10). Major contributors (dsrAB and sdo containing 532 

MAGs) to sulfur oxidation varied across hydrothermal vent sites (Fig. 3b), indicating that core sulfur 533 

oxidizers can have distinct local distributions. Metabolic plasticity was observed in that some sulfur 534 

oxidizers had additional metabolic potential associated with utilizing various small carbon substrates 535 

and hydrogen, reducing nitrate/nitrite, and oxidizing iron/manganese/arsenite76 (Fig. 3c). Additionally, 536 

numerous connections of sulfur oxidation with other electron-transferring reactions were observed in 537 

the functional network (Fig. 4c, d, e, and Fig. S10). Previously, sulfur-oxidizing bacteria belonging to 538 

Thiomicrospirales  and SAR324 lineages were identified to have metabolic plasticity involving the 539 

ability to conduct hydrogen oxidation and nitrate reduction7, 77 (in the case of Thiomicrospirales) and 540 

alkane/methane/carbon monoxide oxidation17, 78 (in the case of SAR324), implying that plume 541 

microorganisms are optimized to mediate energy transformations depending on available electron 542 

donors and acceptors. Based on these findings, we posit that sulfur oxidizers are the primary group 543 

involved in energy scavenging using plume substrates. Sulfur oxidizers have metabolic plasticity that 544 

allows them to connect sulfur metabolism with other elemental transformations, and they contribute 545 

significantly to biogeochemical cycles in the deep sea. 546 

 547 

While sulfur oxidation connects other metabolic reactions in the overall functional network and has 548 

significant energy yields, its role in the overall network complexity, i.e., the impact of sulfur 549 

metabolism on overall plume microbial metabolism, remains elusive. To address this, we built 550 

networks based on reactions and the percent energy yields, and investigated reaction influence on 551 

network complexity61, 63, 64 (Fig. 4a, Fig. S11). The network of reactions works as a whole mechanism63. 552 

In the network, each reaction is one constitutional part. The high ΔC (complexity change) reactions 553 



are key features of the networks. Most of these ΔC values are positive except for two points (Fig. 4a, 554 

Fig. S11). This indicates that all but two of these reaction nodes drive the system away from 555 

randomness and significantly contribute to the complexity of the network as a whole63. Meanwhile, in 556 

general, it seems that most reactions that are closer to smaller ΔC have higher percent energy yields 557 

associated with their reactions (Fig. 4a, Fig. S11). This phenomenon suggests that reaction nodes that 558 

result in higher changes of percent energy yields are not necessarily contributing to the reaction 559 

network’s complexity the most. Overall, our results indicate that, while sulfur oxidation has higher 560 

energy yields, other reactions in plumes are also important components that cohesively contribute to 561 

the energy landscape. 562 

 563 

Low diversity, short migration history, and gene-specific sweeps in plume populations 564 

Metagenomes provide full repertoires of genomic variation and facilitate interpreting fine-scale 565 

evolutionary mechanisms67, 79, 80. Here, we used Tara Ocean metagenomic datasets66 from the 566 

mesopelagic oceans to compare metagenomes from hydrothermal plume environments to the wider 567 

pelagic oceans and study the population genetic diversity of each MAG (Supplementary Data 10). We 568 

discovered that a large proportion of MAGs had a similar tendency in terms of normalized single 569 

nucleotide variation (SNV) counts, nonsynonymous/synonymous SNV substitution ratio (N/S SNV), 570 

and genome-wide mean R2 (Fig. 5a and Supplementary Data 11). Hydrothermal plumes have a lower 571 

SNV count than Tara Ocean samples, a higher N/S SNV ratio, and a higher mean R2 than Tara Ocean 572 

samples. This suggests that in the plume: (1) Fewer SNVs are present, and population diversity is 573 

lower; (2) The population is younger with a short migration history. The higher N/S SNV ratio 574 

indicates that younger populations are less subjected to purifying (negative) selection to remove 575 

deleterious mutations; (3) The population is less subjected to recombination. The higher mean R2 576 

reflects higher SNV linkage frequency at the genome-wide scale, indicating a lower recombination 577 

rate among population members.  578 

 579 

We also looked into the fine-scale evolutionary parameters to investigate potential signals of 580 

genome/gene sweeps. Consensus base frequency (abbreviated as con freq, frequency of reads 581 

supporting the consensus base), con freq for nonsynonymous SNV, and con freq for synonymous SNV 582 

at the genome-scale level all showed no significant differences (Supplementary Data 11). This 583 

indicates that these populations are unlikely to have undergone selective genome sweeps and clonal 584 

expansion during migration. We calculated the fixation index FST
81 based on gene allele frequencies 585 

between these two environments (Fig. 5b and Supplementary Data 12) to investigate environmental 586 

selection. High FST genes are potential loci where selective pressures act on and they indicate 587 

adaptation for microbes after migrating to new niches68. Further stringent criteria require lower gene 588 

nucleotide diversity and higher N/S SNV ratio (Fig. 5b and Supplementary Data 12). Decreases of 589 

nucleotide diversity indicate gene-specific selective sweep in the hydrothermal environment and 590 

higher N/S SNV ratios suggest that these genes underwent a recent selection compared to the genome 591 

average and their counterpart genes in Tara Ocean samples. Amongst 260 identified high FST genes 592 

using our stringent criteria, many of them involved transporters, aerobic oxidation, and stress responses 593 

(Fig. 5b and Supplementary Data 12). Transporters were associated with diverse substrates, e.g., metals 594 

(Co, Fe, and Mg), amino acids, Na+/H+, anions (nitrate/sulfonate/bicarbonate), carbohydrates 595 

(ribose/xylose/arabinose/galactoside), and aliphatic polyamines (spermidine/putrescine); meanwhile, 596 

these transporters were associated with many transporter families (Supplementary Data 12), including 597 



ABC superfamily, tripartite ATP-independent periplasmic (TRAP) family, tripartite tricarboxylate 598 

transporter (TTT) family, and others. This suggests that gene-specific selection sweeps have important 599 

impacts on nutrient uptake, aerobic oxidation on substrates for higher energy yields, and stress 600 

responses. 601 

 602 

Given the observed importance of sulfur metabolism in plumes, we focused on the 238 identified sulfur 603 

metabolism genes. With FST values higher than the genome average, 23 of these genes showed signs 604 

of being fixed after migration (Fig. 5c and Supplementary Data 13). These genes were associated with 605 

sulfur oxidation, thiosulfate oxidation, and sulfite oxidation/sulfate reduction (sat, aprA, sdo, oxidative 606 

dsrAB, and soxBC) (Supplementary Data 13). This demonstrates that, despite not reaching the level of 607 

gene-specific selection sweeps, these sulfur metabolizing genes were still being selected across the 608 

genome. Overall, this suggests a genetic adaptation to a sulfur-dominated environment after migration. 609 

An underlying evolutionary paradigm can be outlined from our population-level microdiversity 610 

analyses (Fig. 5d). As microbes enter the hydrothermal plume, some groups are selected for, and thrive 611 

due to substrates provided locally. This promotes the growth of specific populations; meanwhile, 612 

constraints in the plume environment cause selection effects and reduce the diversity of the population 613 

majority. Higher N/S SNV indicates that these are young populations growing in the plume, with the 614 

higher growth rates arising from them consuming primary energy sources such as reduced sulfur 615 

compounds. Gene-specific sweeps (and selected genes involving sulfur metabolism) indicate local 616 

adaptation to the plume environment and change the genetic structures of populations after migration. 617 

Plume microbial populations are still in the early stage of evolution; as time goes on, we predict that 618 

mutations will progressively accumulate and deleterious SNVs will be gradually purged. 619 

Discussion 620 

Sulfur oxidation is the major energy-yielding reaction in hydrothermal plumes. On one hand, it 621 

significantly shapes taxonomy, function, and energy landscapes across three hydrothermal vent sites. 622 

On the other hand, we observed that distinctive plume geochemistry also influences the energy 623 

landscape across the three sites4, 73. For instance, other important energy sources, such as methane and 624 

hydrogen, also have important roles in the energy landscape of hydrothermal plumes. This highlights 625 

the notion of the decisive role of geochemistry on the local energy landscape, especially for plume 626 

environments, in which the primary production sources solely come from the substrates entrained in 627 

hydrothermal fluids. The existence of a core plume microbiome that was defined in this study indicates 628 

that a general biogeochemical feature – energy and substrate supply – within hydrothermal plumes 629 

supports the growth of these globally dispersed cosmopolitan microorganisms. As a result, the core 630 

plume microbiome is most likely the result of a sulfur oxidation-based energy landscape shared by 631 

hydrothermal plumes worldwide. We observed increased taxa abundance and higher growth rates of 632 

major energy contributing taxa in plume environments. This supports the interpretation that 633 

microbiomes respond to geochemically influenced energy landscapes, with some taxa being fueled by 634 

plume substrates.  635 

 636 

The above analyses support the theory of an ocean seed bank origin of the hydrothermal plume 637 

microbiome82. In plume environmental settings, geochemistry defines the substrate and energy 638 

availability, serving as a key control on the microbiome distribution and abundance2, 9. In this scenario, 639 

certain microorganisms will be promoted by the environment as a result of the mechanisms of 640 



adaptation, and in return, the structure and function of microbial communities are reflections of local 641 

environmental conditions. Further, the consistent taxonomy-function-geochemistry links demonstrated 642 

by us suggest that omics-based profiling that reflects the entire genetic and functional repertoire of 643 

plume microorganisms can be a powerful tool for unraveling the relationship between environment 644 

and microbiome. 645 

 646 

Characterization of sulfur metabolism in plumes reveals that, while sulfur oxidation is the reaction 647 

with the highest MW-score in all plumes, and sulfur-oxidizing genes are highly expressed, the major 648 

populations contributing to these processes (dsrAB and sdo containing MAGs) differ between 649 

hydrothermal vent sites. These findings are analogous and similar to observations made by us in 650 

another recent study investigating hydrothermal vent chimneys from sites across the world83. In these 651 

systems, sulfur oxidizing members of Gammaproteobacteria and Campylobacterota were associated 652 

with similar ecological guilds and seldom cooccurred, rather their prevalence in a particular site was 653 

driven by shifts in geochemistry. Broadly, this demonstrates the variable composition of core sulfur 654 

oxidizers in different environments, implying the endemicity of microbial community structure. Core 655 

sulfur oxidizers can be derived from the pelagic ocean through stochastic processes that can be 656 

influenced by dormancy capacity to provide resilient seed microbes, ocean currents to overcome 657 

dispersal limitations, and adaptive strategies to nutrient and temperature fluctuations2. Core members 658 

of the plume microbiome derived in this manner likely thrive under favorable geochemical conditions84. 659 

For example, Pseudomonadales, Thiomicrospirales, and SAR324 are members of the core plume 660 

microbiome, but are also known to be abundant cosmopolitan bacteria in the pelagic oceans. These 661 

microorganisms can be distributed as seed banks in the global oceans, triggered by plume sulfur 662 

substrates, and subsequently become active sulfur oxidizers and thrive in hydrothermal plumes9, 84.  663 

 664 

Sulfur oxidizing microorganisms in the community have metabolic plasticity that allows them to 665 

connect with other energy transformation activities, e.g., small carbon substrate utilization, 666 

nitrate/nitrite reduction, iron/manganese/arsenite oxidation, and others. This indicates that sulfur and 667 

other energy sources can be simultaneously utilized for energy conservation by sulfur oxidizers in 668 

various plume environments with different energy landscapes. At the same time, as described in our 669 

network complexity analysis, though sulfur oxidation dominates in energy generation, other reactions 670 

are also important components in the metabolic network connected to sulfur oxidation, and cohesively 671 

contribute to the energy landscape. Sulfur oxidizers mediate the most important energy scavenging 672 

reaction of elemental sulfur oxidation as well as other reactions playing a role in energy conservation 673 

depending on the local environment; this reflects strategies employed by the plume microbiome for 674 

comprehensive utilization of energy sources and adaptation to plume geochemical conditions.  675 

 676 

The microdiversity patterns observed in plume microorganisms represent a population selection 677 

scheme based on environmental constraints. Low population diversity and high N/S SNV ratio indicate 678 

that microbes are selected by plume conditions and actively grow after a short migration history. 679 

Evidence shows that gene-specific sweeps within certain plume populations are involved with nutrient 680 

uptake, aerobic oxidation, and stress responses, and some sulfur metabolizing genes are also selected 681 

during the environmental change. These traits help microbial cells to be more adaptable and resilient 682 

in sulfur oxidation-dominated hydrothermal plume conditions. Population alteration in plumes 683 

compared to the background deep sea involves both the reshaping of community-level structure and 684 



fine-scale strain-level genetic adjustments that include advantageous metabolisms being fixed. These 685 

nuanced microdiversity changes can lead to fundamental shifts in population fitness toward niche 686 

adaptation. Collectively, the plume microbiome has a distinctive composition, function, and population 687 

genetic structure compared to background seawater allowing microorganisms to better adapt to 688 

hydrothermal plume conditions. We also demonstrated that plumes exhibit both universal 689 

characteristics shared by diverse plumes and specific characteristics unique to each plume. As the 690 

environment and associated geochemistry change, the microbiome community and function shift 691 

accordingly. The linked relationship between microbiome and biogeochemistry that we demonstrated 692 

in this study reflects the overall ecological and evolutionary basis of microbial strategies for thriving 693 

in geochemically rich energy landscapes. 694 
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Figure Captions 988 

Fig. 1 Sampling sites, distribution, and metabolic profile of the core plume microbiome. a 989 

Sampling site maps of hydrothermal plume samples from which the 16S rRNA gene datasets were 990 

sourced. Numbers in brackets indicate dataset quantities. Three hydrothermal sites that have 991 

metagenome and metatranscriptome datasets in this study were specifically represented by inset maps. 992 

Ocean maps were remodified from ArcGIS online map (containing layers of “World Ocean Base” and 993 

“World Ocean Reference”; https://www.arcgis.com/). b Membership and distribution of the core plume 994 

microbiome. Heatmap shows the presence/absence of core plume microbial groups (tracing back to 995 

known taxonomic ranks from the genus-level taxa) in 36 hydrothermal plume 16S rRNA gene datasets 996 

across the world. c Metabolic profile of the core plume microbiome. From this study, MAGs that have 997 

16S rRNA genes affiliated to the core plume microbiome were used as representatives (numbers 998 

labeled in brackets). This subpanel shows the presence or absence of metabolic potential associated 999 

with sulfur, carbon, nitrogen, hydrogen, and metal biogeochemical transformations. 1000 

 1001 

Fig. 2 Thermodynamic estimation of available free energies and biomass yields from electron 1002 

donors, metagenomics-based contribution of electron donors to energy, and growth rates of 1003 

microorganisms depending on primary energy sources. a Thermodynamic estimation diagram of 1004 

available free energy and biomass. For each hydrothermal environment, the contribution fraction of 1005 

each electron donor species was labeled accordingly in the rings. The total available free energies and 1006 

biomass were labeled accordingly to individual plumes. Two temperatures (3.0°C and 4.9°C) were 1007 

picked to represent in situ temperatures in the upper and lower plume. Light yellow represents 1008 

anaerobic sulfur oxidation, dark yellow represents aerobic sulfur oxidation. Detailed data and 1009 

estimation diagrams are provided in Fig. S9 and Supplementary Data 8. b Metagenomics-based 1010 

estimation of energy contribution. Energy contribution for each electron donor was calculated based 1011 

on metagenomic abundance of each reaction of electron donors and free energy yield of each reaction. 1012 

The contribution ratio of electron donor species was calculated for individual environments 1013 

respectively. For detailed results refer to Supplementary Data 9. c Growth rate of microorganisms 1014 

depending on main energy sources in each hydrothermal environment. The y-axis for each barplot 1015 

indicates the replication rate. The microbial groups starting with “α-”, “γ-”, and “δ-” represent 1016 

Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, respectively. Plume microbial 1017 

groups were colored by dark yellow, background microbial groups were colored by light yellow and 1018 

they were also all labeled with “(P)” or “(B)”, respectively. Numbers in brackets indicate MAG 1019 

numbers in each microbial group. Star-labeled plume microbial groups had higher growth rates than 1020 

the “Rest” plume microbial groups. 1021 

 1022 

Fig. 3 Sulfur metabolism and metabolic plasticity of sulfur oxidizers. a Details of sulfur 1023 

metabolism pathways in the hydrothermal plume. The gene abundance (coverage normalized by 100M 1024 

reads) and transcript expression level (TPM) for each step were calculated based on plume 1025 

metagenomic and metatranscriptomic read mapping results. The metagenomic mapping was conducted 1026 

separately within individual hydrothermal sites; the metagenomic reads from Guaymas Basin, Mid-1027 

Cayman Rise, and Lau Basin sites were mapped individually to the MAGs reconstructed from the 1028 

corresponding sites. Log10-transformed values of gene abundance and transcript expression level were 1029 

labeled accordingly in the diagram. b Major contributors to sulfur metabolizing genes. For each sulfur 1030 

https://www.arcgis.com/home/index.html


metabolizing gene, microbial groups that occupied > 10% of the total gene abundance (by metagenome) 1031 

or transcript expression (by metatranscriptome) values were labeled in the diagram. For some genes 1032 

with only three or less than three contributors, all contributors were labeled. c Metabolic plasticity of 1033 

sulfur oxidizers. For each hydrothermal vent site, three parameters were given to show the metabolic 1034 

plasticity of sulfur oxidizers in conducting each electron transferring reaction related to carbon, 1035 

nitrogen, hydrogen, and metal biogeochemical cyclings: the number of sulfur-oxidizing gene 1036 

containing MAGs, gene abundance percentage, and transcript abundance percentage. The 1037 

metagenomic/metatranscriptomic mapping was conducted by combining MAGs from each 1038 

hydrothermal vent site for the analyses described within this figure. 1039 

 1040 

Fig. 4 Network complexity, MW-scores (metabolic weight scores), and functional network 1041 

diagrams of the three hydrothermal vent sites. a Network complexity diagram representing each 1042 

reaction’s influence on the complexity of the network. In the figure, different colors represent different 1043 

hydrothermal environments, different symbol shapes represent different reactions. The substrates 1044 

(including electron donors and acceptors) were listed for each reaction in the legend. The x-axis is the 1045 

change in complexity (ΔC) of the whole network for a node (a reaction here) and the y-axis is the 1046 

percent energy yield of that reaction in the whole community. This network complexity diagram was 1047 

based on thermodynamic estimation results at 3.0°C. b MW-scores of three major energy contributing 1048 

reactions. c Functional network diagram of Guaymas Basin. d Functional network diagram of Mid-1049 

Cayman Rise. e Functional network diagram of Lau Basin. A group of metabolic cycling steps that 1050 

are important in reflecting the plume substrate metabolisms were selected from METABOLIC-C 1051 

regular MW-score results to make these functional network diagrams (c, d, e), respectively. In each 1052 

functional network diagram, the size of a node is proportional to gene coverage associated with the 1053 

metabolic/biogeochemical cycling step. The thickness of the edge represents the average gene 1054 

coverage values of the two connected metabolic/biogeochemical cycling steps. Edges related to two 1055 

reactions of sulfur oxidation were colored accordingly in each diagram. 1056 
 1057 

Fig. 5 Evolutionary mechanism of plume microbial populations during migration. a Schematic 1058 

diagram showing the changing trend of microdiversity parameters during migration. Individual solid 1059 

dots with various colors represent microbial populations. Two scenarios were depicted in this panel: 1060 

unrepresentative strains and strains that have detectable read mapping results in both environments. b 1061 

Two representative charts showing FST distribution in MAGs that contain high FST genes. In each chart, 1062 

the x-axis represents gene numbers (only genes with detectable FST; negative values were removed). 1063 

Dot sizes were proportional to SNV numbers in individual genes, and FST genome-wide mean was 1064 

depicted in each chart with dash lines. Red-colored dots represent high FST genes that also passed the 1065 

requirements of FST, nucleotide diversity, N/S SNV ratios, and coverages (see methods). The 1066 

nucleotide diversity and N/S SNV ratio distribution for high FST genes and genome-wide mean of all 1067 

genes in different environments were depicted in the chart on the right side. Details of high FST genes 1068 

and related parameters in individual genomes (all hits, also including these two representative genomes) 1069 

were listed in Supplementary Data 12. c Two representative charts showing FST distribution in MAGs 1070 

that contain sulfur metabolizing genes with signals of being fixed. In each chart, the x-axis represents 1071 

gene numbers (only genes with detectable FST; negative values were removed). Dot sizes were 1072 

proportional to SNV numbers in individual genes, and FST genome-wide mean was depicted in each 1073 

chart with dash lines. Red-colored dots represent sulfur metabolizing genes that passed the 1074 

requirements of FST, nucleotide diversity, N/S SNV ratios, and coverages (see methods). The 1075 



nucleotide diversity and N/S SNV ratio distribution for sulfur metabolizing genes in different 1076 

environments were depicted in the chart on the right side. Details of sulfur metabolizing genes with 1077 

signals of being fixed and related parameters in individual genomes (all hits, also including these two 1078 

representative genomes) were listed in Supplementary Data 13. d Frame diagram showing the 1079 

underlying evolutionary processes during migration. Circles represent microbial populations. Dash 1080 

line arrows indicate the direction of the next evolutionary step. 1081 


