MINIMUM CUTS IN SURFACE GRAPHS*
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Abstract. We describe algorithms to efficiently compute minimum (s, t)-cuts and global minimum cuts of undirected surface-embedded
graphs. Given an edge-weighted undirected graph G with n vertices embedded on an orientable surface of genus g, our algorithms can solve
either problem in g%®)nloglogn or 2°®nlogn time, whichever is better. When g is a constant, our g°®)nloglogn time algorithms match
the best running times known for computing minimum cuts in planar graphs.

Our algorithms for minimum cuts rely on reductions to the problem of finding a minimum-weight subgraph in a given Z,-homology class,
and we give efficient algorithms for this latter problem as well. If G is embedded on a surface with genus g and b boundary components, these
algorithms run in (g + b)°€*Pnloglogn and 2°¢*P)nlogn time. We also prove that finding a minimum-weight subgraph homologous to a
single input cycle is NP-hard, showing it is likely impossible to improve upon the exponential dependencies on g for this latter problem.

1. Introduction. Planar graphs have been a natural focus of study for algorithms research for decades,
both because they accurately model many real-world networks, and because they often admit simpler and/or
more efficient algorithms for many problems than general graphs. Most planar-graph algorithms either apply
immediately or have been quickly generalized to larger families of graphs, such as graphs of higher genus, graphs
with forbidden minors, or graphs with small separators. Examples include minimum spanning trees [94, 104];
single-source and multiple-source shortest paths [20,48,53,73,85,86,92,116]; graph and subgraph isomorphism
[43,44,64,75,96]; and approximation algorithms for the traveling salesman problem, Steiner trees, and other
NP-hard problems [10,12,13,17,37,44,62].

The classical minimum cut problem and its dual, the maximum flow problem, are stark exceptions to this
general pattern. Flows and cuts were introduced in the 1950s as tools for studying transportation networks, which
are naturally modeled as planar graphs [68]. Ford and Fulkerson’s seminal paper [55] includes an algorithm
to compute maximum flows in planar networks where the source and target lie on the same face. A long series
of results eventually led to planar minimum-cut algorithms that run in near-linear time, first for undirected
graphs [58,70,78,106] and later for directed graphs [73,79,99].

In contrast, prior to our work, almost nothing was known about computing minimum cuts in even mild
generalizations of planar graphs; in particular, except for the work reported in this paper, we are unaware of any
algorithm to compute minimum-cuts in non-planar graphs that does not require first computing a maximum flow.

This paper describes the first algorithms to compute minimum cuts in surface-embedded graphs of fixed genus
in near-linear time. Specifically, we describe two algorithms to compute minimum (s, t)-cuts in undirected surface
graphs, the first in g°®nloglogn time, and the second in 2°(®)nlogn time. We also extend our algorithms to find
global minimum cuts in undirected surface graphs in the same asymptotic time bounds. For all our algorithms,
the input consists of an undirected n-vertex graph, with arbitrary positive real edge weights, embedded on an
orientable surface of genus g. (Some of our results do generalize to non-orientable surfaces; we will mention
these generalizations in context.)

Our algorithms are based on a natural generalization of the duality between cuts and cycles in planar graphs,
first proposed by Whitney [119] and first exploited to compute minimum cuts in planar graphs by Itai and
Shiloach [77]. A set C of the edges crossing a nontrivial partition (S, T) of V is an (s, t)-cutifs€Sand t € T. If G
is embedded on a surface, then the corresponding edges C* in the dual graph G* separate the faces of G* into two
disconnected subcomplexes, one containing the dual face s* and the other containing the dual face t*.
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Computational Geometry [27], the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms [50], and the 24th Annual ACM-SIAM
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2 Minimum cuts in surface graphs

We formalize this characterization in terms of homology, a standard equivalence relation from algebraic
topology; specifically, we use cellular homology with coefficients in Z,. Briefly, two subgraphs of a surface graph
are homologous, or in the same homology class, if and only if their symmetric difference is the boundary of a
subset of faces. In light of this characterization, finding minimum (s, t)-cuts in surface graphs becomes a special
case of finding the minimum-weight subgraph of a surface graph in a given homology class. Indeed, both of
our algorithms for computing minimum (s, t)-cuts solve this more general problem, which is sometimes called
homology localization [31,32].

Unlike in planar graphs, where every minimal cut is dual to a simple cycle [119], the dual of a minimum cut
in a surface graph may consist of several disjoint cycles. More generally, the minimum-weight subgraph in any
homology class may be disconnected, even when the homology class is specified by a simple cycle; see Figure 2.5.
Dealing with disconnected “cycles” is a significant complication in our algorithms.

Before describing our results in further detail, we first review several related results; technical terms are more
precisely defined in Section 2.

1.1. Past results.

Minimum cuts in planar graphs. For any two vertices s and t in a graph G, an (s, t)-cut is a subset of the
edges of G that intersects every path from s to t. A minimum (s, t)-cut is an (s, t)-cut with the smallest number of
edges, or with minimum total weight if the edges of G are weighted.

Minimum cuts in planar graphs were already studied by Ford and Fulkerson [55], who observed that when s
and t lie on a common face of a planar graph G, the minimum (s, t)-cut is dual to a shortest path in the dual
graph G*. It follows immediately that the minimum (s, t)-cut in such a graph can be computed in O(nlogn)
time using Dijkstra’s algorithm [77]; Hassin [69] showed that the maximum (s, t)-flow can be computed in O(n)
additional time.

Itai and Shiloach [77] generalized Ford and Fulkerson’s observation to arbitrary planar networks. They showed
that the minimum (s, t)-cut in any planar graph G is dual to the minimum-cost cycle that separates faces s* and t*
in G*, and moreover that this separating cycle intersects any shortest path from a vertex of s* to a vertex of t*
exactly once. Thus, one can compute the minimum (s, t)-cut by slicing the dual graph G* along a shortest path ¢
from s* to t*; duplicating every vertex and edge of 7; and then computing, for each vertex u of 7, the shortest
path between the two copies of u in the resulting planar graph. Applying Dijkstra’s shortest-path algorithm at each
vertex of 7t immediately yields a running time of O(n?logn).

Reif [106] improved the running time of this algorithm to O(nlog?n) using a divide-and-conquer strategy.
Reif’s algorithm was extended by Hassin and Johnson to compute the actual maximum flow in O(nlogn) additional
time, using a carefully structured dual shortest-path computation [70]. The running time was improved to
O(nlogn) by Frederickson [58], and more recently to O(nloglogn) by Italiano et al. [78], by using a balanced
separator decomposition to speed up the shortest-path computations.

Janiga and Koubek [79] attempted to adapt Reif’s O(nlog® n)-time algorithm to directed planar graphs;
however, their algorithm has a subtle error [80] which may lead to an incorrect result when the minimum (t, s)-cut
is smaller than the minimum (s, t)-cut.

Henzinger et al. [73] generalized Frederickson’s technique to obtain an O(n)-time planar shortest-path
algorithm; using this algorithm in place of Dijkstra’s algorithm improves the running times of both Reif’s and
Janiga and Koubek’s algorithms to O(nlogn). The same improvement can also be obtained using more recent
multiple-source shortest path algorithms by Klein [86]; Cabello, Chambers, and Erickson [20]; and Erickson, Fox,
and Lkhamsuren [48].

Minimum (s, t)-cuts in directed planar graphs can also be computed in O(nlogn) time using the planar
maximum-flow algorithms of Weihe [118] (after filtering out useless edges [52]) and Borradaile and Klein [8,14,15].

A cut (without specified s and t) is a subset of edges of G that separate G into two non-empty sets of vertices. A
global minimum cut is a cut of minimum size, or minimum total weight if the edges of G are weighted. Equivalently,
a global minimum cut is an (s, t)-minimum cut of smallest total weight, minimized over all pairs of vertices s
and t. Chalermsook, Fakcharoenphol, and Nanongkai [24] gave the first algorithm for computing global minimum
cuts that relies on planarity; their algorithm runs in O(nlog®n) time. Their algorithm was improved by Lacki and
Sankowski [88] who achieved an O(nloglogn) running time. Mozes et al. recently achieved the same O(nloglogn)
running time for global minimum cuts in directed planar graphs [100], using techniques reported in a preliminary
version of the current paper [50], specifically, the Z,-homology covers described in Section 5.
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Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 3

Generalizations of planar graphs. Surprisingly little is known about the complexity of computing maximum
flows or minimum cuts in generalizations of planar graphs. In particular, we know of no previous algorithm to
compute minimum cuts in non-planar graphs that does not first compute a maximum flow.

By combining a technique of Miller and Naor [97] with the planar directed flow algorithm of Borradaile and
Klein [8,14,15,46], one can compute maximum (single-commodity) flows in a planar graph with k sources and
sinks in O(k?nlogn) time. More recently, Borradaile et al. [16] described an algorithm to compute maximum flows
in planar graphs with an arbitrary number of sources and sinks in O(nlog® n) time. An algorithm of Hochstein
and Weihe [74] computes maximum flows in planar graphs with k additional edges in O(knlogn) time, using a
clever simulation of Goldberg and Tarjan’s push-relabel algorithm [61]. Borradaile et al. [16] extend Hochstein
and Weihe’s framework to compute maximum flows in planar graphs with k apices in O(k®*nlog®n) time.

Chambers and Eppstein [26] describe an algorithm to compute maximum flows in O(nlogn) time if the
input graph forbids a fixed minor that can be drawn in the plane with one crossing. Another related result is the
algorithm of Hagerup et al. [66] to compute maximum flows in graphs of constant treewidth in O(n) time.

Imai and Iwano [76] describe a max-flow algorithm that applies to graphs of positive genus, but not to arbitrary
sparse graphs. Their algorithm computes minimum-cost flows in graphs with small balanced separators, using a
combination of nested dissection [92,103], interior-point methods [117], and fast matrix multiplication. Their
algorithm can be adapted to compute maximum flows (and therefore minimum cuts) in any graph of constant
genus in time O(n'>*®log C), where C is the sum of integer edge weights. However, this algorithm is slower than
more recent and more general algorithms [41,60].

Chambers, Erickson, and Nayyeri [28] describe maximum flow algorithms that are tailored specifically for
graphs of constant genus. Given a graph embedded on an orientable surface of genus g, their algorithms compute a
maximum flow in O(g®nlog? nlog?® C) time where C is the sum of integer edge weights and in g®&n®? arithmetic
operations when edge weights are arbitrary positive real numbers. Their key insight is that it suffices to optimize
the homology class (with coefficients in R) of the flow, rather than directly optimizing the flow itself.

Euler’s formula implies that a simple n-vertex graph embedded on a surface of genus O(n) has O(n) edges. The
fastest known combinatorial maximum-flow algorithm for sparse graphs, due to Orlin [102], runs in O(n?/logn)
time. The fastest algorithm known for sparse graphs with small integer capacities, due to Goldberg and Rao [60]
and Lee and Sidford [90], run in time O(n®? polylog(n, U)), where U is an upper bound on the integer edge
weights. Madry [93] describes a faster algorithm for unit capacity graphs that runs in O(n'%? polylog n) time when
the graph is sparse.

The fastest algorithm known to compute global minimum cuts in arbitrary weighted undirected graphs is a
Monte Carlo randomized algorithm of Karger [81], which runs in O(mlog® n) time but fails with small probability.
A more recent deterministic algorithm of Henzinger, Rao, and Wang [72], based on breakthrough techniques of
Kawarabayashi and Thorup [82,83], computes global minimum cuts in unweighted graphs in O(mlog? nlog®logn)
time. The fastest deterministic algorithms known for global minimum cuts in arbitrary weighted graphs run in
O(nm + n?logn) time for undirected graphs [57,101,113] and in O(mnlog(n?/m)) time for directed graphs [67].

For further background on maximum flows, minimum cuts, and related problems, we refer the reader to
monographs by Ahuja et al. [2] and Schrijver [110].

Optimal homology representatives. Homology is a topological notion of equivalence with nice algebraic
properties. Two subgraphs of a surface graph G are homologous, or in the same homology class, if their difference is
the sum of face boundaries, where summation is defined over some coefficient ring. Our minimum-cut algorithms
all reduce to the problem of finding a subgraph of minimum weight in a given homology class (over the ring Z,).
Several authors have considered variants of this problem, which is often called homology localization.

Most interesting variants of homology localization are NP-hard. Chambers et al. [25] prove that finding the
shortest splitting cycle is NP-hard; a cycle is splitting if it is non-self-crossing, non-contractible, and null-homologous.
A simple modification of their reduction (from Hamiltonian cycle in planar grid graphs) implies that finding the
shortest simple cycle in a given homology class is NP-hard. Chen and Freedman [30,31] proved a similar hardness
result for general simplicial complexes; however, the complexes output by their reduction are never manifolds.
Recently, Grochaw and Tucker-Foltz [63] proved that homology localization in surface graphs, over a sufficiently
large finite coefficient ring, is equivalent to Unique Games; in particular, there is no PTAS for any finite coefficient
ring unless the Unique Games Conjecture is false.

On the other hand, for homology with real or integer coefficients, homology localization in surface graphs is
equivalent (via duality) to a minimum-cost flow problem and hence can be solved in polynomial time [28,114].
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4 Minimum cuts in surface graphs

Chambers et al. [28] describe an algorithm to find optimal circulations in a given homology class in near-linear
time, given a graph with integer coefficients on an orientable surface of fixed genus. Sullivan [114] and Dey
et al. [38] prove similar results for higher-dimensional orientable manifolds.

1.2. New results and organization. In Section 3, we describe two techniques to preprocess a graph on a
surface with boundary, so that the homology class of any subgraph can be computed quickly. These are both natural
generalizations of known methods for measuring homology in surfaces without boundary based on tree-cotree
decompositions [25,45,51]. In particular, we describe how to construct a system of arcs—a collection of O(g + b)
boundary-to-boundary paths that cut the surface into a disk—in O((g + b)n) time. This generalization is essential
for our algorithms, as our dual homology characterization of minimum (s, t)-cuts removes the dual faces s* and t*,
leaving a surface with two boundary components.

Intuitively, the homology class of any cycle is determined by its pattern of crossings with any system of arcs, and
the homology class of more complicated subgraphs can be computed by decomposing them into cycles. However,
there are several subtle issues that must be resolved to formalize and apply this intuition. First, it is unclear how
to modify the topological definition of “crossing” as transverse intersection to apply in our combinatorial setting,
because the arcs in a system may share edges with each other and with the even subgraphs whose homology we
want to measure. Second, even when crossings are well-defined, there is more than one way to extract homology
from the crossing pattern.

The first way we resolve these issues is by perturbing the system of arcs within a small neighborhood of the
input graph. Specifically, we replace the vertices and edges of the input graph with small disks and ribbons, and
perturb cycles and arcs within the resulting structure, which we call a ribbon graph [42,89,91]. We also perturb
any cycle whose homology we want to measure within the ribbon graph so that it intersects the perturbed arcs
transversely. Finally, the homology of a perturbed cycle is determined by the sequence of perturbed arcs that it
crosses. See Sections 2.4 and 3.1.

We then use this formulation in Section 4 to develop our first algorithm to compute minimum-weight subgraphs
in a given homology class. Our algorithm first computes a greedy system of arcs; each arc in this system consists of
two shortest paths in the input graph. Using an exchange argument, we prove that the minimum-weight subgraph
in any homology class crosses each arc in the greedy system at most O(g + b) times. Our algorithm enumerates
all possible sequences of crossings consistent with this upper bound, and finds the shortest subgraph consistent
with each crossing sequence, by reducing to a planar minimum cut problem. The resulting algorithm runs in
(g + b)°E*Pnloglogn time.

The second way we resolve crossing subtleties is to build our system of arcs in the dual graph G*; cycles in G
intersect these dual arcs only transversely. To avoid the need for perturbing the dual arcs apart, we show that the
homology of a cycle in G is determined by the number of times it crosses each of the dual arcs in the system. See
Section 3.3.

We use this dual formulation in our second algorithm to compute minimum-weight homologous subgraphs in
Section 5. Our algorithm computes the shortest cycle in every homology class, by constructing and searching a
certain covering space of the surface that we call the Z,-homology cover, using an extension [48] of the multiple-
source shortest path algorithm of Cabello et al. [20]. We then assemble the minimum-weight even subgraph in
any desired homology class from these Z,-minimal cycles using dynamic programming. The resulting algorithm
runs in 2°¢*Pnlogn time. Our second algorithm is simpler, and its running time has better (but still exponential)
dependence on the topological parameters g and b, but at the expense of slightly worse dependence on n.

In Section 6, we prove that finding a minimum-weight even subgraph in a given homology class in NP-hard,
which implies that our algorithms’ exponential dependence on g is almost certainly unavailable. Unlike Chen and
Freedman [32], our reduction is done on a 2-manifold, and unlike Chambers et al. [25], our target subgraph does
not need to be a simple cycle.

Finally, in Section 7, we describe our algorithms for computing global minimum cuts. Both algorithms
ultimately reduce computing a global minimum cut to 2°(¢) instances of computing minimum (s, t)-cuts; thus, our
algorithms have the same asymptotic running times as the minimum (s, t)-cut algorithms from Sections 4 and 5.

We note with some amusement that our algorithms solve a problem with a well-known polynomial-time
solution by reducing it to an exponential number (in g) of instances of an NP-hard (but fixed-parameter tractable)
problem! The authors of this paper are divided on whether to conjecture that minimum cuts in surface graphs can
be computed in time O(g°n polylog n) for some small constant c, or that the problem is “fixed-parameter quadratic”
with respect to genus, just as diameter and radius are fixed-parameter quadratic with respect to treewidth [1].



211
212
213
214

216
217
218

N =

x

> W W W W

N NN NN
w
w

(93}

236
237
238
239
240
241
242
243

244
245
246
247

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 5

Fomin et al. [54] raise similar questions about the fixed-parameter efficiency of flows and cuts with respect to
treewidth.

2. Notation and Terminology. We begin by recalling several useful definitions related to surface-embedded
graphs. For further background, we refer the reader to Gross and Tucker [65] or Mohar and Thomassen [98] for
topological graph theory, and to Hatcher [71] or Stillwell [112] for surface topology and homology.

2.1. Surfaces and curves. A surface (more formally, a 2-manifold with boundary) is a compact Hausdorff
space in which every point has an open neighborhood homeomorphic to either the plane R? or a closed halfplane
{(x,y) € R? | x > 0}. The points with halfplane neighborhoods make up the boundary of the surface; every
component of the boundary is homeomorphic to a circle. A surface is non-orientable if it contains a subset
homeomorphic to the Mobius band, and orientable otherwise. In this paper, we consider only compact and
connected surfaces.

A path in a surface ¥ is a continuous function p: [0,1] — X. A loop is a path whose endpoints p(0) and p(1)
coincide; we refer to this common endpoint as the basepoint of the loop. An arc is a path whose endpoints lie
on the boundary of %, but that is otherwise disjoint from the boundary of . A cycle is a continuous function
y: 8! — X; the only difference between a cycle and a loop is that a loop has a distinguished basepoint. We say
a loop ¢ and a cycle y are equivalent if, for some real number &, we have £(t) = y(t + &) for all t € [0,1]. We
collectively refer to paths, loops, arcs, and cycles as curves. A curve is simple if it is injective, except for the
endpoints of a loop; we usually do not distinguish between simple curves and their images in ¥. A simple curve p
is separating if 3 \ p is disconnected.

The reversal rev(p) of a path p is defined by setting rev(p)(t) = p(1—t). The concatenation p -q of two paths p
and g with p(1) = g(0) is the path created by setting (p - q)(t) = p(2t) forall t < 1/2 and (p - q)(t) = q(2t —1) for
allt >1/2.

The genus of a surface ¥ is the maximum number of disjoint simple cycles in ¥ whose complement is connected.
Up to homeomorphism, there is exactly one orientable surface with any genus g > 0 and any number of boundary
cycles b > 0, and exactly one non-orientable surface with any positive genus g > 0 and any number of boundary
cycles b > 0. The Euler characteristic y of a surface with genus g and b boundary components is 2 —2g — b if
the surface is orientable, and 2 — g — b otherwise.

2.2. Graph embeddings. An embedding of an undirected graph G = (V, E) on a surface X is an injective
continuous function from G to X; in particular, an embedding maps vertices of G to distinct points in ¥ and
edges of G to simple, interior-disjoint paths in X that intersect vertices only at their endpoints. The faces of the
embedding are maximal connected subsets of 3. that are disjoint from the image of the graph. We may denote an
edge uv € E as f|g if it is incident to faces f and g. An embedding is cellular if each of its faces is homeomorphic
to the plane; in particular, in any cellular embedding, each component of the boundary of > must be covered by a
cycle of edges in G.

We also refer to the complex of vertices, edges, and faces induced by a cellular embedding as a combinatorial
surface. Every combinatorial surface with boundary can be obtained from a combinatorial surface without
boundary by deleting the interiors of one or more faces. See Kettner [84] for an overview and comparison of
several standard data structures for combinatorial surfaces.

Euler’s formula implies that any cellularly embedded graph with n vertices, m edges, and f faces lies on a
surface with Euler characteristic y =n —m + f, which implies that m = O(n+ g) and f = O(n + g) if the graph is
simple. To simplify our presentation, we implicitly assume throughout the paper that g = O(logn), since otherwise
our minimum-cut algorithms are slower than textbook maximum-flow algorithms. This assumption implies that
the overall complexity of an embedding is O(n).

We redundantly use the term arc to refer to a walk in the graph whose endpoints are boundary vertices, but
that is otherwise disjoint from the boundary. Likewise, we use the term cycle to refer to a closed walk in the graph.
Note that arcs and cycles may traverse the same vertex or edge more than once.

2.3. Duality. Any undirected graph G embedded on a surface ¥ without boundary has a dual graph G*,
which has a vertex f* for each face f of G, and an edge e* for each edge e in G joining the vertices dual to the
faces of G that e separates. The dual graph G* has a natural cellular embedding in 3, whose faces corresponds to
the vertices of G. See Figure 2.1.
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Fig. 2.1. Graph duality. One edge uv and its dual (uv)* = f*g* are emphasized.

Any undirected graph G embedded on a surface X with boundary has a dual graph G*, defined as follows.!
The dual graph G* has a vertex f* for each face f of G, including the boundary cycles, and an edge e* for each
edge e in G (including boundary edges) joining the vertices dual to the faces that e separates. For each boundary
cycle 6 of G, we refer to the corresponding vertex 6* of G* as a dual boundary vertex. The dual graph G* has a
natural cellular embedding in the surface %* obtained from % by gluing a disk to each boundary cycle; each face
of this embedding corresponds to a vertex of G. See Figure 2.2. (Duality can be extended to directed graphs [28],
but our results do not require this extension.)

Fig. 2.2. A cellularly embedded graph G (solid lines) on a pair of pants (the surface of genus 0 with 3 boundaries), and its dual graph G* (dashed
lines). Dual boundary vertices are indicated by squares.

For any subgraph F = (U, D) of G = (V, E), we write G \ F to denote the edge-complement (V, E \ D). Also,
when the graph G is fixed, we abuse notation by writing F* to denote the subgraph of G* corresponding to
a subgraph F of G; each edge in F* is the dual of a unique edge in F. In particular, we have the identity
(G\ F)* = G*\ F*. Further, we may sometimes use D to refer to an edge set or the subgraph F = (V, D), but it
should be clear which we mean from context.

2.4. Perturbations and Crossings. Our algorithms manipulate cycles and arcs in combinatorial surfaces that
can share or repeat graph vertices and edges, but that can be perturbed on the surface to avoid self-intersections
and other degeneracies. To accommodate these perturbations, we represent our combinatorial surfaces as ribbon
graphs [42,89]. Ribbon graphs are also known as band decompositions [42] and fat graphs [89], and they are
closely related to the graph-encoded map data structure [91] for representing both orientable and non-orientable
combinatorial surfaces. Intuitively, ribbon graphs allow us to represent multiple traversals of the same edge as
parallel paths in a narrow ribbon around that edge. Our ribbon-graph representation is (roughly) equivalent to
the cross-metric surface representation used in several other papers [25, 34, 36]; however, the cross-metric surface
representation is somewhat awkward to work with on surfaces with boundary, which is our main setting. We note
that our use of ribbon graphs closely resembles the “side information” maintained by Kutz’s algorithm [87, Section
4.1], which will be a key ingredient in Section 4.

The ribbon graph G of an embedded graph G is constructed by expanding each vertex v of G into a closed
disk v called a vertex region, and expanding each edge e of G into a narrow rectangle e" called an edge ribbon.
For any vertex v and edge e, the intersection v™ N e" is a simple path on the boundary of both regions if v is an
endpoint of e; otherwise, the vertex regions and edge ribbons are pairwise disjoint. Each face f of the original

LOur definition differs slightly from the one proposed by Erickson and Colin de Verdiére [35].
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embedding G (including any faces deleted to create surface boundaries) contains exactly one component of X\ G=;
we call this component the face region f". See Figure 2.3.

Any finite collection C of cycles and arcs in a combinatorial surface, each represented as a walk in the
underlying graph G, can be continuously deformed into general position within the ribbon graph G, so that all
(self-)intersections are transverse and occur only within vertex regions. (Formally, this perturbation is a homotopy
within GY; see Section 2.6 below.) In particular, each deformed curve visits the vertex regions and edge ribbons
in G" in the same order that the original curve visits the corresponding vertices and edges of G.

The intersection of each perturbed curve with any vertex region v" consists of simple boundary-to-boundary
paths in v". In particular, any arc that ends at vertex v on a boundary face f is perturbed into an arc in G that
ends at the boundary segment v® N f5. We also require minimal intersection within vertex regions, so any two
boundary-to-boundary paths within the same vertex region intersect at most once. We refer to any deformation
of C that meets these criteria as a ribbon perturbation of C.

None of the cycles and arcs we consider in this paper contain spurs—subpaths that traverse an edge followed
immediately by its reversal. Thus, the intersection of the perturbed cycles and arcs and any edge ribbon is a
collection of disjoint paths that traverse the ribbon from one end to the other. Thus, to represent any ribbon
perturbation of C, it suffices to record the following information:

e The alternating sequence of vertices and edges traversed by each cycle in C;

e The starting boundary face, alternating sequence of vertices and edges, and ending boundary face of each
arc in C;

e The ordering of perturbed curve segments traversing each ribbon e”; and

e The cyclic order of intersections of the perturbed curves with the boundary of each vertex region v".

Fig. 2.3. Left: A cycle and an arc that share an edge in G. Right: A closeup on the ribbon graph G5, with a ribbon perturbation of the cycle and
the arc that cross inside a vertex region.

An arc or cycle in a combinatorial surface is weakly simple if it can be perturbed into a simple path or cycle in
the ribbon graph; algorithms to detect if a cycle is weakly simple have been studied extensively of late, in both the
plane and on orientable or non-orientable surfaces [3,29]. Similarly, an arc or cycle a and another arc or cycle f3
are non-crossing if they have disjoint perturbations within the ribbon graph; otherwise, we say that a crosses 3.
More generally, we say that a collection C of cycles and arcs is non-crossing if there is a single ribbon perturbation
of C in which all perturbed curves are pairwise disjoint.

2.5. Even subgraphs and cycle decompositions. An even subgraph is a subgraph of G in which every node
has even degree, or equivalently, the symmetric difference of cycles. A cycle decomposition of an even subgraph H
is a set of edge-disjoint, non-crossing, weakly simple cycles whose union is H.

LEMMA 2.1. Every even subgraph of an embedded graph has a cycle decomposition.

Proof: Let H be an even subgraph of G. We can decompose H into cycles by specifying, at each vertex v, which
pairs of incident edges of H are consecutive. Any pairing that does not create a crossing at v is sufficient. For
example, if e;, e,, ..., ey, are the edges of H incident to v, indexed in clockwise order around v, we could pair
edges e,;_; and e,; for each i. m|

We emphasize that each cycle in a cycle decomposition may visit vertices multiple times; indeed, some even
subgraphs of G cannot be decomposed into strictly simple cycles in G.

Slicing a combinatorial surface along a cycle or arc modifies both the surface and the embedded graph. For
any combinatorial surface S = (X, G) and any simple cycle or arc y in G, we define a new combinatorial surface
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S \\ r by taking the topological closure of Z\y as the new underlying surface; the new embedded graph contains
two copies of each vertex and edge of v, each bordering a new boundary. We can also slice along any weakly simple
arc or cycle y by considering any simple ribbon perturbation § of y. In particular, ¥ partitions the vertex regions
and edge ribbons of G into the vertex regions and edge ribbons of the ribbon graph of S \\ y. Our representation
of ribbon perturbations allows us to compute this new ribbon graph in time proportional to the combinatorial
length of y.

We define the projection of a curve in S \\ y as the natural mapping of points (or vertices and edges) to S.

2.6. Homotopy and homology. Two paths p and q in © are homotopic if one can be continuously deformed
into the other without changing their endpoints. More formally, a homotopy between p and q is a continuous map
h:[0,1]x[0,1] — X such that h(0,-) = p, h(1,-) =q, h(-,0) = p(0) = q(0), and h(-,1) = p(1) = q(1). Homotopy
defines an equivalence relation over the set of paths with any fixed pair of endpoints.

Similarly, two cycles a and 8 in X are freely homotopic if one can be continuously deformed into the other.
More formally, a free homotopy between a and f3 is a continuous map h: [0,1] x S! — % such that h(0,-) = a and
h(1,-) = B. Free homotopy defines an equivalence relation over the set of cycles in X. We omit the word “free”
when it is clear from context.

A cycle is contractible if it is homotopic to a constant map. Given a weight function on the edges of G, we say
a path or cycle is tight if it has minimum total weight (counting edges with multiplicity) for its homotopy class.

Homology is a coarser equivalence relation than homotopy, with nicer algebraic properties. Like several
earlier papers [30,31,39,40,47,56], we will consider only one-dimensional cellular homology with coefficients in
the finite field Z,; this restriction allows us to radically simplify our definitions. Fix a cellular embedding of an
undirected graph G on a surface with genus g and b boundaries. A boundary subgraph is the boundary of the
union of a subset of faces of G; for example, on a surface with no boundary, every separating cycle is a boundary
subgraph. Two even subgraphs are homologous, or in the same homology class, if their symmetric difference
is a boundary subgraph. Boundary subgraphs are also called null-homologous. Any two homotopic cycles are
homologous, but homologous cycles are not necessarily homotopic; see Figure 2.4. Moreover, the homology class
of a cycle can contain even subgraphs that are not cycles; see Figure 2.5. We call an even subgraph Z,-minimal if
it is the minimum-weight subgraph in its homology class.

Fig. 2.4. Homologous pairs of cycles that are not homotopic. (Lighter portions of the curves are on the back side of the surface.)

Fig. 2.5. Each cycle is homologous to the union of the other two.

Homology classes define a vector space Zg , called the first homology group, whose rank f is called the first
Betti number. The first Betti number f3 of any surface is related to its Euler characteristic y as follows: f =2—y
if the surface has no boundary and 8 = 1 — y otherwise. Equivalently, we have 3 = 2g for orientable surfaces
without boundary, f = 2g + b —1 for orientable surfaces with boundary, = g for non-orientable surfaces without
boundary, and 8 = g — b + 1 for non-orientable surfaces with boundary.

2.7. Duality between cuts and even subgraphs. A crucial component of our minimum (s, t)-cut algorithms
is an equivalence between (s, t)-cuts and even subgraphs of the dual graph contained in a particular homology
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class. This equivalence was first observed in planar graphs by Whitney [119] and was later used to compute
minimum cuts in planar graphs by Itai and Shiloach [77]. We formalize the same equivalence on surface graphs in
the following lemma:

LEMMA 2.2. Let G be an edge-weighted graph embedded on a surface % without boundary, and let s and t be
vertices of G. A subgraph X is an (s, t)-cut in G if and only if X* is an even subgraph of G* homologous with the
boundary of s* in the surface X\ (s* U t*). In particular, X is a minimum-weight (s, t)-cut in G, if and only if X* is a
minimum-weight even subgraph of G* homologous with the boundary of s* in %\ (s* U t*).

Proof: Let ds* denote the boundary of s*, and let &’ denote the surface X\ (s* U t*).

Let X be an arbitrary (s, t)-cut in G. By definition, there is a non-trivial partition V=S U T, such thats € S
and t € T, where X is the set of edges crossing S and T. Thus, the dual subgraph X* partitions the faces of G* into
two disjoint (possibly non-connected) subsets, S* and T*, respectively containing faces s* and t*. In particular, X*
is the boundary of the union of the faces in S*, which implies that X* is null-homologous in . The symmetric
difference X* @ 3s* is the boundary of the union of S* \ {s*}, which is a subset of the faces of 3'. Thus, X* @ Js* is
null-homologous in ¥’. We conclude that X* and ds* are homologous in ¥'.

Conversely, let X* be an arbitrary even subgraph of G* homologous to ds* in 3. The subgraph X* & ds* is
null-homologous in ¥'. This immediately implies that X* is null-homologous in %; moreover, faces s* and t* are
on opposite sides of X*. Any path from s to t in the original graph G must traverse at least one edge of X. We
conclude that X is an (s, t)-cut. O

3. Characterizing Homology. Throughout the paper, we fix an undirected graph G = (V, E), a positive weight
function w: E — R, and a cellular embedding of G on a (possibly non-orientable) surface 3 of genus g with b
boundary cycles. Except where explicitly indicated otherwise, we assume without loss of generality that b > 0;
otherwise, we can remove an arbitrary face of G from ¥ without affecting its homology at all. Let §4,..., 5, denote
the boundary cycles of %, and let 3 denote the first Betti number of 2. Recall that 3 =2g + b —1 if X is orientable
and f3 = g + b —1 otherwise.

In this section, we describe two standard methods for preprocessing a combinatorial surface with boundary
in O(fn) time, so that the Z,-homology class of any even subgraph H can be computed in O(f3) time per edge.
These are both straightforward generalizations of standard methods for measuring homology in surfaces without
boundary based on tree-cotree decompositions [25,45,51]. Tree-cotree decompositions were formalized by
Eppstein [45] to compute homology generators, although they were studied earlier by other authors [7,107,115].
We give these full details here for completeness, and because as far as we are aware, no detailed description
appears elsewhere in the literature for the first method. We note that a preliminary version of the current work [50]
was the first detailed description of the second method; see also Chambers et al. [9] for an alternative description
of the second method.

Both of the methods we will describe characterize the homology class of any even subgraph H using a vector
of B bits. The vectors are computed using one of two natural generalizations of tree-cotree decompositions to
surfaces with boundary. In the first method, the vector is based on the crossings between a cycle decomposition
of H and a set of 3 primal arcs. By carefully selecting these arcs, we can bound the number of times any Z,-minimal
even subgraph can cross any of these arcs; this bound is necessary for the algorithm given in Section 4. In the
second method, the vector is based on the crossings between H and a set of 8 dual arcs. The second method is
somewhat easier to describe and implement than the first, so we use the second method in the algorithm given in
Section 5.

3.1. Forest-cotree decompositions. The first method begins by computing a set A of 3 arcs, each of which
is the concatenation of two shortest paths in G plus a single edge. Following previous papers [25,33,35], we
construct a greedy system of arcs, using a variant of Erickson and Whittlesey’s algorithm to construct optimal
systems of loops [51]. Our algorithm uses a natural generalization of tree-cotree decompositions [45] to surfaces
with boundary.

A forest-cotree decomposition (see Figure 3.1) of a combinatorial surface S = (%, G) is any partition
(0G,F, L, C) of the edges of G into four edge-disjoint subgraphs with the following properties:

e 0G is the set of all boundary edges of G.

e F is a spanning forest of G, that is, an acyclic subgraph of G that contains every vertex.

e Each component of F contains a single boundary vertex.

e C* is a spanning tree of G* \ (9 G)*, that is, a subtree of G* that contains every vertex except the dual
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10 Minimum cuts in surface graphs

boundary vertices 6;.
e Finally, L is the set of leftover edges E \ (6GUF U C*)

LEMMA 3.1. In any forest-cotree decomposition (9G, F, L, C) of any combinatorial surface with boundary and
with first Betti number B3, the set L contains exactly 3 edges.

Proof: Recall that n, m, and f respectively denote the number of vertices, edges, and faces of G. Let d;,...,d, be
the number of edges on the boundary components. We immediately have |0G| = ), d;. Because our boundary
cycles are disjoint, contracting each boundary cycle to a single vertex transforms F into a spanning forest of G/9G
with b components. It follows that |F| = (n— Y}, (d; — 1)) — b. Finally, C* is a spanning tree of the dual graph, so
it has f —1 edges. As (G, F, L, C) is a partition of the edges, we have

m=19G|+ |F|+|C|+|L|
=>.di+(n—=>,(d;—1)—b+f—1+]|L|.
=n+f—1+|L|.

We conclude that |L|=m—n—f+1=1—y = . |

Fix a forest-cotree decomposition (9G, F, L, C), and arbitrarily index L = {e;, e,,...,eg}. For each edge e; € L,
the subgraph F U {e;} contains a single nontrivial arc a;, which is either a simple path between distinct boundary
cycles, or a nontrivial walk from a boundary cycle back to itself; in the second case, a; may traverse some edges
of F twice. We refer to the collection {a;,a,,...,ag} as a system of arcs. See Figure 3.1.

LEMMA 3.2. The arcs a;,a,,...,ag are weakly simple and weakly disjoint.

Proof: Each arc a; consists of an edge in L plus two (possibly overlapping) paths in F. We know the edges from L
are disjoint and paths in the forest are simple, so it suffices to describe a consistent way to perturb forest paths
apart. We use an Euler tour on each component of F to define consistent perturbations, as follows. For each edge e;
in L, we subdivide e; into a path of length 3 and add the first and third edges on that path to the forest F, yielding
a new augmented forest F’. Root each component of F’ at its (unique) boundary vertex. We then compute an
Euler tour for each component of F’, which for each tree in F’ gives a total ordering of the leaves based on when
they are encountered in the tour. We can then perturb all root-to-leaf paths in each component of F’ to become
disjoint, where the order of the paths out of the root is the same as the total ordering of the leaves in the Euler
tour. Adding the middle thirds of the edges from L to these disjoint paths gives us a perturbation of a;, a,, ..., ag
into disjoint simple arcs. O

LEMMA 3.3. Slicing along the arcs a,, @y, . .., ag transforms % into a topological disk.

Proof: Let {4;,d,,...,dg} be any ribbon perturbation of the arcs a;,a,, ..., ag, such that the arcs G, are simple
and pairwise disjoint. Lemma 3.2 implies that such a perturbation exists. Slicing along any perturbed arc g;
increases the Euler characteristic of the surface by 1. Because the perturbed arcs @; are simple and disjoint, slicing
along all B perturbed arcs increases the Euler characteristic to 1. If the resulting sliced surface were disconnected,
then the faces of G incident to some edge in L would lie in different components, but this is impossible, because
all faces are connected in the sliced surface via the cotree C*. We conclude that the sliced surface is connected and
has Euler characteristic 1, so it must be a disk. O

Fig. 3.1. Left: A forest-cotree decomposition of the graph in Figure 2.2; thick doubled lines indicate edges in L. Right: The resulting system of
arcs. Compare with Figure 3.4.
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We can easily construct an arbitrary forest-cotree decomposition, and thus an arbitrary system of arcs, in O(n)
time using whatever-first search, but our algorithms require a decomposition with a particular forest F and a
particular dual spanning tree C*. Let G/J G denote the graph obtained from G by contracting the entire subgraph
9 G—both vertices and edges—to a single vertex x. Using the algorithm of Henzinger et al. [73] with Aleksandrov
and Djidjev’s linear-time algorithm for partitioning embedded graphs [4], we compute the single-source shortest-
path tree T in G/8G rooted at x in O(n) time.? Let F be the subgraph of G corresponding to T. Each component
of F is a tree of shortest paths from a boundary vertex to a subset of the non-boundary vertices of G.

Now for each edge e that is not in the forest F or the boundary subgraph 9 G, let £(e) denote the length of the
unique arc in the subgraph F U {e}. We can easily compute £(e) for each non-forest edge e in O(n) time. Finally,
let C* denote the maximum spanning tree of G* \ (F U 8 G)* with respect to the arc lengths £(e).

For each edge e; € L, let o; and 7; denote the unique directed paths in F from the boundary of G to the
endpoints of e;, and let P := {07, ...,0p,T1,..., Tg}. By construction of F, every element of P is a (possibly empty)
shortest path. For each index i, let a; = 0 - ¢; - rev(7;). The greedy system of arcs is the set A:= {a;,ay,...,ag}.

Exchange arguments by Erickson and Whittlesey [51] and Colin de Verdiére [33] imply that every arc in the
greedy system is tight, and moreover that the greedy system of arcs has minimum total length among all systems
of arcs.?

3.2. Crossing parity vectors. Fix a system of arcs a;,a,,...,ag. In this section we define the crossing parity
vector of any even subgraph H, with respect to the fixed system of arcs, and prove that this vector characterizes
the homology class of H. Intuitively, the crossing parity vector is a vector of 3 bits, whose ith bit is equal to 1 if
and only if H crosses arc a; an odd number of times. However, some care is required to ensure that this intuitive
notion is actually consistent. Rather than working directly with H, we formally define the crossing parity vector
of an arbitrary ribbon perturbation of an arbitrary cycle decomposition of H, and then argue that the resulting bit
vector is the same for any cycle decomposition and any ribbon perturbation thereof.

First, fix a single cycle y in G and an index i. Let ¥ and d; be any ribbon perturbation of the cycle y and the
arc qa;, as defined in Section 2.4. By definition, all intersections between 7 and d; are transverse crossings within
vertex regions of the ribbon graph G-, and each vertex region v™ contains at most one such crossing. We define
the crossing parity x;(y) to be 1 if ¥ intersects a; an odd number of times, and 0 otherwise.

Consider two ribbon perturbations {¥,d;} and {§',d}. These two pairs of curves are homotopic in G; that
is, the pair of curves ¥ and d@; can be continuously deformed to the pair of curves ¥ and a; within the ribbon
graph. Classical topological arguments [5, 6, 105] imply that any homotopy between (pairs of) curves can be
decomposed into a finite sequence of elementary homotopy moves, of three different types, as shown in Figure 3.2.
Straightforward case analysis implies that any homotopy move preserves the parity of the number of crossings
between the two deforming curves. It follows that the crossing parity X;(y) is independent of the choice of ribbon
perturbation of y and q;.

R o K R

Fig. 3.2. Homotopy moves.

Now consider an even subgraph H. We define the crossing parity x;(H) as the sum of the crossing parities of
the cycles in any cycle decomposition of H. Again, we claim that this bit is independent of the choice of cycle
decomposition. Consider two cycle decompositions y,...,7, and &84,...,6; of H. Because the cycles in both
decompositions traverse the same subset of edges, there are ribbon perturbations {1, ..., 7, d;} and {51,...,8;,d;}
that include identical perturbations d; of arc a; and that have identical intersections with each edge ribbon.

Consider the restriction of these two ribbon perturbations to a single vertex region v, as shown in Figure 3.3.
The intersections 7; N v7 are simple, pairwise-disjoint, boundary-to-boundary paths in vZ. The intersections &; N v®
are also simple, pairwise-disjoint, boundary-to-boundary paths in v". Moreover, these two sets of paths share
identical endpoints. It follows that the symmetric difference (| ; 5@ {J; 7:) nv" is the union of (not necessarily

2This running time requires that g = O(n'~¢) for some constant ¢ > 0. But recall that we are assuming g = o(logn), since otherwise our
minimum-cut algorithms are slower than textbook algorithms for arbitrary graphs.

3Specifically, Colin de Verdiére’s argument implies that the greedy system of arcs is a minimum-length basis in G for the first relative
homology group H,(Z, d%) [33, Section 3]. Thus, each arc in the greedy system is as short as possible in its relative homology class.



480
481
482

484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

506

507

509
510
511

512
513
514
515
516
517
518
519
520
521

12 Minimum cuts in surface graphs

simple) closed curves in v". Any simple closed curve in v" intersects any arc d; an even number of times. It follows
that these two ribbon perturbations either cross d; an even number of times, or both cross d; an odd number of
times. We conclude that x;(H) is independent of the cycle decomposition of H.

Fig. 3.3. Local view of ribbon perturbations of two cycle decompositions of the same even subgraph, and their symmetric difference. The
doubled lines describe a perturbation of a single weakly simple arc q;.

Finally, the crossing parity vector x(H) is defined as the vector (X,(H), X,(H), ..., Xg(H)).

LEMMA 3.4. Two even subgraphs are Z,-homologous if and only if their crossing parity vectors (with respect to
the same system of arcs) are equal.

Proof: Any arc crosses any facial cycle an even number of times; thus, the crossing parity vector of a facial cycle is
the zero vector. Every boundary subgraph is the symmetric difference of facial cycles; thus, the crossing parity
vector of any boundary subgraph is also the zero vector. Every pair of even subgraphs H and H’ satisfies the
identity x(H® H') = x(H) ® X(H'). In particular, if X(H & H’) is the zero vector, then X(H) = x(H’). We conclude
that if two even subgraphs are homologous, then their crossing parity vectors are equal.

On the other hand, suppose H is an even subgraph such that ¥(H) = 0. We claim that there is a subset S of
faces whose boundary is H. Let H UA be an arbitrary ribbon perturbation of (a cycle decomposition of) the even
subgraph H and the system of arcs A. By definition, every arc &; € A intersects H an even number of times.

The perturbed cycles and arcs H UA partition the underlying surface into several regions. Lemma 3.3 implies
that slicing the surface X along the perturbed arcs A yields a topological disk D = %% \\ A. The perturbed cycles
in H appear as disjoint cycles and boundary-to-boundary paths in D; it follows that we can consistently color the
regions of D red and blue, so that regions that share a boundary curve in H have opposite colors. Because H
intersects each arc d; an even number of times, every region that contains part of the boundary of the original
surface > has the same color, without loss of generality red. It follows that any two regions that share a boundary
curve in A have the same color.

Every face region in the ribbon graph X" is either entirely red or entirely blue, so we can pull the coloring
back to the faces of 2. In the resulting face coloring, the faces on either side of each edge in H have opposite
colors; the faces on either side of an edge not in H have the same color; and all faces incident to boundary edges
are red. It follows that H is the boundary of the blue faces and is therefore null-homologous.

The identity X(H @ H') = x(H) @ x(H’) now implies that if two even subgraphs have equal crossing parity
vectors, they must be homologous. O

LEMMA 3.5. We can compute the crossing parity vector of any even subgraph, with respect to any fixed system of
arcs, in O(fin) time.

Proof: Letay,...,ag be the fixed system of arcs. We can compute a cycle decomposition y4,...,y, of H in O(1)
time per edge, by following the proof of Lemma 2.1. Finally, we can compute the number of crossings between
(any ribbon perturbation of) any cycle y; and any arc a; in time proportional to the number of edges in ;. O

3.3. Homology signatures via tree-coforest decompositions. Our second method associates a vector of 3
bits with each edge e, called the signature of e; the homology class of any even subgraph is characterized by the
bit-wise exclusive-or of the signatures of its edges.

Again, our construction is based on one of two natural generalizations of tree-cotree decompositions [45]
to surfaces with boundary; the other generalization is used for computing crossing parity vectors as described
above. We define a tree-coforest decomposition of G to be any partition (T, L, F) of the edges of G into three
edge-disjoint subgraphs with the following properties:

e T is a spanning tree of G.
e F*is a spanning forest of G*, that is, an acyclic subgraph that contains every vertex.
e Each component of F* contains a single dual boundary vertex.
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e Finally, L is the set of leftover edges E \ (T UF).

LEMMA 3.6. In any tree-coforest decomposition (T, F, L) of any combinatorial surface with with boundary and
with first Betti number 3, the set L contains exactly 3 edges.

Proof: Recall that n, m, and f respectively denote the number of vertices, edges, and faces of G. We immediately
have |T|=n—1 and |F*| = f. Because T, F, and L partition the edges, we conclude that |L|=m—(n—1)—f =
m—n—f+1l=1—y=p. O
Arbitrarily index the edges in L as ey, ..., eg. For each edge e; € L, adding the corresponding dual edge e to
the forest F* creates a dual arc a;, which is either a simple path between distinct boundary vertices, or a nontrivial
loop from a boundary vertex back to itself; in the second case, a; may traverse some edges of F* twice. (The
arguments in Lemmas 3.2 and 3.3 imply that the dual arcs a; are weakly simple and weakly disjoint; however, our
algorithms do not use these properties.) We call the set {a;, a5, ...,az} a system of dual arcs. See Figure 3.4.

— U

Fig. 3.4. Left: A tree-coforest decomposition of the graph in Figure 2.2; doubled lines indicate edges in L. Right: The resulting system of dual arcs.
Compare with Figure 3.1.

Finally, for each edge e in G, we define its signature [e] to be the 3-bit vector whose ith bit is equal to 1 if and
only if e crosses a; (that is, if a; traverses the dual edge e*) an odd number of times. The signature [H] of an even
subgraph H is the bitwise exclusive-or of the signatures of its edges. Similarly, the signature [y] of a cycle y is the
bitwise exclusive-or of the signatures of the edges that y traverses an odd number of times.

Let h @ h’ denote the bitwise exclusive-or of two homology signatures h and h’, or equivalently, their sum
as elements of the homology group (Z,)?. The identities [H ® H'] =[H]® [H'] and [y -y'] = [y] ® [y’] follow
directly from the definitions.

LEMMA 3.7. We can preprocess G in O(fin) time, so that the signature [y] of any cycle can be computed in O(f3)
time per edge.

Proof: A tree-coforest decomposition can be computed in O(n) time as follows. First construct a graph G’ by

identifying all the dual boundary vertices in G* to a single vertex. Compute a spanning tree of G’ by whatever-first

search; the edges of this spanning tree define an appropriate dual spanning forest F*. Construct the subgraph G\ F

and compute a spanning tree T via whatever-first search. Finally, let L = G \ (T U F). With the decomposition in

hand, it is straightforward to compute each path «; in O(n) time, and then compute each edge signature in O(f3)

time. O
For each edge e; € L, let v; denote the fundamental cycle obtained by adding e; to T.

LEMMA 3.8. The set of cycles {}/1, NN } form a basis of the first homology group; precisely, these cycles lie in
linearly independent homology classes that span the group.

Proof: Consider any non-empty subset I' = {yil, ey yik} of these cycles, and let y; be an arbitrary member of this
subset. Dual arc a; crosses the subset exactly once, at the dual edge e;. Therefore, even subgraph (P, < v does not
bound the union of a subset of primal faces/dual vertices. O

A proof of our next lemma appears in Borradaile et al. [9, Corollary 3.5]. They cite an earlier version [50] of the
current paper for the lemma statement, so we present a slightly simplified version of their proof for completeness.

LEMMA 3.9. An even subgraph H of G is null-homologous in % if and only if [H] = 0.

Proof: Let H be an even subgraph of G. Let T’ = {yil, e, yik} - {}fl, cees Yﬁ} be such that P, r v is homologous
to H. Then by definition, H ® (P, r v is the boundary of the union of a subset Y of faces of G. The boundary of any
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face f is contractible in 33 and therefore has signature 0. It follows immediately that [H] = [D,er 1®[@fey 9 f 1=

[Dyerv1® Dsey[0f]1=[D,er v]- The ith bit of [P, <r y] is equal to 1 if and only if y; € T, because dual arc a;

crosses no other member of {)/1, NN } Therefore, [H] = 0 if and only if the homologous even subgraph D, < ¥

is empty. O
The following corollaries are now immediate.

COROLLARY 3.10. Two even subgraphs H and H' of G are Z,-homologous in X if and only if [H] = [H'].
COROLLARY 3.11. Two cycles y and v’ in G are Z,-homologous in X if and only if [y] =[y’].

4. Crossing Bounds and Triangulations. In this section, we describe an algorithm to compute a minimum-
weight even subgraph homologous with any specified even subgraph H in (g + b)°¢*?)nloglogn time, when the
input graph is embedded on an orientable surface. In fact, our algorithm can be modified easily to compute a
minimum-weight representative in every homology class in the same asymptotic running time; there are exactly
228+b=1 gych classes; recall that we assume non-empty boundary. Lemma 2.2 implies our algorithm can be used to
find a minimum (s, t)-cut in G* in the same amount of time.

Our algorithm closely resembles the algorithm of Chambers et al. [25] for computing a shortest splitting cycle;
in fact, our algorithm is somewhat simpler. Our algorithm is based on the key observation (Lemma 4.1) that the
shortest even subgraph in any homology class crosses any shortest path at most O(g + b) times. The first stage
of our algorithm cuts the underlying combinatorial surface into a topological disk by a greedy system of arcs, as
described in Section 3.1. Next, we enumerate all possible ways for an even subgraph to intersect each of the
greedy arcs at most O(g + b) times; we quickly discard any crossing pattern that does not correspond to an even
subgraph in the desired homology class. Each crossing pattern is realized by several (free) homotopy classes of
sets of non-crossing cycles; we show how to enumerate these homotopy classes in Section 4.2. Then within each
homotopy class, we find a minimum-length set of non-crossing cycles with each crossing pattern, essentially by
reducing to a planar instance of the minimum-cut problem. The union of those cycles is an even subgraph in the
desired homology class; we return the lightest such subgraph as our output.

4.1. Crossing bound. Our main technical lemma for this section establishes an upper bound on the number
of crossings between members of a greedy system of arcs and the minimum-weight even subgraph in any homology
class. Crossing-number arguments were first used by Cabello and Mohar [23] to develop the first subquadratic
algorithms for shortest non-contractible and non-separating cycles in undirected surface embedded graphs; their
arguments are the foundation of all later improvements of their algorithm [18,20,87]. Our proof is quite similar
to the argument of Chambers et al. [25] that some shortest splitting cycle crosses any shortest path O(g + b) times.
However, our new proof is somewhat different, because we work explicitly with ribbon perturbations and the
structure we seek is a true subgraph, which need not be connected, rather than a single weakly simple closed walk.

As mentioned in Section 3.1, we cannot consistently define when a shortest path crosses a Z,-minimal even
subgraph. Instead, we upper-bound the smallest possible number of crossings between an entire arc in the greedy
system and a ribbon perturbation of a cycle decomposition of a Z,-minimal even subgraph in each homology class.
We emphasize that different cycle decompositions and different ribbon decompositions of the same even subgraph
can have different numbers of crossings with the same arc.

LEMMA 4.1. Let G be an undirected graph with positively weighted edges, embedded on a surface with genus g
and b > 0 boundary components. Let A= {al, Agy.nes aﬂ} be a greedy system of arcs. Let H be an even subgraph of G.
There is a Z,-minimal even subgraph H' homologous to H, a cycle decomposition {y,...,v,} of H’, and a ribbon
perturbation {d,, ..., g, T1se--» 7,1}, such that for each index i, the total number of crossings between the perturbed
arc @; and the perturbed cycles ¥+, ...,7, is at most 12g +4b — 6.

Proof: Fix a Z,-minimal even subgraph H’ homologous to H, a cycle decomposition v1,Y5,...,7, of H, and a
ribbon perturbation {d,,...,ds,¥1,...,¥,} such that the total number X of intersections between perturbed arcs d;
and perturbed cycles ¥; is as small as possible.

Recall from Section 3.1 that each arc g; is the concatenation of a shortest path o; in the forest F, a single
leftover edge e; € L, and the reversal of a shortest path 7; in F. Let 6; and 7; denote the components of d; \ e’
containing o; and 7;, respectively. Both &; and %; are paths within the ribbon decomposition " with endpoints
on the boundaries of vertex regions. Because perturbed paths intersect only in vertex regions, every point of
intersection between ¥; and d; is either a point in ¥; N &; or a point in ¥; N T;.

Let o be one of the shortest paths o; or 7; for some index i, and let & be the corresponding path &; or %; in
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the ribbon perturbation. For each index j, let x; denote the number of points in & N¥;, and let x = x; + x5+~ xp.
If we contract G to a single point ¥ on the boundary of %, each cycle ¥; is contracted to the union of x; simple
loops, which are pairwise disjoint except at their common basepoint 7. Altogether, we obtain a set £ of x simple
interior-disjoint loops in €.

Our key claim is that these x loops lie in distinct nontrivial homotopy classes. This claim implies that £ defines
an embedding of a single-vertex graph with x edges onto the surface 7, where every face of the embedding is
bounded by at least three edges. Euler’s formula now implies that x < 6g + 2b — 3 [25, Lemma 2.1], completing
the proof of the lemma.

We prove our key claim by contradiction, using a pair of exchange arguments.

No contractible loops. For the sake of argument, suppose £ contains a contractible loop. Let £ be an innermost
contractible loop, meaning there are no other contractible loops in the disk bounded by ¢. This loop is the
contraction of some subpath 7(p, q) of some cycle ¥ in the perturbed cycle decomposition; the endpoints p and ¢
of this subpath lie on &. Let u and v be the vertices of G such that p € u® and q € v°. Fix points p’ € u® N and
q' € v N ¥ such that the subpath 7 = 7(p’, q*) strictly contains 7(p,q) but has no more intersections with any
perturbed arc @; or perturbed cycle ¥;. Let 7 be the path from u to v in G determined by the sequence of vertex
regions and edge ribbons traversed by 7.

Now let 5 be a path from ' to p’ that closely parallels &(q, p); specifically, 5 traverses the same sequence
of vertex regions and edge ribbons as 5(q, p), without crossing any perturbed arc d; or perturbed cycle ;. See
Figure 4.1. Let p be the path from v to u obtained by pulling 5 back to G. Because p is a subpath of the shortest
path o, it is actually a shortest path from v to u.

[ AN .. (oo N----- (/:q\\ ~5— //N
/ \_[¢/ N A

Fig. 4.1. Exchange argument to remove a contractible loop.

Because { is contractible, the cycle § = 7 - § is also contractible. Thus, the corresponding closed walk § = 7 p
in G is contractible and therefore null-homologous. It follows that the subgraph H~ = H’ @ § is homologous
with H' and thus with H. Because p is a shortest path, the weight of H~ cannot be larger than the weight of H’,
and because H' is Z,-minimal, the weight of H~ cannot be smaller than the weight of H’. We conclude that the
subgraphs H~ and H’ have equal weight; both are Z,-minimal.*

The cycle ¥/ = 7 ® & intersects o strictly fewer times than ¥, and does not cross any arc @ more times than .
Because £ is an innermost contractible loop in £, the cycle ¥’ is simple and disjoint from all other cycles 7; in the
perturbed cycle decomposition. Thus, replacing § with ¥’ gives us a perturbed cycle decomposition of H~ with
fewer than X crossings. But this contradicts our definition of X. We conclude that no loop in £ is contractible.

No homotopic loops. Now suppose for the sake of argument that £ contains homotopic pairs of loops. Let £
and £’ be homotopic loops in £ with no other homotopic loops between them. These two loops are contractions of
subpaths ¥(p, q) and ¥'(r,s) of (not necessarily distinct) cycles ¥ and ¥’ in the perturbed cycle decomposition, with
all endpoints p,q,r,s on the path &. As in the previous argument, we extend these subpaths within the vertex
regions containing their endpoints, to obtain paths 7 = 7(p’, q*) and 7'(r’,s"). Let 7 and 7’ be the paths obtained
by pulling # and #’ back to G.

Let 5 be a path from ! to r’ that closely follows &, and similarly let 5’ be a path from ¢’ to s* that closely
follows &. Let p and p’ be the paths obtained by pulling 5 and 5’ back to G. Because p and p’ are subpaths of o,
they are shortest paths in G.

Because ¢ and ¢’ are homotopic, the cycle § = 7 - 5 - rev(#’) - p’ is contractible, which implies that the
corresponding closed walk 6 = 7 - p - rev(n’) - p’ in G is contractible and therefore null-homologous. It follows
that the subgraph H~ = H’ @ & is homologous to H' and therefore to H. Moreover, H~ must be Z,-minimal,

41f shortest paths in G are unique, we can actually conclude at this point that H~ = H’.
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because p and p’ are shortest paths. Finally, exchanging # and 7’ with 6 and g’ transforms our perturbed
cycle decomposition of H’ into a perturbed cycle decomposition of H~ with fewer than X crossings, violating our
definition of X. We conclude that no two loops in £ are homotopic. O

4.2. Triangulations and crossing sequences. Our algorithm for computing minimum-weight even subgraph
in a given homology class follows a strategy first used by Kutz to compute shortest non-contractible cycles [87]; in
fact our algorithm uses Kutz’s algorithm as a subroutine.

Our algorithm begins begin by constructing a greedy system of arcs a,,...,ag for the input combinatorial
surface %J; we also compute a ribbon perturbation {d,...,dg} of this greedy systen into pairwise-disjoint arcs, as
described in Lemma 3.2. Lemma 3.3 implies that slicing the combinatorial surface 27 along these perturbed arcs
yields a disk D, which we call a polygonal schema. The boundary of D" alternates between perturbed arcs d; and
boundary paths of ©"; each perturbed arc appears twice on the boundary of D". Replacing each copy of each
perturbed arc on the boundary of D" with a single edge, and contracting each boundary path of = to a single
point, yields a 23-gon that we call the abstract polygonal schema. See Figure 4.2 for an illustrative example.

dl
m
> 3
) g i,
> !
a, 3
(13

Fig. 4.2. A system of arcs on a surface with genus 2 and one boundary cycle, and the polygonal schema obtained by slicing along the arcs.

IS

We next dualize the abstract polygonal schema, replacing each boundary edge with a vertex, and connecting
vertices which correspond to adjacent edges in the primal schema. Thus, the dual polygonal schema is a 23-gon
with two vertices corresponding to each perturbed greedy arc d;. Any collection of disjoint simple cycles in 3"
corresponds to a weighted triangulation [25] of this dual polygonal schema, which includes an edge between two
vertices of the dual abstract polygonal schema if and only if some cycle consecutively crosses the corresponding
pair of perturbed greedy arcs. Each triangulation edge is weighted by the number of times such a crossing occurs
in our collection. See Figure 4.3 for an illustration of this correspondence. We note that the crossing parity vector
of the collection of cycles can then be computed directly from this weighted triangulation.

Fig. 4.3. Two disjoint simple cycles on a surface of genus 2 with one boundary, and the corresponding weighted triangulation.

Conversely, we call a weighted triangulation valid if corresponding vertices are incident to edges of equal total
weight, and the weight of each edge is between 0 and 12g + 4b — 6. Altogether, there are (g + b)°©@*?) different
valid weighted triangulations. Each valid weighted triangulation corresponds to a collection of simple disjoint
cycles in &5, which is unique up to homotopy. Lemma 4.1 implies that every homology class contains a Z,-minimal
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even subgraph H’, such that some ribbon perturbation of some cycle decomposition of H' is consistent with a valid
weighted triangulation.

For each valid weighted triangulation, we can compute a corresponding collection of abstract cycles in
O((g + b)?) time by brute force. In the same time, we can also compute the sequence of crossings of each abstract
cycle with our perturbed greedy arcs. An algorithm of Kutz [87] computes the shortest cycle in G with a given
crossing sequence of length x in O(xnlogn) time, by gluing together x copies of the polygonal schema D" into
an annulus and computing the shortest generating cycle of that annulus via Frederickson’s planar minimum-cut
algorithm [58]. Italiano et al. [78] point out that their recent O(nloglogn)-time improvement in computing
minimum (s, t)-cuts in planar graphs can be used instead of Frederickson’s algorithm. Thus, for each weighted
triangulation, we can compute the shortest corresponding set of cycles in 7, and therefore the minimum-weight
corresponding even subgraph of G, in O((g + b)?nloglogn) time.

Now suppose we are given an even subgraph H. In O(gn) time, we can compute the crossing parity vector
x(H) by decomposing H into cycles, perturbing the cycles within the ribbon graph -7, and counting crossings with
the perturbed greedy arcs d@; (modulo 2). To compute the minimum-weight even subgraph Z,-homologous with H,
we enumerate all valid weighted triangulations with the correct crossing parity vector, compute a minimum-weight
even subgraph corresponding to each triangulation, and return the smallest even subgraph found.

THEOREM 4.2. Let G be an undirected graph with positively weighted edges, embedded on an orientable surface
with genus g and b boundary components, and let H be an even subgraph of G. We can compute the minimum-weight
even subgraph homologous with H in (g + b)°®*nloglogn time.

COROLLARY 4.3. Let G be an undirected graph with positively weighted edges, embedded on an orientable surface
with genus g (possibly with boundary), and let s and t be vertices of G. We can compute the minimum-weight (s, t)-cut
in G in g°®nloglogn time.

4.3. Non-orientable Surfaces. Kutz’s reduction to the planar minimum-cut problem is the only component of
our homology localization algorithm that requires the underlying surface to be orientable. If the underlying surface
is not orientable, then gluing a cycle of copies of the polygonal schema D" according to a valid crossing sequence
could produce a Mobius band instead of an annulus. The fastest algorithm known for computing a shortest
generating cycle in a combinatorial Mobius band runs in O(nlogn) time, using Klein’s multiple-source shortest
path algorithm [86]; no improvement similar to the O(nloglogn)-time algorithm of Italiano et al. [78] is known.
The resulting algorithm for computing minimum-weight homologous subgraphs runs in (g + b)°¢*?nloglogn
time; because this is subsumed by our later results, we omit further details.

Nevertheless, we can extend Corollary 4.3 to non-orientable surface graphs with no penalty in the running
time. A simple cycle y on a surface is one-sided if some neighborhood of y is a Mobius band, and two-sided
otherwise.

LEMMA 4.4. Let G be an undirected graph with positively weighted edges, embedded on a non-orientable surface &
with two boundary cycles s* and t*, and let H be the even subgraph of G dual to a minimum (s, t)-cut in G*. In any
ribbon perturbation of any cycle decomposition of H, every cycle is two-sided.

Proof: Consider any ribbon perturbation {¥4,...,7,} of any cycle decomposition of H. Slicing the underlying
surface along the perturbed cycles ¥; separates it into two components, one containing the boundary cycle s*,
and the other containing the boundary cycle t*. Color the first component red and second blue. If any cycle ¥,
has the same color on both sides, we can safely delete it from the cycle decomposition; the smaller set of cycles
still separate the red and blue components, which implies that the subgraph H \ y; is the dual of an (s, t)-cut,
contradicting our assumption that H is the dual of the minimum (s, t)-cut. We conclude that every cycle §; is
two-sided; specifically, it has red points on one side and blue points on the other. |

The previous lemma implies that if our minimum-cut algorithm can ignore weighted subgraphs that induce
one-sided cycles. Specifically, whenever the algorithm glues copies of DY according to some crossing sequence, if
the resulting surface is a Mobius band, we ignore the weighted triangulation that produced it. All other aspects of
the algorithm are unchanged.

COROLLARY 4.5. Let G be an undirected graph with positively weighted edges, embedded on a possibly non-
orientable surface with genus g (possibly with boundary), and let s and t be vertices of G. We can compute the
minimum-weight (s, t)-cut in G in g°®nloglogn time.
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Fig. 5.1. Constructing the Z,-homology cover of a pair of pants (a genus zero surface with three boundaries).

5. The Z,-Homology Cover. At a very high level, our algorithm in Section 4 find minimum-weight homologous
subgraphs by enumerating possible homotopy classes of the cycles in a cycle decomposition, and then finding the
shortest cycle in each possible homotopy class by searching a finite portion of the universal cover of the surface .
In this section, we describe a more direct algorithm, which finds the shortest cycle in each homology class, by
constructing and searching a space which we call the Z,-homology cover. Specifically, given a homology signature
h € (Z,)P, our algorithm computes the shortest cycle with signature h in 2°®®nlogn time, using a generalization of
Klein’s multiple-source shortest path algorithm [86] for planar graphs to higher-genus embedded graphs [20,48].
In fact, because there are only 2 homology classes, we can compute the shortest cycle in every homology class in
the same running time. We then assemble the minimum-weight even subgraph in any given homology class from
these Z,-minimal cycles using dynamic programming.

In the preliminary version of this section [50], we described an algorithm to compute shortest non-separating
cycles in a directed surface graph in g°®nlogn time, improving (for fixed g) an earlier algorithm of Cabello
et al. [21] that runs in O(g'/?n*?logn) time. Using similar techniques but with different covering spaces,
Erickson [47] and Fox [56] described even faster algorithms that find shortest non-separating cycles in O(g%nlogn)
time and shortest non-contractible cycles in O(g3nlogn) time. In light of these improvements, we omit discussion
of our non-separating cycle algorithm from this paper.

We emphasize that all results in this section apply to both orientable and non-orientable surfaces.

5.1. Definition and construction. We begin by computing homology signatures for the edges of G in O(fin)
time, as described in Section 3.3. After computing homology signatures for each edge, the Z,-homology cover of a
combinatorial surface can be defined using a standard voltage construction [65, Chapter 4], as follows.

We first define the covering graph G. For simplicity, we regard every edge uv of G as a pair of oppositely
oriented darts u—v and v—u. The vertices of G are all ordered pairs (v, h) where v is a vertex of G and h is an
element of (Z,)P. The darts of G are the ordered pairs (u—v, h) := (u, h)~(v,h @ [uv]) for all edges u—v of G and
all homology classes h € (Z,)?, and the reversal of any dart (u—v, h) is the dart (v—u,h & [uv]).

Now let w: G — G denote the covering map (v, h) = v; this map projects any cycle in G to a cycle in G. To
define a cellular embedding of G, we declare a cycle in G to be a face if and only if its projection is a face of G.
The combinatorial surface defined by this embedding is the Z,-homology cover ..

Our construction can be interpreted more topologically as follows. Let a4, ..., ag denote the system of dual
arcs used to define the homology signatures [e]. The surface D := X\ (a; U---Uag) is a topological disk. Each arc
a; appears on the boundary of D as two segments o and a; . For each signature h € (Z,)P, we create a disjoint
copy (D, h) of D; for each index i, let (a,h) and (a;,h) denote the copies of a; and a; in the disk (D, h). For
each index i, let b; denote the 3-bit vector whose ith bit is equal 1 and whose other 8 —1 bits are all equal to 0.
The Z,-homology cover ¥ is constructed by gluing the 2# copies of D together by identifying boundary paths
(af,h) and (a; ,h @ b;), for every index i and homology class h. See Figure 5.1 for an example.

LEMMA 5.1. The combinatorial surface = has 1 = 2P n vertices, genus g = O(2PB), and b = O(2P b) boundaries,
and it can be constructed in O(2Pn) time.

Proof: Let m and f denote the number of edges and faces of X, respectively. Recall that the Euler characteristic of
Yisy =n—m+f =2—2g—b=1—p. The combinatorial surface ¥ has exactly n = 2P n vertices, 2°m edges,
and 2P f faces, so its Euler characteristic is 77 = 2°(1 — ).

If b > 1, then each boundary cycle §; has a non-zero homology signature; at least one arc a; has exactly
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one endpoint on §;. Thus, & has exactly b = 2~!b boundary cycles, each of which is a double-cover (in
fact, the Z,-homology cover) of some boundary cycle &;. It follows that 3 has genus g = 1 — (¥ + b)/2 =
26=2(4g + b—4) + 1. (Somewhat surprisingly, 3 may have positive genus even when % does not!) On the other
hand, when b = 1, the boundary cycle &, is null-homologous, so & has b = 2f b boundary cycles, and thus ¥ has
genusg=1—(7+D)/2=2P(g—1)+1.

After computing the homology signatures for = in O(fn) time, following Lemma 3.7, it is straightforward to
construct ¥ in O(7) = 0(2Pn) time. O

Each edge in G inherits the weight of its projection in G. Now consider an arbitrary path p in G, with (possibly
equal) endpoints u and v. A straightforward induction argument implies that for any homology class h € (Z,)P,
the path p is the projection of a unique path from (u,h) to (v,h @ [p]), which we denote (p, h). Moreover, this
lifted path has the same length as its projection. The following lemmas are now immediate.

LEMMA 5.2. Every lift of a shortest path in G is a shortest path in G.

LEMMA 5.3. A loop { in G with basepoint v is Z,-minimal if and only if for every homology class h € (Z,)P, the
lifted path (£,h) is a shortest path in G from (v,h) to (v,h @ [£]).

5.2. Computing Z,-minimal cycles. The results in the previous section immediately suggest an algorithm to
compute the shortest cycle in a given Z,-homology class h in time 2°(®n?: construct the Z,-homology cover, and
then compute the shortest path from (v,0) to (v, h), for every vertex v in the original graph. In this section, we
describe a more complex algorithm that runs in time 2°®nlogn. Recall that any path o from u to v in G is the
projection of a unique path (o, 0) from (u,0) to (v,[c]) in G.

LEMMA 5.4. Let v be a Z,-minimal cycle in G in homology class h, and let o be any shortest path in G that
intersects v. There is a Z,-minimal cycle v’ in homology class h, which is the projection of a shortest path (y',h) in G
that starts with a subpath of (o, 0) but does not otherwise intersect (o, 0).

Proof: Let v be the vertex of o Ny closest to the starting vertex of o, and let (v, h) be the corresponding vertex of
the lifted path (o,0). Think of v as a loop based at v. Lemma 5.3 implies that the lifted path (y, k) is a shortest
path from (v,h) to (v,h & [v]).

Now let (w, h”) be the last vertex along (y, h) that is also a vertex of (o, 0). Let (y/,h) be the path obtained
from (y,h) by replacing the subpath from from (v,h) to (w,h’) with the corresponding subpath of (o,0). By
construction, (y’, h) starts with a subpath of (o, 0) but does not otherwise intersect (o, 0). Because both (v, h) and
(o,0) are shortest paths in %, the new path (y/, h) has the same length as (y, h). Thus, the projected cycle v’ has
the same length and homology class as y, which implies that y’ is Z,-minimal. m|

We emphasize that the modified cycle y’ may intersect o arbitrarily many times; however, all such intersections
lift to intersections between (y’,h) and lifts of o other than (o, 0).

Our algorithm uses a generalization of Klein’s multiple-source shortest path algorithm [86] to higher-genus
embedded graphs, first developed by Chambers et al. [20] and later slightly improved by Erickson et al. [48].

LEMMA 5.5 ([20,48]). Let G be a graph with non-negatively weighted edges, cellularly embedded on a surface of
genus g (possibly non-orientable and possibly with boundary), and let f be an arbitrary face of G. We can preprocess
G in 0(g2nlogn) time and O(gnlogn) space so that the shortest-path distance from any vertex incident to f to any
other vertex can be retrieved in O(logn) time.

THEOREM 5.6. Let G be an undirected graph with positively weighted edges, cellularly embedded on a (possibly
non-orientable) surface % with first Betti number 3, and let y be a cycle in G with k edges. A shortest cycle in X that is
Z,-homologous with y can be computed in O(Bk + 8° B3 nlogn) time.

Proof: We begin by computing homology signatures for the edges of G in O(fn) time, using a dual system of
arcs, as described in Section 3.3. In O(fk) time, we then compute the homology signature [y]. If [y] = 0, we
can immediately return the empty walk, so assume otherwise. We then construct the Z,-homology cover G in
0(2Pnlogn) time, using the same system of dual arcs, as described in Section 5.1.

To exploit Lemma 5.4, we need a set S of shortest paths in G that are guaranteed to intersect every cycle with
non-trivial homology. Somewhat counterintuitively, we construct S essentially by building the greedy primal system
of arcs, as described in Section 3.1. Specifically, we build the greedy forest-cotree decomposition (G, F,C*, L),
and let S be the set of paths in the forest F from the boundary of X to the endpoints of edges in L. Lemma 3.1
immediately implies that S contains 2f3 shortest paths. Lemma 3.3 implies that every cycle with non-trivial
homology—in fact, every non-contractible cycle—shares at least one vertex with at least one path in S. We
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emphasize that our algorithm in this section does not need ribbon perturbations; in particular, every path in S is
simple, and our algorithm considers each path in S in isolation.

Then for each each shortest path o € S, we look for a Z,-minimal cycle homologous to y that intersects o and
has the structure described in Lemma 5.4. Lemma 5.2 implies that o is the projection of a shortest path (o, 0)
in G; let us write (o,0) = (vo,0)—(v;,hy)—---—(v,,h,). We construct the combinatorial surface T \\ (o, 0) by
splitting the path (o, 0) into two parallel paths from (v, 0) to (v, h,), which we denote (o,0)" and (o,0)". For
eachindex 1 <i <t—1, let (v,h;)" and (v;,h;)” denote the copies of vertex (v;,h;) on the paths (o,0)* and
(0,0)7, respectively. The paths (0,0)* and (¢,0)” bound a new common face f, ¢y in £ \\ (¢,0).

Lemma 5.4 implies that if any Z,-minimal cycle homologous to y intersects o, then some Z,-minimal cycle
homologous to y is the projection of a shortest path in . \\ (o, 0) from some vertex (v;, h;)* to the corresponding
vertex (v;, h; @ [v]). To compute these shortest paths, we implicitly compute the shortest path in & \\ (o, 0) from
every vertex on the boundary of f, () to every vertex of ¥ \\ (0, 0), using Lemma 5.5. The resulting algorithm runs
in 0(g*nlogn) = 0(8” B3 nlogn) time, by Lemma 5.1. m|

By running this algorithm 2# times, we can compute the shortest cycle in ¥ in every Z,-homology class, in
0(16° B3 nlogn) time.

5.3. Minimum cuts from the homology cover. We now apply our algorithm for computing Z,-minimal cycles
to the problem of computing Z,-minimal even subgraphs in undirected surface embedded graphs. Theorem 5.6
immediately implies that we can compute a minimum-weight cycle in every Z,-homology class in O(16 8> nlogn)
time. However, the minimum weight even subgraph in a given homology class may not be (the carrier of) a
Z,-minimal cycle. In particular if all edge weights are strictly positive, and some Z,-minimal cycle y traverses
any edge more than once, then every minimum-weight even subgraph homologous to y must be disconnected.
However, any connected Z,-minimal even subgraph is the carrier of a Z,-minimal cycle, and the components of
any Z,-minimal even subgraph are themselves Z,-minimal even subgraphs. Thus, we can assemble a Z,-minimal
even subgraph in any homology class from a subset of the Z,-minimal cycles we have already computed. The
following lemma puts an upper bound on the number of cycles we need.

LEMMA 5.7. Every Z,-minimal even subgraph of G has at most g + b — 1 components.

Proof: Let H be an even subgraph of G with more than g + b — 1 components. Each component has a cycle
decomposition, so H must have a cycle decomposition y4,..., v, consisting of r > g + b —1 elements. Let 2* be
the surface obtained from % by gluing a disk to each boundary component; %° is a surface of genus g with no
boundary but with b designated faces.

Now consider the surface 3’ = %*\ (y; U---Uy,). The definition of genus implies that 3’ cannot be connected;
indeed, >’ must have at least b+ 1 components. So by the pigeonhole principle, some component . of 3’ contains
none of the b designated faces. Thus, the boundary of %" is null-homologous in %°, and therefore in %.

We conclude that some subgraph H' of H is null-homologous. Because all edges in H’ have positive weight,
we conclude that H is not Z,-minimal. O
THEOREM 5.8. Let G be an undirected graph with positively weighted edges, embedded on a (possibly non-

orientable) surface with first Betti number 3. A minimum-weight even subgraph of G in each Z,-homology class can
be computed in O(16° 33 nlogn) time.

Proof: Our algorithm computes a minimum-weight cycle y; in every Z,-homology class h in O(16° 2 nlogn)
time, via Theorem 5.6, and then assembles these Z,-minimal cycles into Z,-minimal even subgraphs using dynamic
programming.

For each homology class h € (Z,)P and each integer 1 < k < g+ b—1, let C(h, k) denote the minimum total
weight of any set of at most k cycles in G whose homology classes sum to h. Lemma 5.7 implies that the minimum
weight of any even subgraph in homology class h is exactly C(h, g + b —1). This function obeys the following
straightforward recurrence:

C(h,k) =min{C(h;,k—1)+ C(hy, 1) | hy ® hy = h}.

This recurrence has two base cases: C(0, k) = 0 for any integer k, and for any homology class h, the value C(h, 1)
is just the length of y;,. A standard dynamic programming algorithm computes C(h, g + b — 1) for all 2# homology
classes h in O(4° B) time. We can then assemble the actual minimum-weight even subgraphs in each homology
class in O(fn) time. The total time for this phase of the algorithm is O(4” 8 + 2 fn), which is dominated by the
time to compute all the Z,-minimal cycles. O
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COROLLARY 5.9. Let G be an undirected graph with positively weighted edges, embedded on a surface with
genus g (possibly non-orientable and possibly with boundary), and let s and t be vertices of G. We can compute the
minimum-weight (s, t)-cut in G in 0(2568 g3nlogn) time.

6. NP-Hardness. In this section, we show that finding the minimum-cost even subgraph in a given homology
class is NP-hard, even when the underlying surface has no boundary. Our proof closely follows a reduction of
McCormick et al. [95] from MIN2SAT to a special case of MAXCUT.

THEOREM 6.1. Computing the minimum-weight even subgraph in a given homology class on a surface without
boundary is equivalent to computing a minimum-weight cut in an embedded edge-weighted graph G, where negative-
weight edges of G are dual to an even subgraph in G*.

Proof: Fix a graph G embedded on a surface = without boundary, together with a positive weight function
c: E — R*. For any even subgraph H of G, let c(H) = ZeeH c(e), and let MiINHOM(H, c) denote the even subgraph
of minimum weight in the homology class of H with respect to weight function c.

Consider the residual weight function ¢, : E — R defined by setting cy(e) = c(e) for each edge e ¢ H, and
cy(e) = —c(e) for each edge e € H. For any subgraph H’ of G, we have c(H") = cy(H ® H') + ¢(H), which
immediately implies that MINHOM(H,c) = H & MINHOM(@, cy).

Every boundary subgraph of G is dual to a cut in the dual graph G*. Thus, we have reduced our problem to
computing the minimum cut in G* with respect to the weight function ¢, which is NP-hard as stated in Lemma 6.2.
Since the empty set is a valid cut with zero cost, the cost of the minimum cut is never positive. In particular, H is
the minimum-cost even subgraph in its homology class if and only if the cut in G* with minimum residual cost has
zero cost.

In fact, our reduction is reversible. Suppose we want to find the minimum cut in an embedded graph
G = (V, E) with respect to the cost function c: E — R, where every face of G is incident to an even number of
edges with negative cost. Let H = {e € E | c(e) < 0} be the subgraph of negative-cost edges, and let X denote the
(possibly empty) set of edges in the minimum cut of G. Consider the absolute cost function |c|: E* — R defined as
[c|(e*) = |c(e)]. Then (H @ X)* is the even subgraph of G* of minimum absolute cost that is homologous to H*. O

We now prove that this special case of the minimum cut problem is NP-hard, by reduction from MINCUT in
graphs with negative edges. This problem includes MAXCUT as a special case (when every edge has negative cost),
but many other special cases are also NP-hard [95].

LEMMA 6.2 (McCormick et al. [95]). MINCUT is strongly NP-hard.

The output of our reduction is a simple triangulation; the reduction can be simplified if graphs with loops and
parallel edges are allowed.

LEMMA 6.3. Computing a minimum-weight cut in an embedded edge-weighted graph G whose negative-weight
edges are dual to an even subgraph in G* is strongly NP-hard.

Proof: Let n be the number of vertices of G and c: E — R be the edge weight function. We begin by computing a
cellular embedding of G on some orientable surface, by imposing an arbitrary cyclic order on the edges incident
to each vertex. (We can compute the maximum-genus orientable cellular embedding in polynomial time [59].)
Alternatively, we can add zero-length edges to make the graph complete and then use classical results of Ringel,
Youngs, and others [108,109] to compute a minimum-genus orientable embedding of K,, in polynomial time. Once
we have an embedding, we add vertices and zero-cost edges to obtain a triangulation.

Let C be the sum of the absolute values of the edge costs: C := Y, |c(e)|. A cocycle of embedded graph G is a
subset of edges forming a cycle in the dual G*. We locally modify both the surface and the embedding to transform
each negative-weight edge into a cocycle, as follows. Therefore, in the end, the set of negative-weight edges are
dual to an even subgraph.

We transform the edges one at a time; after each iteration, the embedding is a simple triangulation. (Our
reduction can be simplified if a simple graph is not required.) For each edge uv with c(uv) < 0, remove uv to
create a quadrilateral face. Triangulate this face as shown in Figure 6.1; we call the new faces uu;u, and vv;v,
endpoint triangles. Assign cost C to the edges of the endpoint triangles and cost zero to the other new edges.
Glue a new handle to the endpoint triangles, and triangulate the handle with a cycle of six edges, each with cost
c(uv)/6. These six edges form a cocycle of cost c(uv), which we call an edge cocycle, in the new embedding. Each
iteration adds 5 vertices and 21 edges to the graph and increases the genus of the underlying surface by 1.

Let G’ denote the transformed graph and ¢’: E(G") — R its associated cost function. The minimum cut in G’/
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Fig. 6.1. Adding a handle to transform a negative edge into a negative cocycle. Thick (blue) edges have cost C; dashed edges have cost zero; and
red edges have cost c(uv)/6.

cannot contain any edge of an endpoint triangle. Thus, for each edge cocycle, either all six edges cross the cut,
or none of them cross the cut. It follows that the minimum cut in G’ corresponds to a cut with equal cost in the
original graph G. Conversely, any cut in G can be transformed into a cut in G’ of equal cost. Thus, computing the
minimum cut in G’ is equivalent to computing the minimum cut in G, which is NP-hard by Lemma 6.2. O

THEOREM 6.4. Given an even subgraph H of an edge-weighted graph G embedded on a surface without boundary,
computing the minimum-weight even subgraph homologous to H is strongly NP-hard.

Our reduction can be modified further to impose other desirable properties on the output instances, for example,
that the graph is unweighted, every vertex has degree 3, or the input subgraph H is a simple cycle.

Finally, we emphasize that the NP-hardness of this problem relies crucially on the fact that we are using
homology with coefficients taken from the finite field Z,. The corresponding problem for homology with real or
integer coefficients is a minimum-cost circulation problem, and thus can be solved in polynomial time. Chambers,
Erickson, and Nayyeri [28] show that this circulation problem can be solved in near-linear time for graphs of
constant genus and polynomially bounded integer edge capacities using very different techniques.

7. Global Minimum Cut. Finally, we describe our algorithm to compute global minimum cuts in surface-
embedded graphs, where no source and target vertices are specified in advance. Unlike previous sections, we
begin our exposition assuming that the underlying surface of the input graph does not have boundary, because
filling in any boundaries with disks does not change the minimum cut. We also assume without loss of generality
that no edge of the input graph has the same face on both sides; we can enforce this assumption if necessary by
adding infinitesimal-weight edges.

As in previous sections, it is convenient to work in the dual graph. We cannot apply Lemma 2.2 directly, but
the following lemma similarly characterizes global minimum cuts in surface graphs in terms of homology in the
dual graph. Suppose we have a graph embedded in a surface with a single boundary component. A separating
subgraph is any non-empty boundary subgraph, or equivalently, the boundary of the union of a non-empty set of
faces.

LEMMA 7.1. Let G be an undirected edge-weighted graph embedded on a surface ¥ without boundary, and let s be
an arbitrary vertex of G. A subgraph X is a global minimum cut in G if and only if X* is a minimum-weight separating
subgraph of G* in %\ s*.

Proof: Let X be an arbitrary cut in G. The cut partitions the vertices of G into two disjoint subsets S and T with
s € S. Therefore, the dual subgraph X* partitions the faces of G* into two disjoint subsets S* and T* with s* € S*.
Further, X* is the boundary of the union of faces in T*, implying that X* is a boundary subgraph of X and therefore
separating.

Conversely, let X* be any separating subgraph of G*. Subgraph X* is the boundary of a nonempty subset of
the faces T* of G*. Let t* be a face in T*. Any path from s to t in the primal graph G must traverse at least one
edge of X. We conclude that X is a cut (in particular, an (s, t)-cut). O

In light of this lemma, the remainder of this section describes an algorithm to find a minimum-weight separating
subgraph in a given surface-embedded graph G with positive edge weights. Graph G is embedded in a surface -
with exactly one boundary component s*.

Let X be a minimum-weight separating subgraph. Surface >\ X has exactly one component not incident to s*;
otherwise, the boundary of any one of these components is a smaller separating subgraph. Abusing terminology
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slightly, call the separating subgraph X contractible if this component of % \ X is a disk, and non-contractible
otherwise. If X is contractible, then X is actually a shortest (weakly) simple contractible cycle of G in the surface X;
otherwise, X can be decomposed into one or more simple cycles, each of which is non-contractible. See Figure 7.1.

Fig. 7.1. Two types of minimum-weight separating subgraphs: a simple contractible cycle and otherwise.

Thus, in principle, we can find a minimum-weight separating subgraph by first computing a shortest contractible
cycle, then computing a minimum-weight separating collection of non-contractible cycles, and finally returning
the lighter of these two subgraphs. Unfortunately, we do not know how to solve either of these subproblems in our
stated time bounds, so our algorithm takes a more subtle approach.

In Section 7.1, we describe an algorithm that computes a minimum-weight separating subgraph if any
minimum-weight separating subgraph is contractible. Similarly, in Section 7.2, we describe an algorithm that
computes a minimum-weight separating subgraph if any minimum-weight separating subgraph is non-contractible.
In both cases, if no minimum-weight separating subgraph satisfies the corresponding condition, the algorithm still
returns a boundary subgraph, but this subgraph could be empty or have large weight. By running both subroutines
and returning the best result, we are guaranteed to find a minimum-weight separating subgraph in G, no matter
which category it falls into.

For ease of exposition, we explicitly consider only the case where the underlying surface is orientable; we
briefly discuss the non-orientable setting at the end of this section.

7.1. Contractible. First we consider the case where some minimum-weight separating subgraph X is con-
tractible. This case is nearly handled using a result of Cabello et al. [22, Theorem 5.4] wherein they describe an
algorithm for finding a shortest contractible cycle enclosing a non-empty set of faces in O(T,,;p—cu: (1) + nlogn)
time where T,,;,_c.(1) is the time needed to find a minimum cut in a planar graph of size n. Using the minimum
cut algorithm of Lacki and Sankowski [88], we may assume T,,;,,_.: (1) = O(nloglogn). However, we still need
to open the black box to reduce the nlogn term in the running time. In the interest of completeness and to
avoid having to repeatedly reprove lemmas and theorems from Cabello et al. [22], we describe how to handle the
contractible case directly using tools developed earlier in the current paper.

We begin by borrowing a result of Cabello [19, Lemma 4.1]. Recall that an arc or cycle is tight if it has
minimum-weight among all arcs or cycles in its homotopy class.

LEMMA 7.2 (Cabello [19]). Let a be a tight arc or tight cycle on G. There exists a shortest simple contractible
cycle that does not cross a.

Cabello [19] uses this observation to compute a shortest simple contractible cycle in a surface-embedded
graph; unfortunately, his algorithm runs in O(n?logn) time.

We use the slicing operation (\\) along tight cycles and arcs in G. The following lemma implies it is safe for
our algorithm to find minimum-weight separating subgraphs in sliced copies of ..

LEMMA 7.3. Let a be an arbitrary simple cycle or arc in G. Let &' =% \\ a and let G’ = G \\ a. Finally, let
H’ denote a boundary subgraph in G’ and let H denote the set of edges that appear an odd number of times in the
projection of H'. Subgraph H bounds the natural projection to G of the faces bound by H' in G’.

Proof: Let F’ be the subset of faces bound by H’ in G’. Let F be natural mapping of F’ into G. We will argue
that H is the boundary of F, proving the lemma.

Consider any edge e of G. Suppose e is not in a. In this case, G’ contains one copy e’ of e, and ¢’ € H' if and
only if e € H. Edge ¢’ being incident to exactly one face of F’ is therefore equivalent to e being incident to exactly
one face of F.

Now suppose ¢ is in a. Graph G’ contains two copies of e denoted e; and e,, each incident to one face
denoted f; and f,, respectively. If neither or both of f; and f, are in F’, then H’ includes neither or both of e,
and e,. Therefore, H’' contains the two copies of e an even number of times total, implying e ¢ H. If one, but not
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both, of f; and f, are in F’, then H' includes exactly one of e; or e,. In turn, H' contains the two copies of e an
odd number of times total, meaning e € H.
In all cases, an edge e is in H if and only if exactly one incident face to e is in F. O
We now present our algorithm for finding a minimum-weight separating subgraph if that subgraph happens to
be a contractible cycle.

LEMMA 7.4. There exists an O(gnloglog n)-time algorithm that computes a minimum-weight separating subgraph
if any such subgraph is a simple contractible cycle. If not, the algorithm either returns some separating subgraph (that
may not be minimum weight) or nothing.

Proof: The algorithm computes a greedy system of arcs A in O(n) time as described in Section 3.1. Observe both
endpoints of each arc lie on s*. Let G’ denote the planar graph G \\ 4; this graph has O(gn) vertices.

We now run the algorithm of Lacki and Sankowski [88] to compute the shortest simple cycle ¥’ of G’ in
O(gnloglogn) time. Let H' be the subgraph of G’ containing the edges of y’. Subgraph H’ separates a non-empty
subset of faces F’ from the boundary of G’. By multiple instantiations of Lemma 7.3, subgraph H’' projects to
a boundary subgraph H. Because s* is a boundary component, we see H separates the natural projection of F’
from s*.

Now, suppose some minimum weight separating subgraph of G is a simple contractible cycle. Lemma 7.2
implies that for any arc a € A, there exists a shortest simple contractible cycle o that does not cross a. The cycle
o appears as a simple contractible cycle in G \\ a. Any contractible cycle in G \\ a is contractible in G, so o is a
shortest contractible cycle in G \\ a as well. Therefore, by repeated applications of Lemma 7.2, we may assume o
does not cross any arc of A, and it appears as a simple cycle in G’ that separates at least one face of G’ from the
boundary. We emphasize that our algorithm does not necessarily compute o. However, o cannot be shorter than
H, and our algorithm returns a minimum-weight separating subgraph. O

7.2. Non-contractible. Now suppose some minimum-weight separating subgraph X is non-contractible. At
a high level, our algorithm for this case computes a set F of faces, such that some minimum-weight separating
subgraph of G separates s* from at least one face in F. (Equivalently, F* is a set of vertices of G*, such that the
global minimum cut in G* is an (s, t)-cut for some t € F*.) Then for each face in F, we compute a minimum-weight
subgraph separating s* from that face using one of our earlier algorithms.

Throughout this section, we assume without loss of generality that every edge of G lies on the boundary of
two distinct faces of G. We can enforce this assumption if necessary by adding O(n) infinite-weight edges to G.

The following lemma can be seen as the main technical take-away from this section. After its appearance
in a preliminary version of our work [49], it was generalized by Borradaile et al. [11] for their construction of a
minimum (s, t)-cut oracle for surface embedded graphs.

LEMMA 7.5. Let X be a minimum-weight separating subgraph. Let y be a closed walk in G that lies in the closure
of the component of ¥\ X not incident to s*, and let H be a shortest even subgraph homologous to y. There is a
minimum weight separating subgraph X’ (possibly X) such that H lies in the closure of the component of ¥\ X’ not
incident to s*.

Proof: If y is null-homologous, then H is empty and the lemma is trivial, so assume otherwise. If H lies in the
closure of the component of 3 \ X not incident to s*, then we are done, so assume otherwise. See Figure 7.2.

Fig. 7.2. The setting of Lemma 7.5. A Z,-minimal even subgraph H is separated from face f by a minimum weight separating subgraph X”.

Recall that X bounds the union of one non-empty component of faces not incident to s*. Call the faces in this
component far and the rest near. Similarly, the even subgraph H & y is null-homologous and therefore bounds a
subset of faces of G. Call the faces in this subset white and the rest black. (If H = y, then every face of G is black.)
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Let X’ be the boundary of the union of the far faces and white faces in G. There is at least one far face, so
subgraph X' is separating. For each edge e of H, either e is incident to a white face or it is also an edge of y. Either
way, e lies in the closure of the component of 3 \ X’ not incident to s*.

It remains to argue that X’ is a minimum-weight separating subgraph of G.

For any subgraph A of G, let w(A) denote the sum of the weights of the edges of A. Because both X’ and X are
null-homologous, the even subgraph H' = H ® X’ @ X is homologous to H, and therefore to y. We immediately
have w(H') > w(H), because H is Z,-minimal.

We now prove that w(X’)+w(H’) < w(H) + w(X) by bounding the contribution of each edge e € E(G) to both
sides of the inequality. Both X’ and H’ are subgraphs of X U H; moreover, X’ ® H' = X & H. There are three cases
to consider.

e If e ¢ X UH, then e contributes 0 to both sides of the inequality.
e Ifec X ®H, then e € X’ ®H’. In this case, e contributes w(e) to both sides of the inequality.
e If e € X NH, then e contributes exactly 2w(e) to the right side of the inequality. Trivially, e contributes at
most 2w(e) to the left side.
We conclude that X’ is also a minimum-weight separating subgraph. O

LEMMA 7.6. There is a g°®)nloglog n-time algorithm that computes a minimum-weight separating subgraph
of G if any minimum-weight separating subgraph of G is non-contractible. If every minimum-weight separating
subgraph of G is contractible, the algorithm returns a separating subgraph that may not have minimum weight.

Proof: In a preprocessing phase, we construct a homology basis from a tree-coforest decomposition in O(gn)
time; see Lemma 3.8. Then we enumerate all 226 — 1 non-trivial homology classes by considering subsets of cycles
in this homology basis. For each non-trivial homology class h, we perform the following steps:
e Compute a minimum-weight subgraph Hj, in homology class h, in g°®'nloglogn time, as described by
Theorem 4.2.
e Fix an arbitrary edge e of H,. By assumption, e lies on the boundary of two distinct faces f; and f;. In
particular, at least one of these faces is not s*.
e If f; #s*, compute a minimum-weight subgraph X;, of G that separates s* and f;, in g°®nloglogn time,
using the minimum (s, t)-cut algorithm of Section 4. Otherwise, X}, is undefined.
e If fp #s*, compute a minimum-weight subgraph X; of G that separates s* and f, in g%@®nloglogn time,
again using the minimum (s, t)-cut algorithm of Section 4. Otherwise, X; is undefined.
Altogether we compute between 228 —1 and 22¢*! —2 separating subgraphs of G (some of which may coincide); the
output of our algorithm is the smallest of these separating subgraphs. The overall running time of our algorithm is
20(8) . g9@nloglogn = g°®nloglogn.

It remains to prove that our algorithm is correct. Let X be any minimum-weight separating subgraph of G
such that the component of ¥ \ X not incident to s* is not a disk. Let &’ be the closure of the component of ¥ \ X
that does not contain s*. If &’ has genus, then it contains a cycle y that is not separating in &’ or 3. Otherwise,
¥’ not being a disk implies it has multiple boundary components. We may assume that each of these boundary
components is non-separating in . Otherwise, we could remove exactly one non-separating component to find a
separating subgraph that weighs no more than X. Let y be any one of these boundary components. In both cases,
y lies in ¥’ and is non-separating in ¥. Let h be the homology class of v in ¥, and let H;, be any minimum-weight
even subgraph of G that is homologous with y in X. By Lemma 7.5, there exists a minimum-weight separating
subgraph X’ such that Hy, lies in the closure of the component of ¥ \ X’ not incident to s*. Every edge of H;, is on
the boundary of at least one face f’ in the closure of the component of ¥\ X’ containing H,,. Further, X’ must be a
minimum-weight even subgraph separating s* and f’. We conclude that when our algorithm considers homology
class h, either X;, or X; is a minimum-weight separating subgraph of G. O

Modifying the previous algorithm to use results of Section 5, instead of the corresponding results in Section 4,
immediately gives us the following:

LEMMA 7.7. There is a 2°®nlog n-time algorithm that computes a minimum-weight separating subgraph of G if
any minimum-weight separating subgraph of G is non-contractible. If every minimum-weight separating subgraph
of G is contractible, the algorithm returns a separating subgraph that may not have minimum weight.

7.3. Summing up. Finally, to compute the minimum-weight separating subgraph in G, we run both algorithms
described in Lemmas 7.4 and 7.6. If either algorithm returns nothing, the other algorithm returns a minimum-
weight separating subgraph of G. Otherwise, both algorithms return non-empty separating subgraphs of G, and
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the smaller of those two subgraphs is a minimum-weight separating subgraph of G. We conclude:

COROLLARY 7.8. Let G be an undirected graph with positively weighted edges, embedded on an orientable surface
with genus g (possibly with boundary). We can compute a global minimum cut in G in either g°®nloglogn time or
2°@nlogn time.

Most of the results in this section extend directly to non-orientable surfaces. The only exception is our algorithm
for the non-contractible case (Lemma 7.6), which computes a minimum-weight subgraph in every homology class.
When the underlying surface is non-orientable, we cannot use our crossing-sequence algorithm in Section 4 to
solve this subproblem, for the reasons spelled out in Section 4.3. However, we can still use our homology-cover
algorithm from Section 5.

THEOREM 7.9. Let G be an undirected graph with positively weighted edges, embedded on a non-orientable
surface with genus g and exactly one boundary component. We can compute a minimum-weight separating subgraph
in G in 2°®nlogn time.

COROLLARY 7.10. Let G be an undirected graph with positively weighted edges, embedded on a non-orientable
surface with genus g (possibly with boundary). We can compute a global minimum cut in G in 2°®nlogn time.
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