
MINIMUM CUTS IN SURFACE GRAPHS∗1

ERIN W. CHAMBERS†, JEFF ERICKSON‡, KYLE FOX§, AND AMIR NAYYERI¶2

Abstract. We describe algorithms to efficiently compute minimum (s, t)-cuts and global minimum cuts of undirected surface-embedded3
graphs. Given an edge-weighted undirected graph G with n vertices embedded on an orientable surface of genus g, our algorithms can solve4
either problem in gO(g)n log log n or 2O(g)n log n time, whichever is better. When g is a constant, our gO(g)n log log n time algorithms match5
the best running times known for computing minimum cuts in planar graphs.6

Our algorithms for minimum cuts rely on reductions to the problem of finding a minimum-weight subgraph in a given Z2-homology class,7
and we give efficient algorithms for this latter problem as well. If G is embedded on a surface with genus g and b boundary components, these8
algorithms run in (g + b)O(g+b)n log log n and 2O(g+b)n log n time. We also prove that finding a minimum-weight subgraph homologous to a9
single input cycle is NP-hard, showing it is likely impossible to improve upon the exponential dependencies on g for this latter problem.10

1. Introduction. Planar graphs have been a natural focus of study for algorithms research for decades,11

both because they accurately model many real-world networks, and because they often admit simpler and/or12

more efficient algorithms for many problems than general graphs. Most planar-graph algorithms either apply13

immediately or have been quickly generalized to larger families of graphs, such as graphs of higher genus, graphs14

with forbidden minors, or graphs with small separators. Examples include minimum spanning trees [94,104];15

single-source and multiple-source shortest paths [20,48,53,73,85,86,92,116]; graph and subgraph isomorphism16

[43,44,64,75,96]; and approximation algorithms for the traveling salesman problem, Steiner trees, and other17

NP-hard problems [10,12,13,17,37,44,62].18

The classical minimum cut problem and its dual, the maximum flow problem, are stark exceptions to this19

general pattern. Flows and cuts were introduced in the 1950s as tools for studying transportation networks, which20

are naturally modeled as planar graphs [68]. Ford and Fulkerson’s seminal paper [55] includes an algorithm21

to compute maximum flows in planar networks where the source and target lie on the same face. A long series22

of results eventually led to planar minimum-cut algorithms that run in near-linear time, first for undirected23

graphs [58,70,78,106] and later for directed graphs [73,79,99].24

In contrast, prior to our work, almost nothing was known about computing minimum cuts in even mild25

generalizations of planar graphs; in particular, except for the work reported in this paper, we are unaware of any26

algorithm to compute minimum-cuts in non-planar graphs that does not require first computing a maximum flow.27

This paper describes the first algorithms to compute minimum cuts in surface-embedded graphs of fixed genus28

in near-linear time. Specifically, we describe two algorithms to compute minimum (s, t)-cuts in undirected surface29

graphs, the first in gO(g)n log log n time, and the second in 2O(g)n log n time. We also extend our algorithms to find30

global minimum cuts in undirected surface graphs in the same asymptotic time bounds. For all our algorithms,31

the input consists of an undirected n-vertex graph, with arbitrary positive real edge weights, embedded on an32

orientable surface of genus g. (Some of our results do generalize to non-orientable surfaces; we will mention33

these generalizations in context.)34

Our algorithms are based on a natural generalization of the duality between cuts and cycles in planar graphs,35

first proposed by Whitney [119] and first exploited to compute minimum cuts in planar graphs by Itai and36

Shiloach [77]. A set C of the edges crossing a nontrivial partition (S, T) of V is an (s, t)-cut if s ∈ S and t ∈ T . If G37

is embedded on a surface, then the corresponding edges C∗ in the dual graph G∗ separate the faces of G∗ into two38

disconnected subcomplexes, one containing the dual face s∗ and the other containing the dual face t∗.39

∗ Portions of this work were presented in preliminary form, by different subsets of the authors, at the 25th Annual Symposium on
Computational Geometry [27], the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms [50], and the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms [49].

†Department of Computer Science, Saint Louis University; erin.chambers@slu.edu. Supported in part by NSF grants CCF-1054779, CCF-
1614562, DBI-1759807, CCF-1907612, and CCF-2106672. Portions of this work were done while this author was a student at the University of
Illinois at Urbana-Champaign.

‡Department of Computer Science, University of Illinois, Urbana-Champaign; jeffe@illinois.edu. Supported in part by NSF grants CCF-
0915519, CCF-1408763, and DMS-0528086.

§Department of Computer Science, University of Texas at Dallas; kyle.fox@utdallas.edu. Supported in part by the Department of Energy
Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009,
administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. Portions of this work were done while this author was a student at
the University of Illinois at Urbana-Champaign.

¶School of Electrical Engineering and Computer Science, Oregon State University, nayyeria@eecs.oregonstate.edu. Supported in part by
NSF grants CCF-1065106, CCF-0915519, and DMS-0528086. Portions of this work were done while this author was a student at the University
of Illinois at Urbana-Champaign.

1

2 Minimum cuts in surface graphs

We formalize this characterization in terms of homology, a standard equivalence relation from algebraic40

topology; specifically, we use cellular homology with coefficients in Z2. Briefly, two subgraphs of a surface graph41

are homologous, or in the same homology class, if and only if their symmetric difference is the boundary of a42

subset of faces. In light of this characterization, finding minimum (s, t)-cuts in surface graphs becomes a special43

case of finding the minimum-weight subgraph of a surface graph in a given homology class. Indeed, both of44

our algorithms for computing minimum (s, t)-cuts solve this more general problem, which is sometimes called45

homology localization [31,32].46

Unlike in planar graphs, where every minimal cut is dual to a simple cycle [119], the dual of a minimum cut47

in a surface graph may consist of several disjoint cycles. More generally, the minimum-weight subgraph in any48

homology class may be disconnected, even when the homology class is specified by a simple cycle; see Figure 2.5.49

Dealing with disconnected “cycles” is a significant complication in our algorithms.50

Before describing our results in further detail, we first review several related results; technical terms are more51

precisely defined in Section 2.52

1.1. Past results.53

Minimum cuts in planar graphs. For any two vertices s and t in a graph G, an (s , t)-cut is a subset of the54

edges of G that intersects every path from s to t. A minimum (s, t)-cut is an (s, t)-cut with the smallest number of55

edges, or with minimum total weight if the edges of G are weighted.56

Minimum cuts in planar graphs were already studied by Ford and Fulkerson [55], who observed that when s57

and t lie on a common face of a planar graph G, the minimum (s, t)-cut is dual to a shortest path in the dual58

graph G∗. It follows immediately that the minimum (s, t)-cut in such a graph can be computed in O(n log n)59

time using Dijkstra’s algorithm [77]; Hassin [69] showed that the maximum (s, t)-flow can be computed in O(n)60

additional time.61

Itai and Shiloach [77] generalized Ford and Fulkerson’s observation to arbitrary planar networks. They showed62

that the minimum (s, t)-cut in any planar graph G is dual to the minimum-cost cycle that separates faces s∗ and t∗63

in G∗, and moreover that this separating cycle intersects any shortest path from a vertex of s∗ to a vertex of t∗64

exactly once. Thus, one can compute the minimum (s, t)-cut by slicing the dual graph G∗ along a shortest path π65

from s∗ to t∗; duplicating every vertex and edge of π; and then computing, for each vertex u of π, the shortest66

path between the two copies of u in the resulting planar graph. Applying Dijkstra’s shortest-path algorithm at each67

vertex of π immediately yields a running time of O(n2 log n).68

Reif [106] improved the running time of this algorithm to O(n log2 n) using a divide-and-conquer strategy.69

Reif’s algorithm was extended by Hassin and Johnson to compute the actual maximum flow in O(n log n) additional70

time, using a carefully structured dual shortest-path computation [70]. The running time was improved to71

O(n log n) by Frederickson [58], and more recently to O(n log log n) by Italiano et al. [78], by using a balanced72

separator decomposition to speed up the shortest-path computations.73

Janiga and Koubek [79] attempted to adapt Reif’s O(n log2 n)-time algorithm to directed planar graphs;74

however, their algorithm has a subtle error [80] which may lead to an incorrect result when the minimum (t, s)-cut75

is smaller than the minimum (s, t)-cut.76

Henzinger et al. [73] generalized Frederickson’s technique to obtain an O(n)-time planar shortest-path77

algorithm; using this algorithm in place of Dijkstra’s algorithm improves the running times of both Reif’s and78

Janiga and Koubek’s algorithms to O(n log n). The same improvement can also be obtained using more recent79

multiple-source shortest path algorithms by Klein [86]; Cabello, Chambers, and Erickson [20]; and Erickson, Fox,80

and Lkhamsuren [48].81

Minimum (s, t)-cuts in directed planar graphs can also be computed in O(n log n) time using the planar82

maximum-flow algorithms of Weihe [118] (after filtering out useless edges [52]) and Borradaile and Klein [8,14,15].83

A cut (without specified s and t) is a subset of edges of G that separate G into two non-empty sets of vertices. A84

global minimum cut is a cut of minimum size, or minimum total weight if the edges of G are weighted. Equivalently,85

a global minimum cut is an (s, t)-minimum cut of smallest total weight, minimized over all pairs of vertices s86

and t. Chalermsook, Fakcharoenphol, and Nanongkai [24] gave the first algorithm for computing global minimum87

cuts that relies on planarity; their algorithm runs in O(n log2 n) time. Their algorithm was improved by Ła̧cki and88

Sankowski [88] who achieved an O(n log log n) running time. Mozes et al. recently achieved the same O(n log log n)89

running time for global minimum cuts in directed planar graphs [100], using techniques reported in a preliminary90

version of the current paper [50], specifically, the Z2-homology covers described in Section 5.91

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 3

Generalizations of planar graphs. Surprisingly little is known about the complexity of computing maximum92

flows or minimum cuts in generalizations of planar graphs. In particular, we know of no previous algorithm to93

compute minimum cuts in non-planar graphs that does not first compute a maximum flow.94

By combining a technique of Miller and Naor [97] with the planar directed flow algorithm of Borradaile and95

Klein [8,14,15,46], one can compute maximum (single-commodity) flows in a planar graph with k sources and96

sinks in O(k2n log n) time. More recently, Borradaile et al. [16] described an algorithm to compute maximum flows97

in planar graphs with an arbitrary number of sources and sinks in O(n log3 n) time. An algorithm of Hochstein98

and Weihe [74] computes maximum flows in planar graphs with k additional edges in O(k3n log n) time, using a99

clever simulation of Goldberg and Tarjan’s push-relabel algorithm [61]. Borradaile et al. [16] extend Hochstein100

and Weihe’s framework to compute maximum flows in planar graphs with k apices in O(k3n log3 n) time.101

Chambers and Eppstein [26] describe an algorithm to compute maximum flows in O(n log n) time if the102

input graph forbids a fixed minor that can be drawn in the plane with one crossing. Another related result is the103

algorithm of Hagerup et al. [66] to compute maximum flows in graphs of constant treewidth in O(n) time.104

Imai and Iwano [76] describe a max-flow algorithm that applies to graphs of positive genus, but not to arbitrary105

sparse graphs. Their algorithm computes minimum-cost flows in graphs with small balanced separators, using a106

combination of nested dissection [92,103], interior-point methods [117], and fast matrix multiplication. Their107

algorithm can be adapted to compute maximum flows (and therefore minimum cuts) in any graph of constant108

genus in time O(n1.595 log C), where C is the sum of integer edge weights. However, this algorithm is slower than109

more recent and more general algorithms [41,60].110

Chambers, Erickson, and Nayyeri [28] describe maximum flow algorithms that are tailored specifically for111

graphs of constant genus. Given a graph embedded on an orientable surface of genus g, their algorithms compute a112

maximum flow in O(g8n log2 n log2 C) time where C is the sum of integer edge weights and in gO(g)n3/2 arithmetic113

operations when edge weights are arbitrary positive real numbers. Their key insight is that it suffices to optimize114

the homology class (with coefficients in R) of the flow, rather than directly optimizing the flow itself.115

Euler’s formula implies that a simple n-vertex graph embedded on a surface of genus O(n) has O(n) edges. The116

fastest known combinatorial maximum-flow algorithm for sparse graphs, due to Orlin [102], runs in O(n2/ log n)117

time. The fastest algorithm known for sparse graphs with small integer capacities, due to Goldberg and Rao [60]118

and Lee and Sidford [90], run in time O(n3/2 polylog(n, U)), where U is an upper bound on the integer edge119

weights. Mądry [93] describes a faster algorithm for unit capacity graphs that runs in O(n10/7 polylog n) time when120

the graph is sparse.121

The fastest algorithm known to compute global minimum cuts in arbitrary weighted undirected graphs is a122

Monte Carlo randomized algorithm of Karger [81], which runs in O(m log3 n) time but fails with small probability.123

A more recent deterministic algorithm of Henzinger, Rao, and Wang [72], based on breakthrough techniques of124

Kawarabayashi and Thorup [82,83], computes global minimum cuts in unweighted graphs in O(m log2 n log2 log n)125

time. The fastest deterministic algorithms known for global minimum cuts in arbitrary weighted graphs run in126

O(nm+ n2 log n) time for undirected graphs [57,101,113] and in O(mn log(n2/m)) time for directed graphs [67].127

For further background on maximum flows, minimum cuts, and related problems, we refer the reader to128

monographs by Ahuja et al. [2] and Schrijver [110].129

Optimal homology representatives. Homology is a topological notion of equivalence with nice algebraic130

properties. Two subgraphs of a surface graph G are homologous, or in the same homology class, if their difference is131

the sum of face boundaries, where summation is defined over some coefficient ring. Our minimum-cut algorithms132

all reduce to the problem of finding a subgraph of minimum weight in a given homology class (over the ring Z2).133

Several authors have considered variants of this problem, which is often called homology localization.134

Most interesting variants of homology localization are NP-hard. Chambers et al. [25] prove that finding the135

shortest splitting cycle is NP-hard; a cycle is splitting if it is non-self-crossing, non-contractible, and null-homologous.136

A simple modification of their reduction (from Hamiltonian cycle in planar grid graphs) implies that finding the137

shortest simple cycle in a given homology class is NP-hard. Chen and Freedman [30,31] proved a similar hardness138

result for general simplicial complexes; however, the complexes output by their reduction are never manifolds.139

Recently, Grochaw and Tucker-Foltz [63] proved that homology localization in surface graphs, over a sufficiently140

large finite coefficient ring, is equivalent to Unique Games; in particular, there is no PTAS for any finite coefficient141

ring unless the Unique Games Conjecture is false.142

On the other hand, for homology with real or integer coefficients, homology localization in surface graphs is143

equivalent (via duality) to a minimum-cost flow problem and hence can be solved in polynomial time [28,114].144

4 Minimum cuts in surface graphs

Chambers et al. [28] describe an algorithm to find optimal circulations in a given homology class in near-linear145

time, given a graph with integer coefficients on an orientable surface of fixed genus. Sullivan [114] and Dey146

et al. [38] prove similar results for higher-dimensional orientable manifolds.147

1.2. New results and organization. In Section 3, we describe two techniques to preprocess a graph on a148

surface with boundary, so that the homology class of any subgraph can be computed quickly. These are both natural149

generalizations of known methods for measuring homology in surfaces without boundary based on tree-cotree150

decompositions [25,45,51]. In particular, we describe how to construct a system of arcs—a collection of O(g + b)151

boundary-to-boundary paths that cut the surface into a disk—in O((g + b)n) time. This generalization is essential152

for our algorithms, as our dual homology characterization of minimum (s, t)-cuts removes the dual faces s∗ and t∗,153

leaving a surface with two boundary components.154

Intuitively, the homology class of any cycle is determined by its pattern of crossings with any system of arcs, and155

the homology class of more complicated subgraphs can be computed by decomposing them into cycles. However,156

there are several subtle issues that must be resolved to formalize and apply this intuition. First, it is unclear how157

to modify the topological definition of “crossing” as transverse intersection to apply in our combinatorial setting,158

because the arcs in a system may share edges with each other and with the even subgraphs whose homology we159

want to measure. Second, even when crossings are well-defined, there is more than one way to extract homology160

from the crossing pattern.161

The first way we resolve these issues is by perturbing the system of arcs within a small neighborhood of the162

input graph. Specifically, we replace the vertices and edges of the input graph with small disks and ribbons, and163

perturb cycles and arcs within the resulting structure, which we call a ribbon graph [42,89,91]. We also perturb164

any cycle whose homology we want to measure within the ribbon graph so that it intersects the perturbed arcs165

transversely. Finally, the homology of a perturbed cycle is determined by the sequence of perturbed arcs that it166

crosses. See Sections 2.4 and 3.1.167

We then use this formulation in Section 4 to develop our first algorithm to compute minimum-weight subgraphs168

in a given homology class. Our algorithm first computes a greedy system of arcs; each arc in this system consists of169

two shortest paths in the input graph. Using an exchange argument, we prove that the minimum-weight subgraph170

in any homology class crosses each arc in the greedy system at most O(g + b) times. Our algorithm enumerates171

all possible sequences of crossings consistent with this upper bound, and finds the shortest subgraph consistent172

with each crossing sequence, by reducing to a planar minimum cut problem. The resulting algorithm runs in173

(g + b)O(g+b)n log log n time.174

The second way we resolve crossing subtleties is to build our system of arcs in the dual graph G∗; cycles in G175

intersect these dual arcs only transversely. To avoid the need for perturbing the dual arcs apart, we show that the176

homology of a cycle in G is determined by the number of times it crosses each of the dual arcs in the system. See177

Section 3.3.178

We use this dual formulation in our second algorithm to compute minimum-weight homologous subgraphs in179

Section 5. Our algorithm computes the shortest cycle in every homology class, by constructing and searching a180

certain covering space of the surface that we call the Z2-homology cover, using an extension [48] of the multiple-181

source shortest path algorithm of Cabello et al. [20]. We then assemble the minimum-weight even subgraph in182

any desired homology class from these Z2-minimal cycles using dynamic programming. The resulting algorithm183

runs in 2O(g+b)n log n time. Our second algorithm is simpler, and its running time has better (but still exponential)184

dependence on the topological parameters g and b, but at the expense of slightly worse dependence on n.185

In Section 6, we prove that finding a minimum-weight even subgraph in a given homology class in NP-hard,186

which implies that our algorithms’ exponential dependence on g is almost certainly unavailable. Unlike Chen and187

Freedman [32], our reduction is done on a 2-manifold, and unlike Chambers et al. [25], our target subgraph does188

not need to be a simple cycle.189

Finally, in Section 7, we describe our algorithms for computing global minimum cuts. Both algorithms190

ultimately reduce computing a global minimum cut to 2O(g) instances of computing minimum (s, t)-cuts; thus, our191

algorithms have the same asymptotic running times as the minimum (s, t)-cut algorithms from Sections 4 and 5.192

We note with some amusement that our algorithms solve a problem with a well-known polynomial-time193

solution by reducing it to an exponential number (in g) of instances of an NP-hard (but fixed-parameter tractable)194

problem! The authors of this paper are divided on whether to conjecture that minimum cuts in surface graphs can195

be computed in time O(g cn polylog n) for some small constant c, or that the problem is “fixed-parameter quadratic”196

with respect to genus, just as diameter and radius are fixed-parameter quadratic with respect to treewidth [1].197

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 5

Fomin et al. [54] raise similar questions about the fixed-parameter efficiency of flows and cuts with respect to198

treewidth.199

2. Notation and Terminology. We begin by recalling several useful definitions related to surface-embedded200

graphs. For further background, we refer the reader to Gross and Tucker [65] or Mohar and Thomassen [98] for201

topological graph theory, and to Hatcher [71] or Stillwell [112] for surface topology and homology.202

2.1. Surfaces and curves. A surface (more formally, a 2-manifold with boundary) is a compact Hausdorff203

space in which every point has an open neighborhood homeomorphic to either the plane R2 or a closed halfplane204

{(x , y) ∈ R2 | x ≥ 0}. The points with halfplane neighborhoods make up the boundary of the surface; every205

component of the boundary is homeomorphic to a circle. A surface is non-orientable if it contains a subset206

homeomorphic to the Möbius band, and orientable otherwise. In this paper, we consider only compact and207

connected surfaces.208

A path in a surface Σ is a continuous function p : [0, 1]→ Σ. A loop is a path whose endpoints p(0) and p(1)209

coincide; we refer to this common endpoint as the basepoint of the loop. An arc is a path whose endpoints lie210

on the boundary of Σ, but that is otherwise disjoint from the boundary of Σ. A cycle is a continuous function211

γ: S1→ Σ; the only difference between a cycle and a loop is that a loop has a distinguished basepoint. We say212

a loop ` and a cycle γ are equivalent if, for some real number δ, we have `(t) = γ(t + δ) for all t ∈ [0,1]. We213

collectively refer to paths, loops, arcs, and cycles as curves. A curve is simple if it is injective, except for the214

endpoints of a loop; we usually do not distinguish between simple curves and their images in Σ. A simple curve p215

is separating if Σ \ p is disconnected.216

The reversal rev(p) of a path p is defined by setting rev(p)(t) = p(1− t). The concatenation p ·q of two paths p217

and q with p(1) = q(0) is the path created by setting (p · q)(t) = p(2t) for all t ≤ 1/2 and (p · q)(t) = q(2t −1) for218

all t ≥ 1/2.219

The genus of a surfaceΣ is the maximum number of disjoint simple cycles inΣwhose complement is connected.220

Up to homeomorphism, there is exactly one orientable surface with any genus g ≥ 0 and any number of boundary221

cycles b ≥ 0, and exactly one non-orientable surface with any positive genus g > 0 and any number of boundary222

cycles b ≥ 0. The Euler characteristic χ of a surface with genus g and b boundary components is 2− 2g − b if223

the surface is orientable, and 2− g − b otherwise.224

2.2. Graph embeddings. An embedding of an undirected graph G = (V, E) on a surface Σ is an injective225

continuous function from G to Σ; in particular, an embedding maps vertices of G to distinct points in Σ and226

edges of G to simple, interior-disjoint paths in Σ that intersect vertices only at their endpoints. The faces of the227

embedding are maximal connected subsets of Σ that are disjoint from the image of the graph. We may denote an228

edge uv ∈ E as f |g if it is incident to faces f and g. An embedding is cellular if each of its faces is homeomorphic229

to the plane; in particular, in any cellular embedding, each component of the boundary of Σ must be covered by a230

cycle of edges in G.231

We also refer to the complex of vertices, edges, and faces induced by a cellular embedding as a combinatorial232

surface. Every combinatorial surface with boundary can be obtained from a combinatorial surface without233

boundary by deleting the interiors of one or more faces. See Kettner [84] for an overview and comparison of234

several standard data structures for combinatorial surfaces.235

Euler’s formula implies that any cellularly embedded graph with n vertices, m edges, and f faces lies on a236

surface with Euler characteristic χ = n −m + f , which implies that m = O(n+ g) and f = O(n+ g) if the graph is237

simple. To simplify our presentation, we implicitly assume throughout the paper that g = O(log n), since otherwise238

our minimum-cut algorithms are slower than textbook maximum-flow algorithms. This assumption implies that239

the overall complexity of an embedding is O(n).240

We redundantly use the term arc to refer to a walk in the graph whose endpoints are boundary vertices, but241

that is otherwise disjoint from the boundary. Likewise, we use the term cycle to refer to a closed walk in the graph.242

Note that arcs and cycles may traverse the same vertex or edge more than once.243

2.3. Duality. Any undirected graph G embedded on a surface Σ without boundary has a dual graph G∗,244

which has a vertex f ∗ for each face f of G, and an edge e∗ for each edge e in G joining the vertices dual to the245

faces of G that e separates. The dual graph G∗ has a natural cellular embedding in Σ, whose faces corresponds to246

the vertices of G. See Figure 2.1.247

6 Minimum cuts in surface graphs

f g

u

v

u*

v*

f* g*

Fig. 2.1. Graph duality. One edge uv and its dual (uv)∗ = f ∗g∗ are emphasized.

Any undirected graph G embedded on a surface Σ with boundary has a dual graph G∗, defined as follows.1248

The dual graph G∗ has a vertex f ∗ for each face f of G, including the boundary cycles, and an edge e∗ for each249

edge e in G (including boundary edges) joining the vertices dual to the faces that e separates. For each boundary250

cycle δ of G, we refer to the corresponding vertex δ∗ of G∗ as a dual boundary vertex. The dual graph G∗ has a251

natural cellular embedding in the surface Σ• obtained from Σ by gluing a disk to each boundary cycle; each face252

of this embedding corresponds to a vertex of G. See Figure 2.2. (Duality can be extended to directed graphs [28],253

but our results do not require this extension.)254

Fig. 2.2. A cellularly embedded graph G (solid lines) on a pair of pants (the surface of genus 0 with 3 boundaries), and its dual graph G∗ (dashed
lines). Dual boundary vertices are indicated by squares.

For any subgraph F = (U , D) of G = (V, E), we write G \ F to denote the edge-complement (V, E \ D). Also,255

when the graph G is fixed, we abuse notation by writing F ∗ to denote the subgraph of G∗ corresponding to256

a subgraph F of G; each edge in F ∗ is the dual of a unique edge in F . In particular, we have the identity257

(G \ F)∗ = G∗ \ F ∗. Further, we may sometimes use D to refer to an edge set or the subgraph F = (V, D), but it258

should be clear which we mean from context.259

2.4. Perturbations and Crossings. Our algorithms manipulate cycles and arcs in combinatorial surfaces that260

can share or repeat graph vertices and edges, but that can be perturbed on the surface to avoid self-intersections261

and other degeneracies. To accommodate these perturbations, we represent our combinatorial surfaces as ribbon262

graphs [42,89]. Ribbon graphs are also known as band decompositions [42] and fat graphs [89], and they are263

closely related to the graph-encoded map data structure [91] for representing both orientable and non-orientable264

combinatorial surfaces. Intuitively, ribbon graphs allow us to represent multiple traversals of the same edge as265

parallel paths in a narrow ribbon around that edge. Our ribbon-graph representation is (roughly) equivalent to266

the cross-metric surface representation used in several other papers [25,34,36]; however, the cross-metric surface267

representation is somewhat awkward to work with on surfaces with boundary, which is our main setting. We note268

that our use of ribbon graphs closely resembles the “side information” maintained by Kutz’s algorithm [87, Section269

4.1], which will be a key ingredient in Section 4.270

The ribbon graph G� of an embedded graph G is constructed by expanding each vertex v of G into a closed271

disk v� called a vertex region, and expanding each edge e of G into a narrow rectangle e� called an edge ribbon.272

For any vertex v and edge e, the intersection v� ∩ e� is a simple path on the boundary of both regions if v is an273

endpoint of e; otherwise, the vertex regions and edge ribbons are pairwise disjoint. Each face f of the original274

1Our definition differs slightly from the one proposed by Erickson and Colin de Verdière [35].

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 7

embedding G (including any faces deleted to create surface boundaries) contains exactly one component of Σ\G�;275

we call this component the face region f �. See Figure 2.3.276

Any finite collection C of cycles and arcs in a combinatorial surface, each represented as a walk in the277

underlying graph G, can be continuously deformed into general position within the ribbon graph G�, so that all278

(self-)intersections are transverse and occur only within vertex regions. (Formally, this perturbation is a homotopy279

within G�; see Section 2.6 below.) In particular, each deformed curve visits the vertex regions and edge ribbons280

in G� in the same order that the original curve visits the corresponding vertices and edges of G.281

The intersection of each perturbed curve with any vertex region v� consists of simple boundary-to-boundary282

paths in v�. In particular, any arc that ends at vertex v on a boundary face f is perturbed into an arc in G� that283

ends at the boundary segment v� ∩ f �. We also require minimal intersection within vertex regions, so any two284

boundary-to-boundary paths within the same vertex region intersect at most once. We refer to any deformation285

of C that meets these criteria as a ribbon perturbation of C .286

None of the cycles and arcs we consider in this paper contain spurs—subpaths that traverse an edge followed287

immediately by its reversal. Thus, the intersection of the perturbed cycles and arcs and any edge ribbon is a288

collection of disjoint paths that traverse the ribbon from one end to the other. Thus, to represent any ribbon289

perturbation of C , it suffices to record the following information:290

• The alternating sequence of vertices and edges traversed by each cycle in C;291

• The starting boundary face, alternating sequence of vertices and edges, and ending boundary face of each292

arc in C;293

• The ordering of perturbed curve segments traversing each ribbon e�; and294

• The cyclic order of intersections of the perturbed curves with the boundary of each vertex region v�.295

Fig. 2.3. Le�: A cycle and an arc that share an edge in G. Right: A closeup on the ribbon graph G�, with a ribbon perturbation of the cycle and
the arc that cross inside a vertex region.

An arc or cycle in a combinatorial surface is weakly simple if it can be perturbed into a simple path or cycle in296

the ribbon graph; algorithms to detect if a cycle is weakly simple have been studied extensively of late, in both the297

plane and on orientable or non-orientable surfaces [3,29]. Similarly, an arc or cycle α and another arc or cycle β298

are non-crossing if they have disjoint perturbations within the ribbon graph; otherwise, we say that α crosses β .299

More generally, we say that a collection C of cycles and arcs is non-crossing if there is a single ribbon perturbation300

of C in which all perturbed curves are pairwise disjoint.301

2.5. Even subgraphs and cycle decompositions. An even subgraph is a subgraph of G in which every node302

has even degree, or equivalently, the symmetric difference of cycles. A cycle decomposition of an even subgraph H303

is a set of edge-disjoint, non-crossing, weakly simple cycles whose union is H.304

LEMMA 2.1. Every even subgraph of an embedded graph has a cycle decomposition.305

Proof: Let H be an even subgraph of G. We can decompose H into cycles by specifying, at each vertex v, which306

pairs of incident edges of H are consecutive. Any pairing that does not create a crossing at v is sufficient. For307

example, if e1, e2, . . . , e2d are the edges of H incident to v, indexed in clockwise order around v, we could pair308

edges e2i−1 and e2i for each i. �309

We emphasize that each cycle in a cycle decomposition may visit vertices multiple times; indeed, some even310

subgraphs of G cannot be decomposed into strictly simple cycles in G.311

Slicing a combinatorial surface along a cycle or arc modifies both the surface and the embedded graph. For312

any combinatorial surface S = (Σ, G) and any simple cycle or arc γ in G, we define a new combinatorial surface313

8 Minimum cuts in surface graphs

S \\ γ by taking the topological closure of Σ\γ as the new underlying surface; the new embedded graph contains314

two copies of each vertex and edge of γ, each bordering a new boundary. We can also slice along any weakly simple315

arc or cycle γ by considering any simple ribbon perturbation γ̃ of γ. In particular, γ̃ partitions the vertex regions316

and edge ribbons of G� into the vertex regions and edge ribbons of the ribbon graph of S \\ γ. Our representation317

of ribbon perturbations allows us to compute this new ribbon graph in time proportional to the combinatorial318

length of γ.319

We define the projection of a curve in S \\ γ as the natural mapping of points (or vertices and edges) to S.320

2.6. Homotopy and homology. Two paths p and q in Σ are homotopic if one can be continuously deformed321

into the other without changing their endpoints. More formally, a homotopy between p and q is a continuous map322

h: [0,1]× [0,1]→ Σ such that h(0, ·) = p, h(1, ·) = q, h(·, 0) = p(0) = q(0), and h(·, 1) = p(1) = q(1). Homotopy323

defines an equivalence relation over the set of paths with any fixed pair of endpoints.324

Similarly, two cycles α and β in Σ are freely homotopic if one can be continuously deformed into the other.325

More formally, a free homotopy between α and β is a continuous map h: [0, 1]× S1→ Σ such that h(0, ·) = α and326

h(1, ·) = β . Free homotopy defines an equivalence relation over the set of cycles in Σ. We omit the word “free”327

when it is clear from context.328

A cycle is contractible if it is homotopic to a constant map. Given a weight function on the edges of G, we say329

a path or cycle is tight if it has minimum total weight (counting edges with multiplicity) for its homotopy class.330

Homology is a coarser equivalence relation than homotopy, with nicer algebraic properties. Like several331

earlier papers [30,31,39,40,47,56], we will consider only one-dimensional cellular homology with coefficients in332

the finite field Z2; this restriction allows us to radically simplify our definitions. Fix a cellular embedding of an333

undirected graph G on a surface with genus g and b boundaries. A boundary subgraph is the boundary of the334

union of a subset of faces of G; for example, on a surface with no boundary, every separating cycle is a boundary335

subgraph. Two even subgraphs are homologous, or in the same homology class, if their symmetric difference336

is a boundary subgraph. Boundary subgraphs are also called null-homologous. Any two homotopic cycles are337

homologous, but homologous cycles are not necessarily homotopic; see Figure 2.4. Moreover, the homology class338

of a cycle can contain even subgraphs that are not cycles; see Figure 2.5. We call an even subgraph Z2-minimal if339

it is the minimum-weight subgraph in its homology class.340

Fig. 2.4. Homologous pairs of cycles that are not homotopic. (Lighter portions of the curves are on the back side of the surface.)

Fig. 2.5. Each cycle is homologous to the union of the other two.

Homology classes define a vector space Zβ2 , called the first homology group, whose rank β is called the first341

Betti number. The first Betti number β of any surface is related to its Euler characteristic χ as follows: β = 2−χ342

if the surface has no boundary and β = 1− χ otherwise. Equivalently, we have β = 2g for orientable surfaces343

without boundary, β = 2g + b−1 for orientable surfaces with boundary, β = g for non-orientable surfaces without344

boundary, and β = g − b+ 1 for non-orientable surfaces with boundary.345

2.7. Duality between cuts and even subgraphs. A crucial component of our minimum (s, t)-cut algorithms346

is an equivalence between (s, t)-cuts and even subgraphs of the dual graph contained in a particular homology347

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 9

class. This equivalence was first observed in planar graphs by Whitney [119] and was later used to compute348

minimum cuts in planar graphs by Itai and Shiloach [77]. We formalize the same equivalence on surface graphs in349

the following lemma:350

LEMMA 2.2. Let G be an edge-weighted graph embedded on a surface Σ without boundary, and let s and t be351

vertices of G. A subgraph X is an (s, t)-cut in G if and only if X ∗ is an even subgraph of G∗ homologous with the352

boundary of s∗ in the surface Σ \ (s∗ ∪ t∗). In particular, X is a minimum-weight (s, t)-cut in G, if and only if X ∗ is a353

minimum-weight even subgraph of G∗ homologous with the boundary of s∗ in Σ \ (s∗ ∪ t∗).354

Proof: Let ∂ s∗ denote the boundary of s∗, and let Σ′ denote the surface Σ \ (s∗ ∪ t∗).355

Let X be an arbitrary (s, t)-cut in G. By definition, there is a non-trivial partition V = S ∪ T , such that s ∈ S356

and t ∈ T , where X is the set of edges crossing S and T . Thus, the dual subgraph X ∗ partitions the faces of G∗ into357

two disjoint (possibly non-connected) subsets, S∗ and T ∗, respectively containing faces s∗ and t∗. In particular, X ∗358

is the boundary of the union of the faces in S∗, which implies that X ∗ is null-homologous in Σ. The symmetric359

difference X ∗ ⊕ ∂ s∗ is the boundary of the union of S∗ \ {s∗}, which is a subset of the faces of Σ′. Thus, X ∗ ⊕ ∂ s∗ is360

null-homologous in Σ′. We conclude that X ∗ and ∂ s∗ are homologous in Σ′.361

Conversely, let X ∗ be an arbitrary even subgraph of G∗ homologous to ∂ s∗ in Σ′. The subgraph X ∗ ⊕ ∂ s∗ is362

null-homologous in Σ′. This immediately implies that X ∗ is null-homologous in Σ; moreover, faces s∗ and t∗ are363

on opposite sides of X ∗. Any path from s to t in the original graph G must traverse at least one edge of X . We364

conclude that X is an (s, t)-cut. �365

3. Characterizing Homology. Throughout the paper, we fix an undirected graph G = (V, E), a positive weight366

function w: E → R, and a cellular embedding of G on a (possibly non-orientable) surface Σ of genus g with b367

boundary cycles. Except where explicitly indicated otherwise, we assume without loss of generality that b > 0;368

otherwise, we can remove an arbitrary face of G from Σ without affecting its homology at all. Let δ1, . . . ,δb denote369

the boundary cycles of Σ, and let β denote the first Betti number of Σ. Recall that β = 2g + b−1 if Σ is orientable370

and β = g + b− 1 otherwise.371

In this section, we describe two standard methods for preprocessing a combinatorial surface with boundary372

in O(βn) time, so that the Z2-homology class of any even subgraph H can be computed in O(β) time per edge.373

These are both straightforward generalizations of standard methods for measuring homology in surfaces without374

boundary based on tree-cotree decompositions [25, 45, 51]. Tree-cotree decompositions were formalized by375

Eppstein [45] to compute homology generators, although they were studied earlier by other authors [7,107,115].376

We give these full details here for completeness, and because as far as we are aware, no detailed description377

appears elsewhere in the literature for the first method. We note that a preliminary version of the current work [50]378

was the first detailed description of the second method; see also Chambers et al. [9] for an alternative description379

of the second method.380

Both of the methods we will describe characterize the homology class of any even subgraph H using a vector381

of β bits. The vectors are computed using one of two natural generalizations of tree-cotree decompositions to382

surfaces with boundary. In the first method, the vector is based on the crossings between a cycle decomposition383

of H and a set of β primal arcs. By carefully selecting these arcs, we can bound the number of times any Z2-minimal384

even subgraph can cross any of these arcs; this bound is necessary for the algorithm given in Section 4. In the385

second method, the vector is based on the crossings between H and a set of β dual arcs. The second method is386

somewhat easier to describe and implement than the first, so we use the second method in the algorithm given in387

Section 5.388

3.1. Forest-cotree decompositions. The first method begins by computing a set A of β arcs, each of which389

is the concatenation of two shortest paths in G plus a single edge. Following previous papers [25, 33, 35], we390

construct a greedy system of arcs, using a variant of Erickson and Whittlesey’s algorithm to construct optimal391

systems of loops [51]. Our algorithm uses a natural generalization of tree-cotree decompositions [45] to surfaces392

with boundary.393

A forest-cotree decomposition (see Figure 3.1) of a combinatorial surface S = (Σ, G) is any partition394

(∂G, F, L, C) of the edges of G into four edge-disjoint subgraphs with the following properties:395

• ∂G is the set of all boundary edges of G.396

• F is a spanning forest of G, that is, an acyclic subgraph of G that contains every vertex.397

• Each component of F contains a single boundary vertex.398

• C∗ is a spanning tree of G∗ \ (∂ G)∗, that is, a subtree of G∗ that contains every vertex except the dual399

10 Minimum cuts in surface graphs

boundary vertices δ∗
i
.400

• Finally, L is the set of leftover edges E \ (∂G ∪ F ∪ C∗)401

LEMMA 3.1. In any forest-cotree decomposition (∂G, F, L, C) of any combinatorial surface with boundary and402

with first Betti number β , the set L contains exactly β edges.403

Proof: Recall that n, m, and f respectively denote the number of vertices, edges, and faces of G. Let d1, . . . , db be404

the number of edges on the boundary components. We immediately have |∂G| =
∑

i di . Because our boundary405

cycles are disjoint, contracting each boundary cycle to a single vertex transforms F into a spanning forest of G/∂G406

with b components. It follows that |F | = (n−
∑

i (di − 1))− b. Finally, C∗ is a spanning tree of the dual graph, so407

it has f − 1 edges. As (∂G, F, L, C) is a partition of the edges, we have408

m= |∂G|+ |F |+ |C |+ |L|409

=
∑

i di + (n−
∑

i (di − 1))− b+ f − 1+ |L|.410

= n+ f − 1+ |L|.411412

We conclude that |L|= m− n− f + 1= 1−χ = β . �413

Fix a forest-cotree decomposition (∂G, F, L, C), and arbitrarily index L = {e1, e2, . . . , eβ}. For each edge ei ∈ L,414

the subgraph F ∪ {ei} contains a single nontrivial arc ai , which is either a simple path between distinct boundary415

cycles, or a nontrivial walk from a boundary cycle back to itself; in the second case, ai may traverse some edges416

of F twice. We refer to the collection {a1, a2, . . . , aβ} as a system of arcs. See Figure 3.1.417

LEMMA 3.2. The arcs a1, a2, . . . , aβ are weakly simple and weakly disjoint.418

Proof: Each arc ai consists of an edge in L plus two (possibly overlapping) paths in F . We know the edges from L419

are disjoint and paths in the forest are simple, so it suffices to describe a consistent way to perturb forest paths420

apart. We use an Euler tour on each component of F to define consistent perturbations, as follows. For each edge ei421

in L, we subdivide ei into a path of length 3 and add the first and third edges on that path to the forest F , yielding422

a new augmented forest F ′. Root each component of F ′ at its (unique) boundary vertex. We then compute an423

Euler tour for each component of F ′, which for each tree in F ′ gives a total ordering of the leaves based on when424

they are encountered in the tour. We can then perturb all root-to-leaf paths in each component of F ′ to become425

disjoint, where the order of the paths out of the root is the same as the total ordering of the leaves in the Euler426

tour. Adding the middle thirds of the edges from L to these disjoint paths gives us a perturbation of a1, a2, . . . , aβ427

into disjoint simple arcs. �428

LEMMA 3.3. Slicing along the arcs a1, a2, . . . , aβ transforms Σ into a topological disk.429

Proof: Let {ã1, ã2, . . . , ãβ} be any ribbon perturbation of the arcs a1, a2, . . . , aβ , such that the arcs ãi are simple430

and pairwise disjoint. Lemma 3.2 implies that such a perturbation exists. Slicing along any perturbed arc ãi431

increases the Euler characteristic of the surface by 1. Because the perturbed arcs ãi are simple and disjoint, slicing432

along all β perturbed arcs increases the Euler characteristic to 1. If the resulting sliced surface were disconnected,433

then the faces of G incident to some edge in L would lie in different components, but this is impossible, because434

all faces are connected in the sliced surface via the cotree C∗. We conclude that the sliced surface is connected and435

has Euler characteristic 1, so it must be a disk. �436

Fig. 3.1. Le�: A forest-cotree decomposition of the graph in Figure 2.2; thick doubled lines indicate edges in L. Right: The resulting system of
arcs. Compare with Figure 3.4.

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 11

We can easily construct an arbitrary forest-cotree decomposition, and thus an arbitrary system of arcs, in O(n)437

time using whatever-first search, but our algorithms require a decomposition with a particular forest F and a438

particular dual spanning tree C∗. Let G/∂ G denote the graph obtained from G by contracting the entire subgraph439

∂ G—both vertices and edges—to a single vertex x . Using the algorithm of Henzinger et al. [73] with Aleksandrov440

and Djidjev’s linear-time algorithm for partitioning embedded graphs [4], we compute the single-source shortest-441

path tree T in G/∂ G rooted at x in O(n) time.2 Let F be the subgraph of G corresponding to T . Each component442

of F is a tree of shortest paths from a boundary vertex to a subset of the non-boundary vertices of G.443

Now for each edge e that is not in the forest F or the boundary subgraph ∂ G, let `(e) denote the length of the444

unique arc in the subgraph F ∪ {e}. We can easily compute `(e) for each non-forest edge e in O(n) time. Finally,445

let C∗ denote the maximum spanning tree of G∗ \ (F ∪ ∂ G)∗ with respect to the arc lengths `(e).446

For each edge ei ∈ L, let σi and τi denote the unique directed paths in F from the boundary of G to the447

endpoints of ei , and let P := {σ1, . . . ,σβ ,τ1, . . . ,τβ}. By construction of F , every element of P is a (possibly empty)448

shortest path. For each index i, let ai = σi · ei · rev(τi). The greedy system of arcs is the set A := {a1, a2, . . . , aβ}.449

Exchange arguments by Erickson and Whittlesey [51] and Colin de Verdière [33] imply that every arc in the450

greedy system is tight, and moreover that the greedy system of arcs has minimum total length among all systems451

of arcs.3452

3.2. Crossing parity vectors. Fix a system of arcs a1, a2, . . . , aβ . In this section we define the crossing parity453

vector of any even subgraph H, with respect to the fixed system of arcs, and prove that this vector characterizes454

the homology class of H. Intuitively, the crossing parity vector is a vector of β bits, whose ith bit is equal to 1 if455

and only if H crosses arc ai an odd number of times. However, some care is required to ensure that this intuitive456

notion is actually consistent. Rather than working directly with H, we formally define the crossing parity vector457

of an arbitrary ribbon perturbation of an arbitrary cycle decomposition of H, and then argue that the resulting bit458

vector is the same for any cycle decomposition and any ribbon perturbation thereof.459

First, fix a single cycle γ in G and an index i. Let γ̃ and ãi be any ribbon perturbation of the cycle γ and the460

arc ai , as defined in Section 2.4. By definition, all intersections between γ̃ and ãi are transverse crossings within461

vertex regions of the ribbon graph G�, and each vertex region v� contains at most one such crossing. We define462

the crossing parity x̄ i(γ) to be 1 if γ̃ intersects ai an odd number of times, and 0 otherwise.463

Consider two ribbon perturbations {γ̃, ãi} and {γ̃′, ã′
i
}. These two pairs of curves are homotopic in G�; that464

is, the pair of curves γ̃ and ãi can be continuously deformed to the pair of curves γ̃′ and ã′
i

within the ribbon465

graph. Classical topological arguments [5, 6, 105] imply that any homotopy between (pairs of) curves can be466

decomposed into a finite sequence of elementary homotopy moves, of three different types, as shown in Figure 3.2.467

Straightforward case analysis implies that any homotopy move preserves the parity of the number of crossings468

between the two deforming curves. It follows that the crossing parity x̄ i(γ) is independent of the choice of ribbon469

perturbation of γ and ai .470

Fig. 3.2. Homotopy moves.

Now consider an even subgraph H. We define the crossing parity x̄ i(H) as the sum of the crossing parities of471

the cycles in any cycle decomposition of H. Again, we claim that this bit is independent of the choice of cycle472

decomposition. Consider two cycle decompositions γ1, . . . ,γk and δ1, . . . ,δl of H. Because the cycles in both473

decompositions traverse the same subset of edges, there are ribbon perturbations {γ̃1, . . . , γ̃k, ãi} and {δ̃1, . . . , δ̃l , ãi}474

that include identical perturbations ãi of arc ai and that have identical intersections with each edge ribbon.475

Consider the restriction of these two ribbon perturbations to a single vertex region v�, as shown in Figure 3.3.476

The intersections γ̃i ∩ v� are simple, pairwise-disjoint, boundary-to-boundary paths in v�. The intersections δ̃i ∩ v�477

are also simple, pairwise-disjoint, boundary-to-boundary paths in v�. Moreover, these two sets of paths share478

identical endpoints. It follows that the symmetric difference (
⋃

i δ̃i ⊕
⋃

i γ̃i)∩ v� is the union of (not necessarily479

2This running time requires that g = O(n1−ε) for some constant ε > 0. But recall that we are assuming g = o(log n), since otherwise our
minimum-cut algorithms are slower than textbook algorithms for arbitrary graphs.

3Specifically, Colin de Verdière’s argument implies that the greedy system of arcs is a minimum-length basis in G for the first relative
homology group H1(Σ,∂Σ) [33, Section 3]. Thus, each arc in the greedy system is as short as possible in its relative homology class.

12 Minimum cuts in surface graphs

simple) closed curves in v�. Any simple closed curve in v� intersects any arc ãi an even number of times. It follows480

that these two ribbon perturbations either cross ãi an even number of times, or both cross ãi an odd number of481

times. We conclude that x̄ i(H) is independent of the cycle decomposition of H.482

Fig. 3.3. Local view of ribbon perturbations of two cycle decompositions of the same even subgraph, and their symmetric di�erence. The
doubled lines describe a perturbation of a single weakly simple arc ai .

Finally, the crossing parity vector x̄(H) is defined as the vector (x̄1(H), x̄2(H), . . . , x̄β (H)).483

LEMMA 3.4. Two even subgraphs are Z2-homologous if and only if their crossing parity vectors (with respect to484

the same system of arcs) are equal.485

Proof: Any arc crosses any facial cycle an even number of times; thus, the crossing parity vector of a facial cycle is486

the zero vector. Every boundary subgraph is the symmetric difference of facial cycles; thus, the crossing parity487

vector of any boundary subgraph is also the zero vector. Every pair of even subgraphs H and H ′ satisfies the488

identity x̄(H ⊕H ′) = x̄(H)⊕ x̄(H ′). In particular, if x̄(H ⊕H ′) is the zero vector, then x̄(H) = x̄(H ′). We conclude489

that if two even subgraphs are homologous, then their crossing parity vectors are equal.490

On the other hand, suppose H is an even subgraph such that x̄(H) = 0. We claim that there is a subset S of491

faces whose boundary is H. Let H̃ ∪ Ã be an arbitrary ribbon perturbation of (a cycle decomposition of) the even492

subgraph H and the system of arcs A. By definition, every arc ãi ∈ Ã intersects H̃ an even number of times.493

The perturbed cycles and arcs H̃ ∪ Ã partition the underlying surface into several regions. Lemma 3.3 implies494

that slicing the surface Σ� along the perturbed arcs Ã yields a topological disk D = Σ� \\ Ã. The perturbed cycles495

in H̃ appear as disjoint cycles and boundary-to-boundary paths in D; it follows that we can consistently color the496

regions of D red and blue, so that regions that share a boundary curve in H̃ have opposite colors. Because H̃497

intersects each arc ãi an even number of times, every region that contains part of the boundary of the original498

surface Σ has the same color, without loss of generality red. It follows that any two regions that share a boundary499

curve in Ã have the same color.500

Every face region in the ribbon graph Σ� is either entirely red or entirely blue, so we can pull the coloring501

back to the faces of Σ. In the resulting face coloring, the faces on either side of each edge in H have opposite502

colors; the faces on either side of an edge not in H have the same color; and all faces incident to boundary edges503

are red. It follows that H is the boundary of the blue faces and is therefore null-homologous.504

The identity x̄(H ⊕ H ′) = x̄(H)⊕ x̄(H ′) now implies that if two even subgraphs have equal crossing parity505

vectors, they must be homologous. �506

LEMMA 3.5. We can compute the crossing parity vector of any even subgraph, with respect to any fixed system of507

arcs, in O(βn) time.508

Proof: Let a1, . . . , aβ be the fixed system of arcs. We can compute a cycle decomposition γ1, . . . ,γr of H in O(1)509

time per edge, by following the proof of Lemma 2.1. Finally, we can compute the number of crossings between510

(any ribbon perturbation of) any cycle γi and any arc a j in time proportional to the number of edges in γi . �511

3.3. Homology signatures via tree-coforest decompositions. Our second method associates a vector of β512

bits with each edge e, called the signature of e; the homology class of any even subgraph is characterized by the513

bit-wise exclusive-or of the signatures of its edges.514

Again, our construction is based on one of two natural generalizations of tree-cotree decompositions [45]515

to surfaces with boundary; the other generalization is used for computing crossing parity vectors as described516

above. We define a tree-coforest decomposition of G to be any partition (T, L, F) of the edges of G into three517

edge-disjoint subgraphs with the following properties:518

• T is a spanning tree of G.519

• F ∗ is a spanning forest of G∗, that is, an acyclic subgraph that contains every vertex.520

• Each component of F ∗ contains a single dual boundary vertex.521

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 13

• Finally, L is the set of leftover edges E \ (T ∪ F).522

LEMMA 3.6. In any tree-coforest decomposition (T, F, L) of any combinatorial surface with with boundary and523

with first Betti number β , the set L contains exactly β edges.524

Proof: Recall that n, m, and f respectively denote the number of vertices, edges, and faces of G. We immediately525

have |T | = n− 1 and |F ∗| = f . Because T , F , and L partition the edges, we conclude that |L| = m− (n− 1)− f =526

m− n− f + 1= 1−χ = β . �527

Arbitrarily index the edges in L as e1, . . . , eβ . For each edge ei ∈ L, adding the corresponding dual edge e∗
i

to528

the forest F ∗ creates a dual arc αi , which is either a simple path between distinct boundary vertices, or a nontrivial529

loop from a boundary vertex back to itself; in the second case, αi may traverse some edges of F ∗ twice. (The530

arguments in Lemmas 3.2 and 3.3 imply that the dual arcs αi are weakly simple and weakly disjoint; however, our531

algorithms do not use these properties.) We call the set {α1,α2, . . . ,αβ} a system of dual arcs. See Figure 3.4.532

Fig. 3.4. Le�: A tree-coforest decomposition of the graph in Figure 2.2; doubled lines indicate edges in L. Right: The resulting system of dual arcs.
Compare with Figure 3.1.

Finally, for each edge e in G, we define its signature [e] to be the β -bit vector whose ith bit is equal to 1 if and533

only if e crosses αi (that is, if αi traverses the dual edge e∗) an odd number of times. The signature [H] of an even534

subgraph H is the bitwise exclusive-or of the signatures of its edges. Similarly, the signature [γ] of a cycle γ is the535

bitwise exclusive-or of the signatures of the edges that γ traverses an odd number of times.536

Let h ⊕ h′ denote the bitwise exclusive-or of two homology signatures h and h′, or equivalently, their sum537

as elements of the homology group (Z2)
β . The identities [H ⊕ H ′] = [H]⊕ [H ′] and [γ · γ′] = [γ]⊕ [γ′] follow538

directly from the definitions.539

LEMMA 3.7. We can preprocess G in O(βn) time, so that the signature [γ] of any cycle can be computed in O(β)540

time per edge.541

Proof: A tree-coforest decomposition can be computed in O(n) time as follows. First construct a graph G′ by542

identifying all the dual boundary vertices in G∗ to a single vertex. Compute a spanning tree of G′ by whatever-first543

search; the edges of this spanning tree define an appropriate dual spanning forest F ∗. Construct the subgraph G \ F544

and compute a spanning tree T via whatever-first search. Finally, let L = G \ (T ∪ F). With the decomposition in545

hand, it is straightforward to compute each path αi in O(n) time, and then compute each edge signature in O(β)546

time. �547

For each edge ei ∈ L, let γi denote the fundamental cycle obtained by adding ei to T .548

LEMMA 3.8. The set of cycles
�

γ1, . . . ,γβ
	

form a basis of the first homology group; precisely, these cycles lie in549

linearly independent homology classes that span the group.550

Proof: Consider any non-empty subset Γ =
�

γi1
, . . . ,γik

	

of these cycles, and let γi be an arbitrary member of this551

subset. Dual arc αi crosses the subset exactly once, at the dual edge e∗
i
. Therefore, even subgraph

⊕

γ∈Γ γ does not552

bound the union of a subset of primal faces/dual vertices. �553

A proof of our next lemma appears in Borradaile et al. [9, Corollary 3.5]. They cite an earlier version [50] of the554

current paper for the lemma statement, so we present a slightly simplified version of their proof for completeness.555

LEMMA 3.9. An even subgraph H of G is null-homologous in Σ if and only if [H] = 0.556

Proof: Let H be an even subgraph of G. Let Γ =
�

γi1
, . . . ,γik

	

⊆
�

γ1, . . . ,γβ
	

be such that
⊕

γ∈Γ γ is homologous557

to H. Then by definition, H⊕
⊕

γ∈Γ γ is the boundary of the union of a subset Y of faces of G. The boundary of any558

14 Minimum cuts in surface graphs

face f is contractible inΣ and therefore has signature 0. It follows immediately that [H] = [
⊕

γ∈Γ γ]⊕[
⊕

f ∈Y ∂ f] =559

[
⊕

γ∈Γ γ]⊕
⊕

f ∈Y [∂ f] = [
⊕

γ∈Γ γ]. The ith bit of [
⊕

γ∈Γ γ] is equal to 1 if and only if γi ∈ Γ , because dual arc αi560

crosses no other member of
�

γ1, . . . ,γβ
	

. Therefore, [H] = 0 if and only if the homologous even subgraph
⊕

γ∈Γ γ561

is empty. �562

The following corollaries are now immediate.563

COROLLARY 3.10. Two even subgraphs H and H ′ of G are Z2-homologous in Σ if and only if [H] = [H ′].564

COROLLARY 3.11. Two cycles γ and γ′ in G are Z2-homologous in Σ if and only if [γ] = [γ′].565

4. Crossing Bounds and Triangulations. In this section, we describe an algorithm to compute a minimum-566

weight even subgraph homologous with any specified even subgraph H in (g + b)O(g+b)n log log n time, when the567

input graph is embedded on an orientable surface. In fact, our algorithm can be modified easily to compute a568

minimum-weight representative in every homology class in the same asymptotic running time; there are exactly569

22g+b−1 such classes; recall that we assume non-empty boundary. Lemma 2.2 implies our algorithm can be used to570

find a minimum (s, t)-cut in G∗ in the same amount of time.571

Our algorithm closely resembles the algorithm of Chambers et al. [25] for computing a shortest splitting cycle;572

in fact, our algorithm is somewhat simpler. Our algorithm is based on the key observation (Lemma 4.1) that the573

shortest even subgraph in any homology class crosses any shortest path at most O(g + b) times. The first stage574

of our algorithm cuts the underlying combinatorial surface into a topological disk by a greedy system of arcs, as575

described in Section 3.1. Next, we enumerate all possible ways for an even subgraph to intersect each of the576

greedy arcs at most O(g + b) times; we quickly discard any crossing pattern that does not correspond to an even577

subgraph in the desired homology class. Each crossing pattern is realized by several (free) homotopy classes of578

sets of non-crossing cycles; we show how to enumerate these homotopy classes in Section 4.2. Then within each579

homotopy class, we find a minimum-length set of non-crossing cycles with each crossing pattern, essentially by580

reducing to a planar instance of the minimum-cut problem. The union of those cycles is an even subgraph in the581

desired homology class; we return the lightest such subgraph as our output.582

4.1. Crossing bound. Our main technical lemma for this section establishes an upper bound on the number583

of crossings between members of a greedy system of arcs and the minimum-weight even subgraph in any homology584

class. Crossing-number arguments were first used by Cabello and Mohar [23] to develop the first subquadratic585

algorithms for shortest non-contractible and non-separating cycles in undirected surface embedded graphs; their586

arguments are the foundation of all later improvements of their algorithm [18,20,87]. Our proof is quite similar587

to the argument of Chambers et al. [25] that some shortest splitting cycle crosses any shortest path O(g + b) times.588

However, our new proof is somewhat different, because we work explicitly with ribbon perturbations and the589

structure we seek is a true subgraph, which need not be connected, rather than a single weakly simple closed walk.590

As mentioned in Section 3.1, we cannot consistently define when a shortest path crosses a Z2-minimal even591

subgraph. Instead, we upper-bound the smallest possible number of crossings between an entire arc in the greedy592

system and a ribbon perturbation of a cycle decomposition of a Z2-minimal even subgraph in each homology class.593

We emphasize that different cycle decompositions and different ribbon decompositions of the same even subgraph594

can have different numbers of crossings with the same arc.595

LEMMA 4.1. Let G be an undirected graph with positively weighted edges, embedded on a surface with genus g596

and b > 0 boundary components. Let A=
�

a1, a2, . . . , aβ
	

be a greedy system of arcs. Let H be an even subgraph of G.597

There is a Z2-minimal even subgraph H ′ homologous to H, a cycle decomposition {γ1, . . . ,γr} of H ′, and a ribbon598

perturbation {ã1, . . . , ãβ , γ̃1, . . . , γ̃r}, such that for each index i, the total number of crossings between the perturbed599

arc ãi and the perturbed cycles γ̃1, . . . , γ̃r is at most 12g + 4b− 6.600

Proof: Fix a Z2-minimal even subgraph H ′ homologous to H, a cycle decomposition γ1,γ2, . . . ,γr of H ′, and a601

ribbon perturbation {ã1, . . . , ãβ , γ̃1, . . . , γ̃r} such that the total number X of intersections between perturbed arcs ãi602

and perturbed cycles γ̃ j is as small as possible.603

Recall from Section 3.1 that each arc ai is the concatenation of a shortest path σi in the forest F , a single604

leftover edge ei ∈ L, and the reversal of a shortest path τi in F . Let σ̃i and τ̃i denote the components of ãi \ e�
i

605

containing σi and τi , respectively. Both σ̃i and τ̃i are paths within the ribbon decomposition Σ� with endpoints606

on the boundaries of vertex regions. Because perturbed paths intersect only in vertex regions, every point of607

intersection between γ̃ j and ãi is either a point in γ̃ j ∩ σ̃i or a point in γ̃ j ∩ τ̃i .608

Let σ be one of the shortest paths σi or τi for some index i, and let σ̃ be the corresponding path σ̃i or τ̃i in609

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 15

the ribbon perturbation. For each index j, let x j denote the number of points in σ̃∩ γ̃ j , and let x = x1+ x2+ · · · xβ .610

If we contract σ̃ to a single point ṽ on the boundary of Σ�, each cycle γ̃ j is contracted to the union of x j simple611

loops, which are pairwise disjoint except at their common basepoint ṽ. Altogether, we obtain a set L of x simple612

interior-disjoint loops in Σ�.613

Our key claim is that these x loops lie in distinct nontrivial homotopy classes. This claim implies that L defines614

an embedding of a single-vertex graph with x edges onto the surface Σ�, where every face of the embedding is615

bounded by at least three edges. Euler’s formula now implies that x ≤ 6g + 2b− 3 [25, Lemma 2.1], completing616

the proof of the lemma.617

We prove our key claim by contradiction, using a pair of exchange arguments.618

No contractible loops. For the sake of argument, suppose L contains a contractible loop. Let ` be an innermost619

contractible loop, meaning there are no other contractible loops in the disk bounded by `. This loop is the620

contraction of some subpath γ̃(p, q) of some cycle γ̃ in the perturbed cycle decomposition; the endpoints p and q621

of this subpath lie on σ̃. Let u and v be the vertices of G such that p ∈ u� and q ∈ v�. Fix points p[∈ u� ∩ γ̃ and622

q] ∈ v� ∩ γ̃ such that the subpath π̃ = γ̃(p[, q]) strictly contains γ̃(p, q) but has no more intersections with any623

perturbed arc ãi or perturbed cycle γ̃ j . Let π be the path from u to v in G determined by the sequence of vertex624

regions and edge ribbons traversed by π̃.625

Now let ρ̃ be a path from q] to p[that closely parallels σ̃(q, p); specifically, ρ̃ traverses the same sequence626

of vertex regions and edge ribbons as σ̃(q, p), without crossing any perturbed arc ãi or perturbed cycle γ̃ j . See627

Figure 4.1. Let ρ be the path from v to u obtained by pulling ρ̃ back to G. Because ρ is a subpath of the shortest628

path σ, it is actually a shortest path from v to u.629

σ̃

p q

π̃

ρ̃p♭ q♯

Fig. 4.1. Exchange argument to remove a contractible loop.

Because ` is contractible, the cycle δ̃ = π̃ · ρ̃ is also contractible. Thus, the corresponding closed walk δ = π ·ρ630

in G is contractible and therefore null-homologous. It follows that the subgraph H− = H ′ ⊕ δ is homologous631

with H ′ and thus with H. Because ρ is a shortest path, the weight of H− cannot be larger than the weight of H ′,632

and because H ′ is Z2-minimal, the weight of H− cannot be smaller than the weight of H ′. We conclude that the633

subgraphs H− and H ′ have equal weight; both are Z2-minimal.4634

The cycle γ̃′ = γ̃⊕ δ̃ intersects σ strictly fewer times than γ̃, and does not cross any arc ãi more times than γ̃.635

Because ` is an innermost contractible loop in L, the cycle γ̃′ is simple and disjoint from all other cycles γ̃ j in the636

perturbed cycle decomposition. Thus, replacing γ̃ with γ̃′ gives us a perturbed cycle decomposition of H− with637

fewer than X crossings. But this contradicts our definition of X . We conclude that no loop in L is contractible.638

No homotopic loops. Now suppose for the sake of argument that L contains homotopic pairs of loops. Let `639

and `′ be homotopic loops in L with no other homotopic loops between them. These two loops are contractions of640

subpaths γ̃(p, q) and γ̃′(r, s) of (not necessarily distinct) cycles γ̃ and γ̃′ in the perturbed cycle decomposition, with641

all endpoints p, q, r, s on the path σ̃. As in the previous argument, we extend these subpaths within the vertex642

regions containing their endpoints, to obtain paths π̃ = γ̃(p[, q]) and γ̃′(r[, s]). Let π and π′ be the paths obtained643

by pulling π̃ and π̃′ back to G.644

Let ρ̃ be a path from r] to r[that closely follows σ̃, and similarly let ρ̃′ be a path from q[to s] that closely645

follows σ̃. Let ρ and ρ′ be the paths obtained by pulling ρ̃ and ρ̃′ back to G. Because ρ and ρ′ are subpaths of σ,646

they are shortest paths in G.647

Because ` and `′ are homotopic, the cycle δ̃ = π̃ · ρ̃ · rev(π̃′) · ρ̃′ is contractible, which implies that the648

corresponding closed walk δ = π ·ρ · rev(π′) ·ρ′ in G is contractible and therefore null-homologous. It follows649

that the subgraph H− = H ′ ⊕ δ is homologous to H ′ and therefore to H. Moreover, H− must be Z2-minimal,650

4If shortest paths in G are unique, we can actually conclude at this point that H− = H ′.

16 Minimum cuts in surface graphs

because ρ and ρ′ are shortest paths. Finally, exchanging π̃ and π̃′ with ρ̃ and ρ̃′ transforms our perturbed651

cycle decomposition of H ′ into a perturbed cycle decomposition of H− with fewer than X crossings, violating our652

definition of X . We conclude that no two loops in L are homotopic. �653

4.2. Triangulations and crossing sequences. Our algorithm for computing minimum-weight even subgraph654

in a given homology class follows a strategy first used by Kutz to compute shortest non-contractible cycles [87]; in655

fact our algorithm uses Kutz’s algorithm as a subroutine.656

Our algorithm begins begin by constructing a greedy system of arcs a1, . . . , aβ for the input combinatorial657

surface Σ; we also compute a ribbon perturbation {ã1, . . . , ãβ} of this greedy systen into pairwise-disjoint arcs, as658

described in Lemma 3.2. Lemma 3.3 implies that slicing the combinatorial surface Σ� along these perturbed arcs659

yields a disk D�, which we call a polygonal schema. The boundary of D� alternates between perturbed arcs ãi and660

boundary paths of Σ�; each perturbed arc appears twice on the boundary of D�. Replacing each copy of each661

perturbed arc on the boundary of D� with a single edge, and contracting each boundary path of Σ� to a single662

point, yields a 2β -gon that we call the abstract polygonal schema. See Figure 4.2 for an illustrative example.663

ã
1

ã
2

ã
4

ã
3

ã
1

ã
1

ã
2

ã
2

ã
4

ã
3

ã
4

ã
3

Fig. 4.2. A system of arcs on a surface with genus 2 and one boundary cycle, and the polygonal schema obtained by slicing along the arcs.

We next dualize the abstract polygonal schema, replacing each boundary edge with a vertex, and connecting664

vertices which correspond to adjacent edges in the primal schema. Thus, the dual polygonal schema is a 2β -gon665

with two vertices corresponding to each perturbed greedy arc ãi . Any collection of disjoint simple cycles in Σ�666

corresponds to a weighted triangulation [25] of this dual polygonal schema, which includes an edge between two667

vertices of the dual abstract polygonal schema if and only if some cycle consecutively crosses the corresponding668

pair of perturbed greedy arcs. Each triangulation edge is weighted by the number of times such a crossing occurs669

in our collection. See Figure 4.3 for an illustration of this correspondence. We note that the crossing parity vector670

of the collection of cycles can then be computed directly from this weighted triangulation.671

ã
1

ã
1

ã
2

ã
2

ã
4

ã
3

ã
4

ã
3

2

0

4 1

0 1

1 1

1

0
0

20

ã
1

ã
1

ã
2

ã
2

ã
4

ã
3

ã
4

ã
3

Fig. 4.3. Two disjoint simple cycles on a surface of genus 2 with one boundary, and the corresponding weighted triangulation.

Conversely, we call a weighted triangulation valid if corresponding vertices are incident to edges of equal total672

weight, and the weight of each edge is between 0 and 12g + 4b− 6. Altogether, there are (g + b)O(g+b) different673

valid weighted triangulations. Each valid weighted triangulation corresponds to a collection of simple disjoint674

cycles in Σ�, which is unique up to homotopy. Lemma 4.1 implies that every homology class contains a Z2-minimal675

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 17

even subgraph H ′, such that some ribbon perturbation of some cycle decomposition of H ′ is consistent with a valid676

weighted triangulation.677

For each valid weighted triangulation, we can compute a corresponding collection of abstract cycles in678

O((g + b)2) time by brute force. In the same time, we can also compute the sequence of crossings of each abstract679

cycle with our perturbed greedy arcs. An algorithm of Kutz [87] computes the shortest cycle in G with a given680

crossing sequence of length x in O(xn log n) time, by gluing together x copies of the polygonal schema D� into681

an annulus and computing the shortest generating cycle of that annulus via Frederickson’s planar minimum-cut682

algorithm [58]. Italiano et al. [78] point out that their recent O(n log log n)-time improvement in computing683

minimum (s, t)-cuts in planar graphs can be used instead of Frederickson’s algorithm. Thus, for each weighted684

triangulation, we can compute the shortest corresponding set of cycles in Σ�, and therefore the minimum-weight685

corresponding even subgraph of G, in O((g + b)2n log log n) time.686

Now suppose we are given an even subgraph H. In O(gn) time, we can compute the crossing parity vector687

x̄(H) by decomposing H into cycles, perturbing the cycles within the ribbon graph Σ�, and counting crossings with688

the perturbed greedy arcs ãi (modulo 2). To compute the minimum-weight even subgraph Z2-homologous with H,689

we enumerate all valid weighted triangulations with the correct crossing parity vector, compute a minimum-weight690

even subgraph corresponding to each triangulation, and return the smallest even subgraph found.691

THEOREM 4.2. Let G be an undirected graph with positively weighted edges, embedded on an orientable surface692

with genus g and b boundary components, and let H be an even subgraph of G. We can compute the minimum-weight693

even subgraph homologous with H in (g + b)O(g+b)n log log n time.694

COROLLARY 4.3. Let G be an undirected graph with positively weighted edges, embedded on an orientable surface695

with genus g (possibly with boundary), and let s and t be vertices of G. We can compute the minimum-weight (s, t)-cut696

in G in gO(g)n log log n time.697

4.3. Non-orientable Surfaces. Kutz’s reduction to the planar minimum-cut problem is the only component of698

our homology localization algorithm that requires the underlying surface to be orientable. If the underlying surface699

is not orientable, then gluing a cycle of copies of the polygonal schema D� according to a valid crossing sequence700

could produce a Möbius band instead of an annulus. The fastest algorithm known for computing a shortest701

generating cycle in a combinatorial Möbius band runs in O(n log n) time, using Klein’s multiple-source shortest702

path algorithm [86]; no improvement similar to the O(n log log n)-time algorithm of Italiano et al. [78] is known.703

The resulting algorithm for computing minimum-weight homologous subgraphs runs in (g + b)O(g+b)n log log n704

time; because this is subsumed by our later results, we omit further details.705

Nevertheless, we can extend Corollary 4.3 to non-orientable surface graphs with no penalty in the running706

time. A simple cycle γ on a surface is one-sided if some neighborhood of γ is a Möbius band, and two-sided707

otherwise.708

LEMMA 4.4. Let G be an undirected graph with positively weighted edges, embedded on a non-orientable surface Σ709

with two boundary cycles s∗ and t∗, and let H be the even subgraph of G dual to a minimum (s, t)-cut in G∗. In any710

ribbon perturbation of any cycle decomposition of H, every cycle is two-sided.711

Proof: Consider any ribbon perturbation {γ̃1, . . . , γ̃r} of any cycle decomposition of H. Slicing the underlying712

surface along the perturbed cycles γ̃i separates it into two components, one containing the boundary cycle s∗,713

and the other containing the boundary cycle t∗. Color the first component red and second blue. If any cycle γ̃i714

has the same color on both sides, we can safely delete it from the cycle decomposition; the smaller set of cycles715

still separate the red and blue components, which implies that the subgraph H \ γi is the dual of an (s, t)-cut,716

contradicting our assumption that H is the dual of the minimum (s, t)-cut. We conclude that every cycle γ̃i is717

two-sided; specifically, it has red points on one side and blue points on the other. �718

The previous lemma implies that if our minimum-cut algorithm can ignore weighted subgraphs that induce719

one-sided cycles. Specifically, whenever the algorithm glues copies of D� according to some crossing sequence, if720

the resulting surface is a Möbius band, we ignore the weighted triangulation that produced it. All other aspects of721

the algorithm are unchanged.722

COROLLARY 4.5. Let G be an undirected graph with positively weighted edges, embedded on a possibly non-723

orientable surface with genus g (possibly with boundary), and let s and t be vertices of G. We can compute the724

minimum-weight (s, t)-cut in G in gO(g)n log log n time.725

18 Minimum cuts in surface graphs

00

10

01

11

1 2

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

00

11

0
1

1
0

1

1

1

12

2

2

2

Fig. 5.1. Constructing the Z2-homology cover of a pair of pants (a genus zero surface with three boundaries).

5. The Z2-Homology Cover. At a very high level, our algorithm in Section 4 find minimum-weight homologous726

subgraphs by enumerating possible homotopy classes of the cycles in a cycle decomposition, and then finding the727

shortest cycle in each possible homotopy class by searching a finite portion of the universal cover of the surface Σ.728

In this section, we describe a more direct algorithm, which finds the shortest cycle in each homology class, by729

constructing and searching a space which we call the Z2-homology cover. Specifically, given a homology signature730

h ∈ (Z2)
β , our algorithm computes the shortest cycle with signature h in 2O(β)n log n time, using a generalization of731

Klein’s multiple-source shortest path algorithm [86] for planar graphs to higher-genus embedded graphs [20,48].732

In fact, because there are only 2β homology classes, we can compute the shortest cycle in every homology class in733

the same running time. We then assemble the minimum-weight even subgraph in any given homology class from734

these Z2-minimal cycles using dynamic programming.735

In the preliminary version of this section [50], we described an algorithm to compute shortest non-separating736

cycles in a directed surface graph in gO(g)n log n time, improving (for fixed g) an earlier algorithm of Cabello737

et al. [21] that runs in O(g1/2n3/2 log n) time. Using similar techniques but with different covering spaces,738

Erickson [47] and Fox [56] described even faster algorithms that find shortest non-separating cycles in O(g2n log n)739

time and shortest non-contractible cycles in O(g3n log n) time. In light of these improvements, we omit discussion740

of our non-separating cycle algorithm from this paper.741

We emphasize that all results in this section apply to both orientable and non-orientable surfaces.742

5.1. Definition and construction. We begin by computing homology signatures for the edges of G in O(βn)743

time, as described in Section 3.3. After computing homology signatures for each edge, the Z2-homology cover of a744

combinatorial surface can be defined using a standard voltage construction [65, Chapter 4], as follows.745

We first define the covering graph G. For simplicity, we regard every edge uv of G as a pair of oppositely746

oriented darts u�v and v�u. The vertices of G are all ordered pairs (v, h) where v is a vertex of G and h is an747

element of (Z2)
β . The darts of G are the ordered pairs (u�v, h) := (u, h)�(v, h⊕ [uv]) for all edges u�v of G and748

all homology classes h ∈ (Z2)
β , and the reversal of any dart (u�v, h) is the dart (v�u, h⊕ [uv]).749

Now let π: G→ G denote the covering map π(v, h) = v; this map projects any cycle in G to a cycle in G. To750

define a cellular embedding of G, we declare a cycle in G to be a face if and only if its projection is a face of G.751

The combinatorial surface defined by this embedding is the Z2-homology cover Σ.752

Our construction can be interpreted more topologically as follows. Let α1, . . . ,αβ denote the system of dual753

arcs used to define the homology signatures [e]. The surface D := Σ\ (α1∪ · · ·∪αβ) is a topological disk. Each arc754

αi appears on the boundary of D as two segments α+
i

and α−
i
. For each signature h ∈ (Z2)

β , we create a disjoint755

copy (D, h) of D; for each index i, let (α+
i
, h) and (α−

i
, h) denote the copies of α+

i
and α−

i
in the disk (D, h). For756

each index i, let bi denote the β -bit vector whose ith bit is equal 1 and whose other β − 1 bits are all equal to 0.757

The Z2-homology cover Σ is constructed by gluing the 2β copies of D together by identifying boundary paths758

(α+
i
, h) and (α−

i
, h⊕ bi), for every index i and homology class h. See Figure 5.1 for an example.759

LEMMA 5.1. The combinatorial surface Σ has n = 2βn vertices, genus g = O(2ββ), and b = O(2β b) boundaries,760

and it can be constructed in O(2βn) time.761

Proof: Let m and f denote the number of edges and faces of Σ, respectively. Recall that the Euler characteristic of762

Σ is χ = n−m+ f = 2− 2g − b = 1− β . The combinatorial surface Σ has exactly n= 2βn vertices, 2βm edges,763

and 2β f faces, so its Euler characteristic is χ = 2β (1− β).764

If b > 1, then each boundary cycle δi has a non-zero homology signature; at least one arc α j has exactly765

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 19

one endpoint on δi . Thus, Σ has exactly b = 2β−1 b boundary cycles, each of which is a double-cover (in766

fact, the Z2-homology cover) of some boundary cycle δi . It follows that Σ has genus g = 1 − (χ + b)/2 =767

2β−2(4g + b− 4) + 1. (Somewhat surprisingly, Σ may have positive genus even when Σ does not!) On the other768

hand, when b = 1, the boundary cycle δ1 is null-homologous, so Σ has b = 2β b boundary cycles, and thus Σ has769

genus g = 1− (χ + b)/2= 2β (g − 1) + 1.770

After computing the homology signatures for Σ in O(βn) time, following Lemma 3.7, it is straightforward to771

construct Σ in O(n) = O(2βn) time. �772

Each edge in G inherits the weight of its projection in G. Now consider an arbitrary path p in G, with (possibly773

equal) endpoints u and v. A straightforward induction argument implies that for any homology class h ∈ (Z2)
β ,774

the path p is the projection of a unique path from (u, h) to (v, h⊕ [p]), which we denote (p, h). Moreover, this775

lifted path has the same length as its projection. The following lemmas are now immediate.776

LEMMA 5.2. Every lift of a shortest path in G is a shortest path in G.777

LEMMA 5.3. A loop ` in G with basepoint v is Z2-minimal if and only if, for every homology class h ∈ (Z2)
β , the778

lifted path (`, h) is a shortest path in G from (v, h) to (v, h⊕ [`]).779

5.2. Computing Z2-minimal cycles. The results in the previous section immediately suggest an algorithm to780

compute the shortest cycle in a given Z2-homology class h in time 2O(β)n2: construct the Z2-homology cover, and781

then compute the shortest path from (v, 0) to (v, h), for every vertex v in the original graph. In this section, we782

describe a more complex algorithm that runs in time 2O(β)n log n. Recall that any path σ from u to v in G is the783

projection of a unique path (σ, 0) from (u, 0) to (v, [σ]) in G.784

LEMMA 5.4. Let γ be a Z2-minimal cycle in G in homology class h, and let σ be any shortest path in G that785

intersects γ. There is a Z2-minimal cycle γ′ in homology class h, which is the projection of a shortest path (γ′, h) in G786

that starts with a subpath of (σ, 0) but does not otherwise intersect (σ, 0).787

Proof: Let v be the vertex of σ∩ γ closest to the starting vertex of σ, and let (v, h) be the corresponding vertex of788

the lifted path (σ, 0). Think of γ as a loop based at v. Lemma 5.3 implies that the lifted path (γ, h) is a shortest789

path from (v, h) to (v, h⊕ [γ]).790

Now let (w, h′) be the last vertex along (γ, h) that is also a vertex of (σ, 0). Let (γ′, h) be the path obtained791

from (γ, h) by replacing the subpath from from (v, h) to (w, h′) with the corresponding subpath of (σ, 0). By792

construction, (γ′, h) starts with a subpath of (σ, 0) but does not otherwise intersect (σ, 0). Because both (γ, h) and793

(σ, 0) are shortest paths in Σ, the new path (γ′, h) has the same length as (γ, h). Thus, the projected cycle γ′ has794

the same length and homology class as γ, which implies that γ′ is Z2-minimal. �795

We emphasize that the modified cycle γ′ may intersect σ arbitrarily many times; however, all such intersections796

lift to intersections between (γ′, h) and lifts of σ other than (σ, 0).797

Our algorithm uses a generalization of Klein’s multiple-source shortest path algorithm [86] to higher-genus798

embedded graphs, first developed by Chambers et al. [20] and later slightly improved by Erickson et al. [48].799

LEMMA 5.5 ([20,48]). Let G be a graph with non-negatively weighted edges, cellularly embedded on a surface of800

genus g (possibly non-orientable and possibly with boundary), and let f be an arbitrary face of G. We can preprocess801

G in O(g2n log n) time and O(gn log n) space so that the shortest-path distance from any vertex incident to f to any802

other vertex can be retrieved in O(log n) time.803

THEOREM 5.6. Let G be an undirected graph with positively weighted edges, cellularly embedded on a (possibly804

non-orientable) surface Σ with first Betti number β , and let γ be a cycle in G with k edges. A shortest cycle in Σ that is805

Z2-homologous with γ can be computed in O(βk+ 8ββ3 n log n) time.806

Proof: We begin by computing homology signatures for the edges of G in O(βn) time, using a dual system of807

arcs, as described in Section 3.3. In O(βk) time, we then compute the homology signature [γ]. If [γ] = 0, we808

can immediately return the empty walk, so assume otherwise. We then construct the Z2-homology cover G in809

O(2βn log n) time, using the same system of dual arcs, as described in Section 5.1.810

To exploit Lemma 5.4, we need a set S of shortest paths in G that are guaranteed to intersect every cycle with811

non-trivial homology. Somewhat counterintuitively, we construct S essentially by building the greedy primal system812

of arcs, as described in Section 3.1. Specifically, we build the greedy forest-cotree decomposition (∂ G, F, C∗, L),813

and let S be the set of paths in the forest F from the boundary of Σ to the endpoints of edges in L. Lemma 3.1814

immediately implies that S contains 2β shortest paths. Lemma 3.3 implies that every cycle with non-trivial815

homology—in fact, every non-contractible cycle—shares at least one vertex with at least one path in S. We816

20 Minimum cuts in surface graphs

emphasize that our algorithm in this section does not need ribbon perturbations; in particular, every path in S is817

simple, and our algorithm considers each path in S in isolation.818

Then for each each shortest path σ ∈ S, we look for a Z2-minimal cycle homologous to γ that intersects σ and819

has the structure described in Lemma 5.4. Lemma 5.2 implies that σ is the projection of a shortest path (σ, 0)820

in G; let us write (σ, 0) = (v0, 0)�(v1, h1)� · · ·�(vt , ht). We construct the combinatorial surface Σ \\ (σ, 0) by821

splitting the path (σ, 0) into two parallel paths from (v0, 0) to (vt , ht), which we denote (σ, 0)+ and (σ, 0)−. For822

each index 1 ≤ i ≤ t − 1, let (vi , hi)
+ and (vi , hi)

− denote the copies of vertex (vi , hi) on the paths (σ, 0)+ and823

(σ, 0)−, respectively. The paths (σ, 0)+ and (σ, 0)− bound a new common face f(σ,0) in Σ \\ (σ, 0).824

Lemma 5.4 implies that if any Z2-minimal cycle homologous to γ intersects σ, then some Z2-minimal cycle825

homologous to γ is the projection of a shortest path in Σ \\ (σ, 0) from some vertex (vi , hi)
± to the corresponding826

vertex (vi , hi ⊕ [γ]). To compute these shortest paths, we implicitly compute the shortest path in Σ \\ (σ, 0) from827

every vertex on the boundary of f(σ,0) to every vertex of Σ \\ (σ, 0), using Lemma 5.5. The resulting algorithm runs828

in O(g
2

n log n) = O(8ββ3 n log n) time, by Lemma 5.1. �829

By running this algorithm 2β times, we can compute the shortest cycle in Σ in every Z2-homology class, in830

O(16ββ3 n log n) time.831

5.3. Minimum cuts from the homology cover. We now apply our algorithm for computing Z2-minimal cycles832

to the problem of computing Z2-minimal even subgraphs in undirected surface embedded graphs. Theorem 5.6833

immediately implies that we can compute a minimum-weight cycle in every Z2-homology class in O(16ββ3 n log n)834

time. However, the minimum weight even subgraph in a given homology class may not be (the carrier of) a835

Z2-minimal cycle. In particular, if all edge weights are strictly positive, and some Z2-minimal cycle γ traverses836

any edge more than once, then every minimum-weight even subgraph homologous to γ must be disconnected.837

However, any connected Z2-minimal even subgraph is the carrier of a Z2-minimal cycle, and the components of838

any Z2-minimal even subgraph are themselves Z2-minimal even subgraphs. Thus, we can assemble a Z2-minimal839

even subgraph in any homology class from a subset of the Z2-minimal cycles we have already computed. The840

following lemma puts an upper bound on the number of cycles we need.841

LEMMA 5.7. Every Z2-minimal even subgraph of G has at most g + b− 1 components.842

Proof: Let H be an even subgraph of G with more than g + b − 1 components. Each component has a cycle843

decomposition, so H must have a cycle decomposition γ1, . . . ,γr consisting of r > g + b− 1 elements. Let Σ• be844

the surface obtained from Σ by gluing a disk to each boundary component; Σ• is a surface of genus g with no845

boundary but with b designated faces.846

Now consider the surface Σ′ = Σ• \ (γ1∪· · ·∪γr). The definition of genus implies that Σ′ cannot be connected;847

indeed, Σ′ must have at least b+1 components. So by the pigeonhole principle, some component Σ′′ of Σ′ contains848

none of the b designated faces. Thus, the boundary of Σ′′ is null-homologous in Σ•, and therefore in Σ.849

We conclude that some subgraph H ′ of H is null-homologous. Because all edges in H ′ have positive weight,850

we conclude that H is not Z2-minimal. �851

THEOREM 5.8. Let G be an undirected graph with positively weighted edges, embedded on a (possibly non-852

orientable) surface with first Betti number β . A minimum-weight even subgraph of G in each Z2-homology class can853

be computed in O(16ββ3 n log n) time.854

Proof: Our algorithm computes a minimum-weight cycle γh in every Z2-homology class h in O(16ββ3 n log n)855

time, via Theorem 5.6, and then assembles these Z2-minimal cycles into Z2-minimal even subgraphs using dynamic856

programming.857

For each homology class h ∈ (Z2)
β and each integer 1≤ k ≤ g + b− 1, let C(h, k) denote the minimum total858

weight of any set of at most k cycles in G whose homology classes sum to h. Lemma 5.7 implies that the minimum859

weight of any even subgraph in homology class h is exactly C(h, g + b − 1). This function obeys the following860

straightforward recurrence:861

C(h, k) =min
�

C(h1, k− 1) + C(h2, 1)
�

� h1 ⊕ h2 = h
	

.862

This recurrence has two base cases: C(0, k) = 0 for any integer k, and for any homology class h, the value C(h, 1)863

is just the length of γh. A standard dynamic programming algorithm computes C(h, g + b− 1) for all 2β homology864

classes h in O(4ββ) time. We can then assemble the actual minimum-weight even subgraphs in each homology865

class in O(βn) time. The total time for this phase of the algorithm is O(4ββ + 2ββn), which is dominated by the866

time to compute all the Z2-minimal cycles. �867

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 21

COROLLARY 5.9. Let G be an undirected graph with positively weighted edges, embedded on a surface with868

genus g (possibly non-orientable and possibly with boundary), and let s and t be vertices of G. We can compute the869

minimum-weight (s, t)-cut in G in O(256g g3n log n) time.870

6. NP-Hardness. In this section, we show that finding the minimum-cost even subgraph in a given homology871

class is NP-hard, even when the underlying surface has no boundary. Our proof closely follows a reduction of872

McCormick et al. [95] from MIN2SAT to a special case of MAXCUT.873

THEOREM 6.1. Computing the minimum-weight even subgraph in a given homology class on a surface without874

boundary is equivalent to computing a minimum-weight cut in an embedded edge-weighted graph G, where negative-875

weight edges of G are dual to an even subgraph in G∗.876

Proof: Fix a graph G embedded on a surface Σ without boundary, together with a positive weight function877

c : E→ R+. For any even subgraph H of G, let c(H) =
∑

e∈H c(e), and let MINHOM(H, c) denote the even subgraph878

of minimum weight in the homology class of H with respect to weight function c.879

Consider the residual weight function cH : E → R defined by setting cH(e) = c(e) for each edge e 6∈ H, and880

cH(e) = −c(e) for each edge e ∈ H. For any subgraph H ′ of G, we have c(H ′) = cH(H ⊕ H ′) + c(H), which881

immediately implies that MINHOM(H, c) = H ⊕MINHOM(∅, cH).882

Every boundary subgraph of G is dual to a cut in the dual graph G∗. Thus, we have reduced our problem to883

computing the minimum cut in G∗ with respect to the weight function cH , which is NP-hard as stated in Lemma 6.2.884

Since the empty set is a valid cut with zero cost, the cost of the minimum cut is never positive. In particular, H is885

the minimum-cost even subgraph in its homology class if and only if the cut in G∗ with minimum residual cost has886

zero cost.887

In fact, our reduction is reversible. Suppose we want to find the minimum cut in an embedded graph888

G = (V, E) with respect to the cost function c : E → R, where every face of G is incident to an even number of889

edges with negative cost. Let H = {e ∈ E | c(e)< 0} be the subgraph of negative-cost edges, and let X denote the890

(possibly empty) set of edges in the minimum cut of G. Consider the absolute cost function |c|: E∗→ R defined as891

|c|(e∗) = |c(e)|. Then (H ⊕ X)∗ is the even subgraph of G∗ of minimum absolute cost that is homologous to H∗. �892

We now prove that this special case of the minimum cut problem is NP-hard, by reduction from MINCUT in893

graphs with negative edges. This problem includes MAXCUT as a special case (when every edge has negative cost),894

but many other special cases are also NP-hard [95].895

LEMMA 6.2 (McCormick et al. [95]). MINCUT is strongly NP-hard.896

The output of our reduction is a simple triangulation; the reduction can be simplified if graphs with loops and897

parallel edges are allowed.898

LEMMA 6.3. Computing a minimum-weight cut in an embedded edge-weighted graph G whose negative-weight899

edges are dual to an even subgraph in G∗ is strongly NP-hard.900

Proof: Let n be the number of vertices of G and c : E→ R be the edge weight function. We begin by computing a901

cellular embedding of G on some orientable surface, by imposing an arbitrary cyclic order on the edges incident902

to each vertex. (We can compute the maximum-genus orientable cellular embedding in polynomial time [59].)903

Alternatively, we can add zero-length edges to make the graph complete and then use classical results of Ringel,904

Youngs, and others [108,109] to compute a minimum-genus orientable embedding of Kn in polynomial time. Once905

we have an embedding, we add vertices and zero-cost edges to obtain a triangulation.906

Let C be the sum of the absolute values of the edge costs: C :=
∑

e|c(e)|. A cocycle of embedded graph G is a907

subset of edges forming a cycle in the dual G∗. We locally modify both the surface and the embedding to transform908

each negative-weight edge into a cocycle, as follows. Therefore, in the end, the set of negative-weight edges are909

dual to an even subgraph.910

We transform the edges one at a time; after each iteration, the embedding is a simple triangulation. (Our911

reduction can be simplified if a simple graph is not required.) For each edge uv with c(uv) < 0, remove uv to912

create a quadrilateral face. Triangulate this face as shown in Figure 6.1; we call the new faces uu1u2 and vv1v2913

endpoint triangles. Assign cost C to the edges of the endpoint triangles and cost zero to the other new edges.914

Glue a new handle to the endpoint triangles, and triangulate the handle with a cycle of six edges, each with cost915

c(uv)/6. These six edges form a cocycle of cost c(uv), which we call an edge cocycle, in the new embedding. Each916

iteration adds 5 vertices and 21 edges to the graph and increases the genus of the underlying surface by 1.917

Let G′ denote the transformed graph and c′ : E(G′)→ R its associated cost function. The minimum cut in G′918

22 Minimum cuts in surface graphs

u v

w
v1u1

u2 v2

u v v

v1v2
u2

u1u

Fig. 6.1. Adding a handle to transform a negative edge into a negative cocycle. Thick (blue) edges have cost C ; dashed edges have cost zero; and
red edges have cost c(uv)/6.

cannot contain any edge of an endpoint triangle. Thus, for each edge cocycle, either all six edges cross the cut,919

or none of them cross the cut. It follows that the minimum cut in G′ corresponds to a cut with equal cost in the920

original graph G. Conversely, any cut in G can be transformed into a cut in G′ of equal cost. Thus, computing the921

minimum cut in G′ is equivalent to computing the minimum cut in G, which is NP-hard by Lemma 6.2. �922

THEOREM 6.4. Given an even subgraph H of an edge-weighted graph G embedded on a surface without boundary,923

computing the minimum-weight even subgraph homologous to H is strongly NP-hard.924

Our reduction can be modified further to impose other desirable properties on the output instances, for example,925

that the graph is unweighted, every vertex has degree 3, or the input subgraph H is a simple cycle.926

Finally, we emphasize that the NP-hardness of this problem relies crucially on the fact that we are using927

homology with coefficients taken from the finite field Z2. The corresponding problem for homology with real or928

integer coefficients is a minimum-cost circulation problem, and thus can be solved in polynomial time. Chambers,929

Erickson, and Nayyeri [28] show that this circulation problem can be solved in near-linear time for graphs of930

constant genus and polynomially bounded integer edge capacities using very different techniques.931

7. Global Minimum Cut. Finally, we describe our algorithm to compute global minimum cuts in surface-932

embedded graphs, where no source and target vertices are specified in advance. Unlike previous sections, we933

begin our exposition assuming that the underlying surface of the input graph does not have boundary, because934

filling in any boundaries with disks does not change the minimum cut. We also assume without loss of generality935

that no edge of the input graph has the same face on both sides; we can enforce this assumption if necessary by936

adding infinitesimal-weight edges.937

As in previous sections, it is convenient to work in the dual graph. We cannot apply Lemma 2.2 directly, but938

the following lemma similarly characterizes global minimum cuts in surface graphs in terms of homology in the939

dual graph. Suppose we have a graph embedded in a surface with a single boundary component. A separating940

subgraph is any non-empty boundary subgraph, or equivalently, the boundary of the union of a non-empty set of941

faces.942

LEMMA 7.1. Let G be an undirected edge-weighted graph embedded on a surface Σ without boundary, and let s be943

an arbitrary vertex of G. A subgraph X is a global minimum cut in G if and only if X ∗ is a minimum-weight separating944

subgraph of G∗ in Σ \ s∗.945

Proof: Let X be an arbitrary cut in G. The cut partitions the vertices of G into two disjoint subsets S and T with946

s ∈ S. Therefore, the dual subgraph X ∗ partitions the faces of G∗ into two disjoint subsets S∗ and T ∗ with s∗ ∈ S∗.947

Further, X ∗ is the boundary of the union of faces in T ∗, implying that X ∗ is a boundary subgraph of Σ and therefore948

separating.949

Conversely, let X ∗ be any separating subgraph of G∗. Subgraph X ∗ is the boundary of a nonempty subset of950

the faces T ∗ of G∗. Let t∗ be a face in T ∗. Any path from s to t in the primal graph G must traverse at least one951

edge of X . We conclude that X is a cut (in particular, an (s, t)-cut). �952

In light of this lemma, the remainder of this section describes an algorithm to find a minimum-weight separating953

subgraph in a given surface-embedded graph G with positive edge weights. Graph G is embedded in a surface Σ954

with exactly one boundary component s∗.955

Let X be a minimum-weight separating subgraph. Surface Σ \ X has exactly one component not incident to s∗;956

otherwise, the boundary of any one of these components is a smaller separating subgraph. Abusing terminology957

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 23

slightly, call the separating subgraph X contractible if this component of Σ \ X is a disk, and non-contractible958

otherwise. If X is contractible, then X is actually a shortest (weakly) simple contractible cycle of G in the surface Σ;959

otherwise, X can be decomposed into one or more simple cycles, each of which is non-contractible. See Figure 7.1.960

s* s*

Fig. 7.1. Two types of minimum-weight separating subgraphs: a simple contractible cycle and otherwise.

Thus, in principle, we can find a minimum-weight separating subgraph by first computing a shortest contractible961

cycle, then computing a minimum-weight separating collection of non-contractible cycles, and finally returning962

the lighter of these two subgraphs. Unfortunately, we do not know how to solve either of these subproblems in our963

stated time bounds, so our algorithm takes a more subtle approach.964

In Section 7.1, we describe an algorithm that computes a minimum-weight separating subgraph if any965

minimum-weight separating subgraph is contractible. Similarly, in Section 7.2, we describe an algorithm that966

computes a minimum-weight separating subgraph if any minimum-weight separating subgraph is non-contractible.967

In both cases, if no minimum-weight separating subgraph satisfies the corresponding condition, the algorithm still968

returns a boundary subgraph, but this subgraph could be empty or have large weight. By running both subroutines969

and returning the best result, we are guaranteed to find a minimum-weight separating subgraph in G, no matter970

which category it falls into.971

For ease of exposition, we explicitly consider only the case where the underlying surface is orientable; we972

briefly discuss the non-orientable setting at the end of this section.973

7.1. Contractible. First we consider the case where some minimum-weight separating subgraph X is con-974

tractible. This case is nearly handled using a result of Cabello et al. [22, Theorem 5.4] wherein they describe an975

algorithm for finding a shortest contractible cycle enclosing a non-empty set of faces in O(Tmin−cut(n) + n log n)976

time where Tmin−cut(n) is the time needed to find a minimum cut in a planar graph of size n. Using the minimum977

cut algorithm of Ła̧cki and Sankowski [88], we may assume Tmin−cut(n) = O(n log log n). However, we still need978

to open the black box to reduce the n log n term in the running time. In the interest of completeness and to979

avoid having to repeatedly reprove lemmas and theorems from Cabello et al. [22], we describe how to handle the980

contractible case directly using tools developed earlier in the current paper.981

We begin by borrowing a result of Cabello [19, Lemma 4.1]. Recall that an arc or cycle is tight if it has982

minimum-weight among all arcs or cycles in its homotopy class.983

LEMMA 7.2 (Cabello [19]). Let α be a tight arc or tight cycle on G. There exists a shortest simple contractible984

cycle that does not cross α.985

Cabello [19] uses this observation to compute a shortest simple contractible cycle in a surface-embedded986

graph; unfortunately, his algorithm runs in O(n2 log n) time.987

We use the slicing operation (\\) along tight cycles and arcs in G. The following lemma implies it is safe for988

our algorithm to find minimum-weight separating subgraphs in sliced copies of Σ.989

LEMMA 7.3. Let α be an arbitrary simple cycle or arc in G. Let Σ′ = Σ \\α and let G′ = G \\ α. Finally, let990

H ′ denote a boundary subgraph in G′ and let H denote the set of edges that appear an odd number of times in the991

projection of H ′. Subgraph H bounds the natural projection to G of the faces bound by H ′ in G′.992

Proof: Let F ′ be the subset of faces bound by H ′ in G′. Let F be natural mapping of F ′ into G. We will argue993

that H is the boundary of F , proving the lemma.994

Consider any edge e of G. Suppose e is not in α. In this case, G′ contains one copy e′ of e, and e′ ∈ H ′ if and995

only if e ∈ H. Edge e′ being incident to exactly one face of F ′ is therefore equivalent to e being incident to exactly996

one face of F .997

Now suppose e is in α. Graph G′ contains two copies of e denoted e1 and e2, each incident to one face998

denoted f1 and f2, respectively. If neither or both of f1 and f2 are in F ′, then H ′ includes neither or both of e1999

and e2. Therefore, H ′ contains the two copies of e an even number of times total, implying e /∈ H. If one, but not1000

24 Minimum cuts in surface graphs

both, of f1 and f2 are in F ′, then H ′ includes exactly one of e1 or e2. In turn, H ′ contains the two copies of e an1001

odd number of times total, meaning e ∈ H.1002

In all cases, an edge e is in H if and only if exactly one incident face to e is in F . �1003

We now present our algorithm for finding a minimum-weight separating subgraph if that subgraph happens to1004

be a contractible cycle.1005

LEMMA 7.4. There exists an O(gn log log n)-time algorithm that computes a minimum-weight separating subgraph1006

if any such subgraph is a simple contractible cycle. If not, the algorithm either returns some separating subgraph (that1007

may not be minimum weight) or nothing.1008

Proof: The algorithm computes a greedy system of arcs A in O(n) time as described in Section 3.1. Observe both1009

endpoints of each arc lie on s∗. Let G′ denote the planar graph G \\ A; this graph has O(gn) vertices.1010

We now run the algorithm of Ła̧cki and Sankowski [88] to compute the shortest simple cycle γ′ of G′ in1011

O(gn log log n) time. Let H ′ be the subgraph of G′ containing the edges of γ′. Subgraph H ′ separates a non-empty1012

subset of faces F ′ from the boundary of G′. By multiple instantiations of Lemma 7.3, subgraph H ′ projects to1013

a boundary subgraph H. Because s∗ is a boundary component, we see H separates the natural projection of F ′1014

from s∗.1015

Now, suppose some minimum weight separating subgraph of G is a simple contractible cycle. Lemma 7.21016

implies that for any arc α ∈ A, there exists a shortest simple contractible cycle σ that does not cross α. The cycle1017

σ appears as a simple contractible cycle in G \\α. Any contractible cycle in G \\α is contractible in G, so σ is a1018

shortest contractible cycle in G \\α as well. Therefore, by repeated applications of Lemma 7.2, we may assume σ1019

does not cross any arc of A, and it appears as a simple cycle in G′ that separates at least one face of G′ from the1020

boundary. We emphasize that our algorithm does not necessarily compute σ. However, σ cannot be shorter than1021

H, and our algorithm returns a minimum-weight separating subgraph. �1022

7.2. Non-contractible. Now suppose some minimum-weight separating subgraph X is non-contractible. At1023

a high level, our algorithm for this case computes a set F of faces, such that some minimum-weight separating1024

subgraph of G separates s∗ from at least one face in F . (Equivalently, F ∗ is a set of vertices of G∗, such that the1025

global minimum cut in G∗ is an (s, t)-cut for some t ∈ F ∗.) Then for each face in F , we compute a minimum-weight1026

subgraph separating s∗ from that face using one of our earlier algorithms.1027

Throughout this section, we assume without loss of generality that every edge of G lies on the boundary of1028

two distinct faces of G. We can enforce this assumption if necessary by adding O(n) infinite-weight edges to G.1029

The following lemma can be seen as the main technical take-away from this section. After its appearance1030

in a preliminary version of our work [49], it was generalized by Borradaile et al. [11] for their construction of a1031

minimum (s, t)-cut oracle for surface embedded graphs.1032

LEMMA 7.5. Let X be a minimum-weight separating subgraph. Let γ be a closed walk in G that lies in the closure1033

of the component of Σ \ X not incident to s∗, and let H be a shortest even subgraph homologous to γ. There is a1034

minimum weight separating subgraph X ′ (possibly X) such that H lies in the closure of the component of Σ \ X ′ not1035

incident to s∗.1036

Proof: If γ is null-homologous, then H is empty and the lemma is trivial, so assume otherwise. If H lies in the1037

closure of the component of Σ \ X not incident to s∗, then we are done, so assume otherwise. See Figure 7.2.1038

s*
γ

X

H

H’

X’

Fig. 7.2. The setting of Lemma 7.5. A Z2-minimal even subgraph H is separated from face f by aminimumweight separating subgraph X ′.

Recall that X bounds the union of one non-empty component of faces not incident to s∗. Call the faces in this1039

component far and the rest near. Similarly, the even subgraph H ⊕ γ is null-homologous and therefore bounds a1040

subset of faces of G. Call the faces in this subset white and the rest black. (If H = γ, then every face of G is black.)1041

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 25

Let X ′ be the boundary of the union of the far faces and white faces in G. There is at least one far face, so1042

subgraph X ′ is separating. For each edge e of H, either e is incident to a white face or it is also an edge of γ. Either1043

way, e lies in the closure of the component of Σ \ X ′ not incident to s∗.1044

It remains to argue that X ′ is a minimum-weight separating subgraph of G.1045

For any subgraph A of G, let w(A) denote the sum of the weights of the edges of A. Because both X ′ and X are1046

null-homologous, the even subgraph H ′ = H ⊕ X ′ ⊕ X is homologous to H, and therefore to γ. We immediately1047

have w(H ′)≥ w(H), because H is Z2-minimal.1048

We now prove that w(X ′)+w(H ′)≤ w(H)+w(X) by bounding the contribution of each edge e ∈ E(G) to both1049

sides of the inequality. Both X ′ and H ′ are subgraphs of X ∪ H; moreover, X ′ ⊕ H ′ = X ⊕ H. There are three cases1050

to consider.1051

• If e 6∈ X ∪ H, then e contributes 0 to both sides of the inequality.1052

• If e ∈ X ⊕ H, then e ∈ X ′ ⊕ H ′. In this case, e contributes w(e) to both sides of the inequality.1053

• If e ∈ X ∩ H, then e contributes exactly 2w(e) to the right side of the inequality. Trivially, e contributes at1054

most 2w(e) to the left side.1055

We conclude that X ′ is also a minimum-weight separating subgraph. �1056

LEMMA 7.6. There is a gO(g)n log log n-time algorithm that computes a minimum-weight separating subgraph1057

of G if any minimum-weight separating subgraph of G is non-contractible. If every minimum-weight separating1058

subgraph of G is contractible, the algorithm returns a separating subgraph that may not have minimum weight.1059

Proof: In a preprocessing phase, we construct a homology basis from a tree-coforest decomposition in O(gn)1060

time; see Lemma 3.8. Then we enumerate all 22g − 1 non-trivial homology classes by considering subsets of cycles1061

in this homology basis. For each non-trivial homology class h, we perform the following steps:1062

• Compute a minimum-weight subgraph Hh in homology class h, in gO(g)n log log n time, as described by1063

Theorem 4.2.1064

• Fix an arbitrary edge e of Hh. By assumption, e lies on the boundary of two distinct faces fL and fR. In1065

particular, at least one of these faces is not s∗.1066

• If fL 6= s∗, compute a minimum-weight subgraph Xh of G that separates s∗ and fL , in gO(g)n log log n time,1067

using the minimum (s, t)-cut algorithm of Section 4. Otherwise, Xh is undefined.1068

• If fR 6= s∗, compute a minimum-weight subgraph X ′
h

of G that separates s∗ and fR, in gO(g)n log log n time,1069

again using the minimum (s, t)-cut algorithm of Section 4. Otherwise, X ′
h

is undefined.1070

Altogether we compute between 22g−1 and 22g+1−2 separating subgraphs of G (some of which may coincide); the1071

output of our algorithm is the smallest of these separating subgraphs. The overall running time of our algorithm is1072

2O(g) · gO(g)n log log n= gO(g)n log log n.1073

It remains to prove that our algorithm is correct. Let X be any minimum-weight separating subgraph of G1074

such that the component of Σ \ X not incident to s∗ is not a disk. Let Σ′ be the closure of the component of Σ \ X1075

that does not contain s∗. If Σ′ has genus, then it contains a cycle γ that is not separating in Σ′ or Σ. Otherwise,1076

Σ
′ not being a disk implies it has multiple boundary components. We may assume that each of these boundary1077

components is non-separating in Σ. Otherwise, we could remove exactly one non-separating component to find a1078

separating subgraph that weighs no more than X . Let γ be any one of these boundary components. In both cases,1079

γ lies in Σ′ and is non-separating in Σ. Let h be the homology class of γ in Σ, and let Hh be any minimum-weight1080

even subgraph of G that is homologous with γ in Σ. By Lemma 7.5, there exists a minimum-weight separating1081

subgraph X ′ such that Hh lies in the closure of the component of Σ \ X ′ not incident to s∗. Every edge of Hh is on1082

the boundary of at least one face f ′ in the closure of the component of Σ \ X ′ containing Hh. Further, X ′ must be a1083

minimum-weight even subgraph separating s∗ and f ′. We conclude that when our algorithm considers homology1084

class h, either Xh or X ′
h

is a minimum-weight separating subgraph of G. �1085

Modifying the previous algorithm to use results of Section 5, instead of the corresponding results in Section 4,1086

immediately gives us the following:1087

LEMMA 7.7. There is a 2O(g)n log n-time algorithm that computes a minimum-weight separating subgraph of G if1088

any minimum-weight separating subgraph of G is non-contractible. If every minimum-weight separating subgraph1089

of G is contractible, the algorithm returns a separating subgraph that may not have minimum weight.1090

7.3. Summing up. Finally, to compute the minimum-weight separating subgraph in G, we run both algorithms1091

described in Lemmas 7.4 and 7.6. If either algorithm returns nothing, the other algorithm returns a minimum-1092

weight separating subgraph of G. Otherwise, both algorithms return non-empty separating subgraphs of G, and1093

26 Minimum cuts in surface graphs

the smaller of those two subgraphs is a minimum-weight separating subgraph of G. We conclude:1094

COROLLARY 7.8. Let G be an undirected graph with positively weighted edges, embedded on an orientable surface1095

with genus g (possibly with boundary). We can compute a global minimum cut in G in either gO(g)n log log n time or1096

2O(g)n log n time.1097

Most of the results in this section extend directly to non-orientable surfaces. The only exception is our algorithm1098

for the non-contractible case (Lemma 7.6), which computes a minimum-weight subgraph in every homology class.1099

When the underlying surface is non-orientable, we cannot use our crossing-sequence algorithm in Section 4 to1100

solve this subproblem, for the reasons spelled out in Section 4.3. However, we can still use our homology-cover1101

algorithm from Section 5.1102

THEOREM 7.9. Let G be an undirected graph with positively weighted edges, embedded on a non-orientable1103

surface with genus g and exactly one boundary component. We can compute a minimum-weight separating subgraph1104

in G in 2O(g)n log n time.1105

COROLLARY 7.10. Let G be an undirected graph with positively weighted edges, embedded on a non-orientable1106

surface with genus g (possibly with boundary). We can compute a global minimum cut in G in 2O(g)n log n time.1107

Acknowledgments. The authors would like to thank Chandra Chekuri and Aparna Sundar for helpful discussions1108

on some of the preliminary work included here. We would also like to thank the anonymous reviewers, both for1109

our earlier extended abstracts [27,49,50] and for this paper, for many helpful comments and suggestions.1110

REFERENCES1111

[1] A. ABBOUD, V. V. WILLIAMS, AND J. R. WANG, Approximation and fixed parameter subquadratic algorithms for radius and diameter1112
in sparse graphs, in Proc. 27th Ann. ACM-SIAM Symp. Discrete Algorithms, 2016, pp. 377–391, https://doi.org/10.1137/1.1113
9781611974331.ch28.1114

[2] R. K. AHUJA, T. L. MAGNANTI, AND J. ORLIN, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993.1115
[3] H. A. AKITAYA, G. ALOUPIS, J. ERICKSON, AND C. D. TÓTH, Recognizing weakly simple polygons, Discrete Comput. Geom., 58 (2017),1116

pp. 785–821.1117
[4] L. ALEKSANDROV AND H. DJIDJEV, Linear algorithms for partitioning embedded graphs of bounded genus, SIAM J. Discrete Math., 91118

(1996), pp. 129–150, https://doi.org/10.1137/S0895480194272183.1119
[5] J. W. ALEXANDER, Combinatorial analysis situs, Trans. Amer. Math. Soc., 28 (1926), pp. 301–326.1120
[6] J. W. ALEXANDER AND G. B. BRIGGS, On types of knotted curves, Ann. Math., 28 (1926–1927), pp. 562–586.1121
[7] N. BIGGS, Spanning trees of dual graphs, J. Comb. Theory, 11 (1971), pp. 127–131, https://doi.org/10.1016/0095-8956(71)90022-0.1122
[8] G. BORRADAILE, Exploiting Planarity for Network Flow and Connectivity Problems, PhD thesis, Brown University, May 2008, http:1123

//www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf.1124
[9] G. BORRADAILE, E. W. CHAMBERS, K. FOX, AND A. NAYYERI, Minimum cycle and homology bases of surface-embedded graphs, J. Comput.1125

Geom., 8 (2017), pp. 58–79, https://doi.org/10.20382/jocg.v8i2a4.1126
[10] G. BORRADAILE, E. D. DEMAINE, AND S. TAZARI, Polynomial-time approximation schemes for subset-connectivity problems in bounded-genus1127

graphs, Algorithmica, 68 (2014), pp. 287–311, https://doi.org/10.1007/s00453-012-9662-2.1128
[11] G. BORRADAILE, D. EPPSTEIN, A. NAYYERI, AND C. WULFF-NILSEN, All-pairs minimum cuts in near-linear time for surface-embedded1129

graphs, in Proc. 32nd Int. Symp. Comput. Geom., vol. 51 of Leibniz Int. Proc. Informatics, Schloss Dagstuhl–Leibniz-Zentrum für1130
Informatik, 2016, pp. 22:1–22:16, https://doi.org/10.4230/LIPIcs.SoCG.2016.22.1131

[12] G. BORRADAILE, C. KENYON-MATHIEU, AND P. N. KLEIN, A polynomial-time approximation scheme for Steiner tree in planar graphs, in1132
Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 2007, pp. 1285–1294.1133

[13] G. BORRADAILE, C. KENYON-MATHIEU, AND P. N. KLEIN, Steiner tree in planar graphs: An O(n log n) approximation scheme with1134
singly-exponential dependence on epsilon, in Proc. 10th Workshop on Algorithms and Data Structures, 2007, pp. 275–286.1135

[14] G. BORRADAILE AND P. KLEIN, An O(n log n)-time algorithm for maximum st-flow in a directed planar graph, in Proc. 17th Ann. ACM-SIAM1136
Symp. Discrete Algorithms, 2006, pp. 524–533.1137

[15] G. BORRADAILE AND P. KLEIN, An O(n log n) algorithm for maximum st-flow in a directed planar graph, J. ACM, 56 (2009), pp. 9:1–30.1138
[16] G. BORRADAILE, P. N. KLEIN, S. MOZES, Y. NUSSBAUM, AND C. WULFF-NILSEN, Multiple-source multiple-sink maximum flow in directed1139

planar graphs in near-linear time, SIAM J. Comput., 46 (2017), pp. 1280–1303, https://doi.org/10.1137/15M1042929.1140
[17] G. BORRADAILE, H. LE, AND C. WULFF-NILSEN, Minor-free graphs have light spanners, in Proc. 58th IEEE Symp. Found. Comput. Sci.,1141

2017, pp. 767–778, https://doi.org/10.1109/FOCS.2017.76.1142
[18] S. CABELLO, Many distances in planar graphs, in Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, 2006, pp. 1213–1220.1143
[19] S. CABELLO, Finding shortest contractible and shortest separating cycles in embedded graphs, ACM Trans. Algorithms, 6 (2010), pp. 24:1–1144

24:18, https://doi.org/10.1145/1721837.1721840.1145
[20] S. CABELLO, E. W. CHAMBERS, AND J. ERICKSON, Multiple-source shortest paths in embedded graphs, SIAM J. Comput., 42 (2013),1146

pp. 1542–1571.1147
[21] S. CABELLO, É. COLIN DE VERDIÈRE, AND F. LAZARUS, Finding shortest non-trivial cycles in directed graphs on surfaces, in Proc. 26th Ann.1148

Symp. Comput. Geom., 2010, pp. 156–165, https://doi.org/10.1145/1810959.1810988.1149
[22] S. CABELLO, M. DEVOS, J. ERICKSON, AND B. MOHAR, Finding one tight cycle, ACM Trans. Algorithms, 6 (2010), pp. 61:1–61:13,1150

https://doi.org/10.1145/1824777.1824781.1151

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 27

[23] S. CABELLO AND B. MOHAR, Finding shortest non-separating and non-contractible cycles for topologically embedded graphs, Discrete1152
Comput. Geom., 37 (2007), pp. 213–235, https://doi.org/10.1007/s00454-006-1292-5.1153

[24] P. CHALERMSOOK, J. FAKCHAROENPHOL, AND D. NANONGKAI, A deterministic near-linear time algorithm for finding minimum cuts in1154
planar graphs, in Proc. 15th Ann. ACM-SIAM Symp. Discrete Algorithms, 2004, pp. 828–829.1155

[25] E. W. CHAMBERS, É. COLIN DE VERDIÈRE, J. ERICKSON, F. LAZARUS, AND K. WHITTLESEY, Splitting (complicated) surfaces is hard, Comput.1156
Geom. Theory Appl., 41 (2008), pp. 94–110, https://doi.org/10.1016/j.comgeo.2007.10.010.1157

[26] E. W. CHAMBERS AND D. EPPSTEIN, Flows in one-crossing-minor-free graphs, J. Graph Algorithms Appl., 17 (2013), pp. 201–220,1158
https://doi.org/10.7155/jgaa.00291.1159

[27] E. W. CHAMBERS, J. ERICKSON, AND A. NAYYERI, Minimum cuts and shortest homologous cycles, in Proc. 25th Ann. Symp. Comput.1160
Geom., 2009, pp. 377–385, https://doi.org/10.1145/1542362.1542426.1161

[28] E. W. CHAMBERS, J. ERICKSON, AND A. NAYYERI, Homology flows, cohomology cuts, SIAM J. Comput., 41 (2012), pp. 1605–1634.1162
[29] H.-C. CHANG, J. ERICKSON, AND C. XU, Detecting weakly simple polygons, in Proc. 26th ACM-SIAM Symp. Discrete Algorithms, 2015,1163

pp. 1655–1670, https://doi.org/10.1137/1.9781611973730.110.1164
[30] C. CHEN AND D. FREEDMAN, Quantifying homology classes II: Localization and stability. Preprint, 2007.1165
[31] C. CHEN AND D. FREEDMAN, Quantifying homology classes, in Proc. 25th Ann. Symp. Theoretical Aspects Comput. Sci., no. 08001 in1166

Dagstuhl Seminar Proceedings, 2008, pp. 169–180, https://doi.org/10.4230/LIPIcs.STACS.2008.1343, http://drops.dagstuhl.1167
de/opus/volltexte/2008/1343/.1168

[32] C. CHEN AND D. FREEDMAN, Hardness results for homology localization, in Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms, 2010,1169
pp. 1594–1604, https://doi.org/10.1137/1.9781611973075.129.1170

[33] É. COLIN DE VERDIÈRE, Shortest cut graph of a surface with prescribed vertex set, in Proc. 18th Ann. Europ. Symp. Algorithms, vol. 63471171
of Lecture Notes Comput. Sci., 2010, pp. 100–111.1172

[34] É. COLIN DE VERDIÈRE AND J. ERICKSON, Tightening non-simple paths and cycles on surfaces, in Proc. 17th Ann. ACM-SIAM Symp.1173
Discrete Algorithms, 2006, pp. 192–201.1174

[35] É. COLIN DE VERDIÈRE AND J. ERICKSON, Tightening non-simple paths and cycles on surfaces, SIAM J. Comput., 39 (2010), pp. 3784–3813.1175
[36] É. COLIN DE VERDIÈRE AND F. LAZARUS, Optimal pants decompositions and shortest homotopic cycles on an orientable surface, J. ACM, 541176

(2007).1177
[37] E. D. DEMAINE, M. HAJIAGHAYI, AND B. MOHAR, Approximation algorithms via contraction decomposition, in Proc. 18th Ann. ACM-SIAM1178

Symp. Discrete Algorithms, 2007, pp. 278–287.1179
[38] T. K. DEY, A. N. HIRANI, AND B. KRISHNAMOORTHY, Optimal homologous cycles, total unimodularity, and linear programming, SIAM J.1180

Comput., 40 (2011), pp. 1026–1044.1181
[39] T. K. DEY, K. LI, AND J. SUN, On computing handle and tunnel loops, in IEEE Proc. Int. Conf. Cyberworlds, 2007, pp. 357–366.1182
[40] T. K. DEY, K. LI, J. SUN, AND D. COHEN-STEINER, Computing geometry-aware handle and tunnel loops in 3D models, ACM Trans. Graphics,1183

27 (2008), pp. 1–9. Proc. SIGGRAPH 2008.1184
[41] S. I. DIATCH AND D. A. SPIELMAN, Faster lossy generalized flow via interior point algorithms, in Proc. 40th Ann. ACM Symp. Theory1185

Comput., 2008, pp. 451–460.1186
[42] J. A. ELLIS-MONAGHAN AND I. MOFFATT, Graphs on Surfaces - Dualities, Polynomials, and Knots, Springer Briefs in Mathematics, Springer,1187

2013, https://doi.org/10.1007/978-1-4614-6971-1, https://doi.org/10.1007/978-1-4614-6971-1.1188
[43] D. EPPSTEIN, Subgraph isomorphism in planar graphs and related problems, J. Graph Algorithms Appl., 3 (1999), pp. 1–27.1189
[44] D. EPPSTEIN, Diameter and treewidth in minor-closed graph families, Algorithmica, 27 (2000), pp. 275–291.1190
[45] D. EPPSTEIN, Dynamic generators of topologically embedded graphs, in Proc. 14th Ann. ACM-SIAM Symp. Discrete Algorithms, 2003,1191

pp. 599–608.1192
[46] J. ERICKSON, Maximum flows and parametric shortest paths in planar graphs, in Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms,1193

2010, pp. 794–804.1194
[47] J. ERICKSON, Shortest non-trivial cycles in directed surface graphs, in Proc. 27th Ann. Symp. Comput. Geom., 2011, pp. 236–243.1195
[48] J. ERICKSON, K. FOX, AND L. LKHAMSUREN, Holiest minimum-cost paths and flows in surface graphs, in Proc. 50th Ann. ACM Symp.1196

Theory Comput., 2018, pp. 1319–1332, https://doi.org/10.1145/3188745.3188904.1197
[49] J. ERICKSON, K. FOX, AND A. NAYYERI, Global minimum cuts in surface embedded graphs, in Proc. 23rd Ann. ACM-SIAM Symp. Discrete1198

Algorithms, 2012, pp. 1309–1318.1199
[50] J. ERICKSON AND A. NAYYERI, Minimum cuts and shortest non-separating cycles via homology covers, in Proc. 22nd Ann. ACM-SIAM1200

Symp. Discrete Algorithms, 2011, pp. 1166–1176, https://doi.org/10.1137/1.9781611973082.88.1201
[51] J. ERICKSON AND K. WHITTLESEY, Greedy optimal homotopy and homology generators, in Proc. 16th Ann. ACM-SIAM Symp. Discrete1202

Algorithms, 2005, pp. 1038–1046.1203
[52] J. FAKCHAROENPHOL, B. LAEKHANUKIT, AND P. SUKPRASERT, Finding all useless arcs in directed planar graphs. Preprint, May 2018.1204
[53] J. FAKCHAROENPHOL AND S. RAO, Planar graphs, negative weight edges, shortest paths, and near linear time, J. Comput. Syst. Sci., 721205

(2006), pp. 868–889.1206
[54] F. V. FOMIN, D. LOKSHTANOV, S. SAURABH, M. PILIPCZUK, AND M. WROCHNA, Fully polynomial-time parameterized computations for1207

graphs and matrices of low treewidth, ACM Trans. Algorithms, 14 (2018), pp. 34:1–34:45, https://doi.org/10.1145/3186898.1208
[55] L. R. FORD AND D. R. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956). First published as Research Memorandum1209

RM-1400, The RAND Corporation, Santa Monica, California, November 19, 1954.1210
[56] K. FOX, Shortest non-trivial cycles in directed and undirected surface graphs, in Proc. 24th Ann. ACM-SIAM Symp. Discrete Algorithms,1211

2013, pp. 352–364, https://doi.org/10.1137/1.9781611973105.26.1212
[57] A. FRANK, On the edge-connectivity algorithm of Nagamochi and Ibaraki, EGRES Quick-Proof QP-2009-01, Egerváry Research Group,1213

Eötvös University„ Budapest, 2009, http://bolyai.cs.elte.hu/egres/www/qp-09-01.html. Written at Laboratoire Artemis, IMAG,1214
Université J. Fourier, Grenoble, March 1994.1215

[58] G. N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs with applications, SIAM J. Comput., 16 (1987), pp. 1004–1004.1216
[59] M. L. FURST, J. L. GROSS, AND L. A. MCGEOCH, Finding a maximum-genus graph imbedding, J. Assoc. Comput. Mach., 35 (1988),1217

pp. 523–534.1218
[60] A. V. GOLDBERG AND S. RAO, Beyond the flow decomposition barrier, J. ACM, 45 (1998), pp. 783–797.1219

28 Minimum cuts in surface graphs

[61] A. V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum-flow problem, J. Assoc. Comput. Mach., 35 (1988), pp. 921–940,1220
https://doi.org/http://doi.acm.org/10.1145/48014.61051.1221

[62] M. GRIGNI AND P. SISSOKHO, Light spanners and approximate TSP in weighted graphs with forbidden minors, in Proc. 13th Ann. ACM-SIAM1222
Symp. Discrete Algorithms, 2002, pp. 852–857.1223

[63] J. A. GROCHOW AND J. TUCKER-FOLTZ, Computational topology and the Unique Games Conjecture, in Proc. 34th Int. Symp. Comput.1224
Geom., no. 99 in Leibniz Int. Proc. Informatics, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, pp. 43:1–43:16,1225
https://doi.org/10.4230/LIPIcs.SoCG.2018.43.1226

[64] M. GROHE, Isomorphism testing for embeddable graphs through definability, in Proc. 32nd ACM Symp. Theory Comput., 2000, pp. 63–72.1227
[65] J. L. GROSS AND T. W. TUCKER, Topological graph theory, Dover Publications, 2001.1228
[66] T. HAGERUP, J. KATAJAINEN, N. NISHIMURA, AND P. RAGDE, Characterizing multiterminal flow networks and computing flows in networks1229

of small treewidth, J. Comput. Syst. Sci., 57 (1998), pp. 366–375.1230
[67] J. HAO AND J. B. ORLIN, A faster algorithm for finding the minimum cut in a directed graph, J. Algorithms, 17 (1994), pp. 424–446,1231

https://doi.org/10.1006/jagm.1994.1043.1232
[68] T. E. HARRIS AND F. S. ROSS, Fundamentals of a method for evaluating rail net capacities, Memorandum RM-1573, The RAND Corporation,1233

Santa Monica, California, October 24, 1955. Cited in [111].1234
[69] R. HASSIN, Maximum flow in (s, t) planar networks, Inform. Proc. Lett., 13 (1981), p. 107.1235
[70] R. HASSIN AND D. B. JOHNSON, An O(n log2 n) algorithm for maximum flow in undirected planar networks, SIAM J. Comput., 14 (1985),1236

pp. 612–624.1237
[71] A. HATCHER, Algebraic Topology, Cambridge Univ. Press, 2002, http://www.math.cornell.edu/~hatcher/AT/ATpage.html.1238
[72] M. HENZINGER, S. RAO, AND D. WANG, Local flow partitioning for faster edge connectivity, in Proceedings of the Twenty-Eighth Annual1239

ACM-SIAM Symposium on Discrete Algorithms, 2017, pp. 1919–1938, https://doi.org/10.1137/1.9781611974782.125.1240
[73] M. R. HENZINGER, P. KLEIN, S. RAO, AND S. SUBRAMANIAN, Faster shortest-path algorithms for planar graphs, J. Comput. Syst. Sci., 551241

(1997), pp. 3–23.1242
[74] J. M. HOCHSTEIN AND K. WEIHE, Maximum s-t-flow with k crossings in O(k3n log n) time, in Proc. 18th Ann. ACM-SIAM Symp. Discrete1243

Algorithms, 2007, pp. 843–847.1244
[75] J. E. HOPCROFT AND J. K. WONG, Linear time algorithm for isomorphism of planar graphs (preliminary report), in Proc. 6th Ann. ACM1245

Symp. Theory Comput., 1974, pp. 172–184.1246
[76] H. IMAI AND K. IWANO, Efficient sequential and parallel algorithms for planar minimum cost flow, in Proc. SIGAL Int. Symp. Algorithms,1247

no. 450 in Lecture Notes Comput. Sci., Springer-Verlag, 1990, pp. 21–30.1248
[77] A. ITAI AND Y. SHILOACH, Maximum flow in planar networks, SIAM J. Comput., 8 (1979), pp. 135–150.1249
[78] G. F. ITALIANO, Y. NUSSBAUM, P. SANKOWSKI, AND C. WULFF-NILSEN, Improved algorithms for min cut and max flow in undirected planar1250

graphs, in Proc. 43rd Ann. ACM Symp. Theory Comput., 2011, pp. 313–322.1251
[79] L. JANIGA AND V. KOUBEK, Minimum cut in directed planar networks, Kybernetika, 28 (1992), pp. 37–49.1252
[80] H. KAPLAN AND Y. NUSSBAUM, Minimum s − t cut in undirected planar graphs when the source and the sink are close, in Proc. 28th1253

Int. Symp. Theoretical Aspects Comput. Sci., T. Schwentick and C. Dürr, eds., vol. 9 of Leibniz Int. Proc. Informatics, Dagstuhl,1254
Germany, 2011, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 117–128, https://doi.org/http://dx.doi.org/10.4230/1255
LIPIcs.STACS.2011.117, http://drops.dagstuhl.de/opus/volltexte/2011/3004.1256

[81] D. R. KARGER, Minimum cuts in near-linear time., J. ACM, 47 (2000), pp. 46–76.1257
[82] K. KAWARABAYASHI AND M. THORUP, Deterministic edge connectivity in near-linear time, J. ACM, 66 (2018), pp. 4:1–4:50, https:1258

//doi.org/10.1145/3274663.1259
[83] K.-I. KAWARABAYASHI AND M. THORUP, Deterministic global minimum cut of a simple graph in near-linear time, in Proc. 47th Ann. ACM1260

Symp. Theory Comput., 2015, pp. 665–674, https://doi.org/10.1145/2746539.2746588.1261
[84] L. KETTNER, Using generic programming for designing a data structure for polyhedral surfaces, Comput. Geom. Theory Appl., 13 (1999),1262

pp. 65–90, https://doi.org/10.1016/S0925-7721(99)00007-3.1263
[85] P. KLEIN, S. MOZES, AND O. WEIMANN, Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2 n)-time1264

algorithm, ACM Trans. Algorithms, 6 (2010), p. article 30.1265
[86] P. N. KLEIN, Multiple-source shortest paths in planar graphs, in Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 2005, pp. 146–155.1266
[87] M. KUTZ, Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time, in Proc. 22nd Ann. Symp.1267

Comput. Geom., 2006, pp. 430–438, https://doi.org/10.1145/1137856.1137919.1268
[88] J. ŁĄCKI AND P. SANKOWSKI, Min-cuts and shortest cycles in planar graphs in O(n log log n) time, in Proc. 19th Ann. Europ. Symp.1269

Algorithms, C. Demetrescu and M. M. Halldórsson, eds., vol. 6942 of Lecture Notes Comput. Sci., Springer, 2011, pp. 155–166.1270
[89] S. K. S. K. LANDO, Graphs on surfaces and their applications, Encyclopaedia of mathematical sciences; v. 141, Springer, Berlin ; New1271

York, 2004.1272
[90] Y. T. LEE AND A. SIDFORD, Path finding methods for linear programming: Solving linear programs in õ(vrank) iterations and faster algorithms1273

for maximum flow, in Proc. 55th IEEE Symp. Found. Comput. Sci., 2014, pp. 424–433, https://doi.org/10.1109/FOCS.2014.52.1274
[91] S. LINS, Graph-encoded maps, J. Comb. Theory Ser. B, 32 (1982), pp. 171–181.1275
[92] R. J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer. Anal., 16 (1979), pp. 346–358, https:1276

//doi.org/10.1137/0716027.1277
[93] A. MĄDRY, Navigating central path with electrical flows: From flows to matchings, and back, in Proc. 54th IEEE Symp. Found. Comput.1278

Sci., 2013, pp. 253–262, https://doi.org/10.1109/FOCS.2013.35.1279
[94] M. MAREŠ, Two linear time algorithms for MST on minor closed graph classes, Archivum Mathematicum, 40 (2004), pp. 315–320.1280
[95] S. T. MCCORMICK, M. R. RAO, AND G. RINALDI, Easy and difficult objective functions for max cut, Math. Program., Ser. B, 94 (2003),1281

pp. 459–466.1282
[96] G. L. MILLER, Isomorphism testing for graphs of bounded genus, in Proc. 12th Ann. ACM Symp. Theory Comput., 1980, pp. 225–235.1283
[97] G. L. MILLER AND J. NAOR, Flow in planar graphs with multiple sources and sinks, SIAM J. Comput., 24 (1995), pp. 1002–1017.1284
[98] B. MOHAR AND C. THOMASSEN, Graphs on Surfaces, Johns Hopkins Univ. Press, 2001.1285
[99] S. MOZES, C. NIKOLAEV, Y. NUSSBAUM, AND O. WEIMANN, Minimum cut of directed planar graphs in O(n log log n) time. Preprint,1286

February 2015.1287

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 29

[100] S. MOZES, K. NIKOLAEV, Y. NUSSBAUM, AND O. WEIMANN, Minimum cut of directed planar graphs in O(n log log n) time, in Proc. 29th1288
Ann. ACM-SIAM Symp. Discrete Algorithms, 2018, pp. 477–494, https://doi.org/10.1137/1.9781611975031.32.1289

[101] H. NAGAMOCHI AND T. IBARAKI, Computing edge-connectivity in multigraphs and capacitated graphs, SIAM J. Discrete Math., 5 (1992),1290
pp. 54–66.1291

[102] J. B. ORLIN, Max flows in O(nm) time, or better, in Proc. 45th Ann. ACM Symp. Theory Comput., 2013, pp. 765–774.1292
[103] V. Y. PAN AND J. H. REIF, Fast and efficient parallel solution of sparse linear systems, SIAM J. Comput., 22 (1993), pp. 1227–1250.1293
[104] D. PE’ER, On minimum spanning trees, master’s thesis, Hebrew University, 1998, http://www.math.ias.edu/~avi/STUDENTS/dpthesis.1294

pdf.1295
[105] K. REIDEMEISTER, Elementare Begründung der Knotentheorie, Abh. Math. Sem. Hamburg, 5 (1927), pp. 24–32.1296
[106] J. REIF, Minimum s-t cut of a planar undirected network in O(n log2 n) time, SIAM J. Comput., 12 (1983), pp. 71–81.1297
[107] R. B. RICHTER AND H. SHANK, The cycle space of an embedded graph, J. Graph Theory, 8 (1984), pp. 365–369, https://doi.org/10.1298

1002/jgt.3190080304.1299
[108] G. RINGEL, Map Color Theorem, Springer-Verlag, 1974.1300
[109] G. RINGEL AND J. W. T. YOUNGS, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. USA, 60 (1968), pp. 438–445.1301
[110] A. SCHRIJVER, Combinatorial Optimization: Polyhedra and Efficiency, no. 24 in Algorithms and Combinatorics, Springer-Verlag, 2003.1302
[111] A. SCHRIJVER, On the history of combinatorial optimization (till 1960), in Handbook of Discrete Optimization, K. Aardal, G. Nemhauser,1303

and R. Weismantel, eds., Elsevier, 2005, pp. 1–68.1304
[112] J. STILLWELL, Classical Topology and Combinatorial Group Theory, no. 72 in Graduate Texts in Mathematics, Springer-Verlag, 2nd ed.,1305

1993.1306
[113] M. STOER AND F. WAGNER, A simple min-cut algorithm, J. ACM, 44 (1997), pp. 585–591, https://doi.org/10.1145/263867.263872.1307
[114] J. M. SULLIVAN, A Crystalline Approximation Theorem for Hypersurfaces, PhD thesis, Princeton Univ., October 1990, http://torus.math.1308

uiuc.edu/jms/Papers/thesis/thesis.pdf.1309
[115] G. TAUBIN AND J. ROSSIGNAK, Geometric compression through topological surgery, ACM Trans. Graphics, 17 (1998), pp. 84–115,1310

https://doi.org/10.1145/274363.274365.1311
[116] S. TAZARI AND M. MÜLLER-HANNEMANN, Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree1312

approximation, Discrete Appl. Math., 157 (2009), pp. 673–684.1313
[117] P. M. VAIDYA, Speeding-up linear programming using fast matrix multiplication, in Proc. 30th Ann. Symp. Found. Comput. Sci., 1989,1314

pp. 332–337.1315
[118] K. WEIHE, Maximum (s, t)-flows in planar networks in O(|V | log |V |)-time, J. Comput. Syst. Sci., 55 (1997), pp. 454–476.1316
[119] H. WHITNEY, Planar graphs, Fund. Math., 21 (1933), pp. 73–84.1317

	Introduction
	Past results
	New results and organization

	Notation and Terminology
	Surfaces and curves
	Graph embeddings
	Duality
	Perturbations and Crossings
	Even subgraphs and cycle decompositions
	Homotopy and homology
	Duality between cuts and even subgraphs

	Characterizing Homology
	Forest-cotree decompositions
	Crossing parity vectors
	Homology signatures via tree-coforest decompositions

	Crossing Bounds and Triangulations
	Crossing bound
	Triangulations and crossing sequences
	Non-orientable Surfaces

	The Z2-Homology Cover
	Definition and construction
	Computing Z2-minimal cycles
	Minimum cuts from the homology cover

	NP-Hardness
	Global Minimum Cut
	Contractible
	Non-contractible
	Summing up

	References

