

Metal–Photoswitch Friendship: From Photochromic Complexes to Functional Materials

Grace C. Thaggard, Johanna Haimerl, Kyoung Chul Park, Jaewoong Lim, Roland A. Fischer, Buddhima K. P. Maldeni Kankanamalage, Brandon J. Yarbrough, Gina R. Wilson, and Natalia B. Shustova*

Cite This: *J. Am. Chem. Soc.* 2022, 144, 23249–23263

Read Online

ACCESS |

Metrics & More

Article Recommendations

ABSTRACT: Cooperative metal–photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal–photoswitch interplay can be utilized as a tool to modulate a system’s physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal–organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal–photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal–photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal–photoswitch interactions in the coming years.

INTRODUCTION

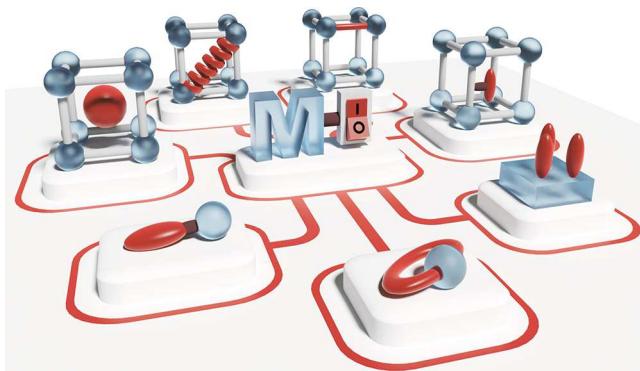
Cooperative metal–photoswitch ($M-\Phi$) “friendship” is an application-driven concept that bridges cutting-edge research from the materials science and physical, inorganic, and organic chemistry communities.^{1–27} Like good friends, metals (M) and stimuli-responsive organic molecules (e.g., photoswitches, Φ) possess individual strengths that can be synergistically combined to advance the behavior of both entities. For instance, $M-\Phi$ cooperation facilitates the development of stimuli-responsive homogeneous catalysts, while synergy of fast photoisomerization kinetics and $M-\Phi$ alignment in crystalline scaffolds is crucial to advance light harvesting.^{28–31} These are only a few examples among a large span of applications ranging from optically gated memory devices and quantum-computing systems to photodynamic therapeutic agents.^{29,32–35}

Commonly, $M-\Phi$ interplay is a cornerstone to not only harness and tailor metal–organic linker properties but also control the metal behavior through an organic counterpart. Incorporation of transition metals in such assemblies provides access to d -orbitals, resulting in a wider variety of geometries and electronic structures.³⁶ In particular, the presence of metal d -orbitals can alter the frontier molecular orbitals and corresponding electronic transitions associated with photoisomerization.³⁷ For instance, the absorbance bands for many organic photoswitches coordinated to metal cations are bathochromically shifted with respect to the uncoordinated ones.³⁷ Shifting absorbance into the visible region is particularly attractive for applications involving solar energy harvesting, for example.³⁸

The enhancement of spin–orbit coupling caused by the presence of heavy atoms (i.e., transition metals or actinides) also plays an important role in $M-\Phi$ behavior. This enhanced coupling alters the photophysical behavior of the system by promoting spin-forbidden transitions, such as intersystem crossing.³⁹ As a result, $M-\Phi$ interactions are critical for the development of microscopy tags and active layers of bulk heterojunction solar cells, both of which often rely on long-lived triplet excited states.^{40,41} In addition to the electronic transitions that occur during photoisomerization of organic molecules, ligand-to-metal and metal-to-ligand charge transfer (LMCT and MLCT, respectively) can change the magnetic properties of metal centers, promoting a pathway for switchable magnetism.⁴² In the same realm, ligand photoisomerization can alter the ligand field strength around a metal center, resulting in switching between high- and low-spin states.⁴³

Herein, we survey $M-\Phi$ interactions in a variety of structural motifs, starting from discrete structures such as molecular complexes and cages and expanding toward extended structures such as polymers and metal–organic frameworks (MOFs). Comprehensive reviews and books

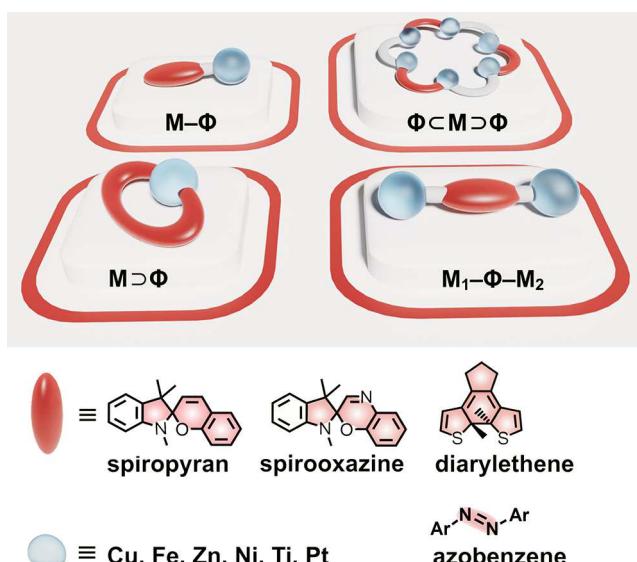
Published: December 13, 2022



regarding photoswitches and photocatalysis can be found elsewhere.^{29,30,44–50} Instead, in the current Perspective, we highlight the role of the M–Φ interactions to control physicochemical properties and advance material development.^{12,31,42,51–60} We look at five classes of stimuli-responsive molecules—spiropyran, spirooxazine, chromene, azobenzene, and diarylethene derivatives—in combination with a variety of transition metals. We shed light on the current state-of-the art in this area, highlighting the role of M–Φ interactions for tailoring specific material properties and corresponding applications. In addition, we outline the promising gaps, the fulfillment of which will result in the development of the next generation of stimuli-responsive devices.

MOLECULAR COMPLEXES

The smallest subunit in which M–Φ interactions could be realized is through direct bonding of M with a photochromic fragment, Φ, resulting in formation of M–Φ molecular complexes. The latter ones could be employed as efficient building blocks to engineer extended structures involving many instances of M–Φ cooperation and for fundamental understanding of their physicochemical properties.⁴⁹ Molecular complexes could also accommodate the structural dynamism of metal–ligand bonds associated with isomer switching, providing the flexibility necessary for efficient and reversible photoisomerization. In **Scheme 1**, several M–Φ binding motifs observed in molecular complexes that can cause significant perturbation of local geometries and electronic structures are shown.⁴⁹


Scheme 1. Schematic Representation of the Discussed M–Φ Structural Motifs^a

^aStimuli-responsive moieties are highlighted in red while the metal counterparts are emphasized in blue.

For instance, photoswitches functionalized with ligating groups could serve as monodentate ($M-\Phi_1$), polydentate ($M-\Phi_n$), or bridging ligands ($M-\Phi_\mu$, Figure 1). Thus, the overview of the M–Φ communications in this Perspective will begin with the exploration of the role of M–Φ interactions in discrete molecular complexes which have physicochemical properties that could be controlled as a function of external stimuli through Φ isomerization.

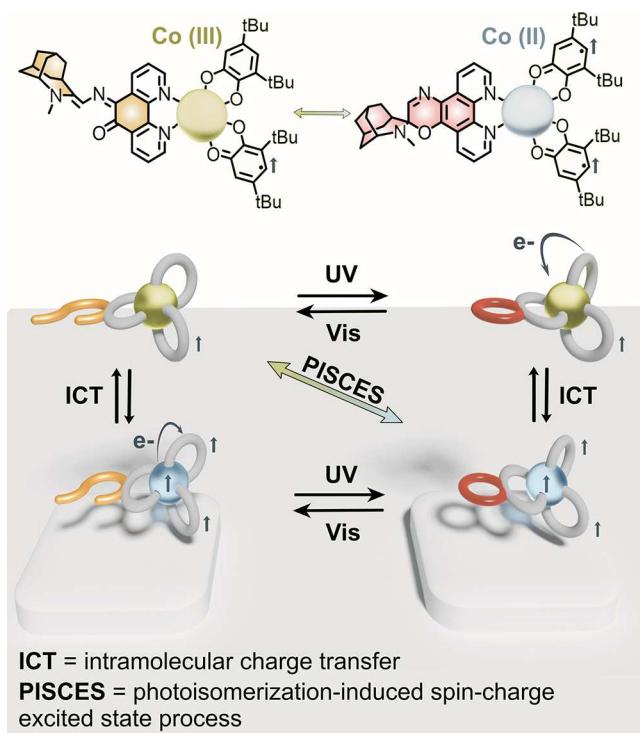
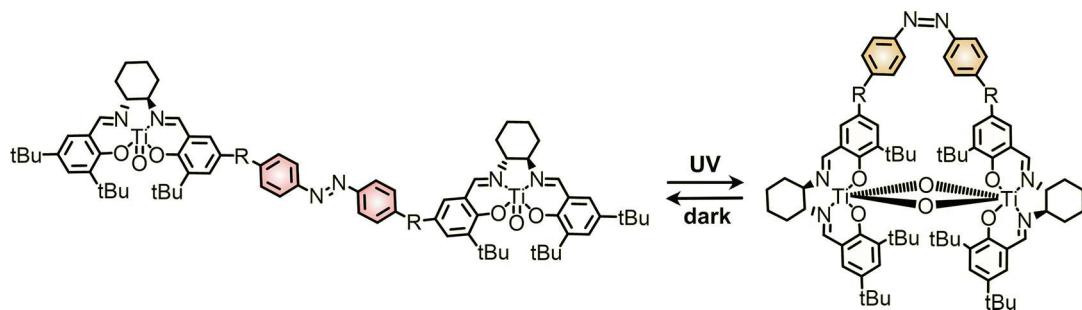

The earliest studies of M–Φ interactions mainly relied on Φ isomerization accompanied by charge separation upon irradiation with a suitable excitation wavelength. The zwitterionic form can then bind metal cations in solution via electrostatic interactions.⁴⁷ For example, reports from as early as 1965 describe spiropyran derivatives (Figure 1) as light-

Figure 1. (top) Schematic representation of possible binding motifs in photochromic molecular complexes. (bottom) Classes of photoswitches and metals highlighted in the Molecular Complexes section.

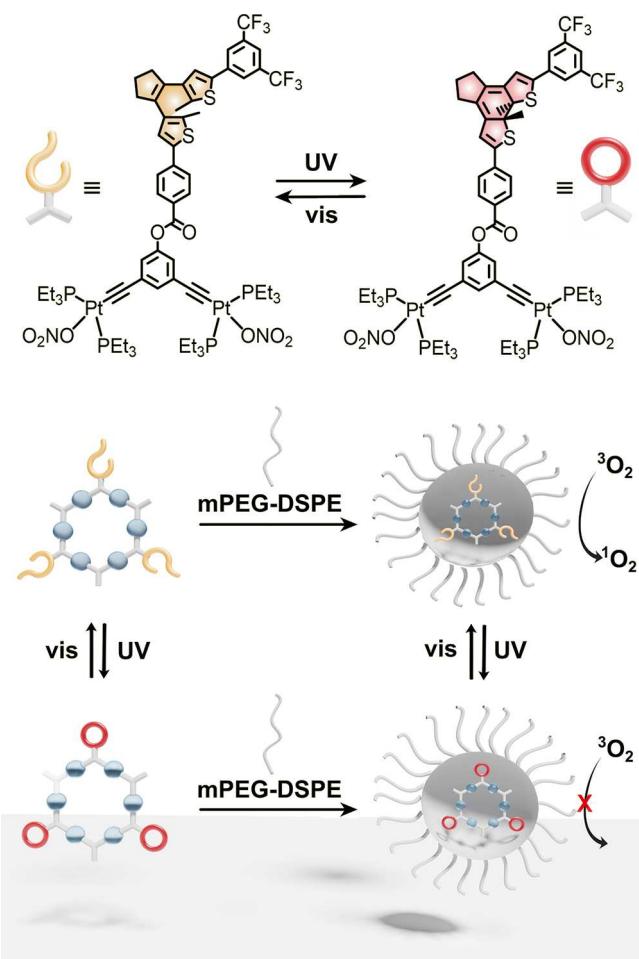
responsive chelating agents for copper(II) and iron(II) cations.⁶¹ Since then, numerous studies have shown reversible and selective metal ion binding by several classes of photochromic molecules, including spiropyran, spirooxazine, and chromene derivatives. While many of these fundamental studies were used to shed light on isomerization mechanisms, they also laid the groundwork for the field of highly sensitive and selective sensors for environmental toxins.⁴⁷ In fact, systematic modification of spiropyran- and chromene-based chelators with electron-donating groups has resulted in exceptionally high binding constants for toxic cations like copper(II), zinc(II), and nickel(II), while maintaining reversible binding behavior in solution. While selective binding of environmental contaminants has been a vital driving force in this field, challenges associated with Φ solubility and stability still require attention. In particular, rapid photodegradation caused by oxidation is known for some of the photoswitches employed in these studies.⁴⁷ Additionally, strategic coupling of visible-light-activated molecules with solubility in aqueous media is still a limiting factor in applying photochromic chelators for environmental sensing technologies.⁵⁰ Further studies regarding utilizing M–Φ interactions for ion and guest capture have been recently reviewed elsewhere.⁶²

Tailoring of M–Φ interactions could be achieved through addition of other non-stimuli-responsive linkers, i.e., Φ implemented as one of multiple ligands in molecular complexes, resulting in a Φ–M–L structural motif (Figure 2).⁴² Rational design of such Φ–M–L multi-component systems could result in cooperativity between the metal center and photochromic (Φ) as well as non-photochromic (L) ligands.⁴² One of the examples demonstrating this concept is based on coupling of an optically bistable spirooxazine-based ligand with an electronically bistable cobalt-dioxalene complex shown in Figure 2.⁴² Both photoisomers of the spirooxazine-based ligand were thermally stable, and, at the same time, the metal complex by itself could undergo spin state switching in response to other external stimuli (e.g., temperature or pressure). Therefore, slight changes in ligand field strength due to switching from the open or closed forms of the

Figure 2. (top) A cobalt–dioxalene complex modified with a photochromic spirooxazine (Φ)-based ligand. (bottom) Schematic representation of a molecular complex undergoing a photoisomerization-induced spin-charge excited-state process caused by spirooxazine isomerization. Reproduced with permission from ref 42. Copyright 2018 American Chemical Society.


spirooxazine-based ligand resulted in reversible changes in the spin of the metal center. As such, $M-\Phi$ interactions provided access to control the electronic and magnetic properties of the system as a whole. Furthermore, efficient and reversible switching was detected not only in solution but also in a thin film, foreshadowing an avenue for the development of optically gated memory devices and quantum-computing systems.^{34,35}

Photochromic bidentate ligands (e.g., functionalized azobenzene and diarylethene derivatives) can also serve to bridge two metal centers ($M_1-\Phi-M_2$), allowing the spatial orientation of the metal cations to be modulated through irradiation (Figure 3).⁵¹ Inspired by natural catalysis occurring through enzymes, which could involve cooperation between two metal centers, an azobenzene moiety has been used to control the spatial arrangement of two catalytically active

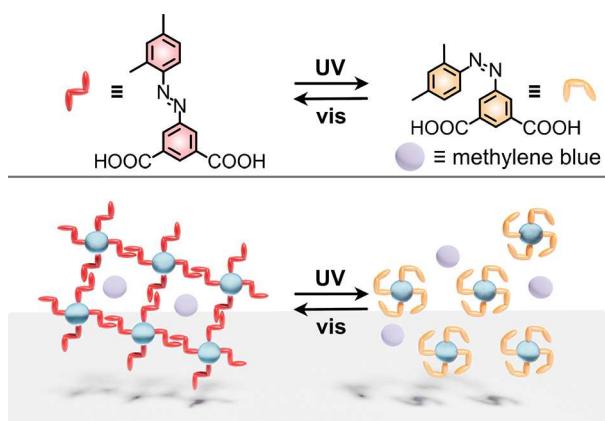

sites.^{63–65} As shown in Figure 3, the azobenzene-based ligand was used to bridge two chiral titanium(salen) complexes to catalyze asymmetric sulfoxidation reactions.⁵¹ Specifically, irradiation with 365-nm wavelength resulted in formation of the *cis*-isomer, which brought the titanium centers in close proximity and enabled them to function as a cooperative catalyst in asymmetric sulfoxidation. At the same time, thermal relaxation in the dark promoted formation of the *trans*-isomer which separated the two titanium centers and inhibited catalysis. This interesting concept not only paves the way for light-controlled multi-metallic cooperative catalysis but also reveals how $M-\Phi$ interactions could translate an external stimulus (e.g., light or heat) into a chemical signal (i.e., product formation). These studies are the first steps toward synergistic utilization of stimuli-responsive selectivity and efficiency of biological enzymes through their coupling in synthetic $M_1-\Phi-M_2$ systems.^{51,66}

In addition to bridging two metal centers, ambidentate photochromic molecules can undergo self-assembly to form discrete metallacycles, $\Phi\text{CM}\text{D}\Phi$ (Figure 4).⁵² In the latter case, the photoswitch could not only modulate the spatial arrangement of metal centers as described above but also tune, for example, the aperture size and energy-transfer processes between organic-based donors and acceptors.⁵² For example, combining a diarylethene-based photoswitch with a porphyrin-based photosensitizer in the presence of platinum(II) ions resulted in the formation of a “dual-stage” metallacycle capable of controlling singlet oxygen generation as shown in Figure 4.⁵² In the open form, the diarylethene-based ligand (acceptor) does not possess a suitable excited state to promote energy transfer from the porphyrin-based photosensitizer, acting as a donor. In this case, the photosensitizer readily mediated the conversion of $^3\text{O}_2$ to $^1\text{O}_2$. In contrast, the closed form of the diarylethene acceptor promoted the energy-transfer process and severely suppressed the $^1\text{O}_2$ generation pathway. Remarkably, such behavior could be preserved even for metallacycles embedded in biologically compatible nanoparticles,⁵² and controllable $^1\text{O}_2$ generation resulted in inhibition of tumor growth.⁵² Based on demonstrated proof-of-concept related to medical treatment, it is feasible to anticipate that the future directions in this area will be associated with the development of similar systems working under excitation in the infrared region (instead of UV or visible), providing access to light-driven therapeutic agents.⁵²

The foregoing results foreshadow a great potential toward different applications ranging from cation sensing to anticancer treatment using synergy of a metal (i.e., oxidation state, spin state, or coordination geometry) with the precise spatiotem-

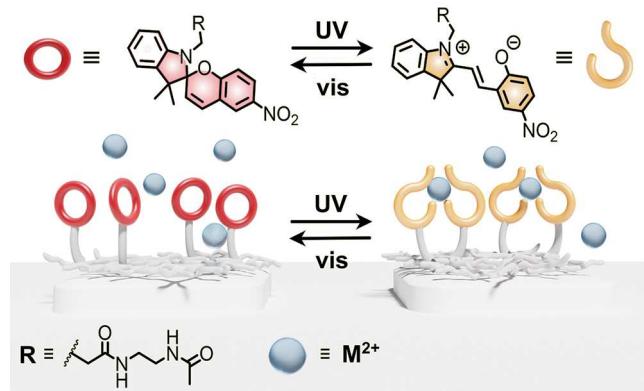
Figure 3. Azobenzene derivatives used as a bridging ligand between two metal complexes. UV irradiation results in the *cis*-isomer formation (highlighted in yellow), which leads to bringing the two metal complexes in close proximity and enables them to function as a cooperative catalyst in asymmetric sulfoxidation. Reproduced with permission from ref 51. Copyright 2020 Royal Society of Chemistry.

Figure 4. Schematic representation of diarylethene photoisomers (yellow and red) containing metallocene with Pt centers (blue spheres) encapsulated in a mPEG-DSPE self-assembling micelle for switchable $^3\text{O}_2$ -to- $^1\text{O}_2$ conversion. The metal centers are shown in blue, the ligands and micelle are depicted by the gray color, and Φ is highlighted by yellow (open form) and red (closed form) colors. Reproduced with permission from ref 52. Copyright 2019 American Chemical Society.

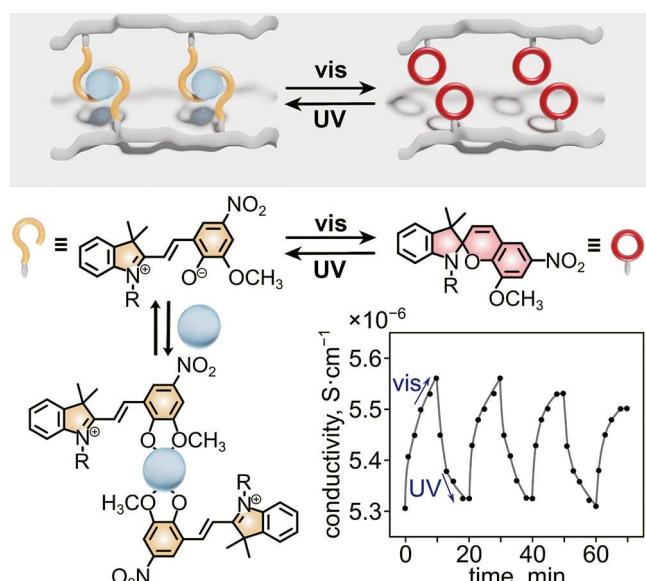

poral control of organic stimuli-responsive molecules. However, in the reported studies, a majority of M– Φ interactions are limited to a few well-known classes of photochromic molecules, including spiropyrans, spirooxazine, azobenzene, or diarylethene derivatives.^{37,45,48,51,67–103} We envision that broadening the scope of stimuli-responsive molecules, their molecular geometries, and mechanisms of switching between one or multiple states would not only expand the scope of the M– Φ interaction portfolio but also reveal insights on the new forms of M– Φ “friendship” which could be translated into a novel twist of applications. Systematic studies of M– Φ systems, in which either M or Φ is used as a variable, are also crucial to reveal fundamental principles such as a possible effect of M or M– Φ interactions on isomerization kinetics of Φ . Another aspect which significantly limits recyclability of existing M– Φ -based systems in catalysis and sensing is Φ photobleaching. In addition, synthetic pathways for preparation of intriguing photochromic molecules on a large scale (beyond a few mg) are currently inaccessible. As a result, the mentioned challenges and perspective outlined a large scope of work necessary to realize the implementation of photochromic

molecular complexes as long-term, efficient, and recyclable components of chemical industry.

METAL-ORGANIC CAGES AND POLYMERS


In this section, we will bridge the gap between discrete M– Φ units (e.g., molecular complexes) discussed in the section above and crystalline extended structures through surveying M– Φ interactions within metal–organic cages. While molecular cages are discrete structures for which conventional solution-state nuclear magnetic resonance (NMR) spectroscopic analysis could be applied, their size and cavities also make them the suitable candidates to model and probe different types of interactions (e.g., M– Φ) exhibited in extended periodic structures such as MOFs. In the latter ones, such studies are typically complicated by severe crystallographic disorder and the impossibility to employ solution NMR spectroscopy.¹⁰⁴ The aforementioned facts could explain a persistent interest in metal–organic cages and a plethora of reports in this area.^{53,104–108} However, the number of studies with the main focus on photochromic molecules either as guests or as linkers intrinsic to the cage structure is significantly reduced, as shown by nearly 20,000 reports on molecular cages but only approximately 1% including photochromic moieties. There are several clear advantages of using photochromic cages as a platform for probing M– Φ interactions. First, it provides an opportunity to use single-crystal X-ray crystallography or NMR spectroscopic studies to shed light on not only the Φ structure but also its molecular conformation and orientation with respect to the tailororable cavity environment. Second, cages offer accessible voids to facilitate isomerization of the photochromic molecules under an external stimulus. Third, encapsulation of Φ in a cage could prevent aggregate formation and, therefore, promote photoisomerization. Despite these advantages, there are very few studies of photochromic metal–organic cages, especially in comparison with molecular complexes or extended structures such as MOFs. Ironically in many cases, cages are used as convenient models to probe molecular behavior in extended structures (e.g., MOFs), possessing similar pore geometries while remaining solution processable.

One of the approaches for utilizing M– Φ interactions in cages was realized by the Zhou group who developed an azobenzene-functionalized copper(II) cage exhibiting reversible capture and release of methylene blue as guest molecules (Figure 5).⁵³ In this study, a cubooctahedral cage constructed from 24 organic linkers was used to maximize Φ incorporation within each cage structure. The isomerization of azobenzene-based linkers occurred in the cage cavity since azobenzene moieties were attached as pendant groups (Figure 5). Notably, the pendant azobenzene functionalities interacted with neighboring cages via π – π stacking when in the *trans* state (highlighted in red in Figure 5), and as a result, the formed network was precipitated from polar solvents. Upon photoisomerization to *cis*-azobenzene (highlighted in yellow in Figure 5), the interactions between adjacent cages were weakened, resulting in dissolution. The observed reversible solubility was utilized to capture guest molecules within the cage network under visible light (i.e., *trans*-azobenzene) followed by release under UV light (i.e., *cis*-azobenzene).⁵³ Notably, arylazopyrazole-, diarylethene-, and diazocine-based photochromic cages have been also reported with similar guest capture and release capabilities.^{104,109,110}


Figure 5. (top) Isomerization of azobenzene linkers used to construct a copper-based metal–organic cage. (bottom) Schematic representation of capture and release of guest molecules upon alternation with UV and visible light. The copper metal nodes are represented by blue spheres. Reproduced with permission from ref 53. Copyright 2014 John Wiley and Sons.

Such behavior highlights the potential for $M-\Phi$ interactions not only to influence confined 3D space but also to orchestrate the cooperative behavior of many discrete units or small assemblies.⁵³ Thus, these studies lay the foundation for remote manipulation of large numbers of highly complex entities. This approach also provokes an intriguing avenue for modulation of several properties at once (e.g., guest capture, optical behavior, or solubility) through integration of multiple stimuli-responsive units using an excitation wavelength as another variable. However, possible leaching of photochromic molecules is a remaining challenge. At the same time, embedding photochromic molecular complexes or cages within polymer matrices or grafting photochromic molecules to a polymer surface are possible solutions to prevent photochromic molecule leaching. Moreover, simultaneous control of multiple photochromic molecules could be addressed by integration within a polymer matrix.^{54,55} For instance, 2D polymer layers grafted with photoswitches have been employed for selective metal cation extraction (Figure 6).^{54,111} One study demon-

Figure 6. (top) Molecular structure of spiropyran derivative in the open (yellow) and closed (red) forms. (bottom) Schematic representation of the capture and release of metal cations by a spiropyran-grafted polymer upon alternation of UV and visible light. The blue spheres represent either Cu(II) or Co(II) cations. Reproduced with permission from ref 54. Copyright 2007 IOP Publishing Ltd.

strated the ability of spiropyran-grafted poly(methyl methacrylate) (PMMA)-based polymers to bind and release copper(II) cations. Notably, this example showed complete ejection of the bound metal cations upon isomerization from the zwitterionic merocyanine form to the neutral spiropyran form (Figure 6).⁵⁴ Such levels of reversibility are critical for implementation of $M-\Phi$ polymers as reusable sensors, for example. Moreover, the polymer support could result in decreased photodegradation. As a result, the grafted spiropyran derivatives, for instance, were able to bind and release metal cations several times without detectable photodegradation. Along these lines, chelation of metal cations by photoswitches anchored to polymer layers could allow for modulation of ionic conductivity controlled through an external stimulus (Figure 7).⁵⁵ Solid-state polymer electrolytes with grafted spiropyran

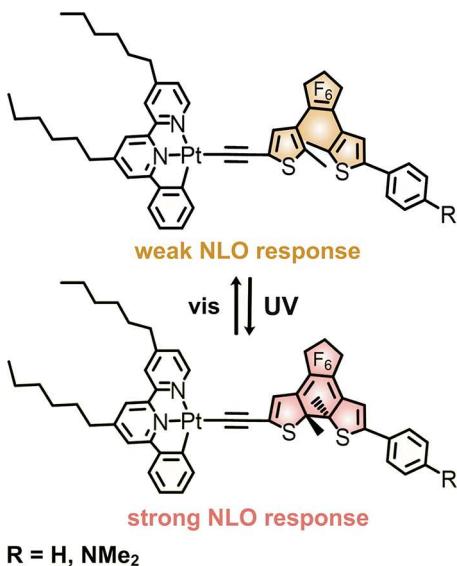


Figure 7. (top) Schematic representation of metal cation binding by spiropyran-grafted polymer layers. (bottom) Molecular structure of spiropyran derivatives upon photoisomerization and zinc(II) cation (blue spheres) binding. Switchable ionic conductivity was observed upon alternation with UV and visible light. Reproduced with permission from ref 55. Copyright 1995 Elsevier.

units have been shown to exhibit reversible ionic conductivity based on chelation of metal ions by merocyanine, as described previously and illustrated in Figure 7. For that, a poly(ethylene oxide)-based polymer electrolyte was functionalized with spiropyran groups and complexed with $ZnCl_2$ salt under UV light (i.e., complexation by merocyanine).⁵⁵ Under UV excitation, the composite material exhibited low ionic conductivity due to immobilization of cations by merocyanine. Ionic conductivity was enhanced by exposure to visible light, which promoted decomplexation of cations through isomerization to the neutral spiropyran form. These studies illustrate that binding of metal cations by photoswitches is not constrained to sensing and extraction technologies, but rather can play an active role in modulation of bulk material properties, such as ionic conductivity.

Rather than grafting photochromic units to polymer supports for metal cation chelation, a different approach is to embed larger entities such as photochromic molecular complexes ($M-\Phi$) within a polymer matrix.⁵⁶ For instance, de Angelis and co-workers embedded platinum(II) complexes

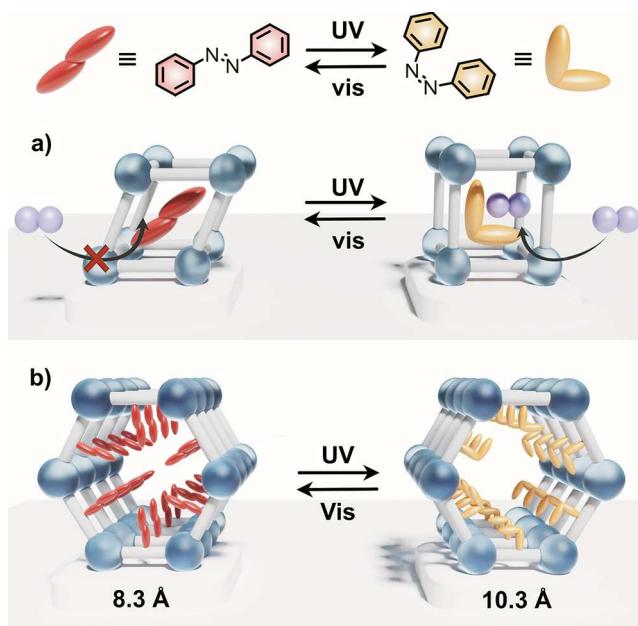
with a diarylethene-based ligand in a PMMA-based film to advance switchable non-linear optical (NLO) properties in the solid state (Figure 8).⁵⁶ In this study, switching from the open

Figure 8. Molecular structure of a diarylethene moiety bound to a Pt-based molecular complex. Switching between the closed (red) and open (yellow) forms of diarylethene derivatives modulated the NLO response. Reproduced with permission from ref 56. Copyright 2014 American Chemical Society.

to closed form of the diarylethene derivative resulted in an extension of conjugation that altered the optical properties of the complex. Nanoorganization of the complexes within the polymer matrix amplified the effects of photoisomerization, resulting in a large NLO contrast.

While grafting of photochromic molecules and embedding complexes in polymer matrices are effective approaches for preparation of functional materials, an alternative direction is a combination of photochromic cages and polymers within one material.¹⁰⁷ For instance, Johnson and co-workers functionalized a polymer backbone with diarylethene moieties. Exposing the polymer to palladium cations caused formation of photochromic cages at the junctions of the resulting polymer network.¹⁰⁷ In this case, photoisomerization of the diarylethene photoswitch from the open to closed forms drastically altered the cage structure from Pd_3L_6 to $\text{Pd}_{24}\text{L}_{48}$, where L represents the photochromic polymer ligands (poly(ethylene glycol) functionalized with diarylethene groups). Remarkably, the change in cage topology (i.e., changes in polymer cross-linking) affected the mechanical properties of the polymer. In particular, the $\text{Pd}_{24}\text{L}_{48}$ junctions resulted in a more mechanically robust material than the Pd_3L_6 junctions, and the Pd_3L_6 junctions produced a material with self-healing properties.¹⁰⁷ Thus, switching of the diarylethene moieties allowed for alternation between a mechanically strong state ($\text{Pd}_{24}\text{L}_{48}$) and a highly processable, self-healing state (Pd_3L_6). As such, these studies highlight not only the benefits of the M–Φ relationship but also the exciting opportunities to combine multiple structural motifs (e.g., photochromic cages and polymers) for tailoring material properties and overall material development.¹⁰⁷

Overall, M–Φ interactions in cages and polymers exemplify two significant achievements: organization of photoswitches in

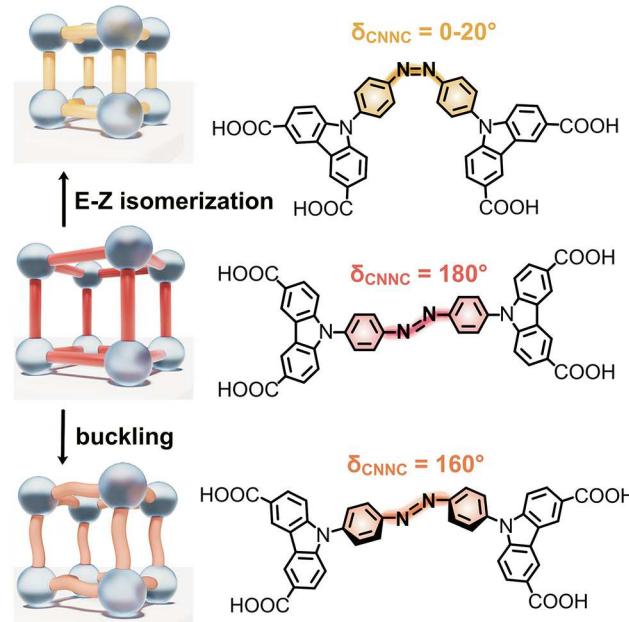

a three-dimensional space and possibility of photoisomerization in a solid-state material. While photochromic cages allow for organization of several M–Φ interactions, polymer matrices are an industrially accessible platform for photoswitch integration required for product commercialization. Despite these advantages, alignment of chromophores in complex assemblies is made more challenging by the amorphous nature of most polymers. For example, it is nearly impossible to orchestrate the precise alignment and orientation of multiple M–Φ species, which are critical for many energy-transfer and catalytic processes, without the support of a crystalline scaffold where angles and distances between M and Φ or multiple M–Φ are defined. Additionally, the absence of organized voids to promote photoisomerization in polymers could limit advancements in this direction, especially for classes of photochromic molecules for which isomerization between different states is accompanied by large structural rearrangements (e.g., spirooxazine).

METAL-ORGANIC FRAMEWORKS

Integration of photoswitches in porous matrices is one avenue to address limited photoisomerization in the solid state. Moreover, the limitations observed in some polymers related to precise M–Φ alignment, distance/angle determination, and control of the molecular conformation could be resolved in well-defined crystalline porous matrices. Thus, MOFs are modular and suitable platforms to study and advance novel pathways for M–Φ interactions in the solid state through coordination of photochromic molecules of interest to metal nodes (Scheme 1). This approach is also an opportunity to probe topologically different voids or interframework space to promote fast photoisomerization for classes of stimuli-responsive molecules for which isomerization is sterically restricted in the solid state because of large structural rearrangements (e.g., spiropyran or hydrazone).¹¹² Moreover, MOFs allow for tailoring a framework environment through skeleton modification or wall grafting (Scheme 1).^{12,28–30,43,46,58–60,90,112–171} Furthermore, photoswitch behavior can be tuned by incorporation of different guest molecules within framework cavities, including the presence or absence of solvent molecules of different polarity.^{57,145,172–189} Thus, in this section, we discuss the advantages of coordination of photoresponsive molecules to metals in well-defined crystalline scaffolds and the corresponding effects on physicochemical properties of the material, as well as outline the potential scientific gaps in this area.

One of the simplest pathways for photoswitch immobilization in MOFs is incorporation of photochromic molecules within the pores (i.e., as a guest).⁵⁷ The realization of concepts like “breathing” MOF behavior associated with dynamism of some MOF structures could be utilized for control of gas sorption processes, for example. The combination of these two concepts was successfully implemented by Kitagawa and co-workers. For instance, they showed that *trans*-to-*cis* isomerization of azobenzene guests altered the structure of the composite host–guest material, resulting in capture and release of N_2 gas (Figure 9a).⁵⁷

For that, azobenzene was encapsulated in the channels of a $\text{fle} \text{ x } \text{ib} \text{ l} \text{ e} \text{ } \text{z} \text{ i} \text{ n} \text{ c} \text{ - } \text{b} \text{ a} \text{s} \text{ e} \text{ d} \text{ } \text{M} \text{ O} \text{F}$, $[\text{Zn}_2(\text{terephthalate})_2(\text{triethylenediamine})]_n$. The *trans*-to-*cis* isomerization was induced by excitation with UV light and resulted in conversion from an orthorhombic to an expanded tetragonal lattice system. Subsequent gas sorption studies


Figure 9. (top) Schematic representation of azobenzene molecules immobilized in a MOF pore. *Trans*-to-*cis* isomerization results in increased gas sorption abilities. The blue spheres represent zinc metal nodes, and the purple spheres represent N₂ gas. Reproduced with permission from ref 57. Copyright 2012 American Chemical Society. (bottom) Schematic representation of azobenzene groups grafted to a MOF backbone, allowing for control of pore size upon alternation with UV and visible light. The blue spheres represent magnesium metal nodes. Reproduced with permission from ref 58. Copyright 2013 Royal Society of Chemistry.

revealed that the MOF containing *trans*-azobenzene exhibited negligible N₂ gas adsorption, which the authors attribute to the blocking of pores by close contact between the MOF and azobenzene guest molecules. In contrast, treatment with UV-light promoted formation of *cis*-azobenzene and the corresponding tetragonal lattice system, which exhibited an 8.3-fold increase in N₂ adsorption when compared to *trans*-azobenzene. Incorporation of photochromic guest molecules is surely a powerful method for tuning gas sorption properties of MOFs since it could be applied to a variety of flexible MOFs without the need to synthesize new linkers, but the question of how to balance the degree of guest loading with ample void space for gas sorption is not fully addressed in this direction.

A conceptually different approach to dynamic control of pore size is by grafting of azobenzene groups to the MOF backbone, as shown by the Yaghi group (Figure 9b).⁵⁸ In this case, azobenzene was incorporated into a MOF-74-based structure, which forms one-dimensional channels. Isomerization of the grafted azobenzene groups resulted in direct control of the MOF pore size. In this system, grafting of azobenzene to the backbone allowed for even spacing of the photochromic units between metal nodes, which enhanced switching ability. Moreover, the *trans*-to-*cis* conversion caused widening of the pore aperture from 8.3 to 10.3 Å. As a next step, the described system was evaluated for the ability to trap and release cargo molecules on demand. For this, a luminescent dye was chosen such that the dimensions of the dye allowed for facile loading into the MOF pores under UV excitation (i.e., *cis*-azobenzene, 10.3 Å pore diameter) accompanied by restricted diffusion out of the pores upon exposure to visible light (i.e., *trans*-azobenzene, 8.3 Å pore

diameter). Thus, loading and release of the dye could be promoted by UV irradiation to form the *cis*-isomer, whereas leaching of the dye did not occur in the case of the *trans*-isomer. Finally, irradiation at the isosbestic point of the azobenzene-grafted ligand resulted in simultaneous *cis*-to-*trans* and *trans*-to-*cis* “wagging”, which increased dye molecule mobility and effectively expelled the dye from the pores on demand. The presented study goes beyond capture and release of guest molecules by diffusion-controlled processes to include light-induced molecular motion as a method to expel guests from the pores.⁵⁸

Combining the concepts of light-induced structural deformation in flexible MOFs with precise arrangement of photoresponsive units through their coordinative immobilization leads to a recent study by Kaskel and Feringa, in which azobenzene groups were embedded in the backbone of a flexible MOF (Scheme 1, Figure 10).¹² Taking advantage of

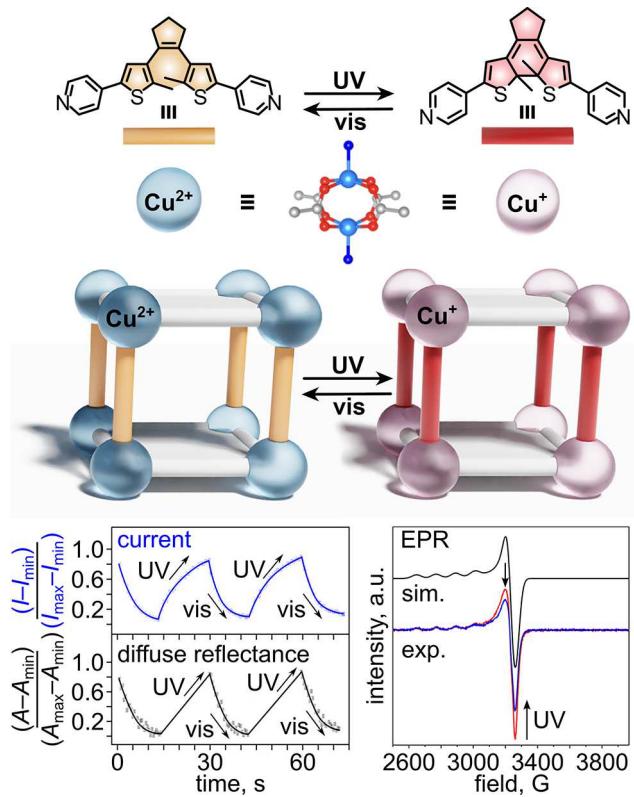


Figure 10. (left) Schematic representation of MOFs constructed from copper metal nodes (blue spheres) and azobenzene-based linkers (yellow, orange, and red rods). E/Z isomerization followed by “buckling” of the E-isomer changes the MOF pore size and causes “breathing” gas sorption behavior. (right) Molecular structures of the azobenzene linker with corresponding dihedral angles (δ). Adapted with permission under a Creative Commons Attribution 4.0 International (CC-BY 4.0) License from ref 12. Copyright 2022 Springer Nature.

the mentioned *cis*-to-*trans* isomerization of the azobenzene functionality, these studies showed that light-induced “buckling” of the DUT-163-based MOF backbone resulted in “breathing” behavior. That is, irradiation with appropriate excitation wavelengths caused sequential pore expansion, contraction, and negative gas adsorption, mimicking the respiration process of living beings. Notably, this “breathing” behavior was made possible by the presence of dynamic M–Φ coordination bonds. In addition, theoretical modeling shed light on the mechanistic details of azobenzene photoisomerization in the presented system. In fact, coordination of the azobenzene-based linker between metal nodes provided access to a conformation (e.g., “buckling”) that has not been

detected in solution. The presented studies focusing on stimuli-responsive gas adsorption illustrate that traditional applications in the MOF field have room for further creative exploration, including the development of on-demand cargo release and biomimetic “breathing” MOFs. In addition to the examples highlighted above, many groups are taking this opportunity to expand the realm of functional materials for gas sorption processes to include light-responsive MOFs for directed gas transport⁴⁹ and emission-responsive MOFs for environmental monitoring.¹⁹⁰

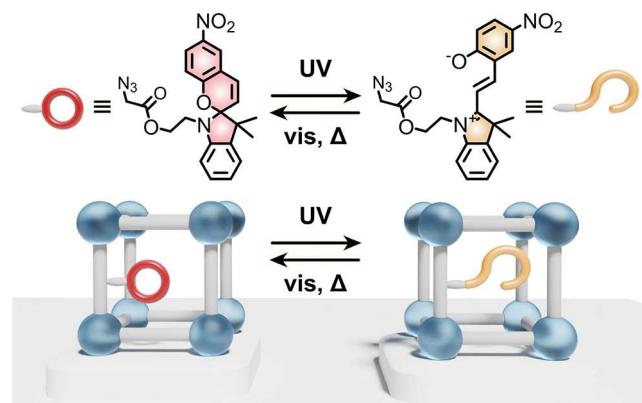

Especially in recent years, applications of M–Φ interactions in MOFs have been expanded beyond gas sorption.¹¹⁷ For instance, direct cooperation between metal nodes and photoswitches has been shown to alter the electronic structure of the bulk material.⁵⁹ In particular, recent work⁵⁹ revealed that photoisomerization of spiropyran- and diarylethene-based linkers caused metal node reduction from copper(II) to copper(I), as shown in Figure 11.⁵⁹ Thorough analysis

Figure 11. (top) Schematic representation of a MOF containing a diarylethene-based linker. Isomerization from the open (yellow) to closed (red) isomers results in reduction of Cu²⁺ (blue spheres) to Cu⁺ (pink spheres). (bottom left) Current and diffuse reflectance spectra over time and two switching cycles as well as (bottom right) the electron paramagnetic resonance spectra upon UV irradiation. Reproduced with permission from ref 59. Copyright 2022 American Chemical Society.

supported the hypothesis that photoinduced electron transfer from a photoresponsive linker to a corresponding metal node resulted in reduction of the metal nodes.⁵⁹ Remarkably, the detected change in metal oxidation states was completely reversible, showcasing the power of M–Φ interactions for dynamic control of material properties. Likewise, grafting of spiropyran-based Φ to a MOF backbone could also be used to modulate proton conductivity as a function of excitation

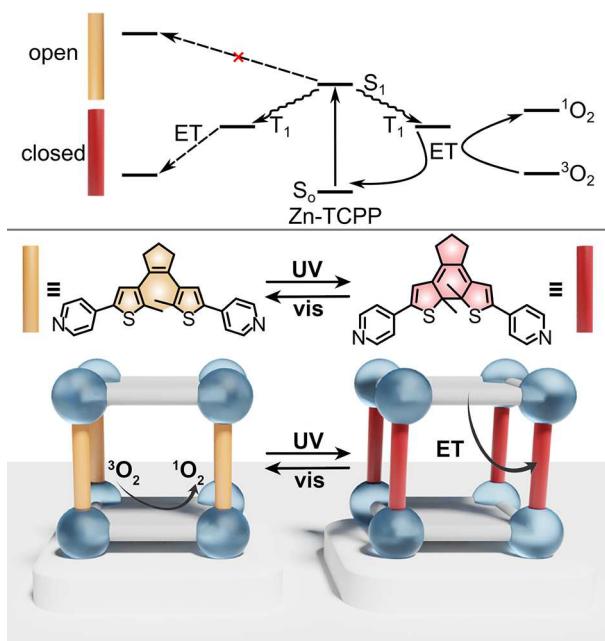

wavelength (Figure 12).⁶⁰ Taking advantage of the large change in dipole moment upon formation of the merocyanine

Figure 12. (top) Molecular structures of the isomers of a spiropyran-based Φ to be grafted to a MOF backbone. (bottom) Schematic representation of spiropyran isomerization within the void space of MOF pores upon alternation with UV and visible light. The blue spheres represent copper metal nodes. Reproduced with permission from ref 60. Copyright 2020 Royal Society of Chemistry.

isomer, the proton conductivity of a MOF thin film could be precisely tuned in both alcoholic and aqueous media. For instance, irradiation with 365-nm wavelength promoted the formation of merocyanine and decreased proton conductivity, whereas thermal relaxation to spirobifluorene resulted in an 82-fold increase in proton conductivity. These studies demonstrate stimuli-responsive ionic conductivity in the presence of water, which is a critical component for the next steps in development of efficient proton exchange membrane fuel cells, for example. Photoresponsive linkers provide a pathway for remote control of not only metal node oxidation state and conductivity but also spin-state and the corresponding magnetic properties.⁴³ For instance, one of those studies leveraged redox-activity of the tetrathiafulvalene linker in the backbone of an iron(II)-based MOF to convert between low- and high-spin states of the metal nodes.⁴³ The controllable switching between redox properties of MOF metal nodes illustrates an opportunity to utilize stimuli-responsive MOFs in photoswitchable catalysis and conductivity, or for on-demand drug delivery.³¹

Building on dynamic control of spin-states, Zhou and co-workers³¹ employed both diarylethene- and porphyrin-based linkers to prepare a MOF for controllable singlet oxygen generation (Figure 13). In the described system, the porphyrin linker, tetrakis(4-carboxyphenyl)-porphyrin (TCPP), acts as a photosensitizer, which converts $^3\text{O}_2$ to $^1\text{O}_2$ when in the triplet excited state. At the same time, the diarylethene-based linker, 1,2-bis(2-methyl-5-(pyridine-4-yl)thiophen-3-yl)cyclopent-1-ene, (BPDTE) possesses different energy levels for the open and closed isomers. For instance, the excited state of the open form of BPDTE is higher in energy than the triplet excited state of TCPP, preventing energy transfer from TCPP to BPDTE in the open form and promoting singlet oxygen generation. In the closed form, the excited state of BPDTE is lower in energy, providing an alternative pathway for TCPP relaxation and quenching $^1\text{O}_2$ generation. That is, relaxation of excited TCPP linkers can be directed toward either energy transfer or $^1\text{O}_2$ generation based on excitation wavelength. In addition, the same MOF was implemented for dynamic control of the photooxidation of 1,5-dihydroxynaphthalene (DHN) by

Figure 13. (bottom) Schematic representation of a MOF constructed from zinc metal nodes (blue spheres), diarylethene-based pillars (yellow and red rods), and porphyrin-based layers (gray). The open form diarylethene (yellow) promotes $^1\text{O}_2$ generation, while isomerization to the closed form promotes energy transfer and suppresses the $^1\text{O}_2$ generation pathway. **(top)** Energy level diagram emphasizing the proposed energy-transfer and $^1\text{O}_2$ generation processes. Reproduced with permission from ref 31. Copyright 2014 John Wiley and Sons.

the same mechanism as described above. Generation of $^1\text{O}_2$, as promoted by the open form of BPDTE, resulted in photooxidation of DHN, illustrating the power of photochromic MOFs for heterogeneous catalysis in multi-faceted systems.

As detailed above, MOFs offer a variety of methodologies to pre-organize metal–photoswitch interactions to form dynamic, functional materials.^{30,46} Although we have described only a few exceptional studies, significant effort from numerous groups has proven that fundamental studies of photochromic MOFs could be a pathway toward on-demand drug delivery systems, spatially and temporally resolved sensors, optoelectronic devices, and heterogeneous catalysis, among many other applications.^{30,46,190} In addition, these works show that synergy of M–Φ interactions within an extended structure goes beyond the properties of the individual molecular building blocks. Thus, continued work in this field will uncover unexpected photophysical behavior and unique material design principles. Some challenges remain, however, which must be addressed in the coming years to realize the mentioned applications. For example, development of suitable methods for determining photoisomerization quantum yield of bulk materials, which is a key parameter used in solution-based studies, is a critical step in fully characterizing dynamic materials.²⁹ Furthermore, the interplay between two unique photoswitches coordinated to metals within the same extended structure has been largely unexplored, indicating that a wealth of fundamental knowledge of these systems is left to uncover in the coming years.

CONCLUSIONS AND OUTLOOK

Strategic coupling of metals and photochromic molecules provides access to control properties as a function of an external stimulus in a variety of structural motifs, including molecular complexes, cages, polymers, and crystalline extended structures. Taking as examples five classes of photochromic molecules in combination with a variety of transition metals, we outline the potential for M–Φ interactions to impact areas like stimuli-responsive sensing, homogeneous and heterogeneous catalysis, switchable gas sorption and magnetism, tunable conductivity, and photodynamic therapies. Each of these directions takes advantage of light as a non-invasive stimulus with high spatiotemporal resolution to precisely alternate between discrete states. Current studies are the first steps toward manipulation of material properties with an external stimulus; however, strategic design in combination with synthetic and theoretical approaches could advance this area toward switching between “on” and “off” states, for instance, between conductors and insulators or a gradual transition from insulating–semiconducting–conducting material behavior. It is plausible to suggest that these avenues require more than one type of M–Φ interactions (i.e., more than one type of photoswitch) or novel structural motifs to advance the existing M–Φ “friendship”; however, all of them require a deeper fundamental understanding of Φ photoisomerization kinetics and thermodynamics, and advancement of synthetic strategies for preparation of novel Φ on a scale suitable for the development of new materials. Furthermore, a majority of the discussed M–Φ interactions are controlled through alternation of an excitation wavelength, which is a significant gap in terms of applications of other stimuli such as temperature, pH, magnetic and electric fields, etc., especially since light-driven systems impose inherent challenges. For example, the efficacy of the described light-responsive functional materials depends on penetration depth, and therefore, the thickness of the irradiated area for device development and fabrication should be taken into account. In particular, penetration depth depends on the excitation wavelength of the material and, therefore, the chosen chromophore.¹⁹¹ Other variables like chromophore distribution should also be considered. In addition, scattering of light by particles of varying sizes in bulk powders should be taken into consideration when performing photophysical analyses.¹⁹⁰ One of the solutions to this challenge is the growth of high-quality thin films, but the methodology for their preparation using photochromic molecular complexes, cages, or stimuli-responsive frameworks should be not only developed but also optimized for many classes of photoresponsive materials. For instance, one of the emphases should be shifted toward preservation of fast photoisomerization kinetics in molecular complexes integrated into thin films. The use of multiple stimuli offers another direction to control material properties in a more uniform fashion compared to the use of light exclusively.

In addition to expanding the choice of stimuli, broadening the scope of metals involved in M–Φ interactions is an exciting and fruitful direction. For instance, the studies highlighted in this Perspective utilize transition metals, which have dominated the field thus far; however, incorporation of actinides or lanthanides will undoubtedly uncover fundamentally interesting and challenging phenomena.¹²⁸ Therefore, systematic studies and exploration of lanthanide integration in

each of the structural motifs described herein could reveal novel M–Φ “friendship”, allowing for tailoring of structure–property correlations. For instance, studies involving photochromic actinide-based MOFs illustrate the potential for actinide–Φ interplay to impact their optoelectronic behavior.¹²⁸ Moreover, the growing interest toward lanthanides and actinides, including transuranic elements, illustrates the unrevealed potential for M–Φ interplay.¹²⁸

Thus, this Perspective only outlines the exciting and intriguing directions that were mainly inspired by dynamic adaptation of nature as a function of a variety of external stimuli: color of a chameleon toward its surrounding environment, orientation of plants as a reaction to sunlight, or reversible camouflage of marine creatures. Due to the complexity of stimuli-responsive materials, the M–Φ interface will require a multi-disciplinary approach and, therefore, will be based on successes occurring at the intersections of the materials science and physical, inorganic, and organic chemistry communities. The combined effort of these communities has already resulted in significant achievements in leveraging M–Φ “friendship” as a tool to uncover valuable fundamental knowledge for design of multi-functional materials. Although the full potential of M–Φ interfaces remains largely unknown, the natural world contains an abundance of inspiring stimuli-responsive materials, which only foreshadows the fundamental knowledge and creative directions to be uncovered in the coming years.

■ AUTHOR INFORMATION

Corresponding Author

Natalia B. Shustova — Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States; orcid.org/0000-0003-3952-1949; Email: shustova@sc.edu

Authors

Grace C. Thaggard — Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Johanna Haimerl — Inorganic and Metal–Organic Chemistry, Department of Chemistry, Technical University of Munich, Garching 85748, Germany; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Kyoung Chul Park — Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Jaewoong Lim — Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Roland A. Fischer — Inorganic and Metal–Organic Chemistry, Department of Chemistry, Technical University of Munich, Garching 85748, Germany; orcid.org/0000-0002-7532-5286

Buddhima K. P. Maldeni Kankanamalage — Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Brandon J. Yarbrough — Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Gina R. Wilson — Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Complete contact information is available at:
<https://pubs.acs.org/10.1021/jacs.2c09879>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors are grateful for support from the NSF Award (DMR-2103722) and SC EPSCoR GEAR. N.B.S. also acknowledges support from the Dreyfus Teaching-Scholar Award supported by the Dreyfus Foundation and the Hans Fischer Fellowship. N.B.S. and J.H. thank the TUM Institute for Advanced Study (IAS) for their support. G.C.T. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2034711.

■ ABBREVIATIONS

LMCT, ligand-to-metal charge transfer; MLCT, metal-to-ligand charge transfer; MOF, metal–organic framework; NMR, nuclear magnetic resonance; PMMA, poly(methyl methacrylate); NLO, non-linear optics; TCPP, tetrakis(4-carboxyphenyl)porphyrin; BPDTE, 1,2-bis((2-methyl-5-(pyridin-4-yl)thiophen-3-yl)cyclopent-1-ene; DHN, 1,5-dihydroxy-*n*aphthalene

■ REFERENCES

- (1) Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P.; Yaghi, O. M. Plasmon-Enhanced Photocatalytic CO₂ Conversion within Metal-Organic Frameworks under Visible Light. *J. Am. Chem. Soc.* **2017**, *139*, 356–362.
- (2) Nguyen, H. L.; Gropp, C.; Ma, Y.; Zhu, C.; Yaghi, O. M. 3D Covalent Organic Frameworks Selectively Crystallized through Conformational Design. *J. Am. Chem. Soc.* **2020**, *142*, 20335–20339.
- (3) Eckstein, B. J.; Brown, L. C.; Noll, B. C.; Moghadasnia, M. P.; Balaich, G. J.; McGuirk, C. M. A Porous Chalcogen-Bonded Organic Framework. *J. Am. Chem. Soc.* **2021**, *143*, 20207–20215.
- (4) Qiu, Q.; Yang, S.; Gerkman, M. A.; Fu, H.; Aprahamian, I.; Han, G. G. D. Photon Energy Storage in Strained Cyclic Hydrazones: Emerging Molecular Solar Thermal Energy Storage Compounds. *J. Am. Chem. Soc.* **2022**, *144*, 12627–12631.
- (5) Le, M.; Han, G. G. D. Stimuli-Responsive Organic Phase Change Materials: Molecular Designs and Applications in Energy Storage. *Acc. Mater. Res.* **2022**, *3*, 634–643.
- (6) Grommet, A. B.; Lee, L. M.; Klajn, R. Molecular Photoswitching in Confined Spaces. *Acc. Chem. Res.* **2020**, *53*, 2600–2610.
- (7) Gemen, J.; Bialek, M. J.; Kazes, M.; Shimon, L. J. W.; Feller, M.; Semenov, S. N.; Diskin-Posner, Y.; Oron, D.; Klajn, R. Ternary Host-Guest Complexes with Rapid Exchange Kinetics and Photoswitchable Fluorescence. *Chem.* **2022**, *8*, 2362–2379.
- (8) Wang, X.; Ma, K.; Goh, T.; Mian, M. R.; Xie, H.; Mao, H.; Duan, J.; Kirlikovali, K. O.; Stone, A. E. B. S.; Ray, D.; Wasielewski, M. R.; Gagliardi, L.; Farha, O. K. Photocatalytic Biocidal Coatings Featuring Zr₆Ti₄-Based Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2022**, *144*, 12192–12201.
- (9) Guo, Q.-H.; Jia, M.; Liu, Z.; Qiu, Y.; Chen, H.; Shen, D.; Zhang, X.; Tu, Q.; Ryder, M. R.; Chen, H.; Li, P.; Xu, Y.; Li, P.; Chen, Z.; Shekhawat, G. S.; Dravid, V. P.; Snurr, R. Q.; Philp, D.; Sue, A. C.-H.; Farha, O. K.; Rolandi, M.; Stoddart, J. F. Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. *J. Am. Chem. Soc.* **2020**, *142*, 6180–6187.
- (10) Zhang, K.; Goswami, S.; Noh, H.; Lu, Z.; Sheridan, T.; Duan, J.; Dong, W.; Hupp, J. T. An Iron-Porphyrin Grafted Metal-Organic Framework as a Heterogeneous Catalyst for the Photochemical Reduction of CO₂. *J. Photochem. Photobiol.* **2022**, *10*, 100111.

(11) Nagatomi, H.; Gallington, L. C.; Goswami, S.; Duan, J.; Chapman, K. W.; Yanai, N.; Kimizuka, N.; Farha, O. K.; Hupp, J. T. Regioselective Functionalization of the Mesoporous Metal-Organic Framework, NU-1000, with Photo-Active Tris-(2,2'-Bipyridine)-Ruthenium(II). *ACS Omega* **2020**, *5*, 30299–30305.

(12) Krause, S.; Evans, J. D.; Bon, V.; Crespi, S.; Danowski, W.; Browne, W. R.; Ehrling, S.; Walenszus, F.; Wallacher, D.; Grimm, N.; Többens, D. M.; Weiss, M. S.; Kaskel, S.; Feringa, B. L. Cooperative Light-Induced Breathing of Soft Porous Crystals via Azobenzene Buckling. *Nat. Commun.* **2022**, *13*, 1951.

(13) Schneemann, A.; Dong, R.; Schwotzer, F.; Zhong, H.; Senkovska, I.; Feng, X.; Kaskel, S. 2D Framework Materials for Energy Applications. *Chem. Sci.* **2021**, *12*, 1600–1619.

(14) Chang, T. Y.; Dotson, J. J.; Garcia-Garibay, M. A. Scalable Synthesis of Vicinal Quaternary Stereocenters via the Solid-State Photodecarbonylation of a Crystalline Hexasubstituted Ketone. *Org. Lett.* **2020**, *22*, 8855–8859.

(15) Breslin, V. M.; Barbour, N. A.; Dang, D.-K.; Lopez, S. A.; Garcia-Garibay, M. A. Nanosecond Laser Flash Photolysis of a 6-Nitroindolinospiropyran in Solution and in Nanocrystalline Suspension under Single Excitation Conditions. *Photochem. Photobiol. Sci.* **2018**, *17*, 741–749.

(16) Jiao, W.; Zhu, J.; Ling, Y.; Deng, M.; Zhou, Y.; Feng, P. Photoelectrochemical Properties of MOF-Induced Surface-Modified TiO₂ Photoelectrode. *Nanoscale* **2018**, *10*, 20339–20346.

(17) Yang, H.; Peng, F.; Hong, A. N.; Wang, Y.; Bu, X.; Feng, P. Ultrastable High-Connected Chromium Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2021**, *143*, 14470–14474.

(18) Greenfield, J. L.; Gerkman, M. A.; Gibson, R. S. L.; Han, G. G. D.; Fuchter, M. J. Efficient Electrocatalytic Switching of Azoheteroarenes in the Condensed Phases. *J. Am. Chem. Soc.* **2021**, *143*, 15250–15257.

(19) Liu, T.; Shi, W.; Tang, W.; Liu, Z.; Schroeder, B. C.; Fenwick, O.; Fuchter, M. J. High Responsivity Circular Polarized Light Detectors Based on Quasi Two-Dimensional Chiral Perovskite Films. *ACS Nano* **2022**, *16*, 2682–2689.

(20) Lin, Q.; Ke, C. Conductive and Anti-Freezing Hydrogels Constructed by Pseudo-Slide-Ring Networks. *Chem. Commun.* **2021**, *58*, 250–253.

(21) Liang, R.; Samanta, J.; Shao, B.; Zhang, M.; Staples, R. J.; Chen, A. D.; Tang, M.; Wu, Y.; Aprahamian, I.; Ke, C. A Heteromeric Carboxylic Acid Based Single-Crystalline Crosslinked Organic Framework. *Angew. Chem., Int. Ed.* **2021**, *60*, 23176–23181.

(22) Drake, H. F.; Day, G. S.; Xiao, Z.; Zhou, H.-C.; Ryder, M. R. Light-Induced Switchable Adsorption in Azobenzene- and Stilbene-Based Porous Materials. *Trends Chem.* **2022**, *4*, 32–47.

(23) Chen, W.; Cai, P.; Elumalai, P.; Zhang, P.; Feng, L.; Al-Rawashdeh, M.; Madrahimov, S. T.; Zhou, H.-C. Site-Isolated Azobenzene-Containing Metal-Organic Framework for Cyclopalladated Catalyzed Suzuki-Miyaura Coupling in Flow. *ACS Appl. Mater. Interfaces* **2021**, *13*, 51849–51854.

(24) Choi, J. Y.; Park, J. Enhancing Electrical Conductivity of Semiconducting MOFs via Defect Healing. *ACS Appl. Electron. Mater.* **2021**, *3*, 4197–4202.

(25) Pham, H. T. B.; Choi, J. Y.; Huang, S.; Wang, X.; Claman, A.; Stodolka, M.; Yazdi, S.; Sharma, S.; Zhang, W.; Park, J. Imparting Functionality and Enhanced Surface Area to a 2D Electrically Conductive MOF via Macroyclic Linker. *J. Am. Chem. Soc.* **2022**, *144*, 10615–10621.

(26) Massimi, S. E.; Metzger, K. E.; McGuirk, C. M.; Trewyn, B. G. Best Practices in the Characterization of MOF@MSN Composites. *Inorg. Chem.* **2022**, *61*, 4219–4234.

(27) Zhang, M.; Samanta, J.; Ke, C. Assembling Guests as Cyclic Tetramers in a Porous Hydrogen-Bonded Organic Framework. *Cryst. Growth Des.* **2022**, *22*, 3421–3427.

(28) Williams, D. E.; Rietman, J. A.; Maier, J. M.; Tan, R.; Gretyak, A. B.; Smith, M. D.; Krause, J. A.; Shustova, N. B. Energy Transfer on Demand: Photoswitch-Directed Behavior of Metal-Porphyrin Frameworks. *J. Am. Chem. Soc.* **2014**, *136*, 11886–11889.

(29) Martin, C. R.; Park, K. C.; Corkill, R. E.; Kittikhunnatham, P.; Leith, G. A.; Mathur, A.; Abiodun, S. L.; Gretyak, A. B.; Shustova, N. B. Photoresponsive Frameworks: Energy Transfer in the Spotlight. *Faraday Discuss.* **2021**, *231*, 266–280.

(30) Leith, G. A.; Martin, C. R.; Mathur, A.; Kittikhunnatham, P.; Park, K. C.; Shustova, N. B. Dynamically Controlled Electronic Behavior of Stimuli-Responsive Materials: Exploring Dimensionality and Connectivity. *Adv. Energy Mater.* **2022**, *12*, 2100441.

(31) Park, J.; Feng, D.; Yuan, S.; Zhou, H.-C. Photochromic Metal-Organic Frameworks: Reversible Control of Singlet Oxygen Generation. *Angew. Chem., Int. Ed.* **2015**, *54*, 430–435.

(32) Leydecker, T.; Herder, M.; Pavlica, E.; Bratina, G.; Hecht, S.; Orgiu, E.; Samori, P. Flexible Non-Volatile Optical Memory Thin-Film Transistor Device with over 256 Distinct Levels Based on an Organic Bicomponent Blend. *Nat. Nanotechnol.* **2016**, *11*, 769–775.

(33) Cheng, H.-B.; Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.; Yoon, J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. *Adv. Mater.* **2022**, *34*, 2108289.

(34) Papatriantafyllopoulou, C.; Moushi, E. E.; Christou, G.; Tasiopoulos, A. J. Filling the Gap between the Quantum and Classical Worlds of Nanoscale Magnetism: Giant Molecular Aggregates Based on Paramagnetic 3d Metal Ions. *Chem. Soc. Rev.* **2016**, *45*, 1597–1628.

(35) Wadley, P.; Howells, B.; Zelezny, J.; Andrews, C.; Hills, V.; Campion, R. P.; Novak, V.; Olejnik, K.; Maccherozzi, F.; Dhesi, S. S.; Martin, S. Y.; Wagner, T.; Wunderlich, J.; Freimuth, F.; Mokrousov, Y.; Kunes, J.; Chauhan, J. S.; Grzybowski, M. J.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Jungwirth, T. Electrical Switching of an Antiferromagnet. *Science* **2016**, *351*, 587–590.

(36) Zhuang, M.; Ernzerhof, M. Mechanism of a Molecular Electronic Photoswitch. *Phys. Rev. B* **2005**, *72*, 073104.

(37) Lee, P. H.-M.; Ko, C.-C.; Zhu, N.; Yam, V. W.-W. Metal Coordination-Assisted near-Infrared Photochromic Behavior: A Large Perturbation on Absorption Wavelength Properties of N,N-Donor Ligands Containing Diarylethene Derivatives by Coordination to the Rhenium(I) Metal Center. *J. Am. Chem. Soc.* **2007**, *129*, 6058–6059.

(38) Qiu, Q.; Shi, Y.; Han, G. G. D. Solar Energy Conversion and Storage by Photoswitchable Organic Materials in Solution, Liquid, Solid, and Changing Phases. *J. Mater. Chem. C* **2021**, *9*, 11444–11463.

(39) Moitra, T.; Karak, P.; Chakraborty, S.; Ruud, K.; Chakrabarti, S. Behind the Scenes of Spin-Forbidden Decay Pathways in Transition Metal Complexes. *Phys. Chem. Chem. Phys.* **2021**, *23*, 59–81.

(40) Byrdin, M.; Duan, C.; Bourgeois, D.; Brettel, K. A Long-Lived Triplet State is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins. *J. Am. Chem. Soc.* **2018**, *140*, 2897–2905.

(41) Zhang, Y.; Basel, T. P.; Gautam, B. R.; Yang, X.; Mascaro, D. J.; Liu, F.; Vardeny, Z. V. Spin-Enhanced Organic Bulk Heterojunction Photovoltaic Solar Cells. *Nat. Commun.* **2012**, *3*, 1043.

(42) Paquette, M. M.; Plaul, D.; Kurimoto, A.; Patrick, B. O.; Frank, N. L. Opto-Spintronics: Photoisomerization-Induced Spin State Switching at 300 K in Photochrome Cobalt-Dioxolene Thin Films. *J. Am. Chem. Soc.* **2018**, *140*, 14990–15000.

(43) Wang, H.-Y.; Ge, J.-Y.; Hua, C.; Jiao, C.-Q.; Wu, Y.; Leong, C. F.; D'Alessandro, D. M.; Liu, T.; Zuo, J.-L. Photo- and Electronically Switchable Spin-Crossover Iron(II) Metal-Organic Frameworks Based on a Tetrathiafulvalene Ligand. *Angew. Chem., Int. Ed.* **2017**, *56*, 5465–5470.

(44) Andréasson, J.; Pischel, U. Light-Stimulated Molecular and Supramolecular Systems for Information Processing and Beyond. *Coord. Chem. Rev.* **2021**, *429*, 213695.

(45) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. *Chem. Rev.* **2014**, *114*, 12174–12277.

(46) Rice, A. M.; Martin, C. R.; Galitskiy, V. A.; Berseneva, A. A.; Leith, G. A.; Shustova, N. B. Photophysics Modulation in Photoswitchable Metal-Organic Frameworks. *Chem. Rev.* **2020**, *120*, 8790–8813.

(47) Klajn, R. Spiropyran-Based Dynamic Materials. *Chem. Soc. Rev.* **2014**, *43*, 148–184.

(48) Russew, M.-M.; Hecht, S. Photoswitches: From Molecules to Materials. *Adv. Mater.* **2010**, *22*, 3348–3360.

(49) Feringa, B. L. *Molecular Photoswitches: Chemistry, Properties, and Applications*, 2 Volume Set; Wiley-VCH, 2022; pp 1–1083.

(50) Volarić, J.; Szymanski, W.; Simeth, N. A.; Feringa, B. L. Molecular Photoswitches in Aqueous Environments. *Chem. Soc. Rev.* **2021**, *50*, 12377–12449.

(51) Fu, W.; Pi, Y.; Gao, M.; Wang, W.; Li, C.; Tan, R.; Yin, D. Light-Controlled Cooperative Catalysis of Asymmetric Sulfoxidation Based on Azobenzene-Bridged Chiral Salen Ti^{IV} Catalysts. *Chem. Commun.* **2020**, *56*, 5993–5996.

(52) Qin, Y.; Chen, L.-J.; Dong, F.; Jiang, S.-T.; Yin, G.-Q.; Li, X.; Tian, Y.; Yang, H.-B. Light-Controlled Generation of Singlet Oxygen within a Discrete Dual-Stage Metallacycle for Cancer Therapy. *J. Am. Chem. Soc.* **2019**, *141*, 8943–8950.

(53) Park, J.; Sun, L.-B.; Chen, Y.-P.; Perry, Z.; Zhou, H.-C. Azobenzene-Functionalized Metal-Organic Polyhedra for the Optically Responsive Capture and Release of Guest Molecules. *Angew. Chem., Int. Ed.* **2014**, *53*, 5842–5846.

(54) Radu, A.; Scarmagnani, S.; Byrne, R.; Slater, C.; Lau, K. T.; Diamond, D. Photonic Modulation of Surface Properties: A Novel Concept in Chemical Sensing. *J. Phys. D: Appl. Phys.* **2007**, *40*, 7238.

(55) Kobayashi, N.; Sato, S.; Takazawa, K.; Ikeda, K.; Hirohashi, R. A New Polymer Electrolyte for Reversible Photoresponsive Ionic Conduction. *Electrochim. Acta* **1995**, *40*, 2309–2311.

(56) Boixel, J.; Guerchais, V.; Le Bozec, H.; Jacquemin, D.; Amar, A.; Boucekkine, A.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D.; Righetto, S.; De Angelis, R. Second-Order NLO Switches from Molecules to Polymer Films Based on Photochromic Cyclometalated Platinum(II) Complexes. *J. Am. Chem. Soc.* **2014**, *136*, 5367–5375.

(57) Yanai, N.; Uemura, T.; Inoue, M.; Matsuda, R.; Fukushima, T.; Tsujimoto, M.; Isoda, S.; Kitagawa, S. Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property. *J. Am. Chem. Soc.* **2012**, *134*, 4501–4504.

(58) Brown, J. W.; Henderson, B. L.; Kiesz, M. D.; Whalley, A. C.; Morris, W.; Grunder, S.; Deng, H.; Furukawa, H.; Zink, J. I.; Stoddart, J. F.; Yaghi, O. M. Photophysical Pore Control in an Azobenzene-Containing Metal-Organic Framework. *Chem. Sci.* **2013**, *4*, 2858–2864.

(59) Martin, C. R.; Park, K. C.; Leith, G. A.; Yu, J.; Mathur, A.; Wilson, G. R.; Gange, G. B.; Barth, E. L.; Ly, R. T.; Manley, O. M.; Forrester, K. L.; Karakalos, S. G.; Smith, M. D.; Makris, T. M.; Vannucci, A. K.; Peryshkov, D. v.; Shustova, N. B. Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. *J. Am. Chem. Soc.* **2022**, *144*, 4457–4468.

(60) Kanj, A. B.; Chandresh, A.; Gerwien, A.; Grosjean, S.; Bräse, S.; Wang, Y.; Dube, H.; Heinke, L. Proton-Conduction Photomodulation in Spiropyran-Functionalized MOFs with Large on-off Ratio. *Chem. Sci.* **2020**, *11*, 1404–1410.

(61) Phillips, J. P.; Mueller, A.; Przystal, F. Photochromic Chelating Agents. *J. Am. Chem. Soc.* **1965**, *87*, 4020.

(62) Wezenberg, S. J. Photoswitchable molecular tweezers: isomerization to control substrate binding, and what about vice versa? *Chem. Commun.* **2022**, *58*, 11045–11058.

(63) Abd El Sater, M.; Jaber, N.; Schulz, E. Chiral Salen Complexes for Asymmetric Heterogeneous Catalysis: Recent Examples for Recycling and Cooperativity. *ChemCatChem.* **2019**, *11*, 3662–3687.

(64) Afewerki, S.; Córdova, A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. *Chem. Rev.* **2016**, *116*, 13512–13570.

(65) Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic Catalysis Based on Heterometallic Complexes and Clusters. *Chem. Rev.* **2015**, *115*, 28–126.

(66) Lee, J. T. D.; Zhao, Y. Access to Acyclic Z-Enediynes by Alkyne Trimerization: Cooperative Bimetallic Catalysis Using Air as the Oxidant. *Angew. Chem.* **2016**, *128*, 14076–14080.

(67) Balzani, V.; de Cola, L.; Prodi, L.; Scandola, F. Photochemistry of Supramolecular Species. *Pure. Appl. Chem.* **1990**, *62*, 1457–1466.

(68) Blank, M.; Soo, L. M.; Wassermann, N. H.; Erlanger, B. F. Photoregulated Ion Binding. *Science* **1981**, *214*, 70–72.

(69) Dorel, R.; Feringa, B. L. Photoswitchable Catalysis Based on the Isomerisation of Double Bonds. *Chem. Commun.* **2019**, *55*, 6477–6486.

(70) Wei, Y.; Han, S.; Kim, J.; Soh, S.; Grzybowski, B. A. Photoswitchable Catalysis Mediated by Dynamic Aggregation of Nanoparticles. *J. Am. Chem. Soc.* **2010**, *132*, 11018–11020.

(71) Gerkman, M. A.; Sinha, S.; Warner, J. H.; Han, G. G. D. Direct Imaging of Photoswitching Molecular Conformations Using Individual Metal Atom Markers. *ACS Nano* **2019**, *13*, 87–96.

(72) Han, M.; Hirade, T.; Hara, M. A Reversibly Photoswitchable Mononuclear Palladium(II) Complex with Ortho-Diethylated Azobenzene Ligands. *New J. Chem.* **2010**, *34*, 2887–2891.

(73) Ittel, S. D.; Ibers, J. A. Low-Valent Nickel Complexes of Substituted Diazenes. *Inorg. Chem.* **1975**, *14*, 1183–1189.

(74) Kumar, G. S.; Neckers, D. C. Photochemistry of Azobenzene-Containing Polymers. *Chem. Rev.* **1989**, *89*, 1915–1925.

(75) Nishihara, H. Combination of Redox- and Photochemistry of Azo-Conjugated Metal Complexes. *Coord. Chem. Rev.* **2005**, *249*, 1468–1475.

(76) Kume, S.; Nishihara, H. Photochrome-Coupled Metal Complexes: Molecular Processing of Photon Stimuli. *Dalton Trans.* **2008**, 3260–3271.

(77) Kume, S.; Nishihara, H. Metal-based Photoswitches Derived from Photoisomerization. *Photofunctional Transition Metal Complexes; Structure and Bonding* 123; Springer: Berlin, Heidelberg, 2006; pp 79–112. DOI: 10.1007/430_2006_038.

(78) Yutaka, T.; Mori, I.; Kurihara, M.; Tamai, N.; Nishihara, H. Photochemical Behavior of Azobenzene-Conjugated Co^{II} , Co^{III} , and Fe^{II} Bis(Terpyridine) Complexes. *Inorg. Chem.* **2003**, *42*, 6306–6313.

(79) Galangau, O.; Norel, L.; Rigaut, S. Metal Complexes Bearing Photochromic Ligands: Photocontrol of Functions and Processes. *Dalton Trans.* **2021**, *50*, 17879–17891.

(80) Wang, Z.; Cook, M. J.; Nygård, A.-M.; Russell, D. A. Metal-Ion Chelation and Sensing Using a Self-Assembled Molecular Photoswitch. *Langmuir* **2003**, *19*, 3779–3784.

(81) Tahara, R.; Morozumi, T.; Nakamura, H.; Shimomura, M. Photoisomerization of Azobenzocrown Ethers. Effect of Complexation of Alkaline Earth Metal Ions. *J. Phys. Chem. B* **1997**, *101*, 7736–7743.

(82) Tang, H.-S.; Zhu, N.; Yam, V. W.-W. Tetranuclear Macroyclic Gold(I) Alkynyl Phosphine Complex Containing Azobenzene Functionalities: A Dual-Input Molecular Logic with Photoswitching Behavior Controllable via Silver(I) Coordination/Decoordination. *Organometallics* **2007**, *26*, 22–25.

(83) Xia, X.; Gan, L. H.; Hu, X. The Synthesis and Properties of Novel, Functional Azobenzene Based Metal Complexes. *Dyes Pigm.* **2009**, *83*, 291–296.

(84) Yabe, A.; Kawabata, Y.; Niino, H.; Matsumoto, M.; Ouchi, A.; Takahashi, H.; Tamura, S.; Tagaki, W.; Nakahara, H.; Fukuda, K. Photoisomerization of the Azobenzenes Included in Langmuir-Blodgett Films of Cyclodextrins. *Thin Solid Films* **1988**, *160*, 33–41.

(85) Sud, D.; Norsten, T. B.; Branda, N. R. Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. *Angew. Chem., Int. Ed.* **2005**, *44*, 2019–2021.

(86) Li, B.; Wang, J.-Y.; Wen, H.-M.; Shi, L.-X.; Chen, Z.-N. Redox-Modulated Stepwise Photochromism in a Ruthenium Complex with Dual Dithienylethene-Acetylides. *J. Am. Chem. Soc.* **2012**, *134*, 16059–16067.

(87) Wang, S.; Li, X.; Zhao, W.; Chen, X.; Zhang, J.; Ågren, H.; Zou, Q.; Zhu, L.; Chen, W. Cu^{2+} -Selectivity Gated Photochromism in Schiff-Modified Diarylethenes with a Star-Shaped Structure. *J. Mater. Chem. C* **2017**, *5*, 282–289.

(88) Takayama, K.; Matsuda, K.; Irie, M. Photoswitching of the Magnetic Interaction between a Copper(II) Ion and a Nitroxide

Radical by Using a Photochromic Spin Coupler. *Chem. - Eur. J.* **2003**, *9*, 5605–5609.

(89) Morton, S. M.; Ewusi-Annan, E.; Jensen, L. Controlling the Non-Resonant Chemical Mechanism of SERS Using a Molecular Photoswitch. *Phys. Chem. Chem. Phys.* **2009**, *11*, 7424–7429.

(90) Müller, K.; Helfferich, J.; Zhao, F.; Verma, R.; Kanj, A. B.; Meded, V.; Bléger, D.; Wenzel, W.; Heinke, L. Switching the Proton Conduction in Nanoporous, Crystalline Materials by Light. *Adv. Mater.* **2018**, *30*, 1706551.

(91) Roberts, M. N.; Nagle, J. K.; Finden, J. G.; Branda, N. R.; Wolf, M. O. Linker-Dependent Metal-Sensitized Photoswitching of Dithienylethenes. *Inorg. Chem.* **2009**, *48*, 19–21.

(92) Zhu, W.; Song, L.; Yang, Y.; Tian, H. Novel Bisthienylethene Containing Ferrocenyl-Substituted Naphthalimide: A Photo- and Redox Multi-Addressable Molecular Switch. *Chem. - Eur. J.* **2012**, *18*, 13388–13394.

(93) Tan, W.; Zhang, Q.; Zhang, J.; Tian, H. Near-Infrared Photochromic Diarylethene Iridium (III) Complex. *Org. Lett.* **2009**, *11*, 161–164.

(94) Al Sabea, H.; Norel, L.; Galangau, O.; Hijazi, H.; Métivier, R.; Roisnel, T.; Maury, O.; Bucher, C.; Riobé, F.; Rigaut, S. Dual Light and Redox Control of NIR Luminescence with Complementary Photochromic and Organometallic Antennae. *J. Am. Chem. Soc.* **2019**, *141*, 20026–20030.

(95) Cai, Y.; Gao, Y.; Luo, Q.; Li, M.; Zhang, J.; Tian, H.; Zhu, W.-H. Ferrocene-Grafted Photochromic Triads Based on a Sterically Hindered Ethene Bridge: Redox-Switchable Fluorescence and Gated Photochromism. *Adv. Opt. Mater.* **2016**, *4*, 1410–1416.

(96) Malval, J. P.; Gosse, I.; Morand, J. P.; Lapouyade, R. Photoswitching of Cation Complexation with A Monoaza-Crown Dithienylethene Photochrome. *J. Am. Chem. Soc.* **2002**, *124*, 904–905.

(97) Kokan, Z.; Chmielewski, M. J. A Photoswitchable Heteroditopic Ion-Pair Receptor. *J. Am. Chem. Soc.* **2018**, *140*, 16010–16014.

(98) Vantomme, G.; Lehn, J.-M. Reversible Adaptation to Photoinduced Shape Switching by Oligomer-Macrocycle Interconversion with Component Selection in a Three-State Constitutional Dynamic System. *Chem. - Eur. J.* **2014**, *20*, 16188–16193.

(99) Chaur, M. N.; Collado, D.; Lehn, J.-M. Configurational and Constitutional Information Storage: Multiple Dynamics in Systems Based on Pyridyl and Acyl Hydrazones. *Chem. - Eur. J.* **2011**, *17*, 248–258.

(100) Vantomme, G.; Hafezi, N.; Lehn, J.-M. A Light-Induced Reversible Phase Separation and its Coupling to a Dynamic Library of Imines. *Chem. Sci.* **2014**, *5*, 1475–1483.

(101) Ghosh, S.; Hossain, M. S.; Chatterjee, S.; Rahaman, S. A.; Bandyopadhyay, S. Light-Gated Modulation of Electronic Mobility of a Dihydropyrene-Based Photochromic Coordination Polymer. *ACS Appl. Mater. Interfaces* **2020**, *12*, 52983–52991.

(102) Heitmann, G.; Schütt, C.; Gröbner, J.; Huber, L.; Herges, R. Azoimidazole Functionalized Ni-Porphyrins for Molecular Spin Switching and Light Responsive MRI Contrast Agents. *Dalton Trans.* **2016**, *45*, 11407–11412.

(103) Venkataramani, S.; Jana, U.; Dommaschek, M.; Sönichsen, F. D.; Tuczak, F.; Herges, R. Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature. *Science* **2011**, *331*, 445–448.

(104) Li, R.-J.; Tessarolo, J.; Lee, H.; Clever, G. H. Multi-Stimuli Control over Assembly and Guest Binding in Metallo-Supramolecular Hosts Based on Dithienylethene Photoswitches. *J. Am. Chem. Soc.* **2021**, *143*, 3865–3873.

(105) Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H. Photoresponsive Host-Guest Functional Systems. *Chem. Rev.* **2015**, *115*, 7543–7588.

(106) Jiang, Y.; Park, J.; Tan, P.; Feng, L.; Liu, X.-Q.; Sun, L.-B.; Zhou, H.-C. Maximizing Photoresponsive Efficiency by Isolating Metal-organic Polyhedra into Confined Nanoscaled Spaces. *J. Am. Chem. Soc.* **2019**, *141*, 8221–8227.

(107) Gu, Y.; Alt, E. A.; Wang, H.; Li, X.; Willard, A. P.; Johnson, J. A. Photoswitching Topology in Polymer Networks with Metal-Organic Cages as Crosslinks. *Nature* **2018**, *560*, 65–69.

(108) Wezenberg, S. J. Light-Switchable Metal-Organic Cages. *Chem. Lett.* **2020**, *49*, 609–615.

(109) Hanopolsky, A. I.; De, S.; Bialek, M. J.; Diskin-Posner, Y.; Avram, L.; Feller, M.; Klajn, R. Reversible switching of arylazopyrazole within a metal-organic cage. *Beilstein J. Org. Chem.* **2019**, *15*, 2398–2407.

(110) Lee, H.; Tessarolo, J.; Langbehn, D.; Baksi, A.; Herges, R.; Clever, G. H. Light-Powered Dissipative Assembly of Diazocine Coordination Cages. *J. Am. Chem. Soc.* **2022**, *144*, 3099–3105.

(111) Locklin, J.; Samanta, S. Formation of Photochromic Spiropyran Polymer Brushes via Surface-Initiated, Ring-Opening Metathesis Polymerization: Reversible Photocontrol of Wetting Behavior and Solvent Dependent Morphology Changes. *Langmuir* **2008**, *24*, 9558–9565.

(112) Williams, D. E.; Martin, C. R.; Dolgopolova, E. A.; Swift, A.; Godfrey, D. C.; Ejegbaawo, O. A.; Pellechia, P. J.; Smith, M. D.; Shustova, N. B. Flipping the Switch: Fast Photoisomerization in a Confined Environment. *J. Am. Chem. Soc.* **2018**, *140*, 7611–7622.

(113) Mukhopadhyay, R. D.; Praveen, V. K.; Hazra, A.; Maji, T. K.; Ajayaghosh, A. Light Driven Mesoscale Assembly of a Coordination Polymeric Gelator into Flowers and Stars with Distinct Properties. *Chem. Sci.* **2015**, *6*, 6583–6591.

(114) Castellanos, S.; Kapteijn, F.; Gascon, J. Photoswitchable Metal-Organic Frameworks: Turn on the Lights and Close the Windows. *CrystEngComm* **2016**, *18*, 4006–4012.

(115) Maity, D. K.; Dey, A.; Ghosh, S.; Halder, A.; Ray, P. P.; Ghoshal, D. Set of Multifunctional Azo Functionalized Semiconducting Cd(II)-MOFs Showing Photoswitching Property and Selective CO₂ Adsorption. *Inorg. Chem.* **2018**, *57*, 251–263.

(116) Li, H.; Martinez, M. R.; Perry, Z.; Zhou, H.-C.; Falcaro, P.; Doblin, C.; Lim, S.; Hill, A. J.; Halstead, B.; Hill, M. R. A Robust Metal-Organic Framework for Dynamic Light-Induced Swing Adsorption of Carbon Dioxide. *Chem. - Eur. J.* **2016**, *22*, 11176–11179.

(117) Mogale, R.; Akpomie, K. G.; Conradie, J.; Langner, E. H. G. Dye Adsorption of Aluminium- and Zirconium-Based Metal Organic Frameworks with Azobenzene Dicarboxylate Linkers. *J. Environ. Manage.* **2022**, *304*, 114166.

(118) Fan, C. B.; Liu, Z. Q.; Gong, L. L.; Zheng, A. M.; Zhang, L.; Yan, C. S.; Wu, H. Q.; Feng, X. F.; Luo, F. Photoswitching Adsorption Selectivity in a Diarylethene-Azobenzene MOF. *Chem. Commun.* **2017**, *53*, 763–766.

(119) Gong, L. Ie; Feng, X. F.; Luo, F. Novel Azo-Metal-Organic Framework Showing a 10-Connected Bct Net, Breathing Behavior, and Unique Photoswitching Behavior toward CO₂. *Inorg. Chem.* **2015**, *54*, 11587–11589.

(120) Drake, H. F.; Xiao, Z.; Day, G. S.; Vali, S. W.; Daemen, L. L.; Cheng, Y.; Cai, P.; Kuszynski, J. E.; Lin, H.; Zhou, H.-C.; Ryder, M. R. Influence of Metal Identity on Light-Induced Switchable Adsorption in Azobenzene-Based Metal-Organic Frameworks. *ACS Appl. Mater. Interfaces* **2022**, *14*, 11192–11199.

(121) Modrow, A.; Zargarani, D.; Herges, R.; Stock, N. The First Porous MOF with Photoswitchable Linker Molecules. *Dalton Trans.* **2011**, *40*, 4217–4222.

(122) Modrow, A.; Zargarani, D.; Herges, R.; Stock, N. Introducing a Photo-Switchable Azo-Functionality inside Cr-MIL-101-NH₂ by Covalent Post-Synthetic Modification. *Dalton Trans.* **2012**, *41*, 8690–8696.

(123) Sato, H.; Matsui, T.; Chen, Z.; Pirillo, J.; Hijikata, Y.; Aida, T. Photochemically Crushable and Regenerative Metal-Organic Framework. *J. Am. Chem. Soc.* **2020**, *142*, 14069–14073.

(124) Nikolayenko, V. I.; Herbert, S. A.; Barbour, L. J. Reversible Structural Switching of a Metal-Organic Framework by Photo-irradiation. *Chem. Commun.* **2017**, *53*, 11142–11145.

(125) Luo, F.; Fan, C. bin; Luo, M. B.; Wu, X. L.; Zhu, Y.; Pu, S. Z.; Xu, W.-Y.; Guo, G.-C. Photoswitching CO₂ Capture and Release in a

Photochromic Diarylethene Metal-Organic Framework. *Angew. Chem., Int. Ed.* **2014**, *53*, 9298–9301.

(126) Zheng, Y.; Sato, H.; Wu, P.; Jeon, H. J.; Matsuda, R.; Kitagawa, S. Flexible Interlocked Porous Frameworks Allow Quantitative Photoisomerization in a Crystalline Solid. *Nat. Commun.* **2017**, *8*, 100.

(127) Fan, T.; Li, Z.; Liu, G.; Fan, C.; Pu, S. Zn-Diarylethene Organic Framework for Anticounterfeiting: Crystal Structure, Photochromism and Fluorescence Switch. *J. Solid. State. Chem.* **2022**, *309*, 122950.

(128) Martin, C. R.; Leith, G. A.; Kittikhunnatham, P.; Park, K. C.; Ejegbawo, O. A.; Mathur, A.; Callahan, C. R.; Desmond, S. L.; Keener, M. R.; Ahmed, F.; Pandey, S.; Smith, M. D.; Phillipot, S. R.; Greytak, A. B.; Shustova, N. B. Heterometallic Actinide-Containing Photoresponsive Metal-Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. *Angew. Chem., Int. Ed.* **2021**, *60*, 8072–8080.

(129) Dolgopolova, E. A.; Galitskiy, V. A.; Martin, C. R.; Gregory, H. N.; Yarbrough, B. J.; Rice, A. M.; Berseneva, A. A.; Ejegbawo, O. A.; Stephenson, K. S.; Kittikhunnatham, P.; Karakalos, S. G.; Smith, M. D.; Greytak, A. B.; Garashchuk, S.; Shustova, N. B. Connecting Wires: Photoinduced Electronic Structure Modulation in Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2019**, *141*, 5350–5358.

(130) Mallick, A.; Garai, B.; Addicoat, M. A.; Petkov, P. S.; Heine, T.; Banerjee, R. Solid State Organic Amine Detection in a Photochromic Porous Metal-Organic Framework. *Chem. Sci.* **2015**, *6*, 1420–1425.

(131) Garai, B.; Mallick, A.; Banerjee, R. Photochromic Metal-Organic Frameworks for Inkless and Erasable Printing. *Chem. Sci.* **2016**, *7*, 2195–2200.

(132) Han, L.; Qin, L.; Xu, L.; Zhou, Y.; Sun, J.; Zou, X. A Novel Photochromic Calcium-Based Metal-Organic Framework Derived from a Naphthalene Diimide Chromophore. *Chem. Commun.* **2013**, *49*, 406–408.

(133) Xie, Y.-X.; Zhao, W.-N.; Li, G.-C.; Liu, P.-F.; Han, L. A Naphthalenediimide-Based Metal-Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties. *Inorg. Chem.* **2016**, *55*, 549–551.

(134) Shang, X.; Song, I.; Jung, G. Y.; Choi, W.; Ohtsu, H.; Lee, J. H.; Ahn, J.; Koo, J. Y.; Kawano, M.; Kwak, S. K.; Oh, J. H. Micro-/Nano-Sized Multifunctional Heterochiral Metal-Organic Frameworks for High-Performance Visible-Blind UV Photodetectors. *J. Mater. Chem. C* **2021**, *9*, 7310–7318.

(135) Li, Z.; Guo, J.; Xiang, F.; Lin, Q.; Ye, Y.; Zhang, J.; Chen, S.; Zhang, Z.; Xiang, S. Photochromic Naphthalene Diimide Cd-MOFs Based on Different Second Dicarboxylic Acid Ligands. *CrystEngComm* **2018**, *20*, 7567–7573.

(136) Hussain, S.; Deng, Z.; Khan, A.; Li, P.; Li, Z.; Fang, Z.; Wan, X.; Peng, X. Photothermal Responsive Ultrathin Cu-TCPP Nanosheets/Sulfonated Polystyrene Nanocomposite Photo-Switch Proton Conducting Membranes. *J. Membr. Sci.* **2021**, *620*, 118888.

(137) Tan, Y.; Chen, H.; Zhang, J.; Liao, S.; Dai, J.; Fu, Z. Synthesis of a 3D Photochromic Coordination Polymer with an Interpenetrating Arrangement: Crystal Engineering for Electron Transfer between Donor and Acceptor Units. *CrystEngComm* **2012**, *14*, 5137–5139.

(138) Gong, T.; Sui, Q.; Li, P.; Meng, X.-F.; Zhou, L.-J.; Chen, J.; Xu, J.; Wang, L.; Gao, E.-Q. Versatile and Switchable Responsive Properties of a Lanthanide-Viologen Metal-Organic Framework. *Small* **2019**, *15*, 1803468.

(139) Gong, T.; Yang, X.; Sui, Q.; Qi, Y.; Xi, F.-G.; Gao, E.-Q. Magnetic and Photochromic Properties of a Manganese(II) Metal-Zwitterionic Coordination Polymer. *Inorg. Chem.* **2016**, *55*, 96–103.

(140) Aulakh, D.; Nicoletta, A. P.; Varghese, J. R.; Wriedt, M. The Structural Diversity and Properties of Nine New Viologen Based Zwitterionic Metal-Organic Frameworks. *CrystEngComm* **2016**, *18*, 2189–2202.

(141) Shi, Q.; Wu, S.-Y.; Qiu, X.-T.; Sun, Y.-Q.; Zheng, S.-T. Three Viologen-Derived Zn-Organic Materials: Photochromism, Photo-modulated Fluorescence, and Inkless and Erasable Prints. *Dalton Trans.* **2019**, *48*, 954–963.

(142) Kan, W.-Q.; Wen, S.-Z.; He, Y.-C.; Xu, C.-Y. Viologen-Based Photochromic Coordination Polymers for Inkless and Erasable Prints. *Inorg. Chem.* **2017**, *56*, 14926–14935.

(143) Castellanos, S.; Goulet-Hanssens, A.; Zhao, F.; Dikhtarenko, A.; Pustovarenko, A.; Hecht, S.; Gascon, J.; Kapteijn, F.; Bléger, D. Structural Effects in Visible-Light-Responsive Metal-Organic Frameworks Incorporating Ortho-Fluoroazobenzenes. *Chem. - Eur. J.* **2016**, *22*, 746–752.

(144) Kanj, A. B.; Bürck, J.; Vankova, N.; Li, C.; Mutruc, D.; Chandresh, A.; Hecht, S.; Heine, T.; Heinke, L. Chirality Remote Control in Nanoporous Materials by Circularly Polarized Light. *J. Am. Chem. Soc.* **2021**, *143*, 7059–7068.

(145) Yu, X.; Wang, Z.; Buchholz, M.; Füllgrabe, N.; Grosjean, S.; Bebensee, F.; Bräse, S.; Wöll, C.; Heinke, L. Cis-to-Trans Isomerization of Azobenzene Investigated by Using Thin Films of Metal-Organic Frameworks. *Phys. Chem. Chem. Phys.* **2015**, *17*, 22721–22725.

(146) Müller, K.; Knebel, A.; Zhao, F.; Bléger, D.; Caro, J.; Heinke, L. Switching Thin Films of Azobenzene-Containing Metal-Organic Frameworks with Visible Light. *Chem. - Eur. J.* **2017**, *23*, 5434–5438.

(147) Wang, Z.; Grosjean, S.; Bräse, S.; Heinke, L. Photoswitchable Adsorption in Metal-Organic Frameworks Based on Polar Guest-Host Interactions. *ChemPhysChem* **2015**, *16*, 3779–3783.

(148) Wang, Z.; Knebel, A.; Grosjean, S.; Wagner, D.; Bräse, S.; Wöll, C.; Caro, J.; Heinke, L. Tunable Molecular Separation by Nanoporous Membranes. *Nat. Commun.* **2016**, *7*, 13872.

(149) Prasetya, N.; Donose, B. C.; Ladewig, B. P. A New and Highly Robust Light-Responsive Azo-UiO-66 for Highly Selective and Low Energy Post-Combustion CO₂ Capture and Its Application in a Mixed Matrix Membrane for CO₂/N₂ Separation. *J. Mater. Chem. A* **2018**, *6*, 16390–16402.

(150) Huang, R.; Hill, M. R.; Babarao, R.; Medhekar, N. V. CO₂ Adsorption in Azobenzene Functionalized Stimuli Responsive Metal-Organic Frameworks. *J. Phys. Chem. C* **2016**, *120*, 16658–16667.

(151) Geng, J.-S.; Liu, K.; Liang, Y.-Y.; Yu, J.-P.; Hu, K.-Q.; Yuan, L.-H.; Feng, W.; Chai, Z.-F.; Mei, L.; Shi, W.-Q. An Azobenzene-Modified Photoresponsive Thorium-Organic Framework: Monitoring and Quantitative Analysis of Reversible Trans-Cis Photoisomerization. *Inorg. Chem.* **2021**, *60*, 8519–8529.

(152) Modrow, A.; Feyand, M.; Zargarani, D.; Herges, R.; Stock, N. Systematic Investigation of Porous Inorganic-Organic Hybrid Compounds with Photo-Switchable Properties. *Z. Anorg. Allg. Chem.* **2012**, *638*, 2138–2143.

(153) Jiang, Y.; Tan, P.; Qi, S. C.; Liu, X. Q.; Yan, J.-H.; Fan, F.; Sun, L.-B. Metal-Organic Frameworks with Target-Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO₂ Capture. *Angew. Chem., Int. Ed.* **2019**, *58*, 6600–6604.

(154) Meng, H.; Zhao, C.; Nie, M.; Wang, C.; Wang, T. Optically Controlled Molecular Metallofullerene Magnetism via an Azobenzene-Functionalized Metal-Organic Framework. *ACS Appl. Mater. Interfaces* **2018**, *10*, 32607–32612.

(155) Heinke, L.; Cakici, M.; Dommaschk, M.; Grosjean, S.; Herges, R.; Bräse, S.; Wöll, C. Photoswitching in Two-Component Surface-Mounted Metal-Organic Frameworks: Optically Triggered Release from a Molecular Container. *ACS Nano* **2014**, *8*, 1463–1467.

(156) Wang, Z.; Heinke, L.; Jelic, J.; Cakici, M.; Dommaschk, M.; Maurer, R. J.; Oberhofer, H.; Grosjean, S.; Herges, R.; Bräse, S.; Reuter, K.; Wöll, C. Photoswitching in Nanoporous, Crystalline Solids: An Experimental and Theoretical Study for Azobenzene Linkers Incorporated in MOFs. *Phys. Chem. Chem. Phys.* **2015**, *17*, 14582–14587.

(157) Huang, Q.; Mu, J.; Zhan, Z.; Wang, F.; Jin, S.; Tan, B.; Wu, C. A Steric Hindrance Alleviation Strategy to Enhance the Photo-Switching Efficiency of Azobenzene Functionalized Metal-Organic Frameworks toward Tailorable Carbon Dioxide Capture. *J. Mater. Chem. A* **2022**, *10*, 8303–8308.

(158) Park, J.; Yuan, D.; Pham, K. T.; Li, J.-R.; Yakovenko, A.; Zhou, H.-C. Reversible Alteration of CO₂ Adsorption upon Photochemical or Thermal Treatment in a Metal-Organic Framework. *J. Am. Chem. Soc.* **2012**, *134*, 99–102.

(159) Walton, I. M.; Cox, J. M.; Mitchell, T. B.; Bizier, N. P.; Benedict, J. B. Structural Response to Desolvation in a Pyridyl-Phenanthrene Diarylethene-Based Metal-Organic Framework. *CrysEngComm* **2016**, *18*, 7972–7977.

(160) Walton, I. M.; Cox, J. M.; Benson, C. A.; Patel, D. G.; Chen, Y.-S.; Benedict, J. B. The Role of Atropisomers on the Photo-Reactivity and Fatigue of Diarylethene-Based Metal-Organic Frameworks. *New J. Chem.* **2016**, *40*, 101–106.

(161) Patel, D. G.; Walton, I. M.; Cox, J. M.; Gleason, C. J.; Butzer, D. R.; Benedict, J. B. Photoresponsive Porous Materials: The Design and Synthesis of Photochromic Diarylethene-Based Linkers and a Metal-Organic Framework. *Chem. Commun.* **2014**, *50*, 2653–2656.

(162) Danowski, W.; Castiglioni, F.; Sardjan, A. S.; Krause, S.; Pfeifer, L.; Roke, D.; Comotti, A.; Browne, W. R.; Feringa, B. L. Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal-Organic Framework Enabled by Energy Transfer. *J. Am. Chem. Soc.* **2020**, *142*, 9048–9056.

(163) Danowski, W.; van Leeuwen, T.; Abdolahzadeh, S.; Roke, D.; Browne, W. R.; Wezenberg, S. J.; Feringa, B. L. Unidirectional Rotary Motion in a Metal-Organic Framework. *Nat. Nanotechnol.* **2019**, *14*, 488–494.

(164) Furlong, B. J.; Katz, M. J. Bistable Dithienylethene-Based Metal-Organic Framework Illustrating Optically Induced Changes in Chemical Separations. *J. Am. Chem. Soc.* **2017**, *139*, 13280–13283.

(165) Dong, J.; Shen, P.; Ying, S.; Li, Z.-J.; Yuan, Y. di; Wang, Y.; Zheng, X.; Peh, S. B.; Yuan, H.; Liu, G.; Cheng, Y.; Pan, Y.; Shi, L.; Zhang, J.; Yuan, D.; Liu, B.; Zhao, Z.; Tang, B. Z.; Zhao, D. Aggregation-Induced Emission-Responsive Metal-Organic Frameworks. *Chem. Mater.* **2020**, *32*, 6706–6720.

(166) Shepherd, N. D.; Wang, T.; Ding, B.; Beves, J. E.; D'Alessandro, D. M. Visible Light Stimulated Bistable Photo-Switching in Defect Engineered Metal-Organic Frameworks. *Inorg. Chem.* **2021**, *60*, 11706–11710.

(167) Healey, K.; Liang, W.; Sounthor, P. D.; Church, T. L.; D'Alessandro, D. M. Photoresponsive Spiropyran-Functionalised MOF-808: Postsynthetic Incorporation and Light Dependent Gas Adsorption Properties. *J. Mater. Chem. A* **2016**, *4*, 10816–10819.

(168) Zhang, T.; Yang, Z.; Wang, J.-X.; Chen, L.; Li, C. A Metastable-State Photoacid-Based Metal Organic Framework with Multi-Stimuli-Responsive Chromism. *Dyes Pigm.* **2022**, *203*, 110365.

(169) Li, H.-Y.; Xu, H.; Zang, S.-Q.; Mak, T. C. W. A Viologen-Functionalized Chiral Eu-MOF as a Platform for Multifunctional Switchable Material. *Chem. Commun.* **2016**, *52*, 525–528.

(170) Li, H.-Y.; Wei, Y.-L.; Dong, X.-Y.; Zang, S.-Q.; Mak, T. C. W. Novel Tb-MOF Embedded with Viologen Species for Multi-Photofunctionality: Photochromism, Photomodulated Fluorescence, and Luminescent PH Sensing. *Chem. Mater.* **2015**, *27*, 1327–1331.

(171) Chen, Q.; Sun, J.; Li, P.; Hod, I.; Moghadam, P. Z.; Kean, Z. S.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K.; Stoddart, J. F. A Redox-Active Bistable Molecular Switch Mounted inside a Metal-Organic Framework. *J. Am. Chem. Soc.* **2016**, *138*, 14242–14245.

(172) Brachňáková, B.; Moncol', J.; Pavlik, J.; Šalitroš, I.; Bonhommeau, S.; Valverde-Muñoz, F. J.; Salmon, L.; Molnár, G.; Routaboul, L.; Boussekou, A. Spin Crossover Metal-Organic Frameworks with Inserted Photoactive Guests: On the Quest to Control the Spin State by Photoisomerization. *Dalton Trans.* **2021**, *50*, 8877–8888.

(173) Griffiths, K.; Halcovitch, N. R.; Griffin, J. M. Efficient Solid-State Photoswitching of Methoxyazobenzene in a Metal-Organic Framework for Thermal Energy Storage. *Chem. Sci.* **2022**, *13*, 3014–3019.

(174) Griffiths, K.; Halcovitch, N. R.; Griffin, J. M. Long-Term Solar Energy Storage under Ambient Conditions in a MOF-Based Solid-Solid Phase-Change Material. *Chem. Mater.* **2020**, *32*, 9925–9936.

(175) Müller, K.; Wadhwa, J.; Malhi, J. S.; Schöttner, L.; Welle, A.; Schwartz, H.; Hermann, D.; Ruschewitz, U.; Heinke, L. Photo-switchable Nanoporous Films by Loading Azobenzene in Metal-Organic Frameworks of Type HKUST-1. *Chem. Commun.* **2017**, *53*, 8070–8073.

(176) Lyndon, R.; Konstas, K.; Ladewig, B. P.; Sounthor, P. D.; Kepert, C. J.; Hill, M. R. Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release. *Angew. Chem., Int. Ed.* **2013**, *52*, 3695–3698.

(177) Hermann, D.; Schwartz, H. A.; Werker, M.; Schaniel, D.; Ruschewitz, U. Metal-Organic Frameworks as Hosts for Fluorinated Azobenzenes: A Path towards Quantitative Photoswitching with Visible Light. *Chem. - Eur. J.* **2019**, *25*, 3606–3616.

(178) Hermann, D.; Emerich, H.; Lepski, R.; Schaniel, D.; Ruschewitz, U. Metal-Organic Frameworks as Hosts for Photochromic Guest Molecules. *Inorg. Chem.* **2013**, *52*, 2744–2749.

(179) Rödl, M.; Reka, A.; Panic, M.; Fischereder, A.; Oberlechner, M.; Mairegger, T.; Kopacka, H.; Huppertz, H.; Hofer, T. S.; Schwartz, H. A. Fundamental Study of the Optical and Vibrational Properties of Fx-AZB@MOF Systems as Functions of Dye Substitution and the Loading Amount. *Langmuir* **2022**, *38*, 4295–4309.

(180) Fu, W.-Q.; Liu, M.; Gu, Z.-G.; Chen, S.-M.; Zhang, J. Liquid Phase Epitaxial Growth and Optical Properties of Photochromic Guest-Encapsulated MOF Thin Film. *Cryst. Growth Des.* **2016**, *16*, 5487–5492.

(181) Walton, I. M.; Cox, J. M.; Coppin, J. A.; Linderman, C. M.; Patel, D. G.; Benedict, J. B. Photo-Responsive MOFs: Light-Induced Switching of Porous Single Crystals Containing a Photochromic Diarylethene. *Chem. Commun.* **2013**, *49*, 8012–8014.

(182) Li, Z.; Wang, G.; Ye, Y.; Li, B.; Li, H.; Chen, B. Loading Photochromic Molecules into a Luminescent Metal-Organic Framework for Information Anticounterfeiting. *Angew. Chem., Int. Ed.* **2019**, *58*, 18025–18031.

(183) Zhao, T.; Han, J.; Shi, Y.; Zhou, J.; Duan, P. Multi-Light-Responsive Upconversion-and-Downshifting-Based Circularly Polarized Luminescent Switches in Chiral Metal-Organic Frameworks. *Adv. Mater.* **2021**, *33*, 2101797.

(184) Garg, S.; Schwartz, H.; Kozlowska, M.; Kanj, A. B.; Müller, K.; Wenzel, W.; Ruschewitz, U.; Heinke, L. Conductance Photoswitching of Metal-Organic Frameworks with Embedded Spiropyran. *Angew. Chem., Int. Ed.* **2019**, *58*, 1193–1197.

(185) Li, H.; Zhang, L.; Yang, Y.; Hu, E.; Li, B.; Cui, Y.; Yang, D.; Qian, G. Polarized Laser Switching with Giant Contrast in MOF-Based Mixed-Matrix Membrane. *Adv. Sci.* **2022**, *9*, 2200953.

(186) Schwartz, H. A.; Olthof, S.; Schaniel, D.; Meerholz, K.; Ruschewitz, U. Solution-Like Behavior of Photoswitchable Spiropyrans Embedded in Metal-Organic Frameworks. *Inorg. Chem.* **2017**, *56*, 13100–13110.

(187) Kremer, S.; Ober, I.; Greussing, V.; Kopacka, H.; Gallmetzer, H. G.; Trübenbacher, B.; Demmel, D.; Olthof, S.; Huppertz, H.; Schwartz, H. A. Modulating the Optical Characteristics of Spiropyran@Metal-Organic Framework Composites as a Function of Spiropyran Substitution. *Langmuir* **2021**, *37*, 7834–7842.

(188) Greussing, V.; Gallmetzer, J. M.; Huppertz, H.; Hofer, T. S.; Schwartz, H. A. Optical Characteristics of Spiropyran@MOF Composites as a Function of the Metal-Organic Framework Linker Substitution. *J. Phys. Chem. C* **2022**, *126*, 10923–10931.

(189) Yang, Y.; Li, Y.; Chen, Y.; Wang, Z.; He, Z.; He, J.; Zhao, H. Dynamic Anticounterfeiting Through Novel Photochromic Spiropyran-Based Switch@Ln-MOF Composites. *ACS Appl. Mater. Interfaces* **2022**, *14*, 21330–21339.

(190) Haldar, R.; Heinke, L.; Wöll, C. Advanced Photoresponsive Materials Using the Metal-Organic Framework Approach. *Adv. Mater.* **2020**, *32*, 1905227.

(191) Goetzberger, A.; Knobloch, J.; Voss, B. *Crystalline Silicon Solar Cells*; John Wiley & Sons, 1998; pp 1–229.