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A computational revolution unleashed the power of artificial neural networks.
At the heart of that revolution is automatic differentiation, which calculates the
derivative of a performance measure relative to a large number of parameters.
Differentiation enhances the discovery of improved performance in large
models, an achievement that was previously difficult or impossible. Recently,
a second computational advance optimizes the temporal trajectories traced
by differential equations. Optimization requires differentiating a measure
of performance over a trajectory, such as the closeness of tracking the
environment, with respect to the parameters of the differential equations.
Because model trajectories are usually calculated numerically by multistep
algorithms, such as Runge-Kutta, the automatic differentiation must be
passed through the numerical algorithm. This article explains how such
automatic differentiation of trajectories is achieved. It also discusses why such
computational breakthroughs are likely to advance theoretical and statistical
studies of biological problems, in which one can consider variables as dynamic
paths over time and space. Many common problems arise between improving
success in computational learning models over performance landscapes,
improving evolutionary fitness over adaptive landscapes, and improving
statistical fits to data over information landscapes.

automatic differentiation, optimization, fitness landscape, statistical inference,
differential equation modeling, ecological dynamics, evolutionary dynamics

1. Introduction

Theoretical studies often analyze improvement on a performance surface. What
phenotypes enhance fitness? What differential equation model best describes ecological
or biochemical dynamics? What interventions improve the health of organisms
or ecosystems?

Similarly, inductive methods of statistics and machine learning optimize prediction,
minimize error, or maximize the use of information (McElreath, 2015; Goodfellow et al.,
2016). Natural selection can itself be thought of as nature’s inductive process of improving
the fit of organisms to their environment (Frank, 2009; Frank and Fox, 2020).

Most of these problems reduce to finding a path that enhances performance (Floudas
and Pardalos, 2008). In practice, that often means changing model parameter values
in the direction along which the slope of performance tilts most strongly toward
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improvement. Ideally, that best slope is found by differentiating
the performance surface with respect to the parameters of the
model or the traits of the organism.

Taking the derivative of a performance function with
respect to its parameters is, in principle, a simple process.
Performance functions typically arise by composition of basic
mathematical operations such as addition, multiplication, and
exponentiation. Standard procedures yield the derivative for
each basic operation. The overall derivative follows by the chain
rule for differentiation.

Two aspects hinder the calculation of derivatives. First,
performance measures often follow from long chains of
operations embedded in complex algorithms. For example,
performance may depend on a measure of the distance
between some optimal trajectory and the trajectory of a
system of differential equations specified by a model with
many parameters.

In practice, one often calculates the model trajectory for a
given parameter set by a numerical algorithm. The derivative
of the distance measure between the optimal and realized
trajectories must be calculated through the operations of the
numerical algorithm, which is typically embedded in the code
of a computer program. Efficiently updating the parameters to
reduce the distance of the model’s trajectory from the optimal
trajectory benefits from an automatic method to calculate the
derivative of that distance with respect to the parameters
(Griewank and Walther, 2008; Baydin et al., 2018; Margossian,
2019).

The second difficulty for calculation arises because
performance functions often depend on large numbers of
parameters. For example, the modern artificial intelligence
revolution arose in part from expanding neural networks to
multiple deeply connected layers with millions of parameters.
It only became possible to calculate an improving pathway of
parameter values with sufficient speed after the development of
efficient methods for automatic differentiation of performance
functions embedded within the calculations of complex
computer code (Goodfellow et al., 2016).

Conceptually, automatic differentiation provides insight
into the topography of performance surfaces. In biology,
many problems of evolutionary dynamics turn on the adaptive
topography that maps phenotypes to fitness (Stadler, 2002;
Malan, 2021). The close similarity of evolutionary dynamics
and the many other problems that depend on the topography
of performance surfaces provides insight into how natural
selection designs organisms and into the prospects and limits
of optimization models in biology. In other words, automatic
differentiation will help us to learn more about the shape of
optimization problems in both natural history and in models of
evolutionary biology.

This benefits
differentiation for differential equation modeling and for
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the opportunities for new kinds of theoretical approaches,
a better understanding of current developments in statistics
and machine learning, and some possible directions for
future research motivated by improved understanding of
multidimensional performance surfaces.

I start with an overview of differentiation in optimization.
I next turn to the techniques and advantages of automatic
differentiation for optimizing differential equation models
(Chen et al., 2018; Rackauckas et al., 2020). I then present
two examples to illustrate how the optimization of differential
equations by automatic differentiation may enhance the future
study of various topics in biology.

The first example fits various differential equation models
to the classic data on predator-prey population cycles of lynx
and hare. The second example searches for transcription factor
network designs that solve the challenge of maintaining an
internal circadian rhythm. The internal rhythm must buffer
against the intrinsic stochasticity of biochemical dynamics,
entrain to an erratic external circadian signal when available, and
maintain the internal rhythm when the external signal is absent.

Slopes and curvatures calculated by differentiation also
provide the basis for enhanced sensitivity analysis (Mester et al.,
2022). In biology, sensitivity plays a key role in understanding
robustness, variability, and evolutionary dynamics. In inference,
sensitivity influences the degree of belief in conclusions drawn
from models and data, often analyzed by Bayesian methods.

2. Differentiation in optimization

Optimizing a function L with respect to a parameter vector
p sets a classic optimization problem. For example, what
parameters for a system of differential equations minimize
the distance between the system’s trajectory and the observed
trajectory of fluctuating lynx and hare populations? In this case,
the total distance, L, might be the sum of the squared deviations
between system’s trajectory and the observed trajectory when
measured at series of temporal intervals.

In general, it is relatively easy to find a local optimum near
some initial point in parameter space and relatively difficult to
find a global optimum over the full space of potential parameter
values. Many optimization techniques exist. The best methods
for a particular problem depend on the shape of the performance
surface (Floudas and Pardalos, 2008; Ruder, 2017; Reddi et al.,
2019).

For problems with continuous performance surfaces, using
the derivative of L with respect to the parameters, p, often greatly
enhances the search for better parameters. The vector of partial
derivatives of L with respect to the parameters is the gradient or
slope of the performance surface, VL.

The gradient describes the change in performance with
respect to the change in parameters. Thus, the gradient provides
much information about how to update parameter values in
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an iterative search for improving performance. Knowing the
gradient does not by itself solve the problem of getting stuck in a
local optimum. However, fast calculation of the gradient often
transforms problems from hard and beyond reasonable study
into ones that can be analyzed relatively easily (Goodfellow et al.,
2016; Ruder, 2017; Reddi et al., 2019).

Fast calculation of derivatives by automatic methods may
also allow calculation of the second derivatives, which describe
the curvature of the performance surface. For a problem with
n parameters and a single-valued performance measure, L, we
write V2L for the n x n Hessian matrix of partial second
derivatives. The Hessian matrix provides insight into many
aspects of optimization.

3. Optimizing differential equations

Differential equations provide the primary modeling
approach for many problems (Edelstein-Keshet, 1988; Ellner
and Guckenheimer, 2006). Organismal traits often follow
trajectories over time as individuals develop and respond to
the environment. Systems of gene regulation, biochemistry,
and physiology describe temporal changes in molecular
concentrations and biological outputs. Continuous models of
population genetics describe temporal changes in allelic and
genotypic frequencies. Ecological dynamics describe temporal
changes in populations and interacting species.

The differential equations describe a vector of values, x, that
depend on time, ¢, on a parameter vector, p, on initial conditions,
and on various other inputs. If we write the system values at time
t as X, then we can abbreviate the differential equations as

x/t :f(xt) P))

in which the prime denotes differentiation with respect to .
Many studies seek a parameter vector, p, that optimizes a
temporal trajectory of values, X, over some time span. Analysis
optimizes a performance function, L (X) with respect to p for the
system values at various times, X = { Xt1> Xty - - }
This section illustrates automatic differentiation for the
simple differential equation

x; =f(xtp) = r(k — xt) 1

with parameter vector p = {r,k}. We use the performance
function L(xp) = (xp — ©)2, the squared Euclidean distance
between the system’s value at particular time, T, and the target
value, ¢, with the goal of minimizing the performance function.

Equation (1) has a simple explicit solution, which we
could use to find optimum values of p. However, in most
applications, the system of differential equations must be
evaluated numerically. Optimization must be done by choosing
some parameters, numerically calculating the solution, x¢, and
the loss function, L, and then updating the parameters to
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improve performance (Chen et al, 2018; Rackauckas et al,
2020). The optimization procedure consists of repeated rounds
of calculation and parameter updating. The goal is to improve
performance and, ideally, to find an optimal parameter vector
that minimizes the loss function.

To illustrate the typical optimization cycle, we evaluate
Equation (1) numerically by Euler’s method

Xpap A Xt 4 hf (x4, p) = x¢t + hr (k - xt) , 2)

in which & is the stepsize over which we update values. In
practice, one uses better numerical methods to approximate the
trajectory that x; follows over time (LeVeque, 2007). However,
the concepts by which one applies automatic differentiation do
not depend on the numerical technique, so Euler’s method is
sufficient to illustrate how one uses automatic differentiation to
aid in optimizing the parameters of differential equations.

4. Automatic differentiation

Automatic differentiation uses the chain rule to break long
calculations into small pieces, each of which can be easily
differentiated (Griewank and Walther, 2008; Baydin et al., 2018;
Margossian, 2019). The chain rule tells us how to combine the
differentiated pieces into the overall derivative. For example,
given the function

fp1,p2) = 2p1p2s

we can set v = p1p, and obtain the partial derivative of f with
respect to pj by the chain rule

of  of ov
—_ == =2
opy  ovapr 12

The final value multiplies the two component derivatives,

of Jav =

longer calculation, we substitute the numerical value of p; and

2 and dv/dp; = pj. To use this piece as part of a

store only that numerical value. For example, if p; = 0.1, then
af /op; = 0.2.

In general, long calculations can be broken into a sequence
of simple steps. At each step, we calculate the numerical value
of the component derivative, combine that components value
with prior component values, and then store the resulting
numerical value to use in subsequent steps. Thus, we need to
store only a small amount of information as we sequentially
combine the component values to obtain the final overall
value. The calculation has the same theoretical exactness as
a complete symbolic derivative but, by substituting numerical
values as we go along, we can proceed faster and with much less
computational storage space. Alternatively, many optimization
methods estimate the derivatives numerically, which requires
relatively little storage space but has much lower accuracy. The
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TABLE 1 Calculations through the computational graph in Figure 1.

Forward value trace Forward derivative trace (¢ = dz/9r)

Vo= Xo =0 Vo= Xo =0
vi=r =0.1 n=r =1
=k =1 =k =0
v3= hvov, =0 V3= h (vg¥1 + 1) =0
va= hviv, = 0.001 V4= h (vivy + 11v2) = 0.01
Vs= vy — V3 =0 V5=V — V3 =0
V6= V4 + Vs = 0.001 V6= V4 + V5 = 0.01
WL=(1-v)? = 0.998001 WLi=-2(1-v)s = —0.01998

10.3389/fevo.2022.1010278

Reverse derivative trace (z = dL/dz)

A= =75 0vs/0m = —1.998
F=n=nd2 4 = —0.01998
k=7 = 74 0va/dvs = —0.001998
V3= V5 0V5/0V3 =1.998
V4= V6 0V/0Vs =—1.998
V5= V6 0V/0Vs5 =—1.998
V= 0L/dve = —2(1 — vs) = —1.998
L=09L/dL =1

The left box traces the calculation of values forward from the inputs to the output, yielding the final value for L. The center box traces the forward chain rule calculation of the derivatives
with respect to the input parameter, r, yielding L = 9L/dr at the bottom. The variable z represents the left side of each equation. A separate derivative trace is required for each input
parameter. The right box traces the reverse chain rule calculation of the derivatives, starting from the bottom and proceeding to the top. Reverse mode has the advantage that a single trace

calculates the partial derivatives of L with respect to all of the input parameters. A constant value & = 0.01 is used in calculations. Structure of table based on Table 2 of Baydin et al. (2018).

=KU_0\
()
()
N A

FIGURE 1

graphs and calculations.

Computational graph to calculate L(x,) = (1 — x4)? for Equation (2) with t = 0 and h = 0.01, in which optimization seeks to minimize the loss
function, L. Table 1 shows the intermediate results, v;, with ve = x5. This computational graph can be recursively expanded n times by using

Ve = X; as the starting point for additional applications of Equation (2) to calculate x,, for any integer, n. The resulting graph quickly becomes
too large to visualize or to trace the pathways of calculation without some automatic method. However, computer code readily expands such

errors in estimation impede optimization or cause optimization
to fail.

The following subsections introduce two general methods
of automatic differentiation and one special method for
differentiating trajectories of differential equations. Those
methods differ in how they apply the chain rule.

4.1. Forward method

The forward method begins with input parameters and then
traces the chain of derivatives to the output. The center box of
Table I illustrates the calculation for the computational graph
of Equation (2), shown in Figure 1. That calculation yields the
derivative of the output, L, with respect to the input parameter,
r, written as L = aL/ar.

Two early steps in the forward derivative trace show
application of the chain rule. First, for vi = r, we obtain v1 = 1,
in which the overdot denotes the partial derivative with respect
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to r. Second, for v4, the chain rule expands to

ovs _ v vy
or dvy or

+ aﬁaﬂ =h(v1vy + v1v2) = 0.01,

vy dr
using the constant 4 = 0.01 and substituting the other values
given in the table. Continuing forward, we eventually arrive at
the final value, L = —0.01998.

The forward mode is simple and relatively easy to implement
in computer code. A forward derivative trace can be done in
parallel with the computations to calculate the performance
value, L, for given inputs, as shown in the left box of Table 1.

Forward mode’s primary disadvantage arises from the need
to do a separate derivative trace for each input parameter.
For large models with many parameters, full calculation of
the gradient by forward automatic differentiation can be
slow and limit application. Large optimization analyses often
gain by using reverse mode automatic differentiation, which
can calculate the gradient over all parameters in a single
derivative trace.
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4.2. Reverse method

The
derivative

the
Starting  at

Table 1 illustrates

same

box of

the
the end, with L, and going backwards, the first step
0L/0ve. Then, by the chain rule,
V6 0v/0vs5. By this method, the calculation

right reverse

trace for problem.
calculates vg =
vs = dL/dvs =
continues in the reverse direction. In the final steps, at
the top of that box, one can calculate dL with respect to
each input parameter, yielding the full gradient VL in one
backward trace.

Modern neural network models often have millions of
parameters. A single backward derivative trace calculates
the full gradient of the performance function with respect
to all That called back

propagation in the neural network literature, provided a

parameters. technique, often
necessary advance in computation for the great recent
breakthroughs in modern
(Goodfellow et al., 2016).

The same method also enhances the potential to optimize

neural network modeling

large differential equation models. However, for differential
equations, one typically needs to optimize through the
numerical methods used to approximate the temporal
trajectories of systems. To accomplish a practical method
for reverse mode differentiation through the numerical
approximation algorithm required another conceptual advance

(Chen et al., 2018; Rackauckas et al., 2020).

4.3. Differentiating trajectories of
differential equations
In essence, we apply the reverse method to the
computational graph for the trajectory of the differential
This
equation that propagates the derivative of the performance

equation. approach leads to a new differential

function L backward in time, similarly to how we
traced the derivative of L back to the parameters in the
reverse mode approach of Table 1. Here, I describe the
concepts in an approximate and intuitive way. I follow
Chen et al. (2018), who provide a full explanation and
complete derivation.

The goal is to calculate the derivative of L as a function of
the location of the trajectory at various times. For simplicity,
we consider a univariate differential equation with location at
a single time, x¢, and associated performance, L(xt). We seek the
gradient of L with respect to the parameters, p, and the initial
condition, xg.

Start with the definition a(t) = dL/dx;. We then consider
how this value changes with time, ¢, creating a new differential
equation, a'(t), with the prime denoting differentiation with

respect to time
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, 1/dL dL dL By
dt)=(+—— = (1- :
h dxt dxt,h hdxt axt,h

for small h. The term 9x;/dx;_; is a backward chain rule

expansion, like the steps in the reverse mode trace of Table 1.
Noting from Equation (2) that dx;/dx;_j, = 1+ hdf/dx;_p,
and letting h go to zero, we obtain

—a(t)i

396[ ’

at) = (3)

As in the reverse trace of Tablel, we can trace
derivatives backwards, in this case tracing back in time for
9x¢, 0x4_p,» - . ., 0xp, to calculate the trajectory of a(t). In the final
backward step, we apply the derivative of x;, relative to the input
parameters, p, as dx;,/dp, in essence, allowing us to transform

the last term of Equation (3) at time ¢ = h as

of By _ o

= . 4
dxy Op ap “)

Using that method to analyze changes in L and f with respect
to p instead of with respect to x¢, we can write the solution for

Equation (3) as
to 9
= — / a(t)—fdt.
t BP

Here, the backward integral trace in Equation (5) equals

oL

op (©)

the solution backward in time of the differential equation in
Equation (3), modified by a final transformation that yields the
derivative of the performance function, L, with respect to the
parameters. Standard numerical methods to analyze differential
equations can be used to find the solution for Equation (5).

The formal derivation of Equation (5) uses a more rigorous
analysis to change 0f/dx; in Equation (3) into 9f/dp in
Equation (5), arriving at the same conclusion (Chen et al., 2018).

5. Examples

5.1. Fitting data for temporal trajectories

One can fit differential equation models to time series data.
For example, Figure 2 shows the dynamics of hare and lynx
populations. The blue curve shows the fluctuation of the hare
population, and the green curve shows the fluctuation of the
lynx population. The gold curves show a Bayesian fit of a
differential equation model to the initial 2/3 of the data and the
model’s prediction compared to the data for the final 1/3 of the
time series.

Each model has » variables, two for the log transformation
of hare and lynx population sizes and # — 2 for dummy variables
tracking unobserved factors. The models seek to match the data
of hare and lynx population sizes observed over 91 years in a
classic ecological study summarized by Odum and Barrett (1971)
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ODE n = 2; loss = 80.17

0.5
0.0
-0.5
-1.0
=1.5

FIGURE 2

Dynamics of hare (blue) and lynx (green) populations (Odum
and Barrett, 1971; Bonnaffé et al., 2021) and fitted models (gold)
(Frank, 2022b). The ordinary differential equation (ODE) models
were fit to the first 61 yearly observations. The gold curves past
year 60 show predictions for subsequent dynamics. Forn = 2,
the model had one variable for hare and one for lynx. For

n = 3,4, the model had one or two extra variables to account
for possible unobserved factors, providing more parameters to
fit the data. Smaller loss means a better fit to the first 60 years.
The model fitting was done by an approximate Bayesian method
based on the gradient of the loss calculated by automatic
differentiation (Li et al., 2015). For each model, gold trajectories
arise from 30 randomly chosen parameter combinations of the
Bayesian posterior distribution. From Figure 4 of Frank (2022b),
which provides methods, a broader analysis of these data, and
other fitting approaches such as neural ODEs that use artificial
neural networks to fit differential equations to target trajectories.
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and Bonnaffé et al. (2021). The differential equation for the
vector of variables u in the ODE models has the form

du =f(Su—b), (6)

dr
in which the first two components of u are the log-transformed
populations sizes, the nr+n parameters are in the nx n matrix, S,
and the n vector, b. The function f maps the n dimensional input
to an n dimensional output, potentially inducing nonlinearity
in the model. One typically selects f from the set of common
activation functions used in neural network models. For all runs
in Frank (2022b), T used f = tanh applied independently to each
dimension. It would be easy to study alternative ODE forms.
However, the analyses in Frank (2022b) focused on Equation (6).

The three sets of plots in Figure 2 correspond to models
with n = 2,3,4 variables. For n = 2, the model has one
variable to track the hare population and one to track the lynx
population. That model roughly matches the frequency but
not the amplitude of population fluctuations during the fitting
period for the initial 2/3 of the data, corresponding to the first
60 years. The model fails to predict the frequency or amplitude
accurately during the prediction period years 60-90.

For n = 3, the model adds another variable to account for
unobserved factors. That model matched the fitting period better
because it has an extra dummy variable and more parameters.
The extra parameters determine the dynamics of the dummy
variable and its interactions with the hare and lynx populations.
The model’s dynamics during the prediction phase roughly
matches the frequency of population fluctuations. Although a bit
off on amplitude, the fit is reasonably good given the very limited
data and complex dynamics.

For n = 4, the model has two extra dummy variables
and more parameters. The match to the fitting period is very
good, with little variation among the sampled trajectories from
the Bayesian posterior distribution of parameters. However, the
match during the prediction phase is highly erratic.

Overall, the model with n = 2 appears underfit, with
insufficient parameters and flexibility to match the observed
pattern or predict future observations. The model with n = 4
appears overfit, with a close match to the fitted period but poor
match for the predicted period. The model with n = 3 appears
to be a good compromise, a conclusion supported by further
analyses in Frank (2022b).

The Bayesian fitting procedure wused automatic
differentiation through a numerical differential equation
solver. That approach provided a fast computational method
to find a good fit to the data. The computational benefit does
not alter the challenge of deciding what model to use or the
criteria for deciding the relative success of different models.
Instead, the method provides a simple and practical way
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FIGURE 3

Circadian dynamics with stochastic fluctuations and random daylight signal. (a—d) Abundance of TFs on log10(1 + y) scale for y molecules per
cell. (e—h) Abundance of mRNAs for associated TFs. See text for explanation. From Figure 1 of Frank (2022a).

of doing the computations that may be difficult to achieve
with other methods. Technical innovation often leads to
conceptual advance.

5.2. Analyzing adaptive traits

One can also fit a model to a theoretical challenge rather than
to data. In particular, how can one build systems that produce
good trajectories relative to some goal? How does natural
selection design biological systems to solve environmental
challenges and increase fitness?

Consider how cells control gene expression. Much of that
control arises from transcription factors (TFs), which are
proteins that bind to DNA and alter the rate at which nearby
genes transcribe mRNA. Following the details in Frank (2022a),
we can study a simple model.
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Suppose we have n genes. Each gene expresses an mRNA,
which makes a TF protein. Thus, our differential equation
model has to track the temporal trajectory of the numbers n
mRNAs within the cell and the associated n TF proteins. The
expression level of each gene is influenced by the abundances
of the n TFs. We can think of the n TFs as inputs to the
TF computational network, which produces »n outputs that
influence the expression level of the n genes. That input-output
function depends on parameters that describe the binding of
the TFs to DNA and the transformation of binding events
into expression levels (Bintu et al., 2005a,b; Marbach et al,
2010).

We seek parameters to match a target temporal trajectory of
TF abundances. Suppose we measure success by how well the
first TE, labeled TF 1, follows a circadian pattern (Frank, 2022a).

Figure 3 shows an example, in which there are n = 4 TFs
(left) and matching mRNA (right) levels. Figure 3a shows the
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abundance of TF 1 (blue curve) on a loglO(1 + y) scale for
molecules per cell, y, over a time period of 6 days. Each day
divides by the dotted vertical line, which denotes entry into
daytime. The solid vertical line denotes entry into nighttime.
We transform the molecular number (blue curve) into a cellular
state by a commonly used Hill function (Frank, 2013; Zhang
et al,, 2013), yielding the green curve that describes the cellular
circadian rhythm.

We measure success by the total Euclidean distance
between the gold curve that describes the environmental
circadian pattern and the green curve that describes the internal
cellular circadian rhythm. We search for good parameters
by optimization algorithms that use the gradient of the
success measure relative to the parameters of the differential
equation, calculating the gradient by autodifferentiation
the that the
temporal trajectories.

through numerical algorithm calculates

In this example, the stochastic differential equation has
random perturbations of the molecular numbers per cell. This
example also imposes environmental randomness, shown in
Figure 3b. The external daylight signal (gold curve) is initially
off, then comes on in the middle of day 3 and stays on for
the remainder of the period shown. In general, the external
signal turns on and off randomly, such that cells may pass
many days entirely in the dark. The blue curve of that panel
tracks the abundance of TF 2. The external daylight signal
strongly stimulates production of TF 2, providing an internal
signal within the cell that could be used to entrain the
circadian dynamics.

The with

parameters. One then searches for those parameters that

computational challenge starts random
lead to an internal circadian rhythm that buffers the internal
stochastic molecular perturbations, uses the external daylight
signal for entrainment when it is present, and maintains a
good internal rhythm when the external signal is absent. The
particular example illustrated in Figure 3 handles all of those
challenges (Frank, 2022a).

This model has 164 parameters. It would be difficult to
find a good parameter combination without the remarkable
computational advantages of automatic differentiation. In
general, one can use this approach to generate and analyze
hypotheses about how natural processes design biological
systems to produce dynamic traits.

I finish my summary of examples with a few comments
about using automatic differentiation in various applications.
For the hare-lynx problem, fitting ODE models typically took
several hours or less on a 2022 Apple M1 Ultra Mac Studio
computer. In that study, I also fit neural ODE (NODE) models
that use artificial neural networks (Frank, 2022b). Those NODE
models have many more parameters and take longer to optimize
but typically finish within many hours or <1 day.

For the TF problem, optimization time was typically several
days, sometimes a week or more per run. These stochastic
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models are much more challenging problems for optimization
through the differential equation solvers.

Although I optimized most individual algorithms for both
problems, I made no attempt to minimize overall runtimes for
any of these problems. So the times quoted here are only meant
as very rough guidelines for those who might want to compare
with their own approaches.

A question sometimes arises whether common derivative-
free optimization methods could solve such problems as well
or better than automatic differentiation. A full study of that
question would require tuning the computer code to match
various alternative methods. That has not been done for these
problems. However, to make a quick test, I compared runs
of the TF problem using automatic differentiation and the
commonly used Nelder-Mead algorithm, which is a derivative-
free optimization method. Using the same code with the
alternative optimization methods, in three independent runs
Nelder-Mead failed completely to track to circadian pattern. A
single comparison run with automatic differentiation converged
to a good solution.

6. Discussion

Many aspects of model interpretation depend on sensitivity
(Mester et al., 2022). How much do model predictions change
with a change in a parameter? For example, if one wishes
to change dynamics, altering a parameter with a strong effect
on outcome would be better than altering a parameter with
little effect.

Confidence in parameter estimates also relates to sensitivity.
Iflarge changes in a parameter have little effect on outcome, then
estimates for that parameter will vary widely and confidence in a
particular estimate is low.

In evolutionary models of biological traits, sensitivity may
relate to genetic variability. For a parameter with low sensitivity,
changes in that parameter have relatively little effect on
performance. Such parameters are likely to accumulate much
associated genetic variability. By contrast, changes in sensitive
parameters strongly affect performance, suggesting relatively
little genetic variability associated with such parameters.

Because sensitivity often means the change in performance
with respect to a change in parameters, one often evaluates
sensitivity by the derivative of performance with respect to
parameters. For models with many parameters, automatic
differentiation provides computational benefits (Mester et al.,
2022). In evolutionary analyses, the performance surface that
defines sensitivity is the adaptive or fitness landscape (Stadler,
2002; Malan, 2021). Many conceptual aspects of evolutionary
dynamics and of optimizing artificial neural networks come
down to understanding how various factors alter the geometry
of performance surfaces in models with large numbers of
parameters (Yang, 2019).
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For studies of sensitivity and performance surface
geometry, Bayesian posterior distributions of parameters
provide a complementary approach. A narrow distribution
typically means that small changes in a parameter provide
which that
small changes strongly alter model outcome. In biology,

much information, also typically means
narrow Bayesian posteriors may associate with less genetic

variability than broad posteriors, because narrowness
associates with large fitness effects for small changes in
trait values.

The approximate Bayesian method to generate the
predicted trajectories in Figure2 provides estimates for
the posterior distribution of parameters. That method
the

gradient of performance with respect to the parameters.

depends on automatic differentiation to calculate
Roughly speaking, the gradient gives the directional change
of the parameters favored to improve performance in the
same way that biological fitness favors changes in traits to
enhance fitness.

Balanced against that directional change in improved
performance, the method introduces random fluctuations in
parameters, similar to the way that mutation causes random
changes in traits. The balance between directional selection
and random mutation creates a distribution of parameter
values that approximates the Bayesian posterior distribution.
Those opposing forces also match the notion of genetic
variability maintained by a balance between selection and
mutation. The similarity between mutation-selection genetics
and computational Bayesian analysis hints at the broad
conceptual relations between evolutionary dynamics and the
study of optimizing large systems in artificial neural networks
and other domains.

As computational techniques for automatic differentiation
improve, many new opportunities for theoretical
advances will arise in domains for which optimization
Such

theoretical application will be matched by opportunities

provides an important tool. opportunities  for

for greater conceptual understanding of processes that
improve performance.
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