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Automatic differentiation and
the optimization of differential
equation models in biology
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Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA,
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A computational revolution unleashed the power of artificial neural networks.

At the heart of that revolution is automatic differentiation, which calculates the

derivative of a performance measure relative to a large number of parameters.

Differentiation enhances the discovery of improved performance in large

models, an achievement that was previously difficult or impossible. Recently,

a second computational advance optimizes the temporal trajectories traced

by differential equations. Optimization requires differentiating a measure

of performance over a trajectory, such as the closeness of tracking the

environment, with respect to the parameters of the differential equations.

Because model trajectories are usually calculated numerically by multistep

algorithms, such as Runge-Kutta, the automatic differentiation must be

passed through the numerical algorithm. This article explains how such

automatic differentiation of trajectories is achieved. It also discusses why such

computational breakthroughs are likely to advance theoretical and statistical

studies of biological problems, in which one can consider variables as dynamic

paths over time and space. Many common problems arise between improving

success in computational learning models over performance landscapes,

improving evolutionary fitness over adaptive landscapes, and improving

statistical fits to data over information landscapes.
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1. Introduction

Theoretical studies often analyze improvement on a performance surface. What

phenotypes enhance fitness? What differential equation model best describes ecological

or biochemical dynamics? What interventions improve the health of organisms

or ecosystems?

Similarly, inductive methods of statistics and machine learning optimize prediction,

minimize error, or maximize the use of information (McElreath, 2015; Goodfellow et al.,

2016). Natural selection can itself be thought of as nature’s inductive process of improving

the fit of organisms to their environment (Frank, 2009; Frank and Fox, 2020).

Most of these problems reduce to finding a path that enhances performance (Floudas

and Pardalos, 2008). In practice, that often means changing model parameter values

in the direction along which the slope of performance tilts most strongly toward
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improvement. Ideally, that best slope is found by differentiating

the performance surface with respect to the parameters of the

model or the traits of the organism.

Taking the derivative of a performance function with

respect to its parameters is, in principle, a simple process.

Performance functions typically arise by composition of basic

mathematical operations such as addition, multiplication, and

exponentiation. Standard procedures yield the derivative for

each basic operation. The overall derivative follows by the chain

rule for differentiation.

Two aspects hinder the calculation of derivatives. First,

performance measures often follow from long chains of

operations embedded in complex algorithms. For example,

performance may depend on a measure of the distance

between some optimal trajectory and the trajectory of a

system of differential equations specified by a model with

many parameters.

In practice, one often calculates the model trajectory for a

given parameter set by a numerical algorithm. The derivative

of the distance measure between the optimal and realized

trajectories must be calculated through the operations of the

numerical algorithm, which is typically embedded in the code

of a computer program. Efficiently updating the parameters to

reduce the distance of the model’s trajectory from the optimal

trajectory benefits from an automatic method to calculate the

derivative of that distance with respect to the parameters

(Griewank and Walther, 2008; Baydin et al., 2018; Margossian,

2019).

The second difficulty for calculation arises because

performance functions often depend on large numbers of

parameters. For example, the modern artificial intelligence

revolution arose in part from expanding neural networks to

multiple deeply connected layers with millions of parameters.

It only became possible to calculate an improving pathway of

parameter values with sufficient speed after the development of

efficient methods for automatic differentiation of performance

functions embedded within the calculations of complex

computer code (Goodfellow et al., 2016).

Conceptually, automatic differentiation provides insight

into the topography of performance surfaces. In biology,

many problems of evolutionary dynamics turn on the adaptive

topography that maps phenotypes to fitness (Stadler, 2002;

Malan, 2021). The close similarity of evolutionary dynamics

and the many other problems that depend on the topography

of performance surfaces provides insight into how natural

selection designs organisms and into the prospects and limits

of optimization models in biology. In other words, automatic

differentiation will help us to learn more about the shape of

optimization problems in both natural history and in models of

evolutionary biology.

This article focuses on the benefits of automatic

differentiation for differential equation modeling and for

broader problems in theoretical biology. Highlights include

the opportunities for new kinds of theoretical approaches,

a better understanding of current developments in statistics

and machine learning, and some possible directions for

future research motivated by improved understanding of

multidimensional performance surfaces.

I start with an overview of differentiation in optimization.

I next turn to the techniques and advantages of automatic

differentiation for optimizing differential equation models

(Chen et al., 2018; Rackauckas et al., 2020). I then present

two examples to illustrate how the optimization of differential

equations by automatic differentiation may enhance the future

study of various topics in biology.

The first example fits various differential equation models

to the classic data on predator-prey population cycles of lynx

and hare. The second example searches for transcription factor

network designs that solve the challenge of maintaining an

internal circadian rhythm. The internal rhythm must buffer

against the intrinsic stochasticity of biochemical dynamics,

entrain to an erratic external circadian signal when available, and

maintain the internal rhythm when the external signal is absent.

Slopes and curvatures calculated by differentiation also

provide the basis for enhanced sensitivity analysis (Mester et al.,

2022). In biology, sensitivity plays a key role in understanding

robustness, variability, and evolutionary dynamics. In inference,

sensitivity influences the degree of belief in conclusions drawn

from models and data, often analyzed by Bayesian methods.

2. Differentiation in optimization

Optimizing a function L with respect to a parameter vector

p sets a classic optimization problem. For example, what

parameters for a system of differential equations minimize

the distance between the system’s trajectory and the observed

trajectory of fluctuating lynx and hare populations? In this case,

the total distance, L, might be the sum of the squared deviations

between system’s trajectory and the observed trajectory when

measured at series of temporal intervals.

In general, it is relatively easy to find a local optimum near

some initial point in parameter space and relatively difficult to

find a global optimum over the full space of potential parameter

values. Many optimization techniques exist. The best methods

for a particular problem depend on the shape of the performance

surface (Floudas and Pardalos, 2008; Ruder, 2017; Reddi et al.,

2019).

For problems with continuous performance surfaces, using

the derivative of Lwith respect to the parameters, p, often greatly

enhances the search for better parameters. The vector of partial

derivatives of L with respect to the parameters is the gradient or

slope of the performance surface, ∇L.

The gradient describes the change in performance with

respect to the change in parameters. Thus, the gradient provides

much information about how to update parameter values in
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an iterative search for improving performance. Knowing the

gradient does not by itself solve the problem of getting stuck in a

local optimum. However, fast calculation of the gradient often

transforms problems from hard and beyond reasonable study

into ones that can be analyzed relatively easily (Goodfellow et al.,

2016; Ruder, 2017; Reddi et al., 2019).

Fast calculation of derivatives by automatic methods may

also allow calculation of the second derivatives, which describe

the curvature of the performance surface. For a problem with

n parameters and a single-valued performance measure, L, we

write ∇2L for the n × n Hessian matrix of partial second

derivatives. The Hessian matrix provides insight into many

aspects of optimization.

3. Optimizing differential equations

Differential equations provide the primary modeling

approach for many problems (Edelstein-Keshet, 1988; Ellner

and Guckenheimer, 2006). Organismal traits often follow

trajectories over time as individuals develop and respond to

the environment. Systems of gene regulation, biochemistry,

and physiology describe temporal changes in molecular

concentrations and biological outputs. Continuous models of

population genetics describe temporal changes in allelic and

genotypic frequencies. Ecological dynamics describe temporal

changes in populations and interacting species.

The differential equations describe a vector of values, x, that

depend on time, t, on a parameter vector, p, on initial conditions,

and on various other inputs. If we write the system values at time

t as xt , then we can abbreviate the differential equations as

x′t = f (xt , p),

in which the prime denotes differentiation with respect to t.

Many studies seek a parameter vector, p, that optimizes a

temporal trajectory of values, xt , over some time span. Analysis

optimizes a performance function, L (X)with respect to p for the

system values at various times, X =
{

xt1 , xt2 , . . .
}

.

This section illustrates automatic differentiation for the

simple differential equation

x′t = f (xt , p) = r
(

k− xt
)

(1)

with parameter vector p =
{

r, k
}

. We use the performance

function L(xT) = (xT − c)2, the squared Euclidean distance

between the system’s value at particular time, T, and the target

value, c, with the goal of minimizing the performance function.

Equation (1) has a simple explicit solution, which we

could use to find optimum values of p. However, in most

applications, the system of differential equations must be

evaluated numerically. Optimization must be done by choosing

some parameters, numerically calculating the solution, xt , and

the loss function, L, and then updating the parameters to

improve performance (Chen et al., 2018; Rackauckas et al.,

2020). The optimization procedure consists of repeated rounds

of calculation and parameter updating. The goal is to improve

performance and, ideally, to find an optimal parameter vector

that minimizes the loss function.

To illustrate the typical optimization cycle, we evaluate

Equation (1) numerically by Euler’s method

xt+h ≈ xt + hf (xt , p) = xt + hr
(

k− xt
)

, (2)

in which h is the stepsize over which we update values. In

practice, one uses better numerical methods to approximate the

trajectory that xt follows over time (LeVeque, 2007). However,

the concepts by which one applies automatic differentiation do

not depend on the numerical technique, so Euler’s method is

sufficient to illustrate how one uses automatic differentiation to

aid in optimizing the parameters of differential equations.

4. Automatic differentiation

Automatic differentiation uses the chain rule to break long

calculations into small pieces, each of which can be easily

differentiated (Griewank and Walther, 2008; Baydin et al., 2018;

Margossian, 2019). The chain rule tells us how to combine the

differentiated pieces into the overall derivative. For example,

given the function

f (p1, p2) = 2p1p2,

we can set v = p1p2 and obtain the partial derivative of f with

respect to p1 by the chain rule

∂f

∂p1
=

∂f

∂v

∂v

∂p1
= 2p2.

The final value multiplies the two component derivatives,

∂f /∂v = 2 and ∂v/∂p1 = p2. To use this piece as part of a

longer calculation, we substitute the numerical value of p2 and

store only that numerical value. For example, if p2 = 0.1, then

∂f /∂p1 = 0.2.

In general, long calculations can be broken into a sequence

of simple steps. At each step, we calculate the numerical value

of the component derivative, combine that component’s value

with prior component values, and then store the resulting

numerical value to use in subsequent steps. Thus, we need to

store only a small amount of information as we sequentially

combine the component values to obtain the final overall

value. The calculation has the same theoretical exactness as

a complete symbolic derivative but, by substituting numerical

values as we go along, we can proceed faster and with much less

computational storage space. Alternatively, many optimization

methods estimate the derivatives numerically, which requires

relatively little storage space but has much lower accuracy. The
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TABLE 1 Calculations through the computational graph in Figure 1.

Forward value trace

v0= x0 = 0

v1= r = 0.1

v2= k = 1

v3= hv0v1 = 0

v4= hv1v2 = 0.001

v5= v0 − v3 = 0

v6= v4 + v5 = 0.001

L = (1− v6)
2 = 0.998001

Forward derivative trace (ż = ∂z/∂r)

v̇0= ẋ0 = 0

v̇1= ṙ = 1

v̇2= k̇ = 0

v̇3= h (v0 v̇1 + v̇0v1) = 0

v̇4= h (v1 v̇2 + v̇1v2) = 0.01

v̇5= v̇0 − v̇3 = 0

v̇6= v̇4 + v̇5 = 0.01

L̇ = −2 (1− v6) v̇6 = −0.01998

Reverse derivative trace (z̄ = ∂L/∂z)

x̄0= v̄0 = v̄5 ∂ v5/∂ v0 = −1.998

r̄ = v̄1 = v̄3
∂v3
∂v1

+ v̄4
∂v4
∂v1

= −0.01998

k̄ = v̄2 = v̄4 ∂ v4/∂ v2 = −0.001998

v̄3= v̄5 ∂ v5/∂ v3 = 1.998

v̄4= v̄6 ∂ v6/∂ v4 = −1.998

v̄5= v̄6 ∂ v6/∂ v5 = −1.998

v̄6= ∂L/∂ v6 = −2(1− v6) = −1.998

L̄ = ∂L/∂L = 1

The left box traces the calculation of values forward from the inputs to the output, yielding the final value for L. The center box traces the forward chain rule calculation of the derivatives

with respect to the input parameter, r, yielding L̇ = ∂L/∂r at the bottom. The variable z represents the left side of each equation. A separate derivative trace is required for each input

parameter. The right box traces the reverse chain rule calculation of the derivatives, starting from the bottom and proceeding to the top. Reverse mode has the advantage that a single trace

calculates the partial derivatives of L with respect to all of the input parameters. A constant value h = 0.01 is used in calculations. Structure of table based on Table 2 of Baydin et al. (2018).

FIGURE 1

Computational graph to calculate L(xh) = (1− xh)
2 for Equation (2) with t = 0 and h = 0.01, in which optimization seeks to minimize the loss

function, L. Table 1 shows the intermediate results, vi, with v6 = xh. This computational graph can be recursively expanded n times by using

v6 = xt as the starting point for additional applications of Equation (2) to calculate xnh for any integer, n. The resulting graph quickly becomes

too large to visualize or to trace the pathways of calculation without some automatic method. However, computer code readily expands such

graphs and calculations.

errors in estimation impede optimization or cause optimization

to fail.

The following subsections introduce two general methods

of automatic differentiation and one special method for

differentiating trajectories of differential equations. Those

methods differ in how they apply the chain rule.

4.1. Forward method

The forward method begins with input parameters and then

traces the chain of derivatives to the output. The center box of

Table 1 illustrates the calculation for the computational graph

of Equation (2), shown in Figure 1. That calculation yields the

derivative of the output, L, with respect to the input parameter,

r, written as L̇ = ∂L/∂r.

Two early steps in the forward derivative trace show

application of the chain rule. First, for v1 = r, we obtain v̇1 = 1,

in which the overdot denotes the partial derivative with respect

to r. Second, for v4, the chain rule expands to

∂v4

∂r
=

∂v4

∂v2

∂v2

∂r
+

∂v4

∂v1

∂v1

∂r
= h (v1v̇2 + v̇1v2) = 0.01,

using the constant h = 0.01 and substituting the other values

given in the table. Continuing forward, we eventually arrive at

the final value, L̇ = −0.01998.

The forwardmode is simple and relatively easy to implement

in computer code. A forward derivative trace can be done in

parallel with the computations to calculate the performance

value, L, for given inputs, as shown in the left box of Table 1.

Forward mode’s primary disadvantage arises from the need

to do a separate derivative trace for each input parameter.

For large models with many parameters, full calculation of

the gradient by forward automatic differentiation can be

slow and limit application. Large optimization analyses often

gain by using reverse mode automatic differentiation, which

can calculate the gradient over all parameters in a single

derivative trace.
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4.2. Reverse method

The right box of Table 1 illustrates the reverse

derivative trace for the same problem. Starting at

the end, with L, and going backwards, the first step

calculates v̄6 = ∂L/∂v6. Then, by the chain rule,

v̄5 = ∂L/∂v5 = v̄6 ∂v6/∂v5. By this method, the calculation

continues in the reverse direction. In the final steps, at

the top of that box, one can calculate ∂L with respect to

each input parameter, yielding the full gradient ∇L in one

backward trace.

Modern neural network models often have millions of

parameters. A single backward derivative trace calculates

the full gradient of the performance function with respect

to all parameters. That technique, often called back

propagation in the neural network literature, provided a

necessary advance in computation for the great recent

breakthroughs in modern neural network modeling

(Goodfellow et al., 2016).

The same method also enhances the potential to optimize

large differential equation models. However, for differential

equations, one typically needs to optimize through the

numerical methods used to approximate the temporal

trajectories of systems. To accomplish a practical method

for reverse mode differentiation through the numerical

approximation algorithm required another conceptual advance

(Chen et al., 2018; Rackauckas et al., 2020).

4.3. Differentiating trajectories of
differential equations

In essence, we apply the reverse method to the

computational graph for the trajectory of the differential

equation. This approach leads to a new differential

equation that propagates the derivative of the performance

function L backward in time, similarly to how we

traced the derivative of L back to the parameters in the

reverse mode approach of Table 1. Here, I describe the

concepts in an approximate and intuitive way. I follow

Chen et al. (2018), who provide a full explanation and

complete derivation.

The goal is to calculate the derivative of L as a function of

the location of the trajectory at various times. For simplicity,

we consider a univariate differential equation with location at

a single time, xt , and associated performance, L(xt). We seek the

gradient of L with respect to the parameters, p, and the initial

condition, x0.

Start with the definition a(t) = dL/dxt . We then consider

how this value changes with time, t, creating a new differential

equation, a′(t), with the prime denoting differentiation with

respect to time

a′(t) =
1

h

(

dL

dxt
−

dL

dxt−h

)

=
dL

hdxt

(

1−
∂xt

∂xt−h

)

,

for small h. The term ∂xt/∂xt−h is a backward chain rule

expansion, like the steps in the reverse mode trace of Table 1.

Noting from Equation (2) that ∂xt/∂xt−h = 1 + h∂f /∂xt−h,

and letting h go to zero, we obtain

a′(t) = −a(t)
∂f

∂xt
. (3)

As in the reverse trace of Table 1, we can trace

derivatives backwards, in this case tracing back in time for

∂xt , ∂xt−h, . . . , ∂xh to calculate the trajectory of a(t). In the final

backward step, we apply the derivative of xh relative to the input

parameters, p, as ∂xh/∂p, in essence, allowing us to transform

the last term of Equation (3) at time t = h as

∂f

∂xh

∂xh
∂p

=
∂f

∂p
. (4)

Using that method to analyze changes in L and f with respect

to p instead of with respect to xt , we can write the solution for

Equation (3) as

∂L

∂p
= −

∫ t0

t1

a(t)
∂f

∂p
dt. (5)

Here, the backward integral trace in Equation (5) equals

the solution backward in time of the differential equation in

Equation (3), modified by a final transformation that yields the

derivative of the performance function, L, with respect to the

parameters. Standard numerical methods to analyze differential

equations can be used to find the solution for Equation (5).

The formal derivation of Equation (5) uses a more rigorous

analysis to change ∂f /∂xt in Equation (3) into ∂f /∂p in

Equation (5), arriving at the same conclusion (Chen et al., 2018).

5. Examples

5.1. Fitting data for temporal trajectories

One can fit differential equation models to time series data.

For example, Figure 2 shows the dynamics of hare and lynx

populations. The blue curve shows the fluctuation of the hare

population, and the green curve shows the fluctuation of the

lynx population. The gold curves show a Bayesian fit of a

differential equation model to the initial 2/3 of the data and the

model’s prediction compared to the data for the final 1/3 of the

time series.

Each model has n variables, two for the log transformation

of hare and lynx population sizes and n− 2 for dummy variables

tracking unobserved factors. The models seek to match the data

of hare and lynx population sizes observed over 91 years in a

classic ecological study summarized byOdum and Barrett (1971)
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FIGURE 2

Dynamics of hare (blue) and lynx (green) populations (Odum

and Barrett, 1971; Bonnaffé et al., 2021) and fitted models (gold)

(Frank, 2022b). The ordinary differential equation (ODE) models

were fit to the first 61 yearly observations. The gold curves past

year 60 show predictions for subsequent dynamics. For n = 2,

the model had one variable for hare and one for lynx. For

n = 3, 4, the model had one or two extra variables to account

for possible unobserved factors, providing more parameters to

fit the data. Smaller loss means a better fit to the first 60 years.

The model fitting was done by an approximate Bayesian method

based on the gradient of the loss calculated by automatic

differentiation (Li et al., 2015). For each model, gold trajectories

arise from 30 randomly chosen parameter combinations of the

Bayesian posterior distribution. From Figure 4 of Frank (2022b),

which provides methods, a broader analysis of these data, and

other fitting approaches such as neural ODEs that use artificial

neural networks to fit differential equations to target trajectories.

and Bonnaffé et al. (2021). The differential equation for the

vector of variables u in the ODE models has the form

du

dt
= f (Su− b) , (6)

in which the first two components of u are the log-transformed

populations sizes, the n2+n parameters are in the n×nmatrix, S,

and the n vector, b. The function f maps the n dimensional input

to an n dimensional output, potentially inducing nonlinearity

in the model. One typically selects f from the set of common

activation functions used in neural network models. For all runs

in Frank (2022b), I used f = tanh applied independently to each

dimension. It would be easy to study alternative ODE forms.

However, the analyses in Frank (2022b) focused on Equation (6).

The three sets of plots in Figure 2 correspond to models

with n = 2, 3, 4 variables. For n = 2, the model has one

variable to track the hare population and one to track the lynx

population. That model roughly matches the frequency but

not the amplitude of population fluctuations during the fitting

period for the initial 2/3 of the data, corresponding to the first

60 years. The model fails to predict the frequency or amplitude

accurately during the prediction period years 60–90.

For n = 3, the model adds another variable to account for

unobserved factors. Thatmodel matched the fitting period better

because it has an extra dummy variable and more parameters.

The extra parameters determine the dynamics of the dummy

variable and its interactions with the hare and lynx populations.

The model’s dynamics during the prediction phase roughly

matches the frequency of population fluctuations. Although a bit

off on amplitude, the fit is reasonably good given the very limited

data and complex dynamics.

For n = 4, the model has two extra dummy variables

and more parameters. The match to the fitting period is very

good, with little variation among the sampled trajectories from

the Bayesian posterior distribution of parameters. However, the

match during the prediction phase is highly erratic.

Overall, the model with n = 2 appears underfit, with

insufficient parameters and flexibility to match the observed

pattern or predict future observations. The model with n = 4

appears overfit, with a close match to the fitted period but poor

match for the predicted period. The model with n = 3 appears

to be a good compromise, a conclusion supported by further

analyses in Frank (2022b).

The Bayesian fitting procedure used automatic

differentiation through a numerical differential equation

solver. That approach provided a fast computational method

to find a good fit to the data. The computational benefit does

not alter the challenge of deciding what model to use or the

criteria for deciding the relative success of different models.

Instead, the method provides a simple and practical way

Frontiers in Ecology andEvolution 06 frontiersin.org

https://doi.org/10.3389/fevo.2022.1010278
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Frank 10.3389/fevo.2022.1010278

FIGURE 3

Circadian dynamics with stochastic fluctuations and random daylight signal. (a–d) Abundance of TFs on log10(1 + y) scale for y molecules per

cell. (e–h) Abundance of mRNAs for associated TFs. See text for explanation. From Figure 1 of Frank (2022a).

of doing the computations that may be difficult to achieve

with other methods. Technical innovation often leads to

conceptual advance.

5.2. Analyzing adaptive traits

One can also fit amodel to a theoretical challenge rather than

to data. In particular, how can one build systems that produce

good trajectories relative to some goal? How does natural

selection design biological systems to solve environmental

challenges and increase fitness?

Consider how cells control gene expression. Much of that

control arises from transcription factors (TFs), which are

proteins that bind to DNA and alter the rate at which nearby

genes transcribe mRNA. Following the details in Frank (2022a),

we can study a simple model.

Suppose we have n genes. Each gene expresses an mRNA,

which makes a TF protein. Thus, our differential equation

model has to track the temporal trajectory of the numbers n

mRNAs within the cell and the associated n TF proteins. The

expression level of each gene is influenced by the abundances

of the n TFs. We can think of the n TFs as inputs to the

TF computational network, which produces n outputs that

influence the expression level of the n genes. That input-output

function depends on parameters that describe the binding of

the TFs to DNA and the transformation of binding events

into expression levels (Bintu et al., 2005a,b; Marbach et al.,

2010).

We seek parameters to match a target temporal trajectory of

TF abundances. Suppose we measure success by how well the

first TF, labeled TF 1, follows a circadian pattern (Frank, 2022a).

Figure 3 shows an example, in which there are n = 4 TFs

(left) and matching mRNA (right) levels. Figure 3a shows the
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abundance of TF 1 (blue curve) on a log10(1 + y) scale for

molecules per cell, y, over a time period of 6 days. Each day

divides by the dotted vertical line, which denotes entry into

daytime. The solid vertical line denotes entry into nighttime.

We transform the molecular number (blue curve) into a cellular

state by a commonly used Hill function (Frank, 2013; Zhang

et al., 2013), yielding the green curve that describes the cellular

circadian rhythm.

We measure success by the total Euclidean distance

between the gold curve that describes the environmental

circadian pattern and the green curve that describes the internal

cellular circadian rhythm. We search for good parameters

by optimization algorithms that use the gradient of the

success measure relative to the parameters of the differential

equation, calculating the gradient by autodifferentiation

through the numerical algorithm that calculates the

temporal trajectories.

In this example, the stochastic differential equation has

random perturbations of the molecular numbers per cell. This

example also imposes environmental randomness, shown in

Figure 3b. The external daylight signal (gold curve) is initially

off, then comes on in the middle of day 3 and stays on for

the remainder of the period shown. In general, the external

signal turns on and off randomly, such that cells may pass

many days entirely in the dark. The blue curve of that panel

tracks the abundance of TF 2. The external daylight signal

strongly stimulates production of TF 2, providing an internal

signal within the cell that could be used to entrain the

circadian dynamics.

The computational challenge starts with random

parameters. One then searches for those parameters that

lead to an internal circadian rhythm that buffers the internal

stochastic molecular perturbations, uses the external daylight

signal for entrainment when it is present, and maintains a

good internal rhythm when the external signal is absent. The

particular example illustrated in Figure 3 handles all of those

challenges (Frank, 2022a).

This model has 164 parameters. It would be difficult to

find a good parameter combination without the remarkable

computational advantages of automatic differentiation. In

general, one can use this approach to generate and analyze

hypotheses about how natural processes design biological

systems to produce dynamic traits.

I finish my summary of examples with a few comments

about using automatic differentiation in various applications.

For the hare-lynx problem, fitting ODE models typically took

several hours or less on a 2022 Apple M1 Ultra Mac Studio

computer. In that study, I also fit neural ODE (NODE) models

that use artificial neural networks (Frank, 2022b). Those NODE

models have many more parameters and take longer to optimize

but typically finish within many hours or <1 day.

For the TF problem, optimization time was typically several

days, sometimes a week or more per run. These stochastic

models are much more challenging problems for optimization

through the differential equation solvers.

Although I optimized most individual algorithms for both

problems, I made no attempt to minimize overall runtimes for

any of these problems. So the times quoted here are only meant

as very rough guidelines for those who might want to compare

with their own approaches.

A question sometimes arises whether common derivative-

free optimization methods could solve such problems as well

or better than automatic differentiation. A full study of that

question would require tuning the computer code to match

various alternative methods. That has not been done for these

problems. However, to make a quick test, I compared runs

of the TF problem using automatic differentiation and the

commonly used Nelder-Mead algorithm, which is a derivative-

free optimization method. Using the same code with the

alternative optimization methods, in three independent runs

Nelder-Mead failed completely to track to circadian pattern. A

single comparison run with automatic differentiation converged

to a good solution.

6. Discussion

Many aspects of model interpretation depend on sensitivity

(Mester et al., 2022). How much do model predictions change

with a change in a parameter? For example, if one wishes

to change dynamics, altering a parameter with a strong effect

on outcome would be better than altering a parameter with

little effect.

Confidence in parameter estimates also relates to sensitivity.

If large changes in a parameter have little effect on outcome, then

estimates for that parameter will vary widely and confidence in a

particular estimate is low.

In evolutionary models of biological traits, sensitivity may

relate to genetic variability. For a parameter with low sensitivity,

changes in that parameter have relatively little effect on

performance. Such parameters are likely to accumulate much

associated genetic variability. By contrast, changes in sensitive

parameters strongly affect performance, suggesting relatively

little genetic variability associated with such parameters.

Because sensitivity often means the change in performance

with respect to a change in parameters, one often evaluates

sensitivity by the derivative of performance with respect to

parameters. For models with many parameters, automatic

differentiation provides computational benefits (Mester et al.,

2022). In evolutionary analyses, the performance surface that

defines sensitivity is the adaptive or fitness landscape (Stadler,

2002; Malan, 2021). Many conceptual aspects of evolutionary

dynamics and of optimizing artificial neural networks come

down to understanding how various factors alter the geometry

of performance surfaces in models with large numbers of

parameters (Yang, 2019).
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For studies of sensitivity and performance surface

geometry, Bayesian posterior distributions of parameters

provide a complementary approach. A narrow distribution

typically means that small changes in a parameter provide

much information, which also typically means that

small changes strongly alter model outcome. In biology,

narrow Bayesian posteriors may associate with less genetic

variability than broad posteriors, because narrowness

associates with large fitness effects for small changes in

trait values.

The approximate Bayesian method to generate the

predicted trajectories in Figure 2 provides estimates for

the posterior distribution of parameters. That method

depends on automatic differentiation to calculate the

gradient of performance with respect to the parameters.

Roughly speaking, the gradient gives the directional change

of the parameters favored to improve performance in the

same way that biological fitness favors changes in traits to

enhance fitness.

Balanced against that directional change in improved

performance, the method introduces random fluctuations in

parameters, similar to the way that mutation causes random

changes in traits. The balance between directional selection

and random mutation creates a distribution of parameter

values that approximates the Bayesian posterior distribution.

Those opposing forces also match the notion of genetic

variability maintained by a balance between selection and

mutation. The similarity between mutation-selection genetics

and computational Bayesian analysis hints at the broad

conceptual relations between evolutionary dynamics and the

study of optimizing large systems in artificial neural networks

and other domains.

As computational techniques for automatic differentiation

improve, many new opportunities for theoretical

advances will arise in domains for which optimization

provides an important tool. Such opportunities for

theoretical application will be matched by opportunities

for greater conceptual understanding of processes that

improve performance.
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