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Abstract 62 
Ecological communities are increasingly subject to natural and human-induced 63 

additions of species, as species shift their ranges under climate change, are introduced for 64 

conservation, and are unintentionally moved by humans. As such, decisions about how to 65 

manage ecosystems subject to species introductions and considering multiple 66 

management objectives need to be made. However, the impacts of gaining new species 67 

on ecological communities are difficult to predict due to uncertainty in introduced species 68 

characteristics, the novel interactions that will be produced by that species, and the 69 

recipient ecosystem structure. Drawing on ecological and conservation decision theory, 70 

we synthesize literature into a conceptual framework for species introduction decision-71 

making based on ecological networks in high uncertainty contexts. We demonstrate the 72 

application of this framework to a theoretical decision surrounding assisted migration 73 

considering both biodiversity and ecosystem service objectives. We show that this 74 

framework can be used to evaluate trade-offs between outcomes, predict worst-case 75 

scenarios, suggest when one should collect additional data, and allow for improving 76 

knowledge of the system over time.  77 
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 78 

Main Text 79 
 80 
Introduction 81 
 82 

Ecological communities are increasingly subject to natural and human-induced 83 

additions of species (Seebens et al. 2017). Additions occur as species shift their ranges 84 

under climate change (Wallingford et al. 2020), species are unintentionally spread by 85 

humans (Blackburn et al. 2011; David et al. 2017; Fantle-Lepczyk et al. 2022; Seebens et 86 

al. 2017), and species are intentionally introduced for conservation (Corlett 2016; 87 

Peterson & Bode 2020), restoration (Bullock et al. 2011), biocontrol (Begg et al. 2017), 88 

or to provide ecosystem services (Pejchar & Mooney 2009). Species that then become 89 

invasive tend to negatively impact biodiversity of the recipient ecosystem (Crystal-90 

Ornelas & Lockwood 2020; David et al. 2017; Mollot et al. 2017) and have negative 91 

economic impacts (Bradshaw et al. 2016; Fantle-Lepczyk et al. 2022; Hanley & Roberts 92 

2019; Matsuzaki & Kadoya 2015; Pejchar & Mooney 2009). For example, species 93 

introductions can also degrade ecosystem services, such as the spiny water flea 94 

(Bythotrephes longimanus) invasion in Lake Mendota, USA (Walsh et al. 2016), which 95 

reduced recreational opportunities. In contrast, species introduced for restoration or 96 

conservation are expected to have neutral or positive impacts on net biodiversity (Bullock 97 

et al. 2011; Corlett 2016) and, in some cases, are introduced explicitly to support 98 

ecosystem services. For example, the western honeybee (Apis mellifera) has been 99 

introduced around the world to support honey production and crop pollination (Geslin et 100 

al. 2017; Moritz et al. 2005). Given this range of potential impacts from introduced 101 

species and often incomplete data on species and ecosystems, a theoretically grounded 102 
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framework for assessing risk and making decisions related to species introductions under 103 

uncertainty is necessary to meet conservation goals and avoid unintended outcomes. 104 

Using ecological forecasting to develop theory in applied management contexts has been 105 

identified as a key frontier and opportunity (Dietz et al. 2018, Adams et al. 2020, Lewis 106 

et al. 2022) but has not received sufficient attention in the context of introduced species 107 

and ecosystem management decision-making. 108 

Predicting the consequences of species introductions for biodiversity and 109 

ecosystem services poses a challenge because species interact in complex networks and 110 

introduced species form new interactions in the recipient ecosystem (Jackson et al. 2017; 111 

Pantel et al. 2017; Peterson & Bode 2020, Peterson et al. 2021). The addition of a new 112 

species can alter the abundance of the species it directly interacts with, but also indirectly 113 

impact other species through the species interaction network in the recipient ecosystem 114 

(David et al. 2017; Frost et al. 2019; Galiana et al. 2014; Romanuk et al. 2017; Wootton 115 

2002). For example, predators introduced into aquatic ecosystems tend to reduce the 116 

abundance of benthic invertebrate and zooplankton prey, thus allowing phytoplankton 117 

populations to increase (Gallardo et al. 2016). Such indirect effects can potentially cause 118 

cascading extinctions or loss of ecosystem services within the recipient ecosystem (e.g., 119 

see Peterson & Bode 2020; Walsh et al. 2016). Due to interactions that form, the success 120 

and effects of a species introduction can depend on both the properties of the recipient 121 

ecosystem (e.g., biodiversity, connectance, whether the system has been previously 122 

disturbed) and the introduced species (e.g., generality or trophic level) (David et al. 2017; 123 

Frost et al. 2019; Traveset & Richardson 2014). Consequently, prediction of introduction 124 

impacts ideally requires information about species interactions within the recipient 125 
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ecosystem (i.e., ecological network structure), as well as plausible ways that the 126 

introduced species might interact with these resident species (Windsor et al. 2022). 127 

The process of predicting the impacts of an introduced species on a recipient 128 

ecosystem involves many sources of uncertainty. First, the exact species entering new 129 

ecosystems is not always known, such as for unintentional introductions (Fournier et al. 130 

2019; Pyšek & Richardson 2010; Seebens et al. 2016). Second, even when the identity of 131 

the introduced species is known before an introduction (e.g., for assisted migration, 132 

IUCN 2013), the novel interactions between that species and resident species have often 133 

never been observed before, and therefore must be predicted and carry uncertainty 134 

(Kamenova et al. 2017). Third, uncertainty over the interaction network structure of the 135 

recipient ecosystem is common, due to the challenges of collecting this data (Aufderheide 136 

et al. 2013; Berlow et al. 1999). Prior work has argued that such uncertainty in ecosystem 137 

structure precludes predicting the impacts of a disturbance on the populations of specific 138 

species within an ecosystem (Yodzis 1988; Novak et al. 2011). However, recent work in 139 

food web theory has suggested that prediction in real ecosystems is feasible (Aufderheide 140 

et al. 2013; Iles & Novak 2016; Mougi 2017) and, in a growing number of cases, 141 

predictions from dynamic models have aligned with observational and experimental data 142 

(Berlow et al. 2009; Boit et al. 2012; Jonsson et al. 2018). Despite the challenges of 143 

forecasting under uncertainty, forecasting the impacts of species additions can provide 144 

useful information for testing ecological theory (e.g., by revealing the extent to which 145 

assumptions about the underlying system are correct, Dietze et al. 2017). Forecasting can 146 

also aid with decision-making, by, for example, generating a range of potential outcomes 147 
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under uncertainty to reveal trade-offs between objectives and potential worst-case 148 

scenarios (Adams et al. 2020; Polasky et al. 2011). 149 

In response to these needs and challenges, we synthesize literature from several 150 

subdisciplines (e.g., invasion ecology, food web theory, conservation decision science) 151 

into a framework for decision-making related to species introductions under uncertainty 152 

and multiple management objectives. The framework combines an ecological network 153 

perspective with concepts from decision science and consists of 6 steps (Fig. 1): 1) 154 

identify management objectives and translate them to outcome metrics of interest, 2) 155 

identify or predict the introduced species, 3) predict the interactions of the introduced 156 

species with species and ecosystem services in the recipient ecosystem, 4) predict the 157 

population dynamics after species introduction,  5) evaluate trade-offs of management 158 

alternatives under uncertainty, and 6) test and explore predictions to improve future 159 

decision-making. For each step, we first review existing quantitative methods for 160 

prediction when appropriate. We then demonstrate how these steps can be synthesized by 161 

applying our framework to a case of decision-making for assisted migration with the dual 162 

goals of preserving biodiversity and providing ecosystem services. Throughout, we 163 

highlight sources of uncertainty and suggest how this uncertainty can be carried through 164 

the prediction process. With our application, we show that this framework can be used to 165 

reveal important trade-offs among objectives and worst-case scenarios, suggest cases in 166 

which more data should be collected before making a decision, and allow for testing of 167 

ecological theory and improving knowledge of the system over time. 168 

 169 
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 170 

Figure 1. Our six-step framework for assessing risk and aiding decision-making for 171 
species introductions under uncertainty. This diagram demonstrates the six steps in the 172 
framework that we outline and apply in this Synthesis. Panel A shows the six steps. Panel 173 
B shows a stylized example of applying the six steps: 1) identify management objectives 174 
and translate them to outcome metrics of interest, 2) identify the introduced species, 3) 175 
predict the interactions of the introduced species with species in the recipient ecosystem, 176 
4) predict the population dynamics after species introduction, 5) evaluate trade-offs of 177 
management alternatives based on management objectives under uncertainty, and 6) test 178 
and explore predictions to improve future decision-making. 179 
 180 

Framework linking ecological theory to decisions under great uncertainty  181 

Step 1: Identify management objectives for multispecies conservation  182 

 Clarifying objectives is a key first step in any structured decision-making process 183 

(Game et al. 2013; Martin et al. 2009), including for multi-species management. 184 

Conservation and management of multiple interacting species can involve a range of 185 

objectives (Mace 2014; Nicholson & Possingham 2006; Xiao et al. 2019) chosen by 186 

stakeholders. While conservation generally focuses on preventing extinctions, more 187 

specific objectives can be defined within that overarching aim (Nicholson & Possingham 188 

2006). In a multi-species context, these objectives can include minimizing the likelihood 189 



9 
 

9 
 

of extinctions of certain high-risk species (e.g., umbrella species) or all species (reviewed 190 

in Nicholson & Possingham 2006) and maximizing the number of extant, interacting 191 

species (McDonald-Madden et al. 2016). 192 

Management aims may also be related to ecosystem services, for example, 193 

improving carbon sequestration or water quality while minimizing the chance of species 194 

extinctions (Polasky et al. 2012), or even include factors such as social equity (Halpern et 195 

al. 2013). Management can meet multiple goals simultaneously (Dee et al. 2017b; Xiao et 196 

al. 2018). However, managing for the goals of biodiversity and ecosystem services can 197 

lead to trade-offs, depending on the ecological context and ecosystem services considered 198 

(Dee et al. 2017a; Polasky et al. 2012; Reyers et al. 2012; Xiao et al. 2018; Xiao et al. 199 

2019). In a coastal food web, for example, the management strategies that best provide 200 

ecosystem services (e.g., shoreline protection, food production from fisheries) and best 201 

protect species (species richness of interacting species) were more aligned when basal 202 

species provided ecosystem services (Xiao et al. 2018). Further, during restoration, trade-203 

offs can emerge between ecosystem service and conservation goals when non-native 204 

species can outperform native species in the provisioning of certain services (Bullock et 205 

al. 2011). 206 

 207 

Step 2: Identify or forecast species that are being introduced into an ecosystem 208 

 The next step is to identify potential introduced species. In this step, a species 209 

might be chosen to be intentionally introduced (or reintroduced) to progress a 210 

management objective. Conversely, the management objective might seek to prevent an 211 

unintentional species introduction with negative impacts (i.e., invasion) or maintain 212 
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biodiversity under future shifts in species distributions with climate change. We consider 213 

each of these cases and ways to choose or predict which species will be introduced.  214 

 215 

Intentional introductions or reintroductions 216 

Increasingly, species are being reintroduced into an ecosystem from which they 217 

were lost or introduced for the first time to address conservation goals, such as via 218 

assisted migration (Richardson et al. 2009), restoration (Ewel & Putz 2004), or 219 

augmentation of habitat and resources for native species (Severns & Warren 2008). 220 

Choosing a species for introduction depends on both the management goals and the 221 

habitat into which a species will be introduced. For example, species can be introduced to 222 

degraded habitats within and slightly beyond their current ranges to increase species 223 

richness and catalyze community regeneration (Ewel & Putz 2004; Seddon 2010). Non-224 

native species are also often introduced to a novel system for ecosystem service benefits 225 

(i.e., agriculture, aquaculture, or pest control). Species introduced for this purpose might 226 

be selected based on their known ecosystem service benefit, or traits that indicate their 227 

potential to provide a service (e.g., tree size or persistence of leaves for regulating 228 

services). Non-native species also often have a proclivity to persist with climate and land 229 

use change, more so than native species, which can ensure service resilience to change 230 

(Schlaepfer et al. 2011). For example, non-native African honeybees (Apis mellifera 231 

cutellate) were found to provide pollination services in forest fragments in Amazonia, 232 

Brazil, where native pollinators no longer could (Dick 2001).   233 

Another motivation for species introduction is moving a threatened species. 234 

Assisted migrations (also called conservation translocations or managed relocations) 235 
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involve assisted colonization outside the native range of a species to reduce the chance of 236 

extinction (IUCN 2013; Richardson et al. 2009; Thomas 2011). Species chosen for 237 

assisted migration will often be rare or threatened and require the identification of 238 

suitable habitat and resources for monitoring (Griffith et al. 1989; Richardson et al. 239 

2009). While more may be known about species interactions in the case of an intentional 240 

introduction, these situations still present challenges in identifying impacts of species 241 

introduction, which are explored in the remainder of this framework.  242 

 243 

Unintentional introductions 244 

Predicting the arrival of non-native species remains a major challenge in invasion 245 

ecology (Pyšek and Richardson 2010; Seebens et al. 2016). With increasingly globalized 246 

trade, methods for assessing the likelihood of species introduction via human 247 

transportation networks have been developed; global trade traffic, for instance, can help 248 

predict species spread (Drake & Lodge 2004). Similarly, models predict introductions of 249 

non-native marine species using global shipping intensities, environmental variables, and 250 

species occurrence data (Seebens et al. 2016). Others determine areas of introduction risk 251 

by using species distribution models (Bellard et al. 2013, but see Liu et al. 2020) or 252 

matching “climate envelopes” to identify suitable areas for introduction (Bomford et al. 253 

2009; Pertierra et al. 2017).  254 

Species traits, such as those related to foraging, reproductive strategy, or dispersal 255 

ability, can also be used to assess which non-native species might be introduced into an 256 

ecosystem, as well as if that species is likely to have negative effects (i.e., become 257 

invasive) (Carboni et al. 2016; Catford et al. 2019; Mathakutha et al. 2019; Milbau & 258 
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Nijs 2004; van Kleunen et al. 2010). Existing trait frameworks compare the ecological 259 

profile of known invasive species with the ecological profiles of other species to predict 260 

their capacity to become future invaders (Fournier et al. 2019). Identifying potential 261 

invasive species might be used to plan for worse-case scenarios for unintentional 262 

introductions, as in the systematic process of horizon scanning by experts (Roy et al. 263 

2014). Improved understanding of species mechanisms of introduction, establishment, 264 

and spread, as well as growing databases on species ecological traits (e.g., TRY, Kattge 265 

et al. 2020) make this approach increasingly feasible (Nunez-Mir et al. 2019). 266 

 267 

Species range shifts 268 

Shifts in historic ranges of plant and animal species due to global climate change 269 

will result in species introductions into new communities (Lurgi et al. 2012; Walther 270 

2010). However, predicted shifts vary considerably depending on the model used to 271 

forecast range shifts. Mechanistic species distribution models, for example, can be used 272 

to identify outcomes of shifts in climatic constraints for a species’ range by mapping a 273 

species’ fundamental niche based on physiological information (i.e., morphological, 274 

physiological, phenological, and behavioral traits) onto the multivariate environmental 275 

space (Chuine et al. 2010; Guisan & Zimmermann 2000; Kearney & Porter 2009). 276 

Further constraining predicted distributions by incorporating species’ interactions with 277 

competitors and enemies (i.e., by computing the realized niche, Vandermeer 1972, see 278 

Grainger et al. 2019; Wisz et al. 2013) is less common, but can improve the realism of 279 

these models (Lany et al. 2020; Ovaskainen et al. 2016; Pollack et al. 2014; Staniczenko 280 

et al. 2017). Finally, predicting changes in species’ ranges depends on the climate change 281 



13 
 

13 
 

scenario considered, and uncertainty increases with time in even the most high resolution 282 

climate forecasts (Lawler et al. 2006). 283 

 284 

Step 3: Predict which resident species will interact with the newly introduced species  285 

After a focal introduced species has been identified, our next step is to predict 286 

how this species will interact with existing species in the recipient ecosystem and impact 287 

existing or new ecosystem services. In some cases, interaction partners of introduced 288 

species can be anticipated based on observations in similar ecosystems, or if the species 289 

is being reintroduced. For example, effects of fouling from invasive zebra mussels 290 

(Dreissena polymorpha) on native mussel populations were consistent and thus 291 

potentially predictable across locations (Ricciardi 2003). However, observations of 292 

analogous interactions might not be available when a species introduction will produce 293 

novel interactions (Corlett 2016). In these cases, predictions of likely interactions of an 294 

introduced species can be elicited from experts (e.g., Peterson et al. 2021) or produced by 295 

quantitative methods (Kamenova et al. 2017). We review options for the latter 296 

(summarized in Fig. 2).  297 
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 298 

Figure 2. Approaches to predict novel interactions. Various sources of information 299 
can be used to predict the novel interactions of an introduced species. (a) Species level 300 
information about the introduced species and resident species such as traits or phylogeny 301 
can be used. In addition, one can use information based on (b) the recipient network 302 
structure. Findings within both ecology (Terry & Lewis 2020) and network science 303 
(Ghasemian et al. 2020) demonstrate that ensemble methods, or combining predictions 304 
across multiple methods, can perform better at predicting missing interactions than any 305 
single method alone, which offers a potential avenue for future work. Interaction 306 
prediction can also be performed for an entire regional species pool to produce a 307 
metaweb (Morales-Castilla et al. 2015; Gravel et al. 2013, but see Ohlmann 2019).  308 
 309 

When the data are available, we suggest using quantitative methods that predict 310 

novel interactions based on information about the introduced and resident species, such 311 

as traits, phylogenies, or relative abundance, and properties of the recipient ecological 312 

network structure (e.g., see Desjardins-Proulx et al. 2017; Terry & Lewis 2020). Past 313 

work predicting ecological interactions has been motivated at least partially by the 314 

specific problem of predicting interactions of introduced species (e.g., Morales-Castilla et 315 

al. 2015; Bartomeus et al. 2016). For example, Pearse and Altermatt (2013) leverage 316 
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phylogeny to predict interactions between native and non-native species. Predicting the 317 

interactions (e.g., links) made by new species (e.g., nodes) joining a network (or 318 

“network forecasting”) is also a more generic problem with applicability to various 319 

scientific domains, such as for protein interaction networks or social networks (Rohr et 320 

al. 2016). Approaches for interaction prediction from other quantitative fields are 321 

increasingly being applied to ecological networks (e.g., see Desjardins-Proulx et al. 2017; 322 

Pichler et al. 2020; Terry & Lewis 2020), with further opportunities to do so.  323 

 324 

Introduced and resident species traits 325 

A common approach for predicting interactions between two species is matching 326 

their traits, as traits allow or prevent interactions (Bartomeus et al. 2016; Eklöf et al. 327 

2013; Reide et al. 2011). Particularly successful approaches have used machine learning 328 

methods to predict unknown species interactions based on databases of known species 329 

interactions and associated species traits (e.g., Desjardins-Proulx et al. 2017; Laigle et al. 330 

2018; Pichler et al. 2020). For example, body size is highly predictive of trophic 331 

interactions, as predators tend to be larger than prey (Brose et al. 2006; Gravel et al. 332 

2013). Species traits can also be used to identify “forbidden links,” those interactions that 333 

are known not to occur due to a fundamental mismatch between potential interaction 334 

partners (Jordano et al. 2003; Morales-Castilla et al. 2015). For example, one species' jaw 335 

must be able to effectively fit and chew another species for a feeding interaction to occur, 336 

with mismatches between predator gape size and prey body size limiting potential 337 

interactions (Eklӧf et al. 2013). Species’ phylogenetic relationships can be used as 338 

proxies for unknown traits, as species tend to choose new interaction partners that are 339 
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phylogenetically similar to their existing partners (Elmasri et al. 2020; Morales-Castilla et 340 

al 2015; Pearse & Altermatt 2013, Pearse & Altermatt 2015). 341 

 342 

Resident species relative abundance 343 

Species relative abundance constrains the likelihood and magnitude of realized 344 

interactions, when interactions are possible (Bartomeus et al. 2016; Canard et al. 2014; 345 

Morales-Castilla et al. 2015; Pomeranz et al. 2019). If two species are known to co-occur 346 

in a habitat, encounters and subsequent interactions are more probable when each species 347 

has a high abundance. Two rare species are unlikely to encounter one another and, 348 

therefore, are less likely to interact (Bartomeus et al. 2016; Canard et al. 2014). A 349 

reasonable prediction therefore is that an introduced species is unlikely to interact with a 350 

rare species in the recipient ecosystem, as introduced species often enter ecosystems at 351 

low abundances (Hansen et al. 2013; Peterson & Bode 2020). However, this prediction 352 

might hold better for generalist introduced species (Canard et al. 2014) or miss 353 

consequential interactions between an introduced species and a rare species in the 354 

recipient ecosystem (Vázquez et al. 2007). 355 

 356 

Local and global structure of the recipient network 357 

Understanding the structure of the recipient ecological network structure can also 358 

aid in prediction of interactions between an introduced species and resident species (e.g., 359 

as in Dalla Riva & Stouffer 2016; Seo & Hutchinson 2018; Stock et al. 2017; Terry & 360 

Lewis 2020). One approach estimates species-level latent traits based on the observed 361 

network structure that can be used to make future interaction predictions (e.g., as in Rohr 362 
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et al. 2010; Rohr et al. 2016). Additionally, various methods take advantage of local 363 

network structure to predict interactions (Dalla Riva & Stouffer 2016; Desjardins-Proulx 364 

et al. 2017; Rohr et al. 2016). For example, a species such as a generalist consumer with 365 

high degree centrality (a metric from network theory based on the number of interactions 366 

a species has) in the recipient network might be more likely to interact with the 367 

introduced species than another species with lower centrality (Rohr et al. 2016). Potential 368 

interactions can also be inferred by fitting models of network structure to partially 369 

observed networks, such as group-based models (Allesina & Pascual 2009; Sander et al. 370 

2015) or probabilistic food web models (Williams et al. 2010).  371 

The output of the approaches discussed in Step 3 is a set of plausible ecological 372 

network structures for an ecosystem after a species introduction based on adding high 373 

probability novel interactions of the introduced species to the recipient network. 374 

 375 

Step 4: Predict introduced species establishment success and consequences for resident 376 

species population dynamics and ecosystem services  377 

Using the networks produced in Step 3, the next step is to predict whether the 378 

species will establish and, if so, how this introduction will impact metrics relevant to each 379 

management objective. If the introduced species establishes, it can impact resident 380 

species’ abundances and biomasses (David et al. 2017) as well as directly or indirectly 381 

impact ecosystem services (Walsh et al. 2016). When these impacts are significant and 382 

negative the species is considered invasive (Iannone et al. 2020). 383 

Previous theoretical work has identified properties of recipient network structure 384 

(e.g., connectance) and introduced species (e.g., generality) that impact species ability to 385 
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establish and magnitude of impacts (Frost et al. 2019; Hui et al. 2016), sometimes in 386 

combination (Baiser et al. 2010; Galiana et al. 2014; Lurgi et al. 2014; Romanuk et al. 387 

2009; Romanuk et al. 2017; Valdovinos et al. 2018). Increasing data collection and 388 

further theoretical studies might produce predictive relationships between introduced 389 

species and recipient ecosystem characteristics and magnitude of impacts in terms of 390 

common management objectives. In our theoretical example, we expand on previous 391 

work considering biodiversity outcomes by also considering management objectives 392 

related to ecosystem services and impacts under multi-species introductions.  393 

One common approach to produce predictions of introduction success and 394 

impacts is using dynamic models, which are systems of equations that track the change in 395 

species populations or biomasses over time under the influence of their interaction 396 

partners. This family of models include the Lotka-Volterra framework (Lotka 1925; 397 

Volterra 1926), bioenergetic consumer-resource models (Williams & Martinez 2004; 398 

Yodzis & Innes 1992) such as the Allometric Trophic Network model (Berlow et al. 399 

2009; Brose et al. 2006) (See SI Box 1), and other models developed for specific types of 400 

systems (e.g., Valdovinos et al. 2013 for plant-pollinator networks and Christensen & 401 

Walters 2004 for exploited aquatic ecosystems). Dynamic models have been used to 402 

predict the consequences of species invasions (Baiser et al. 2010; Lurgi 2014; Romanuk 403 

et al. 2009; Romanuk et al. 2017; Valdovinos et al. 2018) and intentional introductions 404 

(Baker et al. 2019; Peterson & Bode 2020; Peterson et al. 2021). Different dynamic 405 

models make different assumptions about systems and thus have advantages and 406 

limitations. So, a challenge is deciding what level of complexity is appropriate for a 407 

model and what reasonable ranges of parameters should be explored to match a real-408 
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world system (Cao et al. 2017; Geary et al. 2020; Martin et al. 2018; Spence et al. 2017). 409 

Ensemble techniques in which outcomes are evaluated from several dynamic models or 410 

different parameterizations of the same model can be a useful way to account for this 411 

uncertainty (Geary et al. 2020; Peterson & Bode 2020; Peterson et al. 2021; Spence et al. 412 

2017).  413 

Although not commonly done, dynamic models can also be used to forecast 414 

changes in ecosystem services following a species introduction (Fig. 3). If ecosystem 415 

services are included as nodes in an ecological network, one can map the populations or 416 

biomasses of connected species to the strength of that service (Dee et al. 2017a). A 417 

challenge, however, is specifying the dynamic relationships between species and services 418 

(Dee et al 2017; Rieb et al. 2017).  419 

Step 4 produces predictions for how plausible changes in network structure after a 420 

species introduction will impact the populations or overall biomasses of species in the 421 

recipient network and ecosystem services.  422 

 423 

Step 5: Evaluate consequences for multiple management objectives and their trade-offs 424 

under uncertainty 425 

Predictions of a range of potential impacts to population dynamics using the quantitative 426 

techniques in Step 4 can feed into a structured decision-making process. Structured 427 

decision-making is a framework used in conservation to facilitate logical and transparent 428 

decision-making by incorporating the values, objectives, and knowledge of stakeholders 429 

(Addison et al. 2013; Conroy & Peterson 2013; Gregory et al. 2012), including from local 430 

communities and indigenous groups (Rudd et al. 2021). Intentional species introductions 431 
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are expensive endeavors and assisted migrations may be unappealing due to the risk of 432 

failure or risks to resident species. Similarly, interventions to prevent unintentional 433 

species introductions carry high management costs and risks of damages to public 434 

perception (Diagne et al. 2021). Comparing management alternatives and taking 435 

uncertainty in predictions into account before acting can increase the likelihood that 436 

interventions meet management goals and avoid unintended consequences (Polasky et al. 437 

2011). 438 

 439 

 440 

Figure 3. Predicting the change in ecosystem services using dynamic models. 441 
Ecosystem services (e.g., food production) can be incorporated into dynamic simulations 442 
by (a) including the ecosystem service node in the recipient ecosystem network by 443 
identifying which species contribute to that service and (b) fixing a relationship between 444 
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the total biomass of the ecosystem service providing species and the amount of the 445 
ecosystem service. In our demonstration we chose a simple linear relationship with slope 446 
0.5 that might be characteristic of a provisioning service. Then, (c) the population 447 
dynamics for all species are simulated and (d) the change in total biomass of the 448 
ecosystem service providing species can be used to estimate the change in ecosystem 449 
service amount under population dynamics.   450 
 451 

There are many tools for evaluating and comparing alternative management 452 

actions to support structured decision-making including optimization and multi-criteria 453 

decision analysis (Lester et al. 2013; Polasky et al. 2011; White et al. 2012). The most 454 

appropriate approach will depend on the decision context, like whether there are multiple 455 

or single objectives, one-time or sequential decisions, and whether outcomes can be 456 

expressed in monetary terms. For example, putting some objectives such as the benefits 457 

of conserving species and reducing extinction risk in monetary terms is unethical. In 458 

these cases, options like cost effectiveness analysis may be preferable approaches and 459 

have been used in a variety of contexts (e.g., Gerbert et al. 2018; Joseph et al. 2009). 460 

When multiple objectives are important and may pose trade-offs, other techniques like 461 

multi-criteria decision analyses or trade-off analyses can be considered (Halpern et al. 462 

2013; Lester et al. 2013; Polasky et al. 2008). Similarly, there are a suite of tools for 463 

analyzing decisions under uncertainty and imperfect information (Canessa et al. 2015; 464 

Marescot et al. 2013; Memarzadeh & Boettiger 2018; Moore & Runge 2012; Polasky et 465 

al. 2011). 466 

 467 

Step 6: Improve future predictions 468 

 After a decision is made, the system can be monitored to test and explore 469 

predictions and update future predictions using an adaptive management approach 470 

(Parma et al. 1998; Walters 1986; Williams 2011; Williams & Brown 2018). In adaptive 471 
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management, the system is monitored after an action is taken (e.g., an introduction has 472 

occurred) to update model assumptions and therefore future management 473 

recommendations (Williams 2011;Williams & Brown 2018). The same monitoring data 474 

can be used to assess the accuracy of predictions from ecological forecasts and allow for 475 

improvement of ecological theory (Lewis et al. 2022). As systems are monitored over 476 

time, time series datasets are produced, opening opportunities for further refinement of 477 

models for ecological forecasting by applying approaches such as empirical dynamic 478 

modeling (Daugaard et al. 2022; Johnson et al. 2021, Ye et al. 2015). Monitoring systems 479 

to test and improve predictions after structured decision making thus provides an 480 

opportunity to iterate between forward and reverse engineering of dynamic models for 481 

ecosystems (Martin et al. 2018). 482 

 483 

Demonstrating our framework  484 

We demonstrate the application of this framework via a hypothetical example of 485 

assisted migration involving a decision in a data-poor context of whether to introduce two 486 

threatened species into an existing ecosystem. Rather than analyzing a specific system, 487 

we chose to use common theoretical approaches for modeling ecosystems to provide a 488 

general illustration of how the framework can produce actionable insights. We chose to 489 

investigate a scenario in which one of the introduced species occupies an intermediate 490 

trophic level and the other is a top predator. We therefore have four choices of 491 

management alternatives – to introduce: neither species, both species, only the 492 

intermediate species, or only the top predator species.  493 

 494 
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Application of Step 1: Define objectives 495 

First, we define our management objectives: to maximize the amount of each 496 

introduced species, to maximize the recipient ecosystem’s biodiversity, and to ensure the 497 

continuity of an ecosystem service supported by the recipient ecosystem. For each, we 498 

define quantitative metrics that can be predicted after the species introduction using 499 

simulations: the final biomass of the intermediate species, the final biomass of the top 500 

predator species, the fraction of resident species remaining in the ecosystem, and the final 501 

ecosystem service amount under different introduction alternatives.  502 

 503 

Application of Step 2: Identify introduced species  504 

In this hypothetical example of assisted migration, we do not need to forecast 505 

which species will be introduced because the species have been chosen intentionally due 506 

to their threatened status, and likely compatibility with the recipient ecosystem. For 507 

example, in a multi-species assisted migration project in Western Australia, the 508 

endangered Shark Bay bandicoot (Perameles bougainville) was selected to be 509 

translocated to an island refuge just beyond its current distribution (Peterson et al. 2021).  510 

 511 

Application of Step 3: Predict interactions 512 

We next predict how the introduced species will interact with species in the 513 

recipient ecosystem and contribute to ecosystem services. We follow the modeling 514 

approach for simulating species introductions used in Romanuk et al. (2009), Romanuk et 515 

al. (2017), and Lurgi et al. (2014). We generate 37 biologically plausible networks 516 

representing the recipient ecosystem using the niche model (see SI Box 1; Williams & 517 
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Martinez 2000). For demonstration purposes, we explore a case in which there is 518 

considerable uncertainty in the interactions of the two introduced species with species in 519 

the recipient network. We assume the intermediate species has a niche parameter between 520 

0.4 and 0.6 and that the top predator has a niche parameter between 0.8 and 1 (SI Fig. 521 

12). We generate 5 evenly spaced possible niche parameters for each of the two 522 

introduced species in these respective ranges. For each possible niche parameter, we 523 

explore a small, medium, and large feeding range as well as a low, middle, and high 524 

center of the feeding range (i.e. 5x3x3 = 45 possible niche model parameter sets for each 525 

introduced species, see SI Box 1; Williams & Martinez 2000).  526 

We predict interactions of the introduced species based on the niche model rules, 527 

so the introduced species eats resident species falling into its feeding range and is eaten 528 

by those resident species whose feeding ranges it falls into (see SI Box 1 for details). This 529 

produces 45 possible interaction networks shortly after introduction for each of the 37 530 

networks for each of the two alternatives in which species are introduced into each 531 

network alone. When species are introduced together, rather than considering 5 evenly 532 

spaced niche model parameters for the two species, we consider possibilities based on 533 

only 3 each (i.e., 3x3x3=27 niche model parameter sets for each introduced species, 534 

reducing the simulations per network to 27^2=729 rather than 45^2=2,025, and the 535 

overall computational time from the order of days to hours). 536 

 In total, we consider 30,340 total network structures shortly after introduction (45 537 

for the intermediate species, 45 for the top predator species, 729 for both species, and 1 538 

without an introduction, for each of the 37 networks, SI Table 1). For prediction in real-539 

world contexts, one could use species trait data from the recipient ecosystem to establish 540 
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a relationship between species traits (e.g., body size) and niche parameter values (e.g., as 541 

in Gravel et al. 2013, and see Rohr et al. 2016 for a similar approach based on relating 542 

traits to latent matching and centrality parameters).   543 

We assume that all basal species (those with only predators and no prey) in the 544 

ecosystem directly contribute to a hypothetical ecosystem service of interest; such a 545 

relationship might be reflective of services provided by plants, such as carbon storage and 546 

sequestration, forage production for livestock, or riverbank stabilization (Calvo-547 

Rodriguez et al. 2017; Zhao et al. 2020). We also assume that neither of the introduced 548 

species directly contributes to the basal-provided ecosystem service considered (Mace et 549 

al. 2012). We also investigated how results would change if the ecosystem service was 550 

provided by a single basal species (i.e., that provides a specialized function), rather than 551 

all basal species.  552 

 553 

Application of Step 4: Simulate dynamics and consequences of new interactions  554 

Next, we predict the impact of introducing species on population dynamics using 555 

the Allometric Trophic Network model (Martinez 2020; Williams & Martinez 2004; 556 

Yodzis & Innes 1992). To facilitate decision making under uncertainty, we suggest that 557 

outcomes from a wide range of feasible dynamic models are evaluated. In our 558 

demonstration, we include within the scope of feasible models Allometric Trophic 559 

Network models parameterized with the species interaction network structures produced 560 

from Step 3 and with reasonable parameter values based on empirical measurements (see 561 

SI Box 1; Brose et al. 2005; Brose et al. 2006; Romanuk et al. 2009; Yodzis & Innes 562 

1992). This is a simplifying choice, and outcomes from additional dynamic models (e.g., 563 
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Lotka-Volterra models or other parameterizations of the Allometric Trophic Network 564 

model) could also be considered simultaneously. We run dynamics for 2000 timesteps 565 

after the system has reached equilibrium under the four alternatives.  566 

To track the consequences for ecosystem services, we assume that there is a linear 567 

relationship between the total biomass of the ecosystem service providing species and the 568 

amount of the ecosystem service provided (Fig. 3). For example, the nitrogen transport 569 

amount in a system might be linearly linked to the population abundance of specific bird 570 

species (Gaston et al. 2018). However, we recognize that contributions to ecosystem 571 

service may not always increase linearly or positively with a species’ biomass or 572 

abundance (see Dee et al. 2019), and the framework allows for more complex functional 573 

forms linking the biomasses of species to the amount of an ecosystem service provided. 574 

The output of Step 4 is the final biomasses for each species and final ecosystem service 575 

amount after running population dynamics for each of the plausible network structures. 576 

 577 

Application of Step 5: Assess trade-offs under uncertainty and identify strategies that 578 

avoid worst-case scenarios  579 

Finally, we compare the four alternative actions based on the indicators of our 580 

objectives from Step 1. We illustrate Step 5 by applying trade-off analyses from 581 

economic decision theory, which is gaining use in conservation (Lester et al. 2013; 582 

Polasky et al. 2008), to evaluate the four alternatives given uncertainty over the 583 

introduced species niche model parameters and the recipient network structure. Trade-off 584 

analysis is a technique for transparent decision-making between management options 585 

under multiple objectives. Trade-off analysis identifies Pareto-optimal planning options 586 
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(i.e., the efficiency frontier), or those in which no objective can be improved without 587 

decreasing another. Importantly, trade-off analysis also reveals suboptimal options (see 588 

Box 1 for details on Trade-off analysis). 589 

Box 1. A summary of trade-off analysis and Pareto-optimality 590 
Conservation often involves multiple, sometimes competing, management 591 

objectives. Trade-off analysis is a technique for transparent decision-making for multiple 592 
objectives (Cabral et al. 2016; Lester et al. 2013; Posalsky et al. 2008; White et al. 2012). 593 
The application of trade-off analysis involves mapping projected outcomes for each 594 
objective that will arise from a particular set of management actions onto an n-595 
dimensional space, where each of the axes measures the amount of a particular objective 596 
in any relevant unit for that objective (well-defined market values in monetary terms are 597 
not necessary; see Polasky et al. 2008). For example, trade-off analysis has previously 598 
been applied in marine spatial planning that aims to achieve fisheries yield, energy 599 
production, and recreation in the form of whale watching (White et al. 2012) and for 600 
balancing trade-offs among social equity, conservation, and economic yield (Halpern et 601 
al. 2013). 602 

Trade-off analysis generates a “cloud” of outcomes in the multidimensional space 603 
created by metrics corresponding to multiple management objectives, where each point 604 
represents the level of an objective (e.g., service amount or population size of a 605 
threatened species) provided under a given management option. The shape of the ensuing 606 
cloud of management outcomes provides three important insights for elucidating and 607 
evaluating potential trade-offs (de Groot et al. 2010). First, it defines the range of best 608 
possible planning options – known as the efficiency frontier – where the Pareto-optimal 609 
alternatives lie on the outer perimeter of the cloud of outcomes. Pareto-optimal 610 
alternatives are those in which no objective can be improved without decreasing another. 611 
Therefore, the efficiency frontier represents the best possible outcomes for objectives 612 
given multiple management alternatives. However, which outcome on the efficiency 613 
frontier is best ultimately depends on how stakeholders weigh and value the different 614 
objectives. Second, trade-off analysis identifies suboptimal options, which are all the 615 
points interior to the efficiency frontier. Finally, it visualizes interactions among 616 
objectives (i.e., do inherent trade-offs exist or not?). The process of visualizing and 617 
communicating outcomes from different management alternatives can help surface 618 
underlying conflicts amongst decision makers, facilitate deliberations, and help find 619 
common ground.  620 

Recent work has demonstrated that trade-off analysis for conservation decision-621 
making can also incorporate uncertainty in outcomes (Cabral et al. 2016). Cabral et al. 622 
(2016) show how exposing uncertainty in trade-off analysis can reveal cases in which 623 
risk averse decision-makers might choose a more certain suboptimal strategy over an 624 
uncertain Pareto-optimal one.  625 

 626 
In our case, we assess trade-offs arising from our species’ introduction 627 

management alternatives between: the final biomass of the intermediate species, the final 628 
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biomass of the top predator species, the fraction of resident species remaining in the 629 

ecosystem, and the final ecosystem service amount. We use the mean outcomes across 630 

simulations within each network to identify suboptimal and Pareto-optimal strategies and 631 

plot a plausible efficiency frontier based on each pair of metrics (Fig. 4). 632 

 633 

Figure 4.  The process used for constructing summary trade-off plots shown in Fig. 634 
5. The first row (subplots a and b) shows the trade-offs for a single network between one 635 
pair of metrics, the intermediate species final biomass vs. the fraction resident species 636 
remaining. These trade-offs are evaluated for a single network for four management 637 
options: introducing both species, introducing just the intermediate species, introducing 638 
just the top species, and no introduction. In subplot (a) the full range of simulation 639 
outcomes for this single network are plotted for the pair of metrics, with uncertainty due 640 
to variation in niche model parameters of the introduced species. In subplot (b), only the 641 
mean results for this network are plotted for each management option, along with the 642 
interquartile ranges. Pareto-optimal and suboptimal management options are calculated 643 
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based on these means for the pair of metrics, and a plausible efficiency frontier is plotted. 644 
In the second row (subplots c and d), the mean outcomes are plotted for all 37 of the 645 
networks that we evaluated for these two metrics, with uncertainty due to recipient 646 
network structure. The outcomes for the network shown in subplots (a) and (b) are circled 647 
for demonstration and the Pareto-optimal strategies are bolded. In subplot (d) the Pareto-648 
optimal strategies are counted across the networks evaluated, to demonstrate how 649 
variation in recipient network structure impacts the optimal decisions for this pair of 650 
metrics. A full set of trade-off plots showing all two-way metric combinations for an 651 
example network is provided in the Supporting Information (SI Fig. 5 and SI Fig. 6). 652 
 653 

We also compare this approach to a less conservative approach to decision-654 

making based on the median outcome metrics and to a highly conservative approach to 655 

decision-making under uncertainty based on the worst possible, rather than mean, 656 

outcomes under each management alternative (i.e., using the maxi-min objective, see 657 

Polasky et al. 2011).  658 

 659 

Application of Step 6: Testing predicted outcomes 660 

Given the results of the trade-off analysis and relative weighting of objectives, we 661 

assume a decision would be made to introduce both threatened species. After this 662 

introduction, data could be collected on the final biomasses of the introduced species and 663 

impacts to the ecosystem services and biodiversity of the recipient ecosystem. These 664 

values could be compared to the range of predicted outcomes to evaluate the applicability 665 

of the assumptions used for predictive modeling.  666 

 667 

Results 668 

Choosing the best strategy balancing multiple objectives  669 

Our results provide general heuristics that can guide conservation decision-making 670 

under high uncertainty in recipient network structure and the interactions of the introduced 671 
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species by considering Pareto-optimal strategies in aggregate across all plausible networks 672 

(as shown in Fig. 5).  673 

 674 

 675 

Figure 5. Trade-off plots for every pair of outcome metrics across the 37 networks 676 
and four management strategies evaluated. The means in outcome metrics across 677 
simulation runs are used to summarize for the management alternatives involving 678 
introductions (the process of constructing these plots is shown in Fig. 4). The counts of 679 
Pareto-optimal management strategies across networks are tallied to the right of each 680 
summary plot for each pair of metrics to elucidate trends in results across different 681 
recipient ecosystem network structures. After a decision is made, in this case to introduce 682 
both species, the outcomes for the metrics observed from monitoring data can be 683 
compared to the mean outcomes from the simulations to potentially adjust and improve 684 
future predictions for the ecosystem (Step 6). To illustrate Step 6, we include example 685 
outcomes observed from monitoring data as stars. 686 
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 687 

Any introduction option involves risk to resident species biodiversity and 688 

ecosystem services compared to no introduction (Fig. 6b, 6c, 6e). The introduced top 689 

predator species generally establishes with a higher mean final biomass than the introduced 690 

intermediate species across networks (in alignment with previous results, e.g., Galiana et 691 

al. 2014; Romanuk et al. 2009) and has on average more negative and more variable 692 

impacts on the ecosystem service amount (Fig 6). If the ecosystem service is assumed to 693 

be provided by only one basal species rather than all basal species, the top predator 694 

introduction still tends to have a more negative impact to services; however, across 695 

management options there is more variability in whether the ecosystem service amount 696 

increases or decreases after an introduction (or, shows directional indeterminacy, see 697 

Yodzis 1988, Fig. 6f). Occasional positive impacts to ecosystem services were due to 698 

indirect effects from the introduction in which intermediate species decreased in biomass 699 

after an introduction, thus reducing pressure on basal species and allowing basal species 700 

biomass to increase (SI Fig. 2). These results are laid out in detail in SI Box 2.  701 

Considering trade-offs between the final biomasses of both introduced species, all 702 

three of the introduction alternatives are often Pareto-optimal across the networks, with 703 

introducing both species being Pareto-optimal the most often (Fig. 5a). However, in order 704 

to maximize resident species biodiversity and ecosystem service values, introducing just 705 

one species or none tends to be favorable (Fig. 5b, 5c, 5d, 5e). Finally, if we only consider 706 

the outcomes for resident species biodiversity and ecosystem service values, refraining 707 
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from introducing either species tends to be a Pareto-optimal strategy for reducing risk to 708 

resident biodiversity and ecosystem services (Fig. 5f).  709 

 710 

Figure 6. Results for the four metrics corresponding to management objectives 711 
under four management alternatives.  Results for the four metrics (a: Intermediate 712 
Species Final Biomass & Top Species Final Biomass, b: Fraction Resident Species 713 
Remaining, c: Final Ecosystem Service Amount) evaluated in the trade-off plots are 714 



33 
 

33 
 

summarized across the 37 networks for each of the four management alternatives to show 715 
general patterns across networks as well as between-network variability in outcomes. For 716 
the three management alternatives involving introductions the mean results used in the 717 
trade-off plots are summarized (median results are shown in SI Fig. 3). Aggregate results 718 
are also shown in subplot (d) for if the ecosystem service was presumed to be provided 719 
by one basal species rather than all basal species. To produce the results shown in subplot 720 
(d), for each network, the final ecosystem service amount was calculated assuming the 721 
ecosystem service was provided by each basal species in the network rather than all basal 722 
species (one data point per management alternative, network, and basal species in that 723 
network). Subplot (e) shows the change in final ecosystem service amount after an 724 
introduction under each management alternative and subplot (f) summarizes this same 725 
value when the ecosystem service is provided by a single basal species in the network. 726 
One outlier network with a large change in ecosystem service amount was removed from 727 
subplot (e) for clarity (full subplot shown in SI Fig. 7).   728 
 729 

We also explore results using medians of the outcome metrics (SI Fig. 3), which 730 

is a less conservative approach, as rare, extreme negative outcomes from introductions 731 

have less impact on the Pareto-optimal strategies. The primary difference in these results 732 

is that introducing neither species is Pareto-optimal less often. Finally, we also consider a 733 

decision-making context using the more conservative maxi-min criteria (Fig. 7). Under 734 

the maxi-min objective, decision-makers choose the alternative with the best worst 735 

outcome (see SI Fig. 4, Polasky et al. 2011). Using the maxi-min decision criteria, the 736 

results generally suggest that it is best to pursue no introduction due to the risks of 737 

negative impacts to resident biodiversity and ecosystem services.  738 

 739 
Sensitivity of results to uncertainty identifies when more information is needed  740 

Producing a range of outcomes under uncertainty also allows us to identify when 741 

results are most sensitive to uncertainty in the recipient network structure and interactions 742 

of the introduced species. This could suggest when it is most important to collect more 743 

data to resolve uncertainty in assessment of management options. Not all 37 network 744 

structures produce the same results for Pareto-optimal strategies considering each pair of 745 
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metrics (Fig. 5). Notably, the top predator, introduced independently or together with the 746 

intermediate species, shows more between-network variability in establishment success 747 

and impacts (Fig. 6a, 6b, 6e). This sensitivity suggests that it may be more important to 748 

resolve recipient network structure when evaluating risks for a top predator introduction.  749 

 750 
Figure 7. Worst-case plots for every pair of outcome metrics across the 37 networks 751 
and four management strategies evaluated. We compute the worst outcome by 752 
normalizing the range of the axes to [0,1] and measuring the Euclidean distance of each 753 
outcome to the origin. Outcomes closest to the origin are considered the worst and maxi-754 
min decisions are the options with worst outcomes furthest from the origin. The counts of 755 
maxi-min decisions are tallied in summary plots to the right of the plots for each pair of 756 
metrics to elucidate trends across different network structures characterizing the recipient 757 
ecosystem. 758 

 759 



35 
 

35 
 

For ecosystem services, the importance of reducing uncertainty in the recipient 760 

network structure depends on the assumptions about how species provide services (Fig. 761 

6c, 6d, 6e, 6f). When all basal species provide a service the results are more directionally 762 

consistent than when one basal species provides a service (Fig. 6e, 6f). One species 763 

providing a service might realistically be the case for some regulating or provisioning 764 

services (e.g., for rare species, see Dee et al. 2019), and in these cases reducing 765 

uncertainty in network structure would be more important before decision-making. 766 

Additionally, we observed within-network variability in results based on the 767 

uncertainty in plausible niche parameters, and thus the novel interactions, of the 768 

introduced species (Fig. 8). The final introduced species biomasses showed more within-769 

network variability than the other metrics. The intermediate species showed more within-770 

network variability in establishment success than the top predator species (Fig. 8a), while 771 

the top predator species showed more within-network variability in impact to resident 772 

species biodiversity and ecosystem services than the intermediate species (Fig. 7b, 7c). 773 

The impact to ecosystem services had higher within-network variability when the 774 

ecosystem service was provided by one basal species rather than all basal species (Fig. 775 

8d). 776 

 777 
Monitoring the system and improving future predictions 778 

Examples of true outcomes after choosing to introduce two species are visualized 779 

on the plots in Fig. 5. In an adaptive management approach, we can use these observed 780 

outcomes to adjust assumptions for future decision making, for example by putting more 781 

weight on the network structures that produced predictions closer to the observed 782 

outcomes when summarizing simulation results. With the observed outcomes displayed 783 
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in Fig. 5, we might now assume that there is less risk to resident species biodiversity and 784 

basal-provided ecosystem services under species introductions than previously thought. If 785 

one observes that outcomes are outside of the range of predictions for the management 786 

option chosen, then the underlying modeling assumptions must be revisited for future 787 

decision-making. Other models could be compared to see if they provide predictions that 788 

align with observations (e.g., providing an opportunity to test ecological theory as in 789 

Lewis et al. 2022) or, once sufficient time series data is collected, dynamic models could 790 

be reverse engineered (Martin et al. 2018). 791 

 792 

Figure 8. Relative standard deviation of results within each network across 793 
uncertainty in introduced species niche model parameters. The relative standard 794 
deviation in results across simulations within a network for each of the four metrics used 795 
in the trade-off plots (a: Intermediate Species Final Biomass & Top Species Final 796 
Biomass, b: Fraction Resident Species Remaining, c: Final Ecosystem Service Amount) 797 
and three management alternatives involving introductions are summarized across the 37 798 
networks to reveal general patterns related to within-network variability in outcomes. 799 
Higher relative standard deviations indicate that the results for this metric across 800 
simulations within a network are more spread out from the mean. In subplot (d), the 801 
relative standard deviation is also shown for when a single basal species provides the 802 
ecosystem service.  803 
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 804 
Discussion  805 

Species introductions are increasing, from shifts in distributions due to climate 806 

change (Wallingford et al. 2020), intentional movement of species by humans for 807 

conservation (Peterson & Bode 2021), and invasions facilitated by human activities 808 

(David et al. 2017), posing risks for resident biodiversity (Mollot et al. 2017) and 809 

ecosystem services (Pejchar & Mooney 2009; Vilà & Hulme 2017) that are challenging 810 

to predict and mitigate. In response, we have synthesized prior work to suggest a 811 

framework for predicting and managing species introductions into existing communities 812 

of interacting species. This framework synthesizes literature from invasion biology and 813 

network ecology (e.g., Hui & Richardson 2019; Hui & Richardson 2022; Romanuk et al. 814 

2009; Romanuk et al. 2017) with literature from conservation and management (e.g., 815 

Bullock et al. 2011; Dee et al. 2017b; Harvey et al. 2017; Tylianakis et al. 2010), 816 

describing a theoretically grounded process to assist in applied ecological decision-817 

making (Possingham et al. 2000) under unavoidable uncertainty surrounding global 818 

change. 819 

 We demonstrate how this framework can be applied using a theoretical case study 820 

of assisted migration, yet the potential applications are much broader (Table 1). This 821 

framework could be applied in future work for other intentional species introductions, 822 

such as species introductions for biological control, restoration, agriculture, or 823 

aquaculture. It could also help inform actions to prevent unintentional species invasions 824 

by considering trade-offs between likely impacts of an invasion and the cost, effort, and 825 

potential effects of mitigation strategies. Our illustrative application of the framework 826 

produces general heuristics to guide management but also makes many assumptions, 827 
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including that trophic interactions determine ecosystem dynamics (see SI Box 1) and that 828 

one does not need to consider the order of species introductions (Armstrong & Seddon 829 

2007). Future applications of our predictive framework need not follow these 830 

assumptions, and, for instance, could use alternative techniques for novel interaction 831 

prediction (e.g., following Rohr et al. 2016) or dynamic modeling (e.g., Lotka-Volterra 832 

models, Lotka 1925; Volterra 1926), or also include predictions based on a different 833 

approach, such as neutral theory (Hubbell 2005). This framework could also be expanded 834 

and more broadly applied to additional types of disturbances such as species removals or 835 

landscape change.  836 

Table 1. Examples of other potential applications of our framework. Case studies 837 
involving species introductions and various management objectives to illustrate other 838 
contexts in which this framework could be applied.  839 
 840 
Decision 
context Example Case Objectives References 

Introduce a 
species for 
ecosystem 
services 

Dung beetles are commonly 
introduced because they can provide a 
variety of ecosystem services. In New 
Zealand, the addition of new, non-
native dung beetles to livestock farms 
resulted in a significant decrease of 
run-off and sediment in run-off 
following rainfall events; and dung 
beetles reduced the number of 
parasitic larvae that infect grazing 
animals. 

Maximize 
ecosystem 
services 

 
Minimize risk 
to native 
biodiversity 

Forgie et al. (2018)   
Brown et al. (2010)  
Sands & Wall (2016) 

Introduce a 
species to 
maintain or 
restore 

biodiversity 

Oyster reefs are considered one of the 
most vulnerable coastal ecosystems in 
the United States Atlantic and Gulf 
Coasts. Restoration of these 
ecosystems, i.e., reintroducing native 
oysters to areas that previously hosted 
them, is commonly considered as a 
way to both restore oyster populations 
and reestablish lost biodiversity. In 
Mosquito Lagoon, FL, United States, 
sites with oyster restoration showed an 

Increase the 
population of 
a species in 
decline 
 

Maximize 
biodiversity 
(e.g., species 
richness)/Mini
mize risk to 

Barber et al. (2010) 
Lown et al. (2021) 
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increase in animal biodiversity 
(number of species) compared to sites 
without oysters. 

native 
biodiversity 

Introduce a 
threatened 
species for 
conservatio

n 

Bull trout (Salvelinus confluentus) are 
threatened by warming waters and 
invasive lake trout (Salvelinus 
namaycush). In Glacier National Park, 
US, biologists are moving bull trout 
from their native range into lakes at 
higher elevations with more suitable 
conditions and where they no longer 
need to compete with invasive lake 
trout for food resources such as 
invertebrates and other fish. 

Increase the 
population of 
a species in 
decline from 
climate 
change 
 

Minimize risk 
to native 
biodiversity 

 
Karasov-Olson et al. 

(2021) 

Prevent or 
slow future, 
predicted 
introduction 
of invasive 
species 

The zebra mussel (Dreissena 
polymorpha) is an invasive species 
that has spread throughout United 
States waterways including the Great 
Lakes. Zebra mussels can have 
detrimental impacts on recipient 
ecosystems, including drastic 
decreases in zooplankton which 
indirectly impacts larval and juvenile 
fish populations. However, controlling 
established zebra mussel populations 
is costly and time consuming. There 
are a variety of strategies that have 
been deployed to slow the future 
spread of this mussel species, 
including boat inspections and bait 
regulations.  

Minimize 
invasion 

establishment  
 

Minimize risk 
to native 
biodiversity 

 
Minimize 
management 

costs  

Ashander et al. 
(2022) 

Bossenbroek et al. 
(2007) 
 

Mitigate 
impacts of 
slow future, 
predicted 
introduction 
of species 
due to a 
range shift 

 

Mobile fish species in marine habitats 
are able to evade the most severe 
effects of climate change by shifting 
their distribution when seeking 
suitable thermal habitats. However, 
this shift in their ranges can result in 
changes to food webs, increased 
competition for prey species, and 
present complications in managing 
species whose ranges shift to new 
jurisdictions. For example, the 
Atlantic Cod (Gadus morhua) is 
culturally and economically crucial 
species in North Atlantic fisheries, 
though its optimal thermal habitat is 

Minimize risk 
to native 
biodiversity 
 
Minimize 
management 

costs 
 

Kleisner et al. (2017) 
Selden et al. (2018) 
Palacios-Abrantes et 

al. (2020) 
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shifting into waters beyond the US 
EEZ into Canadian jurisdiction. 

 841 

 One limitation to using this framework in practice is low availability of data in 842 

many applied settings. Missing species interaction, trait, and abundance data can interfere 843 

with novel interaction prediction in Step 3 and parameterizing dynamic model 844 

simulations in Step 4. Species interaction data can be collected in a variety of ways, such 845 

as direct observation of interactions or stable isotope analysis of feces (Delmas et al. 846 

2019; Kamenova et al. 2017; Vacher et al. 2016). Species interaction network structure 847 

can also be inferred based on patterns of species co-occurrence, though methodological 848 

limitations have been noted for this common approach, for example noting that species 849 

co-occurrence can be caused by abiotic factors unrelated to interaction (Barner et al. 850 

2018; Blanchet et al. 2020; Connor et al. 2017; Ladau 2008). These processes are labor-851 

intensive and further work is needed to develop methods to efficiently construct 852 

ecological networks at scale (Bohan et al. 2017; Kamenova et al. 2017; Stock et al. 2017; 853 

Terry & Lewis 2020). 854 

Our results align with previous results (e.g., Yodzis 1988) showing that impacts 855 

of perturbations on species-level metrics, in our case ecosystem services provided by 856 

basal species, are not always directionally consistent under reasonable uncertainty in 857 

species interactions (but see Iles & Novak 2016). However, precisely predicting 858 

dynamics of an ecosystem and producing predictions useful for decision-making under 859 

uncertainty are not equivalent aims (Adams et al. 2020). Even uncertain predictions can 860 

prove useful for comparing likely realities with or without an intervention (Adams et al. 861 
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2020; Possingham et al. 2000), understanding the risks of undesirable outcomes (Adams 862 

et al. 2020; Regan et al. 2005; Tunney et al. 2017), and identifying when to collect more 863 

data before making a decision (but also see more formal Value of Information 864 

approaches, Canessa et al. 2015; Xiao et al. 2019). Here, we show that currently available 865 

tools for ecological forecasting can be used to produce a range of predictions useful for 866 

some decision-making contexts.  867 

Species introductions provide natural experiments that can provide insights for 868 

basic ecological research (Sax et al. 2007). Further, intentional species introductions 869 

through management are happening around the world and provide underutilized 870 

opportunities for testing dynamic population models by collecting data before and after 871 

the introduction, after allowing adequate time for introduced species to potentially 872 

establish. Applying this framework provides an opportunity to test ecological theory and 873 

further investigate the fundamental predictability of ecosystem dynamics by taking 874 

advantage of applied management contexts. A priori predictions before decision-making 875 

allow both for more transparent consideration of trade-offs as well as development of 876 

knowledge about a system over time through adaptive management.  877 

Our synthesis also suggests other fruitful avenues for future work. Our results 878 

demonstrate that assumptions about the novel interactions of an introduced species (e.g. 879 

approximate trophic level, generality) can influence the range of outcomes expected after 880 

introduction, and thus call for further methodological development for predicting the 881 

novel interactions of introduced species in ecosystems and theoretical investigation of 882 

how introduced species properties relate to expected biodiversity and ecosystem service 883 

outcomes. Our results also demonstrate sensitivity of results to assumptions about which 884 
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species provide ecosystem services in recipient ecosystems (Fig. 6), and thus suggest 885 

further integration of ecosystem services into empirical ecological networks. While we 886 

focus on a simple linear relationship between basal species and an ecosystem service 887 

amount, future work can also further explore the potentially non-linear functional 888 

relationship between species biomass and the amounts of multiple ecosystem services 889 

provided by an ecosystem (e.g., Dee et al. 2017a; Gaston et al. 2019; Manning et al. 890 

2018). 891 

 892 

Conclusions 893 

We synthesize literature into a decision-making framework for species 894 

introductions under multiple conservation objectives and uncertainty in species 895 

interactions. We show how this framework can be used to produce a range of predictions 896 

useful for decision making in a theoretical high-stakes case study of assisted migration. 897 

This framework, which combines ecological network theory with approaches from 898 

decision science, can be used to reveal trade-offs among objectives, avoid decisions that 899 

can lead to worst-case scenarios, suggest cases in which it is more important to reduce 900 

uncertainty before decision-making, and allow for continual learning about the system in 901 

a process of adaptive management.  902 
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