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Abstract
Ecological communities are increasingly subject to natural and human-induced

additions of species, as species shift their ranges under climate change, are introduced for
conservation, and are unintentionally moved by humans. As such, decisions about how to
manage ecosystems subject to species introductions and considering multiple
management objectives need to be made. However, the impacts of gaining new species
on ecological communities are difficult to predict due to uncertainty in introduced species
characteristics, the novel interactions that will be produced by that species, and the
recipient ecosystem structure. Drawing on ecological and conservation decision theory,
we synthesize literature into a conceptual framework for species introduction decision-
making based on ecological networks in high uncertainty contexts. We demonstrate the
application of this framework to a theoretical decision surrounding assisted migration
considering both biodiversity and ecosystem service objectives. We show that this
framework can be used to evaluate trade-offs between outcomes, predict worst-case
scenarios, suggest when one should collect additional data, and allow for improving

knowledge of the system over time.



78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

Main Text
Introduction

Ecological communities are increasingly subject to natural and human-induced
additions of species (Seebens et al. 2017). Additions occur as species shift their ranges
under climate change (Wallingford et al. 2020), species are unintentionally spread by
humans (Blackburn et al. 2011; David et al. 2017; Fantle-Lepczyk et al. 2022; Seebens et
al. 2017), and species are intentionally introduced for conservation (Corlett 2016;
Peterson & Bode 2020), restoration (Bullock et al. 2011), biocontrol (Begg et al. 2017),
or to provide ecosystem services (Pejchar & Mooney 2009). Species that then become
invasive tend to negatively impact biodiversity of the recipient ecosystem (Crystal-
Ornelas & Lockwood 2020; David et al. 2017; Mollot et al. 2017) and have negative
economic impacts (Bradshaw et al. 2016; Fantle-Lepczyk et al. 2022; Hanley & Roberts
2019; Matsuzaki & Kadoya 2015; Pejchar & Mooney 2009). For example, species
introductions can also degrade ecosystem services, such as the spiny water flea
(Bythotrephes longimanus) invasion in Lake Mendota, USA (Walsh et al. 2016), which
reduced recreational opportunities. In contrast, species introduced for restoration or
conservation are expected to have neutral or positive impacts on net biodiversity (Bullock
et al. 2011; Corlett 2016) and, in some cases, are introduced explicitly to support
ecosystem services. For example, the western honeybee (Apis mellifera) has been
introduced around the world to support honey production and crop pollination (Geslin et
al. 2017; Moritz et al. 2005). Given this range of potential impacts from introduced

species and often incomplete data on species and ecosystems, a theoretically grounded
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framework for assessing risk and making decisions related to species introductions under
uncertainty is necessary to meet conservation goals and avoid unintended outcomes.
Using ecological forecasting to develop theory in applied management contexts has been
identified as a key frontier and opportunity (Dietz et al. 2018, Adams et al. 2020, Lewis
et al. 2022) but has not received sufficient attention in the context of introduced species
and ecosystem management decision-making.

Predicting the consequences of species introductions for biodiversity and
ecosystem services poses a challenge because species interact in complex networks and
introduced species form new interactions in the recipient ecosystem (Jackson et al. 2017;
Pantel et al. 2017; Peterson & Bode 2020, Peterson et al. 2021). The addition of a new
species can alter the abundance of the species it directly interacts with, but also indirectly
impact other species through the species interaction network in the recipient ecosystem
(David et al. 2017; Frost et al. 2019; Galiana et al. 2014; Romanuk et al. 2017; Wootton
2002). For example, predators introduced into aquatic ecosystems tend to reduce the
abundance of benthic invertebrate and zooplankton prey, thus allowing phytoplankton
populations to increase (Gallardo et al. 2016). Such indirect effects can potentially cause
cascading extinctions or loss of ecosystem services within the recipient ecosystem (e.g.,
see Peterson & Bode 2020; Walsh et al. 2016). Due to interactions that form, the success
and effects of a species introduction can depend on both the properties of the recipient
ecosystem (e.g., biodiversity, connectance, whether the system has been previously
disturbed) and the introduced species (e.g., generality or trophic level) (David et al. 2017;
Frost et al. 2019; Traveset & Richardson 2014). Consequently, prediction of introduction

impacts ideally requires information about species interactions within the recipient
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ecosystem (i.e., ecological network structure), as well as plausible ways that the
introduced species might interact with these resident species (Windsor et al. 2022).

The process of predicting the impacts of an introduced species on a recipient
ecosystem involves many sources of uncertainty. First, the exact species entering new
ecosystems is not always known, such as for unintentional introductions (Fournier et al.
2019; Pysek & Richardson 2010; Seebens et al. 2016). Second, even when the identity of
the introduced species is known before an introduction (e.g., for assisted migration,
ITUCN 2013), the novel interactions between that species and resident species have often
never been observed before, and therefore must be predicted and carry uncertainty
(Kamenova et al. 2017). Third, uncertainty over the interaction network structure of the
recipient ecosystem is common, due to the challenges of collecting this data (Aufderheide
et al. 2013; Berlow et al. 1999). Prior work has argued that such uncertainty in ecosystem
structure precludes predicting the impacts of a disturbance on the populations of specific
species within an ecosystem (Yodzis 1988; Novak et al. 2011). However, recent work in
food web theory has suggested that prediction in real ecosystems is feasible (Aufderheide
et al. 2013; Iles & Novak 2016; Mougi 2017) and, in a growing number of cases,
predictions from dynamic models have aligned with observational and experimental data
(Berlow et al. 2009; Boit et al. 2012; Jonsson et al. 2018). Despite the challenges of
forecasting under uncertainty, forecasting the impacts of species additions can provide
useful information for testing ecological theory (e.g., by revealing the extent to which
assumptions about the underlying system are correct, Dietze et al. 2017). Forecasting can

also aid with decision-making, by, for example, generating a range of potential outcomes
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under uncertainty to reveal trade-offs between objectives and potential worst-case
scenarios (Adams et al. 2020; Polasky et al. 2011).

In response to these needs and challenges, we synthesize literature from several
subdisciplines (e.g., invasion ecology, food web theory, conservation decision science)
into a framework for decision-making related to species introductions under uncertainty
and multiple management objectives. The framework combines an ecological network
perspective with concepts from decision science and consists of 6 steps (Fig. 1): 1)
identify management objectives and translate them to outcome metrics of interest, 2)
identify or predict the introduced species, 3) predict the interactions of the introduced
species with species and ecosystem services in the recipient ecosystem, 4) predict the
population dynamics after species introduction, 5) evaluate trade-offs of management
alternatives under uncertainty, and 6) test and explore predictions to improve future
decision-making. For each step, we first review existing quantitative methods for
prediction when appropriate. We then demonstrate how these steps can be synthesized by
applying our framework to a case of decision-making for assisted migration with the dual
goals of preserving biodiversity and providing ecosystem services. Throughout, we
highlight sources of uncertainty and suggest how this uncertainty can be carried through
the prediction process. With our application, we show that this framework can be used to
reveal important trade-offs among objectives and worst-case scenarios, suggest cases in
which more data should be collected before making a decision, and allow for testing of

ecological theory and improving knowledge of the system over time.
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2. FORECAST ADDITION
OF NEW SPECIES

3. INTERACTION
PREDICTION
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Figure 1. Our six-step framework for assessing risk and aiding decision-making for
species introductions under uncertainty. This diagram demonstrates the six steps in the
framework that we outline and apply in this Synthesis. Panel A shows the six steps. Panel
B shows a stylized example of applying the six steps: 1) identify management objectives
and translate them to outcome metrics of interest, 2) identify the introduced species, 3)
predict the interactions of the introduced species with species in the recipient ecosystem,
4) predict the population dynamics after species introduction, 5) evaluate trade-offs of
management alternatives based on management objectives under uncertainty, and 6) test
and explore predictions to improve future decision-making.

Framework linking ecological theory to decisions under great uncertainty

Step 1: Identify management objectives for multispecies conservation

Clarifying objectives is a key first step in any structured decision-making process
(Game et al. 2013; Martin et al. 2009), including for multi-species management.
Conservation and management of multiple interacting species can involve a range of
objectives (Mace 2014; Nicholson & Possingham 2006; Xiao et al. 2019) chosen by
stakeholders. While conservation generally focuses on preventing extinctions, more
specific objectives can be defined within that overarching aim (Nicholson & Possingham

2006). In a multi-species context, these objectives can include minimizing the likelihood

8
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of extinctions of certain high-risk species (e.g., umbrella species) or all species (reviewed
in Nicholson & Possingham 2006) and maximizing the number of extant, interacting
species (McDonald-Madden et al. 2016).

Management aims may also be related to ecosystem services, for example,
improving carbon sequestration or water quality while minimizing the chance of species
extinctions (Polasky et al. 2012), or even include factors such as social equity (Halpern et
al. 2013). Management can meet multiple goals simultaneously (Dee et al. 2017b; Xiao et
al. 2018). However, managing for the goals of biodiversity and ecosystem services can
lead to trade-offs, depending on the ecological context and ecosystem services considered
(Dee et al. 2017a; Polasky et al. 2012; Reyers et al. 2012; Xiao et al. 2018; Xiao et al.
2019). In a coastal food web, for example, the management strategies that best provide
ecosystem services (e.g., shoreline protection, food production from fisheries) and best
protect species (species richness of interacting species) were more aligned when basal
species provided ecosystem services (Xiao et al. 2018). Further, during restoration, trade-
offs can emerge between ecosystem service and conservation goals when non-native
species can outperform native species in the provisioning of certain services (Bullock et

al. 2011).

Step 2: Identify or forecast species that are being introduced into an ecosystem

The next step is to identify potential introduced species. In this step, a species
might be chosen to be intentionally introduced (or reintroduced) to progress a
management objective. Conversely, the management objective might seek to prevent an

unintentional species introduction with negative impacts (i.e., invasion) or maintain
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biodiversity under future shifts in species distributions with climate change. We consider

each of these cases and ways to choose or predict which species will be introduced.

Intentional introductions or reintroductions

Increasingly, species are being reintroduced into an ecosystem from which they
were lost or introduced for the first time to address conservation goals, such as via
assisted migration (Richardson et al. 2009), restoration (Ewel & Putz 2004), or
augmentation of habitat and resources for native species (Severns & Warren 2008).
Choosing a species for introduction depends on both the management goals and the
habitat into which a species will be introduced. For example, species can be introduced to
degraded habitats within and slightly beyond their current ranges to increase species
richness and catalyze community regeneration (Ewel & Putz 2004; Seddon 2010). Non-
native species are also often introduced to a novel system for ecosystem service benefits
(i.e., agriculture, aquaculture, or pest control). Species introduced for this purpose might
be selected based on their known ecosystem service benefit, or traits that indicate their
potential to provide a service (e.g., tree size or persistence of leaves for regulating
services). Non-native species also often have a proclivity to persist with climate and land
use change, more so than native species, which can ensure service resilience to change
(Schlaepfer et al. 2011). For example, non-native African honeybees (Apis mellifera
cutellate) were found to provide pollination services in forest fragments in Amazonia,
Brazil, where native pollinators no longer could (Dick 2001).

Another motivation for species introduction is moving a threatened species.

Assisted migrations (also called conservation translocations or managed relocations)

10
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involve assisted colonization outside the native range of a species to reduce the chance of
extinction (IUCN 2013; Richardson et al. 2009; Thomas 2011). Species chosen for
assisted migration will often be rare or threatened and require the identification of
suitable habitat and resources for monitoring (Griffith et al. 1989; Richardson et al.
2009). While more may be known about species interactions in the case of an intentional
introduction, these situations still present challenges in identifying impacts of species

introduction, which are explored in the remainder of this framework.

Unintentional introductions

Predicting the arrival of non-native species remains a major challenge in invasion
ecology (Pysek and Richardson 2010; Seebens et al. 2016). With increasingly globalized
trade, methods for assessing the likelihood of species introduction via human
transportation networks have been developed; global trade traffic, for instance, can help
predict species spread (Drake & Lodge 2004). Similarly, models predict introductions of
non-native marine species using global shipping intensities, environmental variables, and
species occurrence data (Seebens et al. 2016). Others determine areas of introduction risk
by using species distribution models (Bellard et al. 2013, but see Liu et al. 2020) or
matching “climate envelopes” to identify suitable areas for introduction (Bomford et al.
2009; Pertierra et al. 2017).

Species traits, such as those related to foraging, reproductive strategy, or dispersal
ability, can also be used to assess which non-native species might be introduced into an
ecosystem, as well as if that species is likely to have negative effects (i.e., become

invasive) (Carboni et al. 2016; Catford et al. 2019; Mathakutha et al. 2019; Milbau &

11
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Nijs 2004; van Kleunen et al. 2010). Existing trait frameworks compare the ecological
profile of known invasive species with the ecological profiles of other species to predict
their capacity to become future invaders (Fournier et al. 2019). Identifying potential
invasive species might be used to plan for worse-case scenarios for unintentional
introductions, as in the systematic process of horizon scanning by experts (Roy et al.
2014). Improved understanding of species mechanisms of introduction, establishment,
and spread, as well as growing databases on species ecological traits (e.g., TRY, Kattge

et al. 2020) make this approach increasingly feasible (Nunez-Mir et al. 2019).

Species range shifts

Shifts in historic ranges of plant and animal species due to global climate change
will result in species introductions into new communities (Lurgi et al. 2012; Walther
2010). However, predicted shifts vary considerably depending on the model used to
forecast range shifts. Mechanistic species distribution models, for example, can be used
to identify outcomes of shifts in climatic constraints for a species’ range by mapping a
species’ fundamental niche based on physiological information (i.e., morphological,
physiological, phenological, and behavioral traits) onto the multivariate environmental
space (Chuine et al. 2010; Guisan & Zimmermann 2000; Kearney & Porter 2009).
Further constraining predicted distributions by incorporating species’ interactions with
competitors and enemies (i.e., by computing the realized niche, Vandermeer 1972, see
Grainger et al. 2019; Wisz et al. 2013) is less common, but can improve the realism of
these models (Lany et al. 2020; Ovaskainen et al. 2016; Pollack et al. 2014; Staniczenko

et al. 2017). Finally, predicting changes in species’ ranges depends on the climate change

12



282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

13

scenario considered, and uncertainty increases with time in even the most high resolution

climate forecasts (Lawler et al. 2006).

Step 3: Predict which resident species will interact with the newly introduced species

After a focal introduced species has been identified, our next step is to predict
how this species will interact with existing species in the recipient ecosystem and impact
existing or new ecosystem services. In some cases, interaction partners of introduced
species can be anticipated based on observations in similar ecosystems, or if the species
is being reintroduced. For example, effects of fouling from invasive zebra mussels
(Dreissena polymorpha) on native mussel populations were consistent and thus
potentially predictable across locations (Ricciardi 2003). However, observations of
analogous interactions might not be available when a species introduction will produce
novel interactions (Corlett 2016). In these cases, predictions of likely interactions of an
introduced species can be elicited from experts (e.g., Peterson et al. 2021) or produced by
quantitative methods (Kamenova et al. 2017). We review options for the latter

(summarized in Fig. 2).
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Figure 2. Approaches to predict novel interactions. Various sources of information
can be used to predict the novel interactions of an introduced species. (a) Species level
information about the introduced species and resident species such as traits or phylogeny
can be used. In addition, one can use information based on (b) the recipient network
structure. Findings within both ecology (Terry & Lewis 2020) and network science
(Ghasemian et al. 2020) demonstrate that ensemble methods, or combining predictions
across multiple methods, can perform better at predicting missing interactions than any
single method alone, which offers a potential avenue for future work. Interaction
prediction can also be performed for an entire regional species pool to produce a
metaweb (Morales-Castilla et al. 2015; Gravel et al. 2013, but see Ohlmann 2019).

When the data are available, we suggest using quantitative methods that predict
novel interactions based on information about the introduced and resident species, such
as traits, phylogenies, or relative abundance, and properties of the recipient ecological
network structure (e.g., see Desjardins-Proulx et al. 2017; Terry & Lewis 2020). Past
work predicting ecological interactions has been motivated at least partially by the
specific problem of predicting interactions of introduced species (e.g., Morales-Castilla et

al. 2015; Bartomeus et al. 2016). For example, Pearse and Altermatt (2013) leverage

14
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phylogeny to predict interactions between native and non-native species. Predicting the
interactions (e.g., links) made by new species (e.g., nodes) joining a network (or
“network forecasting”) is also a more generic problem with applicability to various
scientific domains, such as for protein interaction networks or social networks (Rohr et
al. 2016). Approaches for interaction prediction from other quantitative fields are
increasingly being applied to ecological networks (e.g., see Desjardins-Proulx et al. 2017;

Pichler et al. 2020; Terry & Lewis 2020), with further opportunities to do so.

Introduced and resident species traits

A common approach for predicting interactions between two species is matching
their traits, as traits allow or prevent interactions (Bartomeus et al. 2016; Eklof et al.
2013; Reide et al. 2011). Particularly successful approaches have used machine learning
methods to predict unknown species interactions based on databases of known species
interactions and associated species traits (e.g., Desjardins-Proulx et al. 2017; Laigle et al.
2018; Pichler et al. 2020). For example, body size is highly predictive of trophic
interactions, as predators tend to be larger than prey (Brose et al. 2006; Gravel et al.
2013). Species traits can also be used to identify “forbidden links,” those interactions that
are known not to occur due to a fundamental mismatch between potential interaction
partners (Jordano et al. 2003; Morales-Castilla et al. 2015). For example, one species' jaw
must be able to effectively fit and chew another species for a feeding interaction to occur,
with mismatches between predator gape size and prey body size limiting potential
interactions (EkIof et al. 2013). Species’ phylogenetic relationships can be used as

proxies for unknown traits, as species tend to choose new interaction partners that are

15
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phylogenetically similar to their existing partners (Elmasri et al. 2020; Morales-Castilla et

al 2015; Pearse & Altermatt 2013, Pearse & Altermatt 2015).

Resident species relative abundance

Species relative abundance constrains the likelihood and magnitude of realized
interactions, when interactions are possible (Bartomeus et al. 2016; Canard et al. 2014;
Morales-Castilla et al. 2015; Pomeranz et al. 2019). If two species are known to co-occur
in a habitat, encounters and subsequent interactions are more probable when each species
has a high abundance. Two rare species are unlikely to encounter one another and,
therefore, are less likely to interact (Bartomeus et al. 2016; Canard et al. 2014). A
reasonable prediction therefore is that an introduced species is unlikely to interact with a
rare species in the recipient ecosystem, as introduced species often enter ecosystems at
low abundances (Hansen et al. 2013; Peterson & Bode 2020). However, this prediction
might hold better for generalist introduced species (Canard et al. 2014) or miss
consequential interactions between an introduced species and a rare species in the

recipient ecosystem (Vazquez et al. 2007).

Local and global structure of the recipient network

Understanding the structure of the recipient ecological network structure can also
aid in prediction of interactions between an introduced species and resident species (e.g.,
as in Dalla Riva & Stouffer 2016; Seo & Hutchinson 2018; Stock et al. 2017; Terry &
Lewis 2020). One approach estimates species-level latent traits based on the observed

network structure that can be used to make future interaction predictions (e.g., as in Rohr

16
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et al. 2010; Rohr et al. 2016). Additionally, various methods take advantage of local
network structure to predict interactions (Dalla Riva & Stouffer 2016; Desjardins-Proulx
et al. 2017; Rohr et al. 2016). For example, a species such as a generalist consumer with
high degree centrality (a metric from network theory based on the number of interactions
a species has) in the recipient network might be more likely to interact with the
introduced species than another species with lower centrality (Rohr et al. 2016). Potential
interactions can also be inferred by fitting models of network structure to partially
observed networks, such as group-based models (Allesina & Pascual 2009; Sander et al.
2015) or probabilistic food web models (Williams et al. 2010).

The output of the approaches discussed in Step 3 is a set of plausible ecological
network structures for an ecosystem after a species introduction based on adding high

probability novel interactions of the introduced species to the recipient network.

Step 4: Predict introduced species establishment success and consequences for resident

species population dynamics and ecosystem services

Using the networks produced in Step 3, the next step is to predict whether the
species will establish and, if so, how this introduction will impact metrics relevant to each
management objective. If the introduced species establishes, it can impact resident
species’ abundances and biomasses (David et al. 2017) as well as directly or indirectly
impact ecosystem services (Walsh et al. 2016). When these impacts are significant and
negative the species is considered invasive (Iannone et al. 2020).

Previous theoretical work has identified properties of recipient network structure

(e.g., connectance) and introduced species (e.g., generality) that impact species ability to

17
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establish and magnitude of impacts (Frost et al. 2019; Hui et al. 2016), sometimes in
combination (Baiser et al. 2010; Galiana et al. 2014; Lurgi et al. 2014; Romanuk et al.
2009; Romanuk et al. 2017; Valdovinos et al. 2018). Increasing data collection and
further theoretical studies might produce predictive relationships between introduced
species and recipient ecosystem characteristics and magnitude of impacts in terms of
common management objectives. In our theoretical example, we expand on previous
work considering biodiversity outcomes by also considering management objectives
related to ecosystem services and impacts under multi-species introductions.

One common approach to produce predictions of introduction success and
impacts is using dynamic models, which are systems of equations that track the change in
species populations or biomasses over time under the influence of their interaction
partners. This family of models include the Lotka-Volterra framework (Lotka 1925;
Volterra 1926), bioenergetic consumer-resource models (Williams & Martinez 2004;
Yodzis & Innes 1992) such as the Allometric Trophic Network model (Berlow et al.
2009; Brose et al. 2006) (See SI Box 1), and other models developed for specific types of
systems (e.g., Valdovinos et al. 2013 for plant-pollinator networks and Christensen &
Walters 2004 for exploited aquatic ecosystems). Dynamic models have been used to
predict the consequences of species invasions (Baiser et al. 2010; Lurgi 2014; Romanuk
et al. 2009; Romanuk et al. 2017; Valdovinos et al. 2018) and intentional introductions
(Baker et al. 2019; Peterson & Bode 2020; Peterson et al. 2021). Different dynamic
models make different assumptions about systems and thus have advantages and
limitations. So, a challenge is deciding what level of complexity is appropriate for a

model and what reasonable ranges of parameters should be explored to match a real-
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world system (Cao et al. 2017; Geary et al. 2020; Martin et al. 2018; Spence et al. 2017).
Ensemble techniques in which outcomes are evaluated from several dynamic models or
different parameterizations of the same model can be a useful way to account for this
uncertainty (Geary et al. 2020; Peterson & Bode 2020; Peterson et al. 2021; Spence et al.
2017).

Although not commonly done, dynamic models can also be used to forecast
changes in ecosystem services following a species introduction (Fig. 3). If ecosystem
services are included as nodes in an ecological network, one can map the populations or
biomasses of connected species to the strength of that service (Dee et al. 2017a). A
challenge, however, is specifying the dynamic relationships between species and services
(Dee et al 2017; Rieb et al. 2017).

Step 4 produces predictions for how plausible changes in network structure after a
species introduction will impact the populations or overall biomasses of species in the

recipient network and ecosystem services.

Step 5: Evaluate consequences for multiple management objectives and their trade-offs

under uncertainty

Predictions of a range of potential impacts to population dynamics using the quantitative
techniques in Step 4 can feed into a structured decision-making process. Structured
decision-making is a framework used in conservation to facilitate logical and transparent
decision-making by incorporating the values, objectives, and knowledge of stakeholders
(Addison et al. 2013; Conroy & Peterson 2013; Gregory et al. 2012), including from local

communities and indigenous groups (Rudd et al. 2021). Intentional species introductions
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are expensive endeavors and assisted migrations may be unappealing due to the risk of
failure or risks to resident species. Similarly, interventions to prevent unintentional
species introductions carry high management costs and risks of damages to public
perception (Diagne et al. 2021). Comparing management alternatives and taking
uncertainty in predictions into account before acting can increase the likelihood that
interventions meet management goals and avoid unintended consequences (Polasky et al.

2011).
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%

FOOD

e
~ P

—_
(g)
~—

BIOMASS

TIME
(d)

FOOD

] cHANGE

BIOMASS :T‘fﬁ:/g,

Figure 3. Predicting the change in ecosystem services using dynamic models.
Ecosystem services (e.g., food production) can be incorporated into dynamic simulations
by (a) including the ecosystem service node in the recipient ecosystem network by
identifying which species contribute to that service and (b) fixing a relationship between
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the total biomass of the ecosystem service providing species and the amount of the
ecosystem service. In our demonstration we chose a simple linear relationship with slope
0.5 that might be characteristic of a provisioning service. Then, (c) the population
dynamics for all species are simulated and (d) the change in total biomass of the
ecosystem service providing species can be used to estimate the change in ecosystem
service amount under population dynamics.

There are many tools for evaluating and comparing alternative management
actions to support structured decision-making including optimization and multi-criteria
decision analysis (Lester et al. 2013; Polasky et al. 2011; White et al. 2012). The most
appropriate approach will depend on the decision context, like whether there are multiple
or single objectives, one-time or sequential decisions, and whether outcomes can be
expressed in monetary terms. For example, putting some objectives such as the benefits
of conserving species and reducing extinction risk in monetary terms is unethical. In
these cases, options like cost effectiveness analysis may be preferable approaches and
have been used in a variety of contexts (e.g., Gerbert et al. 2018; Joseph et al. 2009).
When multiple objectives are important and may pose trade-offs, other techniques like
multi-criteria decision analyses or trade-off analyses can be considered (Halpern et al.
2013; Lester et al. 2013; Polasky et al. 2008). Similarly, there are a suite of tools for
analyzing decisions under uncertainty and imperfect information (Canessa et al. 2015;

Marescot et al. 2013; Memarzadeh & Boettiger 2018; Moore & Runge 2012; Polasky et

al. 2011).

Step 6: Improve future predictions

After a decision is made, the system can be monitored to test and explore
predictions and update future predictions using an adaptive management approach

(Parma et al. 1998; Walters 1986; Williams 2011; Williams & Brown 2018). In adaptive
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management, the system is monitored after an action is taken (e.g., an introduction has
occurred) to update model assumptions and therefore future management
recommendations (Williams 2011;Williams & Brown 2018). The same monitoring data
can be used to assess the accuracy of predictions from ecological forecasts and allow for
improvement of ecological theory (Lewis et al. 2022). As systems are monitored over
time, time series datasets are produced, opening opportunities for further refinement of
models for ecological forecasting by applying approaches such as empirical dynamic
modeling (Daugaard et al. 2022; Johnson et al. 2021, Ye et al. 2015). Monitoring systems
to test and improve predictions after structured decision making thus provides an
opportunity to iterate between forward and reverse engineering of dynamic models for

ecosystems (Martin et al. 2018).

Demonstrating our framework

We demonstrate the application of this framework via a hypothetical example of
assisted migration involving a decision in a data-poor context of whether to introduce two
threatened species into an existing ecosystem. Rather than analyzing a specific system,
we chose to use common theoretical approaches for modeling ecosystems to provide a
general illustration of how the framework can produce actionable insights. We chose to
investigate a scenario in which one of the introduced species occupies an intermediate
trophic level and the other is a top predator. We therefore have four choices of
management alternatives — to introduce: neither species, both species, only the

intermediate species, or only the top predator species.
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Application of Step 1: Define objectives

First, we define our management objectives: to maximize the amount of each
introduced species, to maximize the recipient ecosystem’s biodiversity, and to ensure the
continuity of an ecosystem service supported by the recipient ecosystem. For each, we
define quantitative metrics that can be predicted after the species introduction using
simulations: the final biomass of the intermediate species, the final biomass of the top
predator species, the fraction of resident species remaining in the ecosystem, and the final

ecosystem service amount under different introduction alternatives.

Application of Step 2: Identify introduced species

In this hypothetical example of assisted migration, we do not need to forecast
which species will be introduced because the species have been chosen intentionally due
to their threatened status, and likely compatibility with the recipient ecosystem. For
example, in a multi-species assisted migration project in Western Australia, the
endangered Shark Bay bandicoot (Perameles bougainville) was selected to be

translocated to an island refuge just beyond its current distribution (Peterson et al. 2021).

Application of Step 3: Predict interactions

We next predict how the introduced species will interact with species in the
recipient ecosystem and contribute to ecosystem services. We follow the modeling
approach for simulating species introductions used in Romanuk et al. (2009), Romanuk et
al. (2017), and Lurgi et al. (2014). We generate 37 biologically plausible networks

representing the recipient ecosystem using the niche model (see SI Box 1; Williams &
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Martinez 2000). For demonstration purposes, we explore a case in which there is
considerable uncertainty in the interactions of the two introduced species with species in
the recipient network. We assume the intermediate species has a niche parameter between
0.4 and 0.6 and that the top predator has a niche parameter between 0.8 and 1 (SI Fig.
12). We generate 5 evenly spaced possible niche parameters for each of the two
introduced species in these respective ranges. For each possible niche parameter, we
explore a small, medium, and large feeding range as well as a low, middle, and high
center of the feeding range (i.e. 5x3x3 = 45 possible niche model parameter sets for each
introduced species, see SI Box 1; Williams & Martinez 2000).

We predict interactions of the introduced species based on the niche model rules,
so the introduced species eats resident species falling into its feeding range and is eaten
by those resident species whose feeding ranges it falls into (see SI Box 1 for details). This
produces 45 possible interaction networks shortly after introduction for each of the 37
networks for each of the two alternatives in which species are introduced into each
network alone. When species are introduced together, rather than considering 5 evenly
spaced niche model parameters for the two species, we consider possibilities based on
only 3 each (i.e., 3x3x3=27 niche model parameter sets for each introduced species,
reducing the simulations per network to 27°2=729 rather than 45°2=2,025, and the
overall computational time from the order of days to hours).

In total, we consider 30,340 total network structures shortly after introduction (45
for the intermediate species, 45 for the top predator species, 729 for both species, and 1
without an introduction, for each of the 37 networks, SI Table 1). For prediction in real-

world contexts, one could use species trait data from the recipient ecosystem to establish
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a relationship between species traits (e.g., body size) and niche parameter values (e.g., as
in Gravel et al. 2013, and see Rohr et al. 2016 for a similar approach based on relating
traits to latent matching and centrality parameters).

We assume that all basal species (those with only predators and no prey) in the
ecosystem directly contribute to a hypothetical ecosystem service of interest; such a
relationship might be reflective of services provided by plants, such as carbon storage and
sequestration, forage production for livestock, or riverbank stabilization (Calvo-
Rodriguez et al. 2017; Zhao et al. 2020). We also assume that neither of the introduced
species directly contributes to the basal-provided ecosystem service considered (Mace et
al. 2012). We also investigated how results would change if the ecosystem service was
provided by a single basal species (i.e., that provides a specialized function), rather than

all basal species.

Application of Step 4: Simulate dynamics and consequences of new interactions

Next, we predict the impact of introducing species on population dynamics using
the Allometric Trophic Network model (Martinez 2020; Williams & Martinez 2004;
Yodzis & Innes 1992). To facilitate decision making under uncertainty, we suggest that
outcomes from a wide range of feasible dynamic models are evaluated. In our
demonstration, we include within the scope of feasible models Allometric Trophic
Network models parameterized with the species interaction network structures produced
from Step 3 and with reasonable parameter values based on empirical measurements (see
SI Box 1; Brose et al. 2005; Brose et al. 2006; Romanuk et al. 2009; Yodzis & Innes

1992). This is a simplifying choice, and outcomes from additional dynamic models (e.g.,
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Lotka-Volterra models or other parameterizations of the Allometric Trophic Network
model) could also be considered simultaneously. We run dynamics for 2000 timesteps
after the system has reached equilibrium under the four alternatives.

To track the consequences for ecosystem services, we assume that there is a linear
relationship between the total biomass of the ecosystem service providing species and the
amount of the ecosystem service provided (Fig. 3). For example, the nitrogen transport
amount in a system might be linearly linked to the population abundance of specific bird
species (Gaston et al. 2018). However, we recognize that contributions to ecosystem
service may not always increase linearly or positively with a species’ biomass or
abundance (see Dee et al. 2019), and the framework allows for more complex functional
forms linking the biomasses of species to the amount of an ecosystem service provided.
The output of Step 4 is the final biomasses for each species and final ecosystem service

amount after running population dynamics for each of the plausible network structures.

Application of Step 5: Assess trade-offs under uncertainty and identify strategies that

avoid worst-case scenarios

Finally, we compare the four alternative actions based on the indicators of our
objectives from Step 1. We illustrate Step 5 by applying trade-off analyses from
economic decision theory, which is gaining use in conservation (Lester et al. 2013;
Polasky et al. 2008), to evaluate the four alternatives given uncertainty over the
introduced species niche model parameters and the recipient network structure. Trade-off
analysis is a technique for transparent decision-making between management options

under multiple objectives. Trade-off analysis identifies Pareto-optimal planning options
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(i.e., the efficiency frontier), or those in which no objective can be improved without
decreasing another. Importantly, trade-off analysis also reveals suboptimal options (see

Box 1 for details on Trade-off analysis).

Box 1. A summary of trade-off analysis and Pareto-optimality

Conservation often involves multiple, sometimes competing, management
objectives. Trade-off analysis is a technique for transparent decision-making for multiple
objectives (Cabral et al. 2016; Lester et al. 2013; Posalsky et al. 2008; White et al. 2012).
The application of trade-off analysis involves mapping projected outcomes for each
objective that will arise from a particular set of management actions onto an n-
dimensional space, where each of the axes measures the amount of a particular objective
in any relevant unit for that objective (well-defined market values in monetary terms are
not necessary; see Polasky et al. 2008). For example, trade-off analysis has previously
been applied in marine spatial planning that aims to achieve fisheries yield, energy
production, and recreation in the form of whale watching (White et al. 2012) and for
balancing trade-offs among social equity, conservation, and economic yield (Halpern et
al. 2013).

Trade-off analysis generates a “cloud” of outcomes in the multidimensional space
created by metrics corresponding to multiple management objectives, where each point
represents the level of an objective (e.g., service amount or population size of a
threatened species) provided under a given management option. The shape of the ensuing
cloud of management outcomes provides three important insights for elucidating and
evaluating potential trade-offs (de Groot et al. 2010). First, it defines the range of best
possible planning options — known as the efficiency frontier — where the Pareto-optimal
alternatives lie on the outer perimeter of the cloud of outcomes. Pareto-optimal
alternatives are those in which no objective can be improved without decreasing another.
Therefore, the efficiency frontier represents the best possible outcomes for objectives
given multiple management alternatives. However, which outcome on the efficiency
frontier is best ultimately depends on how stakeholders weigh and value the different
objectives. Second, trade-off analysis identifies suboptimal options, which are all the
points interior to the efficiency frontier. Finally, it visualizes interactions among
objectives (i.e., do inherent trade-offs exist or not?). The process of visualizing and
communicating outcomes from different management alternatives can help surface
underlying conflicts amongst decision makers, facilitate deliberations, and help find
common ground.

Recent work has demonstrated that trade-off analysis for conservation decision-
making can also incorporate uncertainty in outcomes (Cabral et al. 2016). Cabral et al.
(2016) show how exposing uncertainty in trade-off analysis can reveal cases in which
risk averse decision-makers might choose a more certain suboptimal strategy over an
uncertain Pareto-optimal one.

In our case, we assess trade-offs arising from our species’ introduction

management alternatives between: the final biomass of the intermediate species, the final
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biomass of the top predator species, the fraction of resident species remaining in the
ecosystem, and the final ecosystem service amount. We use the mean outcomes across
simulations within each network to identify suboptimal and Pareto-optimal strategies and

plot a plausible efficiency frontier based on each pair of metrics (Fig. 4).

Within one network (variation in niche parameters)
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Figure 4. The process used for constructing summary trade-off plots shown in Fig.
5. The first row (subplots a and b) shows the trade-offs for a single network between one
pair of metrics, the intermediate species final biomass vs. the fraction resident species
remaining. These trade-offs are evaluated for a single network for four management
options: introducing both species, introducing just the intermediate species, introducing
just the top species, and no introduction. In subplot (a) the full range of simulation
outcomes for this single network are plotted for the pair of metrics, with uncertainty due
to variation in niche model parameters of the introduced species. In subplot (b), only the
mean results for this network are plotted for each management option, along with the
interquartile ranges. Pareto-optimal and suboptimal management options are calculated
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based on these means for the pair of metrics, and a plausible efficiency frontier is plotted.
In the second row (subplots ¢ and d), the mean outcomes are plotted for all 37 of the
networks that we evaluated for these two metrics, with uncertainty due to recipient
network structure. The outcomes for the network shown in subplots (a) and (b) are circled
for demonstration and the Pareto-optimal strategies are bolded. In subplot (d) the Pareto-
optimal strategies are counted across the networks evaluated, to demonstrate how
variation in recipient network structure impacts the optimal decisions for this pair of
metrics. A full set of trade-off plots showing all two-way metric combinations for an
example network is provided in the Supporting Information (SI Fig. 5 and SI Fig. 6).

We also compare this approach to a less conservative approach to decision-
making based on the median outcome metrics and to a highly conservative approach to
decision-making under uncertainty based on the worst possible, rather than mean,
outcomes under each management alternative (i.e., using the maxi-min objective, see

Polasky et al. 2011).

Application of Step 6: Testing predicted outcomes

Given the results of the trade-off analysis and relative weighting of objectives, we
assume a decision would be made to introduce both threatened species. After this
introduction, data could be collected on the final biomasses of the introduced species and
impacts to the ecosystem services and biodiversity of the recipient ecosystem. These
values could be compared to the range of predicted outcomes to evaluate the applicability

of the assumptions used for predictive modeling.

Results

Choosing the best strategy balancing multiple objectives

Our results provide general heuristics that can guide conservation decision-making

under high uncertainty in recipient network structure and the interactions of the introduced
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672  species by considering Pareto-optimal strategies in aggregate across all plausible networks

673  (as shown in Fig. 5).
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676  Figure 5. Trade-off plots for every pair of outcome metrics across the 37 networks
677 and four management strategies evaluated. The means in outcome metrics across
678  simulation runs are used to summarize for the management alternatives involving

679  introductions (the process of constructing these plots is shown in Fig. 4). The counts of
680  Pareto-optimal management strategies across networks are tallied to the right of each
681  summary plot for each pair of metrics to elucidate trends in results across different

682  recipient ecosystem network structures. After a decision is made, in this case to introduce
683  both species, the outcomes for the metrics observed from monitoring data can be

684  compared to the mean outcomes from the simulations to potentially adjust and improve
685 future predictions for the ecosystem (Step 6). To illustrate Step 6, we include example
686  outcomes observed from monitoring data as stars.
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Any introduction option involves risk to resident species biodiversity and
ecosystem services compared to no introduction (Fig. 6b, 6¢, 6¢). The introduced top
predator species generally establishes with a higher mean final biomass than the introduced
intermediate species across networks (in alignment with previous results, e.g., Galiana et
al. 2014; Romanuk et al. 2009) and has on average more negative and more variable
impacts on the ecosystem service amount (Fig 6). If the ecosystem service is assumed to
be provided by only one basal species rather than all basal species, the top predator
introduction still tends to have a more negative impact to services; however, across
management options there is more variability in whether the ecosystem service amount
increases or decreases after an introduction (or, shows directional indeterminacy, see
Yodzis 1988, Fig. 6f). Occasional positive impacts to ecosystem services were due to
indirect effects from the introduction in which intermediate species decreased in biomass
after an introduction, thus reducing pressure on basal species and allowing basal species
biomass to increase (SI Fig. 2). These results are laid out in detail in SI Box 2.

Considering trade-offs between the final biomasses of both introduced species, all
three of the introduction alternatives are often Pareto-optimal across the networks, with
introducing both species being Pareto-optimal the most often (Fig. 5a). However, in order
to maximize resident species biodiversity and ecosystem service values, introducing just
one species or none tends to be favorable (Fig. 5b, 5c, 5d, Se). Finally, if we only consider

the outcomes for resident species biodiversity and ecosystem service values, refraining
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from introducing either species tends to be a Pareto-optimal strategy for reducing risk to

resident biodiversity and ecosystem services (Fig. 5f).
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Figure 6. Results for the four metrics corresponding to management objectives
under four management alternatives. Results for the four metrics (a: Intermediate
Species Final Biomass & Top Species Final Biomass, b: Fraction Resident Species
Remaining, c: Final Ecosystem Service Amount) evaluated in the trade-off plots are
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summarized across the 37 networks for each of the four management alternatives to show
general patterns across networks as well as between-network variability in outcomes. For
the three management alternatives involving introductions the mean results used in the
trade-off plots are summarized (median results are shown in SI Fig. 3). Aggregate results
are also shown in subplot (d) for if the ecosystem service was presumed to be provided
by one basal species rather than all basal species. To produce the results shown in subplot
(d), for each network, the final ecosystem service amount was calculated assuming the
ecosystem service was provided by each basal species in the network rather than all basal
species (one data point per management alternative, network, and basal species in that
network). Subplot (e) shows the change in final ecosystem service amount after an
introduction under each management alternative and subplot (f) summarizes this same
value when the ecosystem service is provided by a single basal species in the network.
One outlier network with a large change in ecosystem service amount was removed from
subplot (e) for clarity (full subplot shown in SI Fig. 7).

We also explore results using medians of the outcome metrics (SI Fig. 3), which
is a less conservative approach, as rare, extreme negative outcomes from introductions
have less impact on the Pareto-optimal strategies. The primary difference in these results
is that introducing neither species is Pareto-optimal less often. Finally, we also consider a
decision-making context using the more conservative maxi-min criteria (Fig. 7). Under
the maxi-min objective, decision-makers choose the alternative with the best worst
outcome (see SI Fig. 4, Polasky et al. 2011). Using the maxi-min decision criteria, the
results generally suggest that it is best to pursue no introduction due to the risks of

negative impacts to resident biodiversity and ecosystem services.

Sensitivity of results to uncertainty identifies when more information is needed

Producing a range of outcomes under uncertainty also allows us to identify when
results are most sensitive to uncertainty in the recipient network structure and interactions
of the introduced species. This could suggest when it is most important to collect more
data to resolve uncertainty in assessment of management options. Not all 37 network

structures produce the same results for Pareto-optimal strategies considering each pair of
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metrics (Fig. 5). Notably, the top predator, introduced independently or together with the
intermediate species, shows more between-network variability in establishment success
and impacts (Fig. 6a, 6b, 6¢). This sensitivity suggests that it may be more important to

resolve recipient network structure when evaluating risks for a top predator introduction.

Worst outcomes and maxi-min decisions across networks
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Figure 7. Worst-case plots for every pair of outcome metrics across the 37 networks
and four management strategies evaluated. We compute the worst outcome by
normalizing the range of the axes to [0,1] and measuring the Euclidean distance of each
outcome to the origin. Outcomes closest to the origin are considered the worst and maxi-
min decisions are the options with worst outcomes furthest from the origin. The counts of
maxi-min decisions are tallied in summary plots to the right of the plots for each pair of
metrics to elucidate trends across different network structures characterizing the recipient
ecosystem.
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For ecosystem services, the importance of reducing uncertainty in the recipient
network structure depends on the assumptions about how species provide services (Fig.
6c¢, 6d, 6e, 6f). When all basal species provide a service the results are more directionally
consistent than when one basal species provides a service (Fig. 6e, 6f). One species
providing a service might realistically be the case for some regulating or provisioning
services (e.g., for rare species, see Dee et al. 2019), and in these cases reducing
uncertainty in network structure would be more important before decision-making.

Additionally, we observed within-network variability in results based on the
uncertainty in plausible niche parameters, and thus the novel interactions, of the
introduced species (Fig. 8). The final introduced species biomasses showed more within-
network variability than the other metrics. The intermediate species showed more within-
network variability in establishment success than the top predator species (Fig. 8a), while
the top predator species showed more within-network variability in impact to resident
species biodiversity and ecosystem services than the intermediate species (Fig. 7b, 7¢).
The impact to ecosystem services had higher within-network variability when the
ecosystem service was provided by one basal species rather than all basal species (Fig.

8d).

Monitoring the system and improving future predictions

Examples of true outcomes after choosing to introduce two species are visualized
on the plots in Fig. 5. In an adaptive management approach, we can use these observed
outcomes to adjust assumptions for future decision making, for example by putting more
weight on the network structures that produced predictions closer to the observed

outcomes when summarizing simulation results. With the observed outcomes displayed
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in Fig. 5, we might now assume that there is less risk to resident species biodiversity and
basal-provided ecosystem services under species introductions than previously thought. If
one observes that outcomes are outside of the range of predictions for the management
option chosen, then the underlying modeling assumptions must be revisited for future
decision-making. Other models could be compared to see if they provide predictions that
align with observations (e.g., providing an opportunity to test ecological theory as in
Lewis et al. 2022) or, once sufficient time series data is collected, dynamic models could

be reverse engineered (Martin et al. 2018).
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Figure 8. Relative standard deviation of results within each network across
uncertainty in introduced species niche model parameters. The relative standard
deviation in results across simulations within a network for each of the four metrics used
in the trade-off plots (a: Intermediate Species Final Biomass & Top Species Final
Biomass, b: Fraction Resident Species Remaining, c: Final Ecosystem Service Amount)
and three management alternatives involving introductions are summarized across the 37
networks to reveal general patterns related to within-network variability in outcomes.
Higher relative standard deviations indicate that the results for this metric across
simulations within a network are more spread out from the mean. In subplot (d), the
relative standard deviation is also shown for when a single basal species provides the
ecosystem service.
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Discussion

Species introductions are increasing, from shifts in distributions due to climate
change (Wallingford et al. 2020), intentional movement of species by humans for
conservation (Peterson & Bode 2021), and invasions facilitated by human activities
(David et al. 2017), posing risks for resident biodiversity (Mollot et al. 2017) and
ecosystem services (Pejchar & Mooney 2009; Vila & Hulme 2017) that are challenging
to predict and mitigate. In response, we have synthesized prior work to suggest a
framework for predicting and managing species introductions into existing communities
of interacting species. This framework synthesizes literature from invasion biology and
network ecology (e.g., Hui & Richardson 2019; Hui & Richardson 2022; Romanuk et al.
2009; Romanuk et al. 2017) with literature from conservation and management (e.g.,
Bullock et al. 2011; Dee et al. 2017b; Harvey et al. 2017; Tylianakis et al. 2010),
describing a theoretically grounded process to assist in applied ecological decision-
making (Possingham et al. 2000) under unavoidable uncertainty surrounding global
change.

We demonstrate how this framework can be applied using a theoretical case study
of assisted migration, yet the potential applications are much broader (Table 1). This
framework could be applied in future work for other intentional species introductions,
such as species introductions for biological control, restoration, agriculture, or
aquaculture. It could also help inform actions to prevent unintentional species invasions
by considering trade-offs between likely impacts of an invasion and the cost, effort, and
potential effects of mitigation strategies. Our illustrative application of the framework

produces general heuristics to guide management but also makes many assumptions,
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including that trophic interactions determine ecosystem dynamics (see SI Box 1) and that

one does not need to consider the order of species introductions (Armstrong & Seddon

2007). Future applications of our predictive framework need not follow these

assumptions, and, for instance, could use alternative techniques for novel interaction

prediction (e.g., following Rohr et al. 2016) or dynamic modeling (e.g., Lotka-Volterra

models, Lotka 1925; Volterra 1926), or also include predictions based on a different

approach, such as neutral theory (Hubbell 2005). This framework could also be expanded

and more broadly applied to additional types of disturbances such as species removals or

landscape change.

Table 1. Examples of other potential applications of our framework. Case studies
involving species introductions and various management objectives to illustrate other
contexts in which this framework could be applied.

Decision Example Case Objectives References
context
Dung beetles are commonly
introduced because they can provide a
variety of ecosystem services. In New Maximize
Introduce a Zea}land, the addition of new, non- ecosystem .
native dung beetles to livestock farms services Forgie et al. (2018)

species for
ecosystem
services

resulted in a significant decrease of
run-off and sediment in run-off
following rainfall events; and dung
beetles reduced the number of
parasitic larvae that infect grazing
animals.

Minimize risk
to native
biodiversity

Brown et al. (2010)
Sands & Wall (2016)

Introduce a
species to
maintain or
restore
biodiversity

Opyster reefs are considered one of the
most vulnerable coastal ecosystems in
the United States Atlantic and Gulf
Coasts. Restoration of these
ecosystems, i.e., reintroducing native
oysters to areas that previously hosted
them, is commonly considered as a
way to both restore oyster populations
and reestablish lost biodiversity. In
Mosquito Lagoon, FL, United States,
sites with oyster restoration showed an

Increase the
population of
a species in
decline

Maximize
biodiversity
(e.g., species

richness)/Mini
mize risk to

Barber et al. (2010)
Lown et al. (2021)
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39

increase in animal biodiversity
(number of species) compared to sites
without oysters.

native
biodiversity

Introduce a

Bull trout (Salvelinus confluentus) are
threatened by warming waters and
invasive lake trout (Salvelinus
namaycush). In Glacier National Park,

Increase the
population of
a species in
decline from

threatened | US, biologists are moving bull trout .
) . ) . climate
species for | from their native range into lakes at chanee Karasov-Olson et al.
conservatio | higher elevations with more suitable & (2021)
n conditions and where they no longer C
- : Minimize risk
need to compete with invasive lake :
to native
trout for food resources such as biodiversit
invertebrates and other fish. Y
The zebra mussel (Dreissena
polymorpha) is an invasive species
that has spread throughout United
States waterways including the Great Minimize
Lakes. Zebra mussels can have invasion
detrimental impacts on recipient establishment
Prevent or . . .
slow future ecosystems, including drastic Ashander et al.
cedicted ” | decreases in zooplankton which Minimize risk (2022)
P s indirectly impacts larval and juvenile to native Bossenbroek et al.
introduction . . . )
. . fish populations. However, controlling | biodiversity (2007)
of invasive . .
) established zebra mussel populations
species . . : o
is costly and time consuming. There Minimize
are a variety of strategies that have management
been deployed to slow the future costs
spread of this mussel species,
including boat inspections and bait
regulations.
Mobile fish species in marine habitats
are able to evade the most severe
Mitigate effe.:cts. of .chrr.late change by shifting
. their distribution when seeking e
impacts of . . Minimize risk
slow future suitable thermal habitats. However, t0 native
redicted > | this shift in their ranges can result in biodiversit Kleisner et al. (2017)
P . changes to food webs, increased y Selden et al. (2018)
introduction . : .
. competition for prey species, and . Palacios-Abrantes et
of species T . Minimize
present complications in managing al. (2020)
duetoa . . management
. species whose ranges shift to new
range shift costs

jurisdictions. For example, the
Atlantic Cod (Gadus morhua) is
culturally and economically crucial
species in North Atlantic fisheries,
though its optimal thermal habitat is
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shifting into waters beyond the US
EEZ into Canadian jurisdiction.

One limitation to using this framework in practice is low availability of data in
many applied settings. Missing species interaction, trait, and abundance data can interfere
with novel interaction prediction in Step 3 and parameterizing dynamic model
simulations in Step 4. Species interaction data can be collected in a variety of ways, such
as direct observation of interactions or stable isotope analysis of feces (Delmas et al.
2019; Kamenova et al. 2017; Vacher et al. 2016). Species interaction network structure
can also be inferred based on patterns of species co-occurrence, though methodological
limitations have been noted for this common approach, for example noting that species
co-occurrence can be caused by abiotic factors unrelated to interaction (Barner et al.
2018; Blanchet et al. 2020; Connor et al. 2017; Ladau 2008). These processes are labor-
intensive and further work is needed to develop methods to efficiently construct
ecological networks at scale (Bohan et al. 2017; Kamenova et al. 2017; Stock et al. 2017;
Terry & Lewis 2020).

Our results align with previous results (e.g., Yodzis 1988) showing that impacts
of perturbations on species-level metrics, in our case ecosystem services provided by
basal species, are not always directionally consistent under reasonable uncertainty in
species interactions (but see Iles & Novak 2016). However, precisely predicting
dynamics of an ecosystem and producing predictions useful for decision-making under
uncertainty are not equivalent aims (Adams et al. 2020). Even uncertain predictions can

prove useful for comparing likely realities with or without an intervention (Adams et al.
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2020; Possingham et al. 2000), understanding the risks of undesirable outcomes (Adams
et al. 2020; Regan et al. 2005; Tunney et al. 2017), and identifying when to collect more
data before making a decision (but also see more formal Value of Information
approaches, Canessa et al. 2015; Xiao et al. 2019). Here, we show that currently available
tools for ecological forecasting can be used to produce a range of predictions useful for
some decision-making contexts.

Species introductions provide natural experiments that can provide insights for
basic ecological research (Sax et al. 2007). Further, intentional species introductions
through management are happening around the world and provide underutilized
opportunities for testing dynamic population models by collecting data before and after
the introduction, after allowing adequate time for introduced species to potentially
establish. Applying this framework provides an opportunity to test ecological theory and
further investigate the fundamental predictability of ecosystem dynamics by taking
advantage of applied management contexts. 4 priori predictions before decision-making
allow both for more transparent consideration of trade-offs as well as development of
knowledge about a system over time through adaptive management.

Our synthesis also suggests other fruitful avenues for future work. Our results
demonstrate that assumptions about the novel interactions of an introduced species (e.g.
approximate trophic level, generality) can influence the range of outcomes expected after
introduction, and thus call for further methodological development for predicting the
novel interactions of introduced species in ecosystems and theoretical investigation of
how introduced species properties relate to expected biodiversity and ecosystem service

outcomes. Our results also demonstrate sensitivity of results to assumptions about which
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species provide ecosystem services in recipient ecosystems (Fig. 6), and thus suggest
further integration of ecosystem services into empirical ecological networks. While we
focus on a simple linear relationship between basal species and an ecosystem service
amount, future work can also further explore the potentially non-linear functional
relationship between species biomass and the amounts of multiple ecosystem services
provided by an ecosystem (e.g., Dee et al. 2017a; Gaston et al. 2019; Manning et al.

2018).

Conclusions

We synthesize literature into a decision-making framework for species
introductions under multiple conservation objectives and uncertainty in species
interactions. We show how this framework can be used to produce a range of predictions
useful for decision making in a theoretical high-stakes case study of assisted migration.
This framework, which combines ecological network theory with approaches from
decision science, can be used to reveal trade-offs among objectives, avoid decisions that
can lead to worst-case scenarios, suggest cases in which it is more important to reduce
uncertainty before decision-making, and allow for continual learning about the system in

a process of adaptive management.
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