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ABSTRACT. For a pseudo-Anosov flow ¢ without perfect fits on a closed 3-manifold, Agol—
Guéritaud produce a veering triangulation 7 on the manifold M obtained by deleting ¢’s
singular orbits. We show that 7 can be realized in M so that its 2-skeleton is positively
transverse to ¢, and that the combinatorially defined flow graph ® embedded in M uniformly
codes ¢’s orbits in a precise sense. Together with these facts we use a modified version of
the veering polynomial, previously introduced by the authors, to compute the growth rates
of ’s closed orbits after cutting M along certain transverse surfaces, thereby generalizing
work of McMullen in the fibered setting. These results are new even in the case where the
transverse surface represents a class in the boundary of a fibered cone of M.

Our work can be used to study the flow ¢ on the original closed manifold. Applications
include counting growth rates of closed orbits after cutting along closed transverse surfaces,
defining a continuous, convex entropy function on the ‘positive’ cone in H' of the cut-
open manifold, and answering a question of Leininger about the closure of the set of all
stretch factors arising as monodromies within a single fibered cone of a 3-manifold. This
last application connects to the study of endperiodic automorphisms of infinite-type surfaces
and the growth rates of their periodic points.
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1. INTRODUCTION

In this paper we address the following family of questions which relate dynamics to topology
for a pseudo-Anosov flow ¢ in a 3-manifold. Given a properly embedded surface S which
is positively transverse to ¢, one can attempt to count orbits with respect to intersection
number with S. That is, one can consider the growth rate

gr,(S) = lim #{y:y-5 < L}V/F
L—o0
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where ~ varies over closed orbits of . If S is a cross section of ¢ (that is, S intersects
every flow line) then ¢ is the suspension flow of a fibration with fiber S, and gr,(S) is the
Teichmdiller dilatation of the monodromy map (its logarithm is the entropy). If S is not
a cross section then this growth rate is oo, but we can interrogate the finer structure of
¢ by considering ¢|S, the flow restricted to the complement of S. Growth rates of closed
orbits in ¢|S can be counted with respect to their intersection with transverse surfaces in
the complement of S, or more generally with respect to cohomology classes positive on the
closed orbits of ¢lS.

Our main tool for studying these questions is the veering triangulation of Agol-Guéritaud,
which is a canonical ideal triangulation associated to a pseudo-Anosov flow without perfect
fits (see Section 4 for details on this condition and the Agol-Guéritaud construction). In
previous work [LMT20] we associated to such a triangulation an invariant called the veering
polynomial, and a transverse graph called the flow graph. In this paper we will show that the
triangulation parameterizes transverse surfaces, the flow graph gives an explicit coding for the
flow, and the polynomial computes the growth rates.

In the case of a fibered manifold with pseudo-Anosov monodromy, the veering polynomial
recovers McMullen’s Teichmiiller polynomial, and the growth rates correspond to Teichmiiller
dilatations in the fibered cone of Thurston’s norm on homology. But even in this case we
obtain some new information on the behavior of these dilatations — see Theorem E below.

What arises from this, we hope, is evidence that the veering triangulation is an effective
combinatorial tool for studying pseudo-Anosov flows, providing as it does an explicit coding
which is sensitive simultaneously to the dynamics of the flow and the topology of the 3-
manifold.

1.1. Growth rates. To summarize our results we introduce the terminology in more detail.
Let M be a closed oriented 3-manifold and let ¢ be a pseudo-Anosov flow on M without
perfect fits (see Section 4). We assume throughout that ¢ has at least one singular orbit;
that is, ¢ is not Anosov. Let M denote M minus the singular orbits of ¢. Let 7 be the veering
triangulation of M dual to ¢ furnished by the Agol-Guéritaud construction (Theorem 4.7).

The 2-skeleton 7(2) has the structure of an oriented branched surface and we can consider
surfaces S carried by it. For such a surface let M|S denote M cut along S, and let ¢|S
denote the restricted flow in M|S, which is a semiflow in the sense of Fenley-Mosher [FMO1].
Assume for simplicity that S, and hence M|S, is connected.

Let O, denote the closed orbits of ¢ and O[S those closed orbits that avoid S. We say
that a cohomology class £ € H'(M|S) is positive if it is positive on orbits in Oy|S as well
as on certain peripheral “prong curves” corresponding to the removed singular orbits (see
Section 7 for details).

The veering polynomial V; previously defined in [LMT20] is an element of the group ring
Z[H(M;Z)/torsion]. We will define an adapted polynomial Vg in Z[H1(M|S;Z)/torsion],
morally obtained by deleting certain terms from V; (see Section 7.4 for the precise definition).
A positive class & € HY(M]S) gives rise to a specialization Vf‘ g(u) in the sense of McMullen
(see Section 2.3), which is a single variable polynomial-like expression. Our main theorem
about growth rates is the following.

Theorem A (Growth rates of closed orbits). Let S be a connected surface carried by T(2).
Then for any positive class € € H'(M|S), the growth rate

(L.1) gryi5(6) = lim #{y€ O[S :£(7) < L}
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exists and is equal to the reciprocal of the smallest positive root of the specialization Vj‘ S(u)
of the veering polynomial at &.

Moreover, ngS(f) > 1 if and only if there are infinitely many closed primitive orbits of
that miss S.

See Theorem 7.2 for the general statement, in particular allowing disconnected S.

Remark 1.1. Using Corollary 9.8 and code written by Parlak, Schleimer, and Segerman
[PSS22], Ross Griebenow has found explicit examples of surfaces S carried by 7(2) missing
infinitely many closed primitive orbits of ¢ [Gri]. Hence, gr g(§) > 1 for such examples by
Theorem A.

In fact, in the forthcoming paper [LMT22] we give a construction which shows that such
examples are plentiful. Starting with a general type of endperiodic map on an infinite-type
surface, we produce a surface S in a fibered manifold M with a pseudo-Anosov suspension flow
¢. The infinite-type surface determines a class £ € H'(M|S), and the growth rate grys(6) is
the ‘stretch factor’ of the original endperiodic map. See Remark 9.9 for some details on the
connection between growth rates and stretch factors. It is then easy to produce endperiodic
maps so that the associated stretch factors are greater than 1.

Let C* be the cone in H'(M]|S) consisting of positive classes. The associated entropy
function is

entyg: C* — [0,00)
& — log(grys(§)),

where gr, ¢ is given by Equation (1.1). The following result, which is a combination of
Theorem 9.1 and Theorem 9.3, establishes the essential properties of the entropy function
on the cone of positive classes. In Section 9.1, we define what it means for the restricted
semiflow to be essentially transitive and refer the reader there for details.

Theorem B (Entropy). The entropy function enty|g: CT —> [0,0) is continuous, convet,
and homogeneous of degree —1.

Moreover, if the semiflow ¢|S is essentially transitive, then entys is real analytic, strictly
convex, and blows up at the boundary of CT.

Throughout this discussion, we have focused on the manifold M. However, much of this
theory extends to study transverse surfaces in the original closed manifold M. See, for
example, Theorem 8.1 which is an analogue of Theorem A for transverse surfaces in M.

1.2. Transversality and coding. Theorems A and B rely on the following results which
connect the flow to the combinatorial structure of 7 and its flow graph.

Theorem C (Transversality). The veering triangulation T dual to ¢ can be realized in M so
that the cooriented branched surface 72 is positively transverse to the flow lines of .

While this transversality is automatic in the setting of a suspension flow, the general case
requires a surprisingly delicate argument. For a more detailed statement, see Theorem 5.1.

One important takeaway from Theorem C is that surfaces that are carried by 7(2), which
are often in plentiful supply, are automatically transverse to the flow ¢. For example, by
Theorem 2.2, any class in H'(M) that is nonnegative on closed positive transversals of (2
is represented by a surface carried by 7 and such classes form the entire cone over a face
of the Thurston norm ball.
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In [LMT20], we used the combinatorial structure of 7 to define a directed graph @, called
the flow graph of 7, and an embedding ¢: & — M which maps edges of ® to arcs that
are positively transverse to 7(2). The next result (which is a summary of facts stated in
Theorem 6.1 and Proposition 6.12) justifies the name flow graph by establishing that ® codes
the orbits of ¢.

Theorem D (Coding ¢ with ®). The map v: ® — M establishes a correspondence between
directed lines in ® and flow lines in M, which is surjective and uniformly bounded-to-one.

Restricting this correspondence to closed directed cycles, we get a one-to-one correspon-
dence with the exception of finitely many orbits and their positive multiples.

In fact, we can say far more about the correspondence between closed directed cycles of ®
and closed orbits of ¢. See Theorem 6.1 for the detailed statement. The upshot is that the
explicit coding of the flow ¢ by the flow graph & allows us to address Theorems A and B
using tools from the study of growth rates of directed cycles of graphs, as in McMullen’s work
on the clique polynomial [McM15].

1.3. Fibered faces and stretch factors. Let us recall some of the theory developed for
fibered manifolds by Thurston [Thu86], Fried [Fri79, Fri82b], and McMullen [McMO00], which
motivates most of our results.

Thurston defined a norm on the vector space H'(M;R) of a 3-manifold whose unit ball
B is a polyhedron, and which organizes the fibrations of M over the circle in the following
sense: Any integral class o € H'(M;Z) which is Poincaré dual to the fiber of a fibration must
appear in the cone R, F on an open top-dimensional face F of B, and moreover all other
integral points of this cone correspond to fibers as well (hence F is called a fibered face, and
« a fibered class).

Further, the suspension flows associated to the various fibers in the cone R F agree, up to
isotopy and reparametrization, and so we identify them with a single circular flow ¢. Here
a flow is circular if it admits a cross section and so is up to reparametrization a suspension
flow.

The orbit growth rate gr,(«) defined above, can also be interpreted as the stretch factor,
or Teichmiiller dilatation, of the return map of the flow to a fiber associated to «. Its
logarithm, the entropy of the return map, extends to a function h,: Ryint(F) — (0,00) that
is continuous, convex, and blows up at the boundary of R, F [Fri82a, Theorem E]. McMullen
extends Fried’s result by showing that h, is additionally real analytic and strictly convex
[McMO00, Corollary 5.4]. To do so, he introduced a new polynomial invariant, called the
Teichmaller polynomial, which both packages growth rates of the flow and detects the fibered
cone R, F in a precise sense. Since McMullen’s work, the Teichmiiller polynomial has become
a central tool in the study of these stretch factors; see e.g. [LM13, Hir10, KKT13, Sunl5].

The veering polynomial is a direct generalization of the Teichmiiller polynomial, with
Theorem A extending McMullen’s theorem on growth rates and Theorem B extending the
theorem on the properties of h,.

Now suppose ¢ is a fibered class, while S is a surface transverse to ¢ which is not a
fiber. Then ¢ pulls back to a positive class in H'(M|S) in the sense of Theorem A, and
8Ty g(&) can be interpreted as both the growth rate with respect to £ of closed orbits of ¢
that miss S (Corollary 9.8) as well as the stretch factor of an endperiodic homeomorphism
of the infinite type surface obtained by ‘spinning’ the fiber representatives of £ around S
(Remark 9.9). In fact, these quantities all arise as accumulation points of the set of stretch
factors of pseudo-Anosov return maps to fibers in R, F.
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To be more precise, let Ap < [1,0) be the set of stretch factors of monodromies associated

to fibers in R, F and let Ag be its closure. Denote by K’F its derived set (i.e. set of limit

points) and set K;H = (AR)’. The following theorem answers a question of Chris Leininger

(see Question 1):

Theorem E (Stretch factors and fibered cones). The stretch factor set Ay is compact, well-
ordered under =, and Ay = {1} for some 1 <n < dim(H'(M;R).

A more detailed statement can be found in Theorem 9.10, including the relation between
limit points of Ay and growth rates of the form gr, g(§).

1.4. Connections to previous and ongoing work. Although Agol and Guéritaud’s con-
struction of a veering triangulation from a pseudo-Anosov flow without perfect fits is un-
published, there are many established connections between veering triangulations and the
topology, geometry, and dynamics of their underlying manifolds. These include links to
pseudo-Anosov stretch factors [Agoll], angle structures [HRST11, FG13], hyperbolic geom-
etry [Guél6, HIS16, FTW20], and the curve complex [MT17, Str18].

More relevant to this paper is the work of Landry [Lanl8, Lan19, Lan20] which studies the
surfaces carried by the underlying 2-skeleton of the veering triangulation. This connects to
our previous work [LMT20] introducing the veering polynomial, relating it to the Teichmiiller
polynomial, and laying the combinatorial groundwork for what is done here (although we
emphasize that this paper can be read independently of the previous). Also, Parlak has
recently introduced and implemented algorithms to compute the veering polynomial and
its relatives [Par20] and demonstrated a connection with the Alexander polynomial [Par21],
thereby generalizing work of McMullen on the Teichmiiller polynomial [McMOO].

Finally, the Agol-Guéritaud construction is expected to be reversible in the sense that a
veering triangulation should determine a pseudo-Anosov flow and the process of going from
one to the other should be inverse operations. Proving this statement is an ongoing program
of Schleimer—Segerman, the first part of which is [SS19] where from a veering triangulation
a combinatorial ‘flow space’ is reconstructed. There is also forthcoming work of Agol-Tsang
[AT21] which produces a pseudo-Anosov flow from a veering triangulation, but without the
claim that it is canonical or that it recovers the original flow if the veering triangulation was
produced by the Agol-Guéritaud construction.

1.5. Outline of paper. In Section 2 we review essential properties of veering triangulations
as well as some basic structure we introduced in [LMT20]. This is followed by Section 3
which lays out one of our primary combinatorial tools, which we call dynamic planes.

Background on pseudo-Anosovs flows and the construction of Agol-Guéritaud, which
builds the dual veering triangulation, is presented in Section 4. In Section 5 we prove Theo-
rem C that the veering triangulation can be realized positively transverse to ¢, and Section 6
uses this transversality to prove Theorem D that the flow graph codes ¢’s orbits. Theorem A
is then a consequence of these results along with connection between dynamic planes and ¢’s
flow space, as established in Section 7.

In Section 8, we prove a version of Theorem A that covers the case of closed surfaces
transverse to the flow ¢ on the closed manifold M. In this section the veering triangulation
only appears as a tool in the proof. Finally, in Section 9 we give several applications of our
main theorems. These include Theorem B and Theorem E.
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FiGURE 1. The edge e has one fan of length 1 and one fan of length 3.

Acknowledgements. We thank Chris Leininger for illuminating discussions on the topic
and for asking Question 1, Amie Wilkinson for helpful remarks related to Section 5.5, and
Chi Cheuk Tsang for comments on an earlier draft.

2. THE FLOW GRAPH, THE VEERING POLYNOMIAL, AND CARRIED SURFACES

Here we record some required background and summarize results from our previous work
[LMT20]. Background on pseudo-Anosov flows will be deferred until Section 4.

2.1. Veering triangulations. A veering triangulation of a 3-manifold M is a taut ideal
triangulation together with a coherent assigment of veers to its edges. We begin by explaining
each of these terms.

A taut ideal tetrahedron is an ideal tetrahedron (i.e. a tetrahedron without vertices)
along with a coorientation on each face so that it has two inward pointing faces, called its
bottom faces, and two outward pointing faces, called its top faces. Each of its edges is then
assigned either angle m or 0 depending on whether the coorientations on the adjacent faces
agree or disagree, respectively.

Following Lackenby [Lac00], an ideal triangulation of M is taut if each of its faces has
been cooriented so that each ideal tetrahedron is taut and the angle sum around each edge
is 2. The local structure around each edge e is as follows: e includes as a w-edge into two
tetrahedra. For the other tetrahedra meeting e, e includes as a 0-edge and these tetrahedra
are divided into the two sides, called fans of e, each of which is linearly ordered by the
coorientation on faces. The length of each fan is one less than the degree of e on that side.
See Figure 1.

A veering triangulation 7 of M is a taut ideal triangulation of M in which each edge
has a consistent veer. This means that each edge is labeled to be either right or left veering
such that each tetrahedron of 7 admits an orientation preserving isomorphism to the model
veering tetrahedron pictured in Figure 2, in which the veers of the 0-edges are specified:
right veering edges have positive slope and left veering edges have negative slope. The -
edges can veer either way, as long as adjacent tetrahedra satisfy the same rule. If the m-edges
of a tetrahedron have opposite veer, the tetrahedron is said to be hinge; otherwise it is
non-hinge.

2.2. The dual graph, flow graph, and stable branched surface. The stable branched
surface B® in M associated to the veering triangulation 7, introduced in [SS19] as the upper
branched surface in dual position and in [LMT20, Section 4], plays a central role throughout
this paper. We refer the reader to [FO84, Oer84| for general facts about branched surfaces.
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FIGURE 2. A model veering tetrahedron and its cusps with their coorientations.
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Ficure 3. The stable branched surface B® within a single tetrahedron. Its
intersection with the flow graph, where edges are directed upward, is shown
in green (note: the number of incoming edges at a vertex may vary).

Topologically, the stable branched surface B?® is the dual complex of 7 in M, and as
such, it is a deformation retract of M. Note that B® is 2 dimensional since 7 has no vertices.
For each tetrahedron ¢ we define a smooth structure on By = B nt as follows: if the top edge
of t is left veering, then we smooth according to the lefthand side of Figure 3 and otherwise
we smooth according the the righthand side. It is proven in [LMT20, Lemma 4.3] that this
produces a well-defined global smooth structure making B* into a branched surface.

The stable branched surface contains two directed graphs related to 7 that are also of
central importance. The first, is the dual graph I' of 7 which is defined to be the 1-skeleton
of B® whose edges are directed by the coorientation on the faces of 7. Alternatively, I is the
graph with a vertex interior to each tetrahedron and a directed edge crossing each cooriented
face from the vertex in the tetrahedron below the face to the vertex in the tetrahedron above
the face. See Figure 3. The directed cycles of I' are called dual cycles or I'-cycles. Here and
throughout, a directed cycle of a directed graph is an oriented loop determined by a cyclic
concatenation of directed edges.

As the 1-skeleton of the branched surface B*, each turn in the graph I is either branching,
i.e. realized by a smooth arc in B*, or else what we call anti-branching (or AB). In greater
detail, a turn of I is an ordered pair (e1, e2) of directed I'-edges so that the terminal vertex
v of e; equals the initial vertex of es. The turn is branching if the arc e; U ey is smooth as
an arc in the singular locus of B* and is anti-branching (or AB) otherwise. A directed path,
ray, or cycle in I' that makes only branching turns is called a branch path, ray, or cycle,
respectively. Similarly, a directed path, ray, or cycle in I' that makes only AB turns is called
an AB path, ray, or cycle. We note that since for each vertex of I' each incoming edge is
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part of exactly one branching turn and one AB turn, there are only finitely many branch and
AB cycles in I'.

Branching and anti-branching turns of I' can be characterized solely in terms of the veering
combinatorics ([LMT20, Lemma 4.5]) and from this we can deduce a few important properties
of the sectors of B®.

Each sector o of B? is a topological disk pierced by a single T-edge, as in Figure 4. The
T'-edges bounding o are oriented so that exactly one vertex is a source, which we call the
bottom of o, and one is a sink, which we call the top of ¢. The top and bottom divide the
boundary of ¢ into two oriented I'-paths called sides. Each side has at least two I'-edges
because the 7-edge piercing ¢ has a nonempty fan on each side. According to the following
lemma, which appears as [LMT20, Lemma 4.6], if you remove the last edge in any side of
any sector of B, the resulting path is a branch segment, and that the entire side is never a
branch segment. See Figure 4, where the AB turns appear as corners of the sector. We call
these vertices the corner vertices of the sector.

FIGURE 4. A sector of B® and its intersection with ® (green) and 7(?) (gray).
The triple points of B®, which are the vertices of I' and ®, are in black. All
edges are directed upward; the top is the northmost vertex, the bottom is the
southmost, and the corners are westmost/eastmost.

Lemma 2.1 (Sectors and turns). Let o be a sector of B® and let p be a side of o considered
as a directed path in I' from the bottom to the top of o. The last turn of p is anti-branching,
and all other turns are branching.

The second directed graph embedded in B? is the flow graph ® of 7, which was introduced
in [LMT20, Section 4.3]. The vertices of ® are in correspondence with T-edges, and for each
tetrahedron t of 7, there are ®-edges from the bottom 7-edge of each tetrahedron to its top
T-edge and the two side 7-edges whose veer is opposite that of the top 7-edge.

This defines ® as an abstract directed graph, but it also comes equipped with an embedding
t: & — B?® which was called dual position in [LMT20]. Each 7-edge e is at the bottom
of a unique tetrahedron t. and ¢ maps the vertex of ® corresponding to e to the vertex of I'
contained in t.. Each directed edge of ® is then mapped into a single sector of B® so that
it is positively transverse to 7(2). See Figure 3. According to [LMT20, Lemma 4.7], for each
sector o of B there is a directed edge of t(®) N o coming into the top vertex of o from each
vertex of ¢ other than its two corner vertices. See Figure 4. This characterizes the flow graph
in dual position according to its intersection with each sector of B*.
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The directed cycles of ®, along with their images under ¢, are called flow cycles or ®-
cycles. When convenient, we sometimes identify ® with its image under .

2.3. The veering polynomial. Fix a finitely generated, free abelian group G and denote
its group ring with integer coefficients by Z[G]. Let P € Z[G] and write P = deG ag - g.
The support of P is
supp(P) = {g € G : a4 # 0}.
For P € Z|G] with P = 3} a4 - g and a € Hom(G, R) the specialization of P at « is

the single variable expression P® in Z[u" : r € R] given by

- Z ag - u®l9)
geG

These generalities will be used in the specific setting of veering polynomials. For this, let
M be a 3-manifold with veering triangulation 7, and set G = H;(M;Z)/torsion. In [LMT20,
Section 2|, we defined a polynomial invariant V, € Z[G], called the veering polynomial of
7. Here, we recall an alternative characterization of V; in terms of the Perron polynomial of
the flow graph ®. We refer the reader to [LMT20, Section 4] for additional details.

For a directed graph D, let A denote the matrix with entries

(21) Aab = Z €,
de=b—a

where the sum is over all edges e from the vertex a to the vertex b. We call A the adjacency
matrix for D. The Perron polynomial of D is defined to be Pp = det(I—A). By definition
this is an element of Z[C(D)], where C1(D) is the group of simplicial 1-chains in D.

Following McMullen [McM15], we define the cycle complex C(D) of D to be the graph
whose vertices are directed simple cycles of D and whose edges correspond to disjoint cycles.
We recall that Pp equals the clique polynomial of C(D), which in particular shows that
Pp is an element of the subring Z[H1(D)] (see [McM15, Theorem 1.4 and Section 3]). Here,
the clique polynomial associated to C(D) is

(2.2) Pp=1 +Z 1)I€IC e zZ[H,(D)],

where the sum is over nonempty chques C' of the graph C(D), i.e. over simple multicycles of
D, and |C| is the number of vertices of C, i.e. the number of components of the multicycle.
Note that the support of P is the set supp(Pp) = {C} < H;(D) of directed simple multicycles
appearing in the expression (2.2).

Now let t: ® — M be the flow graph with its embedding into M. This induces a ring
homomorphism ¢, : Z[H;(®)] — Z[G] and we set

VT = L*(P<I)),

where Pg is the Perron polynomial of ®. According to [LMT20, Theorem 4.8] this agrees
with the original definition of the veering polynomial.

2.4. Surfaces carried by 7 and cones in (co)homology. As noted by Lackenby [Lac00],
tautness of 7 naturally gives its 2-skeleton 7(2) the structure of a transversely oriented
branched surface in M. The smooth structure on 7(3) can be obtained by, within each
tetrahedron, smoothing along the m-edges and pinching along the 0-edges, thus giving 7 a
well-defined tangent plane field at each of its points.

As a transversely oriented branched surface, 7(2) can carry surfaces similarly to the way a
train track on a surface can carry curves. We let cones(7) be the closed cone in Hy(M, M)
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positively generated by classes that are represented by the surfaces that 7 carries. We call
coney(7) the cone of carried classes.

In a bit more detail, the branched surface 7(2) has a branched surface fibered neighborhood
N=N (7(2)) foliated by intervals such that collapsing N along its I-fibers recovers 7). The
transverse orientation on the faces of 7 orients the fibers of NV, and a properly embedded
oriented surface S in M is carried by 72 if it is contained in N where it is positively
transverse to its I-fibers. We also say that S is carried by 7.

A carried surface S embedded in N transverse to the fibers defines a nonnegative integral
weight on each face of 7 given by the number of times the I-fibers over that face intersect .S.
These weights satisfy the matching (or switch) conditions stating that the sum of weights
on one side of a edge match the sum of weights on the other side. Conversely, a collection
of nonnegative integral weights satisfying the matching conditions gives rise to a surface
embedded in N transverse to the fibers in the usual way. More generally, any collection of
nonnegative weights on faces of 7 satisfying the matching conditions defines a nonnegative
relative cycle giving an element of Ha(M,0M;R) and we say that a class is carried by 7(?)
if it can be realized by such a nonnegative cycle. Hence, cones(7) is precisely the subset of
Hy(M,0M) consisting of carried classes.

The following theorem is a summary of results in [LMT20, Theorem 5.1 and Theorem
5.12]. For its statement, we let cone;(I') € Hi(M;R) denote the cone positively spanned by
the direct cycles of the dual graph I'. We call coneq (I") the cone of homology directions
of 7 and note that it is equal to the cone positively generated by all closed curves which are
positively transverse to 7(2) at each point of intersection. We write coney (I') for its dual cone
in H'(M;R), which consists of classes that are nonnegative on all dual cycles.

Theorem 2.2 (Cones and Thurston norm). For any veering triangulation T of M :

(1) The cone of homology directions cone;(I') is positively generated by t(supp(Ps)), the
mage of the support of Pg.

(2) After identifying H*(M;R) = Ho(M,0M;R), coney(7) = coney (T).

(3) There is a cone RyF; over a (possibly empty) face ¥, of the Thurston norm ball in
Hy(M,0M) such that conez(7) = RLF ;.

So, for example, a class a € Hao(M, 0M) is carried by 7 if and only if (o, t(c)) = 0 for each
simple directed cycles ¢ of ®.

3. DYNAMIC PLANES AND FLOW CYCLES

In this section, we introduce and develop the essential features of dynamic planes of the
veering triangulation 7. A dynamic plane is a combinatorial version of a leaf of the weak stable
foliation of a pseudo-Anosov flow but with additional structure coming from its interaction
with the dual and flow graphs of 7. The main results are Proposition 3.15, which says that
all but finitely many dual cycles (and their multiples) are homotopic to flow cycles, and
Lemma 3.17, which combinatorially characterizes when dual cycles are homotopic within the
quotient of a dynamic plane. Both these technical facts will be essential in Section 6 where
we describe precisely how the flow graph codes the orbits of the dual flow.

3.1. Descending sets and dynamic planes. For any branched surface B, let N(B) denote
a regular neighborhood of B foliated in the standard way by intervals. Let

coll: N(B) - B

be the map which collapses all the intervals.
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FIGURE 5. The maw vector field

If B is a branched surface with generic branching then we denote its branch locus, i.e.
its collection of nonmanifold points, by brloc(B). The maw vector field is a vector field
tangent to B defined on brloc(B) that always points from the 2-sheeted side to the 1-sheeted
side. Note that the maw vector field is defined even at triple points; see Figure 5.

A descending path in B is an oriented immersed curve in B whose tangent vector at
each point of intersection with brloc(B) is equal to the maw vector field at that point.

We next consider the stable branched surface B®. Note that up to homotopy any closed
descending path in B* is negatively transverse to 7(2) (see Figure 4), and is therefore homo-
topically nontrivial in M ([SS20, Theorem 3.2]). Let Bs , f‘, and @ be the preimages of B?,
I', and ®, respectively, in the universal cover M of M.

Let o be a sector of the branched surface B*. The descending set of o, denoted A(0), is
defined to be the union of all sectors o’ of B* such that there exists a descending path from
o to o’. Before describing A(o) in detail, recall that by a path, ray, or line in I or ® we
always mean a directed path, ray, or line. If £ is a branch line in r through a vertex v, then
the negative subray of ¢ at v is the portion of the branch line ¢ that lies below v.

F1GURE 6. The descending set of a sector o, and part of its intersection with L.

Lemma 3.1 (Structure of A(0)). Let o be a B*-sector-

(a) The descending set A(o) is diffeomorphic to a closed quarter plane bounded by the
negative subrays of the two branch lines passing through the top vertex v of o.
(b) If w is a T-vertex contained in A(c), then any I'-ray starting at w intersects 0A(o).
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(¢) If w is a T-vertex contained in int(A(c)), there is a unique outgoing ®-edge incident

to w contained in A(c). The unique ®-ray starting at w lying in A(o) terminates on
0A(0).

Before the proof, let us establish a few facts that we will need. By [SS19, Theorem 8.1],
the branched surface B® fully carries a unique 2-dimensional lamination £° without parallel
leaves such that L is essential and each leaf of £° is either a plane, an 7i-injective annulus,
or a mi-injective Mobius band. Denote by £* the lamination lifted to the universal cover M
whose leaves are planes. Note that since L5 is carried by ES, each leaf inherits a tesselation
corresponding to the sectors of B it traverses.

It is clear from the branching structure of B® (c.f. [SS19, Remark 8.27]) that if ¢ is a leaf
carried by B* such that coll(¢) contains o, and if there is a descending path from o to another
sector o', then ¢’ is also contained in coll(¢). Consequently, we have that coll(¢) contains the
descending set of every sector traversed by /.

We also observe that each leaf of £° traverses a sector of B at most once. For if £ is
a leaf traversing a sector o twice, a short segment contained in a regular neighborhood of
o connecting two points of ¢ identified under coll may be homotoped to lie entirely in /.
Since the branched surface B® is laminar (as observed in [SS19]) and hence essential, this
contradicts [GO89, Theorem 1.d] (see also [GO89, Lemma 2.7]). We conclude that for any
leaf £ of £*, coll(¢) is a plane embedded in B*.

Proof of Lemma 3.1. We begin by using the above discussion to prove part (a). Let £ be any
leaf of £* that traverses o. Then P = coll(¢) is a plane tessellated by sectors of B* that
contains the descending set A(o). From the local picture of P around vertices of I' shown
in Figure 7, we see that for each vertex w of P, P contains the negative subrays of both
branch lines through w. So if v is the vertex at the top of o, then the branch lines through v
are proper lines contained in P and determine a quarter plane ) as in the statement of (a).
Hence, it suffices to show that @ = A(o).

Clearly, A(c) < @ since no descending paths starting at o can cross the branch lines
through v.

For the reverse containment, let S,, denote the set of Bs-sectors reachable from o by a
descending path traversing at most n sectors. Then ¢ = S1 < S5 < S§3 < --- is an exhaustion

of A(o).

Claim 3.2. If w is a vertex in the boundary of S, then either w is in the interior of Sp+1,
or it lies on one of the two branch lines through v and hence on the boundary of Q.

Proof of claim. The proof is by induction with the case of S} = o being by inspection (see
Figure 6).

Now suppose that w is in the boundary of both S, and S,+1. By the inductive hypothesis,
we may assume that w is a vertex of a sector ¢/ < S, \ S,,_1. In particular, w is not the top
vertex of ¢’. If w is not joined by a f‘—edge to the top of ¢/, then again it is clear from the
picture (Figure 6) that w is in the interior of S,+; contradicting our assumption.

Otherwise, w is joined by an edge e to the top vertex w’ of ¢’ and we say that w is one of
the two side vertices of ¢’. Note that e is in the boundary of S,,, since otherwise we would
again have that w is in the interior of Sy 1.

It suffices to show that e is an edge of a branch line through the vertex v. Note that w’
is a vertex of some sector ¢” in S,,_; since any descending path from o to o’ passes through
one of the two top edges of ¢’. Since w is not in the interior of S,;1, we must have that
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o’ is attached to o’ along the edge ¢/, where € is the I'-edge at the top of ¢’ that is not
e. By the induction hypothesis, either w’ is in the interior of S, or w’ is contained in a
branch line through v. But if w’ is in the interior of S,, then e is also in the interior of S,,
a contradiction. Hence, we must have that w’ lies along a branch line though v. Since € is
in the interior of S,, this branch line continues along e, establishing that it contains w. This
completes the proof of Claim 3.2. ]

We conclude that A(o) is a subcomplex of the quarter plane @ (with its locally finite
tessellation by sectors) and that dA (o) = 0Q. It follows easily that @ = A(o) as required.

For part (b), again let S,, denote the set of Bs-sectors reachable from o by a descending
path traversing at most n sectors. If w is a vertex of S, then any f—path in A(o) remains
within S,,. Since S, has finitely many vertices and f—rays are simple, each f—ray starting at
w eventually meets dA(c). This proves part (b).

Considering a picture makes the first claim of part (¢) clear; see Figure 7.

F1GURE 7. Local pictures of vertices in () and incident f—edges (red) and P-
edges (green) in the proof of Lemma 3.1. All edges are directed upward. Note
that there are always incoming &)—edges (the number may vary) and a unique
outgoing %—edge.

The same argument as the one for part (b) shows that the &D—ray starting from any point
in A(c) must meet dA(o). This completes the proof of Lemma 3.1. O

Next we describe and analyze a canonical set associated to a f‘fray. For a vertex v or
directed edge e of T', we set o(v) and o(e) to be the sector into which the maw vector field
points at v or along the interior of e, respectively. So if v is the terminal vertex of the edge
e and o is the unique sector of B* whose top vertex is v, then o(v) = o(e) = o.

Lemma 3.3. Suppose there exists a directed path in T from u tov. Then Ao (u)) < A(o(v)).

Proof. The lemma follows by induction on the length of the path from w to v. The induc-
tive step is immediate from the observation that if e is an edge of I" with initial vertex u

and terminal vertex v, then there is a descending path from o(v) = o(e) to o(u). Hence,
A(o(u)) < Ao (v)). O

Remark 3.4. The descending path that the proof of Lemma 3.3 produces can be obtained
by pushing the dual path from u to v slightly in the direction of the maw vector field and
reversing orientation, as shown in Figure 8.

Let v be a f‘fray, and set

D(v) = | Ala(v)),

vEY

where the unions are taken over all I'-vertices v traversed by 7. By Lemma 3.3, it follows that
D(7) is a nested union of quarter planes. If 7 is not eventually a branch ray of ', then D(7)
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v

FIGURE 8. If there is a path in I' from u to v (shown in black), then there is
a descending path in B® from o(v) to o(u) (shown in blue).

is evidently diffeomorphic to R? and we say that D(v) is the dynamic plane associated to
~. By construction, D(v) is properly embedded in Bs. If ~ is eventually a branch ray then
D(v) is diffeomorphic to a half plane and we say that D(v) is the dynamic half plane
associated to 7.

We remark that any dynamlc plane D is tessellated by sectors of B* and hence it makes
sense to speak of I- paths or P- paths in D. Moreover, [' U ® determine a triangulation of D.

Remark 3.5. Since o(v) = o(e) for an edge e of I' with terminal vertex v, we also have

= [ JA@(e)

eey

where the union is over edges traversed by ~.

Proposition 3.6 (Basics of dynamic planes). Let D be a dynamic plane.
(a) For any edge e of D, A(o(e)) < D.
(b) If v is any T'-ray contained in D that is not eventually a branch ray, then D = D(7).
(c) The stabilizer of D is either infinite cyclic or trivial.

Proof. First note that since D is a plane properly embedded in ES, if D contains e, then D
contains o(e). This follows since o(e) is the sector on the 1-sheeted side of e. Next, suppose
that D = D(3) for some I-ray © that is not eventually a branch ray. If ¢ ¢ D(%), then
directly from the definitions we have that A(c) < D(v). Taken together, these two facts
prove (a).

For (b), note that (a) implies that D(y) < D (see Remark 3.5). Since these are each planes
properly embedded in ES, equality also holds.

For (c), we appeal to the discussion preceding the proof of Lemma 3.1. Since the dynamic
plane D is carried by B® it determines a unique leaf 0 of £* such that D = coll(z). Hence,
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the stabilizer of D is equal to the stabilizer of ¢ and the claim follows from the fact that the
image of £ in M is either a plane, annulus, or M&bius band. ]

FIGURE 9. An AB strip (left) and an infinite AB strip (right), with T-edges
in red and ®-edges in green. Edges are directed upward.

Recall that if v is a f‘—path or ray contained in D which makes only AB turns, we say ~ is
an AB path or AB ray. Then each two consecutive f—edges of «v determine a triangle in the
triangulation of D by edges of $ and f, and the third edge of this triangle is a &)—edge. The
union of all these triangles is a subset S of D diffeomorphic to [0,1] x [0, 1] or [0, 1] x [0, c0)
called an AB strip or infinite AB strip, respectively. See Figure 9.

The following lemma essentially says that %-rays in a dynamic plane either converge or
are separated by AB strips.

Lemma 3.7 (Dynamics of dynamic planes). Let D be a dynamic plane. If o and B are

d-rays contained in D, then either a and B eventually coincide or both eventually lie on the
boundaries of infinite AB strips.

) A
q2 2

1
q1

FiGURE 10. AB strips are precisely the obstruction to contraction under
“flowing” forward in a dynamic plane.

Proof. Suppose that D = D(), where 7 is a f—ray which is not eventually a branch ray, and
let p1,p2,... be the sequence of vertices where v makes AB turns. Define A; = A(o(p;)),
so that Ay € Ay © Az < --- is the exhaustion of D(v) by descending sets. Let a and b be
vertices of a and f3, respectively. By truncating and reindexing the exhaustion {A;}, we can
assume that a and b lie in A;. Hence by Lemma 3.1(b) there exist vertices a; of a and b; of
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B lying on the boundary of Ay, and a; and b; are a finite distance apart in the combinatorial
metric on dAq. R

Let q1,71 € A1 be vertices that are connected by an edge from ¢; to r1 with ®-rays inter-
secting 0A, in g2 and 79 respectively. We claim that go # ro if and only if the corresponding
ray segments cobound an AB-strip (see Figure 10). Indeed, if s is the sector in D above the
f—edge connecting ¢; and 71, then the &)—rays from ¢; and r{ immediately converge unless 7
is a corner vertex of s as in Figure 11. Applying this analysis repeatedly proves the claim. In

q1 q1

FIGURE 11. The flow rays from ¢; and r; immediately collide (left) unless r;
is a corner vertex of the sector s above ¢; (right).

other words, “flowing” forwards in D weakly contracts distance in 04;, with equality if and
only if the flow segments are separated by a union of AB strips. This implies that either the
rays from a; and by eventually coincide, or they both eventually meet AB rays. O

We next require a basic lemma about the structure of Bs. Recall that each B-sector
has two sides, a top vertex and bottom vertex, and two corner vertices. Each side of
a sector is composed of two branch segments, one which begins at the bottom vertex and
terminates at a corner vertex, and one which consists of precisely one f‘—edge which begins
at the corner vertex and terminates at the top vertex. Each of these vertices corresponds to
a triple point of ES, and has a right or left veer as shown in Figure 12. This veer agrees with
the veer of the edge atop the unique tetrahedron containing the triple point (compare with

Figure 3).
\/
/,

F1GURE 12. Each triple point in B® comes with a veer.

In this language we have the following lemma, which is a reformulation of [LMT20, Fact
1]. For an illustration of the behavior described in the lemma see Figure 13.

Lemma 3.8. Let A be a B®-sector. The bottom vertex and two corner vertices have identical
veer. All other vertices in 0A, except possibly the top vertex, have the opposite veer.

Recall from above that an infinite AB strip is a subset of a dynamic plane homeomorphic to
[0,1] x [0,0), determined by an AB ray. The subsets of an infinite AB strip corresponding
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<

X

FIGURE 13. Some situations allowed by Lemma 3.8, where x and y denote
opposite veers. Note that the veers of top vertices are not governed by the
lemma.

to {0,1} x [0,00) are &)—rays. Similarly, we define a bi-infinite AB strip to be a subset
of a dynamic plane homeomorphic to [0,1] x R determined by an AB line. The boundary

components of a bi-infinite AB strip are ®-lines.

Lemma 3.9. Let D be a dynamic plane. The following are equivalent:

(i) D contains an infinite AB strip
(ii) D contains a bi-infinite AB strip
(iii) D contains the lift of an AB-cycle.

Proof. For the equivalence of conditions (i)-(ii), note that every vertex in D has a unique
backward AB ray (Figure 7), so every infinite AB strip is part of a bi-infinite AB strip. Since
every AB line covers an AB-cycle, the other implications are clear. O

Recall that each T-edge e has two fans, consisting of the tetrahedra for which e is a 0-edge
lying on a particular side of e. The length of a fan in 7 is the number of tetrahedra it contains.
We can also define fans and their lengths for edges of 7 by lifting to 7.

We denote the length of the longest fan in 7 by 4.

Proposition 3.10 (The AB region). Suppose that D contains a bi-infinite AB strip. Then

(1) the number of bi-infinite AB strips in D is less than §,, and
(2) the union Dap of all bi-infinite AB strips in D is diffeomorphic to [0,1] x R.

The union Dap of all bi-infinite AB strips in D as in Proposition 3.10 will be called the
AB region of D.

Proof. By Lemma 3.7, if D contains n or more infinite AB strips then there is a subset .S of D

that is obtained by gluing n infinite AB strips along their [0, ) boundaries. See Figure 14.

By Lemma 3.8 all the vertices in the interior of S have identical veer, so if v is a vertex in

the interior of S, then v lives in a tetrahedron whose top and bottom edges have the same

veer. In other words, every vertex in the interior of S lies in a non-hinge tetrahedron. Any

branch line traversing S therefore must pass through n — 1 consecutive non-hinge tetrahedra.
We now need a combinatorial fact about veering triangulations.

Claim 3.11. If a branch line v passes through consecutive non-hinge tetrahedra Ty, ..., T},
then the T; all lie in the fan of a single edge e.

Proof. Suppose without loss of generality that the top and bottom edges of 77 are right
veering. The branching line ~ passes through two faces of T7 which meet along a left veering
edge E of T} by [LMT20, Lemma 4.5]. We call these faces f; and fo where f is a bottom
face for T and fo is a top face for T;. If f3 is the next face passed through by ~, [LMT20,
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FIGURE 14. A picture of the set S in the proof of Proposition 3.10. The
&)—edges are shown in green. By Lemma 3.8, each vertex in the interior of
S has the same veer. The highlighted branching segment passes through 5
consecutive nonhinge tetrahedra, corresponding to the vertices colored black.

Lemma 4.5] again implies that fo and f3 meet along a left veering edge of T5. Since e is the
only left veering edge of fo, we conclude that fi, fs, f3 are all incident to e and that 77 and
T5 lie in the same fan of e. Continuing in this way shows that each 7; is in this fan. This
completes the proof of Claim 3.11. ]

Returning to the proof of Proposition 3.10: since any fan of length > 1 containing non-
hinge tetrahedra contains two distinct hinge tetrahedra and any non-hinge tetrahedron is
part of such a fan (see e.g. [FG13, Observation 2.6]), Claim 3.11 implies that there exists a
fan of 7 with size at least n + 1. Hence the number of bi-infinite AB strips in D is less than
the length &, of the longest fan in 7, proving (i).

Now suppose that D contains exactly n bi-infinite AB strips, and let g be the generator
of the stabilizer of D. Let s and s’ be two adjacent such strips in the sense that there are
no strips between them. It is clear that g permutes the set of bi-infinite AB strips in D; let
¢’ be a power of g preserving s and s’. By Lemma 3.7, two of the boundary ®-lines of s
and s’ eventually coincide. Since s U s’ is g-invariant, these boundary ®-lines must be equal.
Applying this argument n — 1 times establishes (ii). O

Remark 3.12. If a dynamic plane D contains at least two bi-infinite AB strips, then it
corresponds to a region of the triangulation that Agol and Tsang call a wall in their work-in-
progress [AT21]. A key property, which they point out, is that these regions prevent ® from
being strongly connected. From our perspective, this can be seen by noting that when there
are at least two AB strips in D, there will be at least one component of ® ~ D which is a
properly embedded line. Such a line descends to a ®-cycle in M that is a circular source in
the sense that it has no other incoming ®-edges.

We say that two (T)—rays are asymptotic if they eventually agree. It is clear that asymp-
toticity is an equivalence relation on &)—rays. We define the width of a dynamic plane D,
denoted w(D) to be the number of asymptotic classes of ®-rays contained in D. Lemma 3.7
and Proposition 3.10 imply the following:
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Corollary 3.13 (Width of dynamic planes). Let D be a dynamic plane. The width w(D) of
D satisfies

w(D) =1+ (# of bi-infinite AB strips in D)
< 6;.

The following lemma characterizes when the quotient of a dynamic plane is an annulus in
terms of the veering combinatorics.

Lemma 3.14. Let v be a I'-cycle which is not a branch curve. Let 5 be a lift to ]\7, and let
g € m (M) generate the stabilizer of 5. Then L = D(¥)/{g) is an annulus if and only if v has
an even number of AB-turns.

Proof. In [LMT20, Lemma 5.6], it is shown that « has an even number of AB—turns if and
only if the pullback of the tangent bundle over B® is orientable. However, the immersion
v — B? factors through the immersion L — B?, and so v has an even number of AB—turns
if and only if L is orientable. From this, the lemma easily follows. ([l

The following proposition is a key technical result of this section.

Proposition 3.15 (® sees most I'-cycles). Let v be a I'-cycle. Then ~y is either homotopic
to a ®-cycle or to an AB-cycle of odd length.

In particular, the dual cycles that are not homotopic to flow cycles form a finite set of
homotopy classes, up to positive multiples.

Proof. In the proof of [LMT20, Proposition 5.7] it is explained that every branch curve is
homotopic to a ®-cycle. Hence we can assume that « is not a branch curve. It follows that
any lift of v to M determines a dynamic plane.

Let & be a lift of v to M and let D = D(7). Let g be the deck transformation of M that
generates the stabilizer of ¥ and translates 4 in the positive direction. Then gD = D, so vy
lifts to the core of L = D/{g), which is either an open annulus or open Mobius band. We
abuse notation slightly by referring to the images of ®and I'in L as ® and T.

If the width w(D) is equal to 1, and p is any &)—ray contained in D, then p and g - p
eventually coincide. This follows from Lemma 3.7 and the fact if w(D) = 1 then D has no
infinite AB strips (Lemma 3.9). It follows that p is eventually g-periodic, and projects to a
d-cycle p homotopic to the core of L. Hence « is homotopic to p, proving the claim in this
case.

If w(D) > 1, then D has a nonempty AB region Dap. Let Lap denote the image of this
AB region in L. Note that since Dap is g-invariant, Lap is an annulus or Mébius band if
and only if L is an annulus or Mdbius band, respectively. We finish the proof by considering
three cases.

e If Lap is an annulus, then there are w(D) parallel ®-cycles in Lap homotopic to the
core of L, so v is homotopic to a ®-cycle.

e If Lp is a Mdbius band and w(D) is odd, then there is a single ®-line bisecting the
AB region of D which projects to a ®-cycle in L and which is homotopic to the core
of L, so ~ is homotopic to a ®-cycle.

e Finally, if Lap is a Mobius band and w(D) is even, then there is a bi-infinite AB
strip bisecting the AB region of D whose core AB cycle projects to a I'-cycle in L
homotopic to the core of L. By Lemma 3.14, this AB cycle has odd length, so + is
homotopic to an odd AB cycle. O
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3.2. Homotopy in dynamic planes. We conclude this section with an additional fact,
Lemma 3.17 about dynamic planes that will be necessary in Section 6. In its proof we will
use the following lemma.

Lemma 3.16. If 71 and o are distinct directed paths in I with common endpoints, then
each v; contains an anti-branching turn.

Proof. Let u and v be the initial and terminal vertices of v and =9, respectively. By short-
ening the paths, we may assume u and v are the only common vertices of v, and 7. Let D
be a dynamic plane containing 7; and 72, and let A be the disk component of D\(v; U 72).
Considering the local structure of the branch locus of B, we see that the maw vector field
must point into A along the terminal edges of 1 and 72 and out of A along the initial edges
of 71 and ~». Since the maw vector field switches between pointing inward and outward at
exactly the anti-branching turns, we conclude that each ~; contains an odd, and in particular
nonzero, number of anti-branching turns. ([l

As a consequence, a path in I that deviates from a branch line can never return to that
branch line.

Let D be a dynamic plane stabilized by some g € m(M). As before, let L denote the
quotient D/{g). Consider a I'-cycle v contained in L. If there is a sector o of L such that
~v runs along a side of ¢ from its bottom vertex to its top vertex, then we may perform a
homotopy of v, supported on o, that pushes v from one side of ¢ to the other side of . We
refer to this homotopy as sweeping across the sector o. See Figure 27, where it is shown
that sweeping across a sector is a homotopy through curves that are transverse to 2,

Lemma 3.17. Let D be a dynamic plane stabilized by g € w1 (M)~ {1}. Let 51 and 2 be g—
invariant I'-lines contained in D and assume that neither is a branch line. Then ~v1 = 51/{g)
is homotopic to v2 = J2/{g) in L = D/{g) by a homotopy that sweeps across sectors.

Proof. The embedded dual cycles ~y1,7v2 in L either intersect or not. If they intersect and
are distinct, there is at least one connected component U of L — (y; U 72) with closure
homeomorphic to a disk. Let p; and p2 be the two segments of v; and ~2 which cobound U.
By Lemma 3.16, each of p; and ps contains an anti-branching turn.

Let (dy,ds2) be the first anti-branching turn of, say, p;. Since U is tiled by sectors, it must
be the case that p; traverses an entire side of o(dz). When we sweep 7, across o(dz), we
shrink the region U by 1 sector. It follows that after sweeping across finitely many sectors
we can homotope ;1 to 7o.

Next, suppose that «; and 5 do not intersect. Note that this is not possible if L is a
Mobius band and so we may assume that L is an annulus. Then there is a unique component
of L — (71 U 72) with compact closure, which we also call U; note that U is an annulus with
boundary components v; and 7s.

Let (e1,e2) be an AB turn of v2 such that o(e2) c U, i.e. the maw vector field points into
U along es. Such a turn exists since 5 has a nonzero even number of anti-branching turns by
Lemma 3.14. Let £ be the branch line through e;. We claim that ¢ intersects 7 in addition
to 2. To see this, first note that the negative subray of ¢ from ey (which is entirely contained
in L) is not entirely contained in U, since U is tiled by finitely many sectors. Further, this
negative subray cannot return to v by Lemma 3.16.

Therefore the negative subray of ¢ from e; must intersect v as in Figure 15. Let p be
the first vertex of intersection between this negative ray and ~;. Let (f1, f2) be the first
anti-branching turn of v; after p, and let o = o(f2). If ¢’ is the branching line through fi,
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e ’Yz.

FicUure 15. Notation from the proof of Lemma 3.17.

then the bottom of ¢ can lie no lower on ¢ than p. Hence 7 traverses the entire left side of
o and can be homotoped across o, shrinking the size of U by one sector. After applying this
argument finitely many times, we are finished. O

4. PSEUDO-ANOSOV FLOWS AND VEERING TRIANGULATIONS

In this and subsequent sections, we will be primarily interested in a pseudo-Anosov flow
¢ without perfect fits on a closed 3-manifold M, as well as the manifold M obtained by
removing from M the singular orbits of . In this setting, the construction of Agol-Guéritaud
(Theorem 4.7) produces a veering triangulation 7 on a manifold N that is homeomorphic to
M. Here we review some necessary background and terminology, with the essential properties
of p summarized in Lemma 4.2. In Section 5, we will show 7 can be realized as a triangulation
of M such that flow lines of ¢ are positively transverse to 7(2).

First, let ¢ be a pseudo-Anosov flow on the closed 3-manifold M. We refer the reader to
[FMO1, Section 4] for the precise definition, and informally summarize ¢’s features as follows:

e ¢ has finitely many (and at least one) singular periodic orbits where the return map
on a transverse disk is locally modeled on a pseudo-Anosov surface homeomorphism
near an (n > 3)-pronged singularity,

e the orbits of the flow are C! and ¢ is smooth away from its singular orbits,

e there is a pair of mutually transverse 2-dimensional singular foliations, called the
stable and unstable foliations, whose leaves intersect in exactly the orbits of ¢,
such that orbits in a leaf of the stable foliations are exponentially contracted under
© and the orbits in a leaf of the unstable foliation are exponentially expanded.

A nonsingular closed orbit 7 of ¢ is orientable or untwisted if the stable leaf contain-
ing it is homeomorphic in the path topology to an annulus. Otherwise, the orbit is called
nonorientable or twisted and the stable leaf is a M&bius band.

Let Q denote the flow space of ¢ for M, i.e. the space obtained by lifting to the universal
cover M and collapsing flow lines of the lifted flow. According to Fenley-Mosher [FMO1,
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Proposition 4.1], Q is homeomorphic to the plane and the lifts of ’s stable/unstable foliations
project to a pair of transverse singular foliations F** on Q. The points of Q that are the
images of (lifted) singular orbits of ¢ are called the singularities of Q. Note that there is a
natural action 71 (M) ~ Q by orientation preserving homeomorphisms, where the orientation
on @ is induced by the fixed orientation on M and the orientation on flow lines.

Similarly, we let P denote the flow space of M, defined by the same procedure, which
can also be obtained by taking the universal cover of Q minus its singularities. From this,
we see that P is also homeomorphic to the plane. Moreover, this perspective allows us to
define the completed flow space P of M as the corresponding branched cover P — Q
infinitely branched over the singularities of Q. We also call the branch points of this map
the singularities of P. Since singularities of Q are discrete, so are the singularities of P.
Throughout, we extend terminology for Q to P by lifting. For example, we continue to
denote the lifted singular foliations on P by F®*. There is also an orientation preserving
action 71(M) ~ P by homeomorphisms that makes the branched cover P — Q equivariant

with respect to the homomorphism (M) — m(M). The projections to the flow space

M — P and M — Q are oriented line bundles over the plane.

A rectangle R in the flow space Q or P is a topological closed disk with no singularities in
its interior with boundary consisting of four segments of leaves of F° and F*. The boundary
of R necessarily consists of two stable leaf segments, which we call the vertical boundary of
R and denote 0, R, and two unstable leaf segments, which we call the horizontal boundary
and denote dpR. (Note that by convention, we draw F* vertically and F* horizontally.) A
maximal rectangle is a rectangle that contains a singularity in the interior of each of its
sides, and so it is maximal with respect to inclusion.

As an informal definition, we say that a leaf A% of F* and a leaf A® of F* form a perfect
fit if they are disjoint but “meet at infinity.” We say that ¢ has no perfect fits if its flow
space Q has no perfect fits. We omit the precise definition of a perfect fit (see [Fen12, Def.
2.2]) because, given the fact that singular leaves are dense in Q (see Lemma 4.2), no perfect
fits is equivalent to the condition that every sequence of nested rectangles is contained in a
maximal rectangle. The reader can take this as the definition of no perfect fits. It is also
proven by Fenley [Fen99a, Theorem 4.8], that when ¢ has no perfect fits, each g € 71 (M)
fixes at most one point of Q (again see Lemma 4.2). Existence of maximal rectangles and
uniqueness of fixed points are the essential properties of ¢ that we will use throughout this

paper.

Convention 4.1 (No perfect fits). Henceforth, we will assume that the pseudo-Anosov flow
@ has no perfect fits.

Continuing with terminology, we define an edge rectangle (Q to be a rectangle in either
Q or P with singularities at two of its (necessarily opposite) corners. (These were called
spanning rectangles in [MT17]). Each edge rectangle @ has a veer defined as follows: if the
singularities of @) are at its SW and NE corners, then @ is right veering. Otherwise, @
is left veering. Here, the position of the singular vertices is determined by an orientation
preserving embedding of @ into R? for which the restricted foliation F* n Q) maps to vertical
lines and F* n Q maps to horizontal lines. The veer of @) is well-defined and an invariant of
the m-actions on Q and P since these actions are orientation preserving. A face rectangle
is a rectangle with a singularity at one of its corners and singularities in the interiors in each
of its sides not containing the singular corner. Note that each face rectangle contains exactly
three edge rectangles and is contained in exactly two maximal rectangles. Moreover, each
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maximal rectangle contains the face and edge rectangles determined by the pairs and triples
of its singularities. See Figure 16.

F1GURE 16. From left to right we see an edge rectangle, a face rectangle, and
a maximal rectangle.

We next define a partial order on rectangles in Q or P. We call rectangles R; and Rs
ordered if their interiors intersect but do not contain any of each other’s corners. Assuming
Ry and Ry are ordered, if the interior of Ro meets Jp R, then we say that Ry is taller
than R;. If the interior of Ry meets 0, R, then R; is wider than Rs. Finally, for ordered
rectangles we say that Rs lies above R, if R; is not taller than Ry, and R; lies below Ry if
R is not wider than R;. Put differently, Ry lies above R; if they are ordered and Ry N 0R;
contains a segment in each component of the horizontal boundary of R;. We say that Ry lies
strictly above R; if R is taller than R; and R; is wider than Rs.

We note that if Ry and Rs are distinct maximal rectangles, then Ry lies above Ry if and
only if R is taller than Ry if and only if R; is wider than Rs. See Figure 17.

R2 R2 Rl

Ry
Ry

FIGURE 17. Some ways Ry can lie above R;.
Properties of the flow ¢ translate to properties of the actions 71 (M) ~ Q and 71 (M) ~ P.
We record these in the following lemma that summarizes results from several papers of Fenley—
Mosher, Fenley, and Mosher.

Lemma 4.2 (Properties of the flow space). With M,, M,Q,P as above:

(1) The foliations F5/" are transverse singular foliations of Q with discrete singularities,
no saddle connections, and dense singular leaves.

(2) The stabilizer of any leaf of F*/* is either trivial or infinite cyclic, and each g # 1 in
a leaf stabilizer fixes exactly one point in that leaf.

(8) The orbit of any periodic point (i.e. point with nontrivial stabilizer) in Q is discrete
and periodic points are dense. Moreover, since ¢ has no perfect fits, each g # 1 fixes
at most one point in Q.

(4) Suppose that g fixes a point p of Q, chosen so that g translates the g-periodic flow
line projecting to p in its positive direction.
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o Ifp is nonsingular, then for any edge rectangle or mazimal rectangle R containing
p, g(R) lies strictly above R.

e If p is singular and R is a mazimal rectangle containing p in its boundary, then
either g(R) and R have disjoint interiors or g(R) lies strictly above R.

Moreover, the corresponding statements for the completed flow space P also hold.

Proof. The properties listed in (1) have already been discussed except for the claim that
singular leaves are dense in Q. For this, we first recall that since M admits a pseudo-Anosov
flow without perfect fits that is not conjugate to the suspension of an Anosov diffeomorphism,
it is atoroidal [Fen03, Main theorem] (see also the remarks following [Fen12, Theorem D]).
Then, since M is atoroidal, the flow ¢ is transitive by [Mos92a, Proposition 2.7]. Finally,
[Mos92a, Proposition 1.1] and the sentence following it imply that every leaf of the stable
and unstable foliations on M is dense. Hence, the singular leaves of F** are dense in Q.

Next, the contracting/expanding dynamics within each leaf of the stable /unstable foliations
implies that each nonsingular leaf with nontrivial m; is either an annulus or M&bius band
containing a unique closed orbit (see [Mos92a, Section 1]). From this (2) easily follows.

The first statement of (3) follows from the fact that the orbit of a point in Q with nontrivial
stabilizer corresES)nds to a closed orbit of ¢ in M and that the lifts of such an orbit to the

universal cover M form a discrete collection of flow lines. The second statement follows from
[Fen99a, Theorem 4.8]. There, Fenley shows that if g # 1 fixes distinct points p; and ps,
then these points are connected by a so-called chain of lozenges. The existence of a lozenge
in @, which is essentially a rectangle with 2 ideal corners, implies that O has a perfect fit.
Finally, (4) follows from considering first return maps to transverse sections of the flow
and using the expanding/contracting dynamics. O

A more uniform version of (4) will be useful later: Note first that it is easy to obtain a

collection of sections of the bundle M — Q over the maximal rectangles, which is equivariant

by 71 (M), since the group action is free on maximal rectangles (any nontrivial element fixing
a maximal rectangle fixes each of its singularities, contradicting Lemma 4.2.3).

~

Lemma 4.3. With M, ¢, Q as above, fix a w1 (M)-equivariant family of sections sgp: R — M
over the mazimal rectangles in the flow space. Given € > 0 there is a constant L such that,

if J is an oriented segment in a nonsingular flow line in M of length at least L, so that its
forward endpoint lies in the section over a rectangle Ry, and its backward endpoint lies in
the section over a rectangle R_ at distance at least € from the boundary of R_, then Ry lies
above R_. In fact both horizontal boundary components of R_ pass through the interior of
Ry and both vertical boundary components of Ry pass through the interior of R_.

Proof. Let p be the backward endpoint of J in sg_(R_). Let U be the maximal connected set
within R_ containing p such that the flow from sr_(R_) to sg, (R4 ) is defined on sg_(U).
Then U must be a subrectangle, and the pseudo-Anosov properties of the flow, particularly its
expansion on the unstable (horizontal) foliation, implies that the width of sg_(U) is bounded
exponentially in —L. Thus for L large enough (depending on &) the width is small enough
that both vertical (stable) sides of dU are in the interior of R_. Each horizontal side of U
must therefore lie in the boundary of R_, because otherwise it would be an entire horizontal
side of R, , which would imply the interior of R_ contains a singular point.

We conclude that R, must cross R_ from top to bottom, which proves the claim. O
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We next observe a few basic consequences. The first essentially says that an infinite
sequence of maximal rectangles which is increasing with respect to our partial order “lies
above” limits to a leaf of the vertical foliation F*.

Fact 4.4 (Limits of rectangles). Suppose that (R;)icz is a sequence of distinct mazximal
rectangles such that R;11 lies above R; for each i.

Then ﬂi>0 R; is a segment of the vertical foliation F*° in Ry joining the components of
OnRo, and ﬂz‘<0 R; is a segment of the horizontal foliation F* in Ry joining the components
of Oy Ry.

Proof. Note that if Q = (7,5 R; is a rectangle with nonempty interior, then we could extend
it vertically along leaves of F* to a rectangle )’ with singularities in its horizontal boundary.
This follows from the density of singular leaves in Lemma 4.2. But then each R; necessarily
lies below Q' and so the singularities in the boundary of the R; would have to accumulate in
Q. This contradicts the discreteness of singularities, again as in Lemma 4.2. U

The next lemma will be used to show that the veering triangulation discussed in the next
section has finitely many simplices.

Lemma 4.5. There are finitely many mazimal, face, and edge rectangles in Q (or P) up to
the w1 -action.

Before giving the proof, we make a few more observations. Let s € P be a singularity. There
are countably many singular leaves terminating at s; let 1 and £ be two such such singular
leaves. There is a unique component C' of P — ({1 U ¢2) whose frontier completely contains
01 U ly. If C contains no singular leaves terminating at s (i.e. £; and ¢y are “neighbors” at s)
then the union 2 of C' with ¢; and /s is called an orthant. The point s is called the corner
singularity of (2. Note that if /; and 5 bound an orthant, then one is stable and the other
is unstable.

S

FIGURE 18. Part of a staircase with corner singularity s.

Following Guéritaud, we say that a set S of edge rectangles is a staircase if there is
an orthant 2 < P with corner singularity s € P such that S consists of exactly the edge
rectangles contained in €2 with one corner at s. See Figure 18. Fach orthant determines
a unique staircase. Note that all the edge rectangles in a single staircase have common
veer. The staircase S has cyclic stabilizer {g) < m1(M), coinciding with the stabilizer of Q,
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and our convention will be to choose the generator g so that gQ lies above @Q for all edge
rectangles ) in S. Note, again by discreteness of singularities, that there are only finitely
many edge rectangles in S that lie above @ and below g@). This allows us to choose an
indexing ...,Q_1,Qo,@1,... of the elements of S so that Q; lies above @; if and only if
1= 7.

Proof of Lemma 4.5. We show that the m-action is cofinite on the edge rectangles in Q.
This immediately implies the same result for P and the case of face rectangles and maximal
rectangles easily follows.

Since each edge rectangle lies in the staircase associated to each of its singular corners and
there are only finitely many orthants up to the m; action, it suffices to show that for each
staircase S its cyclic stabilizer (g) acts cofinitely on the edge rectangles of S. This however is
clear using the above ordering ..., Q_1,Qo, @1, ... and the fact that ¢ acts on this sequence
by increasing the index. This completes the proof. (|

Since we are interested in the punctured manifold M obtained by removing singular closed
orbits from the closed manifold M, we introduce some terminology to help remove the need
to make special arguments when dealing with the singular orbits. Each singular orbit of M
has some number of stable/unstable prong curves which are obtained by intersecting the
stable/unstable leaves through the singular orbit with the boundary of a small neighborhood
of the orbit. We consider the resulting prong curves as peripheral curves in M.

We will use the unstable prong curves to replace the missing singular orbits in our discussion
below. For the flow ¢ on M, we denote by O, the periodic orbits of the flow and by O; the
periodic orbits plus all positive multiples of the finitely many unstable prong curves.

Remark 4.6 (The blown up flow on the compact model for M). One can also think of
prong curves in the following way. In [Fri82b, Section 5|, Fried explains in detail how one
can replace any orbit of a flow by its sphere of normal directions, and obtain a natural flow
on the resulting manifold with boundary. If we apply this blowup operation to the singular
orbits of ¢ on M, we obtain a new flow ¢* on a manifold M* with toral boundary. The flow
@™ is tangent to dM™ and, when restricted to the interior of M*, conjugate to ¢ on M.

On each torus boundary component of M*, ¢* has a finite even number of closed orbits,
half of which are attracting and half of which are repelling. The attracting orbits correspond
to unstable prong curves and the repelling orbits correspond to stable prong curves. While
this is an attractive picture, we will continue to work with the flow ¢ on the noncompact
manifold M.

4.1. The Agol-Guéritaud construction. Let ¢ be a pseudo-Anosov flow on M with no
perfect fits. Here we briefly describe the Agol-Guéritaud construction of a veering triangu-
lation on a manifold homeomorphic to M. We will not dwell on the details here since in the
next section we establish the stronger fact that the veering triangulation can be realized on
M so that it is positively transverse to flow lines.

Associate to each maximal rectangle R in the completed flow space P a taut ideal tetra-
hedron tr. We identify the ideal vertices of tp with the singularities of R so the the edge
rectangles contained in R correspond to edges of tg and faces rectangles correspond to faces
of tg. The two angle 7 edges of tp are the ones that correspond to edge rectangles spanning
the singularities in d, R and 0, R, respectively. Moreover, the coorientations on the faces of
tr are determined by declaring the two bottom faces of tr are the ones which contain the 7
edge spanning the singularities in ¢, R. This convention is indicated in Figure 19 by drawing
the edge joining the singularities in d, R above the edge joining the singularities in 0, R.
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If faces f1 of tg, and fy of tg, determine the same face rectangle in P (i.e. the rectangles
spanned by their vertices are equal), then we glue together the corresponding faces. Since
each face rectangle is contained in exactly two maximal rectangles, the resulting space N is
a manifold away from its 1-skeleton. By examining the ways that an edge rectangle can be
extended to a maximal rectangle, one similarly verifies that N is a manifold. It is also the
case that N is contractible.

Ficure 19. From a maximal rectangle to an ideal tetrahedron. The coorien-
tation convention is indicated by drawing the tetrahedron in the flow space as
shown and coorienting its faces to point out of the page. The ideal edges are
curvy so as to emphasize that there is no canonical way to draw them.

Since the action of 71 (M) on P preserves maximal, face, and edge rectangles, it induces
a simplicial action on N which is cofinite on simplicies (Lemma 4.5). Because distinct sin-
gularity stabilizers have trivial intersection (and (M) is torsion free), each ideal simplex
of N has trivial stabilizer and the action m (M) ~ N is discontinuous. Moreover, because
the peripheral subgroups of 71 (M) precisely correspond to the stabilizers of singularities in
P, it follows that each of these subgroups acts peripherally on N. Hence, by a theorem of
Waldhausen [Wal68, Corollary 6.5], the manifolds M and N = N /m; (M) are homeomorphic
by a homeomorphism that is the identity on 71 (M).

Let 7 be the induced ideal triangulation of N. It is now straightforward to see that 7
is naturally a veering triangulation. The coorientations on the faces of 7 come from the
convention discussed above and taut structure on each tetrahedron comes from lifting to N
and ‘projecting’ the tetrahedron to its corresponding maximal rectangle Note that we are
not claiming that there is a single coherent projection from N to 73 although we will establish
this in the next section. An edge is declared to be right veering if its lift to N determine an
edge rectangle in P whose singularities are at its SW and NE corners. Otherwise, it is left
veering.

We summarize this as follows:

Theorem 4.7 (Agol-Guéritaud ). Suppose that ¢ is a pseudo-Anosov flow on M without
perfect fits. Then the above construction produces a veering triangulation T on a manifold N
that is homeomorphic to M = M ~ {singular orbits}.

If the veering triangulation 7 comes from the above construction, we say that 7 is associ-
ated or dual to the flow ¢.
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5. TRANSVERSALITY TO THE FLOW

Theorem 4.7 constructs the veering triangulation from the structure of the flow space of a
pseudo-Anosov flow, but it does not make any claims about how the triangulation and flow
coexist in the same manifold. In this section we show that one can make the two positively
transverse in the following sense:

Theorem 5.1. Let ¢ be a pseudo-Anosov flow on M without perfect fits. Then the veering
triangulation T can be realized in M so that 7 is a smooth cooriented branched surface
which is positively transverse to the flow lines of .

Starting with (N, 7) as constructed in the previous section, we will build a homeomorphism
N — M which takes 7 to the smooth transverse position of Theorem 5.1. The proof has four
main steps, which we summarize:

Fibration on N: We first produce an equivariant fibration p: N — 703, which is an orienta-
tion preserving embedding on each face of 7). The goal is to complete this diagram with
an equivariant homeomorphism:

where ¢: M — P is the map to the flow space of the flow.

The key step is Proposition 5.2, which gives an embedding of each edge of 7 in its associated
rectangle in 707, so that the three edges of every face have disjoint interiors. In the suspension-
flow case this is simple because the flow space admits an invariant affine structure in which
every rectangle is Euclidean, and we may simply use straight lines in Figure 19 (indeed this
is how the original veering picture is obtained). In the general setting there is no obvious
way to do this — equivariance produces some tricky constraints which are reflected in the
argument we give in Section 5.1. Most of the effort of the proof goes into this step. The map
p is then produced in Proposition 5.11.

Compactification and a fiberwise map: We next build a preliminary map that takes
p-fibers in N to g-fibers in M. But in order to have uniform control of it, we compactify N
and M and extend the map. We compactify N to a manifold N with toral boundary and
construct a map h : N — M that takes p-fibers to flow orbits, and boundary tori to singular
orbits. Thus we obtain the diagram

P
p q

(5.1) ﬁ/ﬁ\ﬁ

L

N h M

where N and M are completions of N and M obtained by lifting the compactifications.
The restriction of h to each fiber may not be an embedding, but we show in Lemma 5.12
that it is proper and degree 1 to its image fiber.
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Straightening the fibers: An averaging step, convolving with a fiberwise bump function,
produces a map which is an embedding on the fibers and hence a global homeomorphism.
This is carried out in Proposition 5.14, and gives us a topological version of our main result,
Proposition 5.15.

Smoothing. Finally we address the issue of making the branched surface smooth, and fur-
thermore making sure that the images of edges in the flow space are smooth and transverse
to both foliations. The first of these is explained in Proposition 5.16, and the second in
Proposition 5.17.

We next turn to carrying out the details.

5.1. Step 1: Drawing diagonals and building a fibration. For any points p, ¢ € P lying
in a maximal rectangle R, but not in single leaf of F* or F*, we denote by R(p,q) < R the
unique rectangle with opposite vertices at p and g. So if p,q are singularities of R, then
Q@ = R(p,q) is their edge rectangle. Recall that each edge rectangle corresponds to an edge
of 7 by construction, and the veer of an edge rectangle is the veer of its associated edge.

A veering diagonal is a topological arc in an edge rectangle @ = R(p,q) which connects
p to ¢ and is topologically transverse to the stable and unstable foliations, meaning that the
path intersects each leaf in R(p, ¢) at most, and so exactly, once.

Our first step is to prove the following:

Proposition 5.2. There exists an equivariant family of veering diagonals so that the three
veering diagonals of every face rectangle have disjoint interiors.

5.1.1. Drawing diagonals given anchors. We say that the pair (A, «) is an anchor system
if o is a bijection from the set of edge rectangles in P onto a subset A < P with the following
properties:

e containment: for each edge rectangle @, a(Q) lies in the interior of @,
e cquivariance: g-o(Q) = a(g- Q) for each edge rectangle ) and each g € m (M), and
e staircase monotonicity: for edge rectangles (21 and ()2 that share a singular corner s,

if @1 is wider than @2, then R(s,a(Q1)) is wider and no taller than R(s, a(Q2)).

When working with a given anchor system, we will refer to a(Q) as the anchor for @ and
call A the set of anchors. Note that in the description of staircase monotonicity, Q2 must
be taller than Q1. However, we do not require the same of R(s,a(Q2)) and R(s,a(Q1)),
meaning «(Q1) and a(Q2) are allowed to live in the same horizontal leaf.

Let (A,a) be an anchor system. Let F' < P be a face rectangle and let p denote the
unique singularity lying at a corner of F'. Let x be the singularity lying on a horizontal edge
of OF and let y be the last singularity, which necessarily lies on a vertical edge of F'. Let
a; = a(R(p,x)) and ay = a(R(p,y)). If R = R(ay,z) and Q = R(ay,y) intersect nontrivially,
we say F' is busy. If F is busy, let R’ be the maximal subrectangle of R with the property
that the stable and unstable leaves through each point in R’ do not intersect the interior of
Q@ (see the right side of Figure 20). This subrectangle exists by staircase monotonicity. A
point in R’ which corresponds to a periodic orbit is called an F-buoy. Because the points
corresponding to periodic orbits are dense in P (Lemma 4.2), any busy face rectangle F' has
an F-buoy.

Lemma 5.3. If there exists an anchor system for P, then there exists an equivariant family
of veering diagonals so that the three veering diagonals of every face rectangle have disjoint
nteriors.
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FiGURE 20. The right veering case in the definition of busy, with anchors
shown in green. The face rectangle on the left is not busy, and the face
rectangle on the right is busy. Note that it is possible that the two anchors
lie in the same horizontal line.

p

FIGURE 21. Drawing half-diagonals (orange) satisfying properties (1)—(3) in
the proof of Proposition 5.2. The green points are anchors and the pink points
are buoys.

That is, if an anchor system exists, then Proposition 5.2 holds.

Proof. Let (A,«) be the given anchor system, which determines busy face rectangles. For
each 71 (M)-orbit of busy face rectangle F', choose an F-buoy br and let Br be the w1 (M )-
orbit of bp. There are finitely many orbits of face rectangles, so there are finitely many
sets Bp. Let B = | JBp be their union, which we call the set of buoys. Note that B is
71 (M )-invariant and discrete, since orbits of periodic points are discrete by Lemma 4.2.

Let S ={...,Q-1,Q0,Q1, ...} be a staircase with corner singularity p. If g generates the
stabilizer of S, choose a (g)—equivariant family of continuous paths from p to the anchors of
elements of S with the following three properties:

(1) For each Q;, the path from p to «(Q);) is homotopic rel endpoints in R(p, a(Q;)) ~ B
to the first-horizontal-then-vertical path from p to a(Q;),

(2) the paths are disjoint except at p, and

(3) the paths are topologically transverse to the stable and unstable foliations, meaning
that no path intersects a leaf more than once.



GROWTH RATES AND THE VEERING POLYNOMIAL 31

See Figure 21. We can choose such a family by staircase monotonicity and the discreteness
of B. We call each of these paths a half-diagonal.

Having chosen such a family of half-diagonals for each (M )-orbit of staircase in P, we
can specify a veering diagonal for each edge rectangle R(p,q) as the union of the two half
diagonals from p and ¢ to the anchor for R(p,q). Let D denote the union of all these veering
diagonals.

Let F be a face rectangle with corner singularity p, and let e, f < F' be the two diagonals in
D of the same veer. The two half-diagonals incident to p are disjoint by property (2) above.
The two half-diagonals not incident to p are also disjoint since F' is either not busy, in which
case disjointness is clear; or busy, in which case property (1) above guarantees disjointness.
Therefore e n f = {p}, and it is clear that e and f are the only pair of diagonals of F' whose
interiors could intersect. This completes the proof. ]

5.1.2. Choosing anchors. Lemma 5.3 reduces the problem of drawing diagonals to finding an
anchor system, which we shall do now.

Let @ = Qo < P be an edge rectangle. Let k(@) be the unique bi-infinite sequence of edge
rectangles

Q)= (.., Q-2,Q-1,Q0,Q1,Q2...)

such that for all ¢ there exists a maximal rectangle R; such that @); and Q;.1 are the widest
and tallest edge rectangles of R;, respectively.

We call k(@) the core sequence of (). If each edge rectangle in x(Q) has the same veer,
we say that ) is homogeneous.

By the density of singular stable and unstable leaves in P, the intersection of all rectangles
of k(Q) contains only one point (see Fact 4.4). We denote this point ¢(Q) and call it the
core point of Q. It is clear that all rectangles in k(@) have the same core point.

Remark 5.4. The core sequence x(Q) can also be regarded as a line in the lift ® of the flow
graph ® to M. Tn Section 6 we define a function 3 which maps d-lines to pomts in P. In
the language of that section, the core point ¢(Q) is the image of x(Q) under §.

The core function ¢ mapping each edge rectangle to its core point satisfies the containment
and equivariance properties. In addition, it nearly satisfies staircase monotonicity. Ultimately
our construction of a set of anchors will be a slight modification of this core point mapping,
where the modification will be necessary wherever two rectangles in the same staircase share a
core point. The following lemma precisely describes the failure of core points to be monotonic
in staircases.

Lemma 5.5 (Weak monotonicity for core points). Let Q1 and Q2 be edge rectangles that
share a singular corner s where Qo lies strictly above ()1, and suppose that ()1 and Q9 are
adjacent in this staircase. If ¢; denote the core point of Q;, then c1 = co if and only if Q1
and Qo are both homogeneous, and otherwise R(s,ca) lies strictly above R(s,c1).

Recall from Section 4 that Q9 lies strictly above ;1 if Q5 is taller and )1 is wider. The
same applies to the R(s,¢;).

Proof. Assume without loss of generality that ()1 and @2 are right veering. In this proof
we will assume for readability that the orthant determined by the staircase at s containing
Q1 and Q- is identified in an orientation-preserving way with the first quadrant in R?; in
particular there are well defined local notions of north, south, east, and west.

Let ¢; be the singular points such that @Q; = R(s, ¢;), and let R; be the maximal rectangle
for which @); is the bottom edge rectangle. Note that since )1 and )2 are adjacent in the
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staircase at s, Ry contains s,q1,¢o in its boundary. Let sy be the fourth singular point in
OR;. Finally, let Kf/ " be the vertical /horizontal leaf through ¢;. That is, 6:;/ " is the leaf of
F5/% through ;.

We first show that if either of R; or Ry is hinge, then /5 lies west of ¢{. If R; is hinge, then
/7 must lie strictly to the right of £§ because ¢5 must pass through the interior of @2 and
¢ must pass through the interior of R(g2, s2), and when R; is hinge these rectangles have
disjoint interiors. If Ry is non-hinge, then Ry contains s, s2, and ¢o in its boundary. Let g3
be the fourth singular point in 0R3. The leaves /5 and ¢} must pass through the interiors of
R(g3, s2) and R(s2,q2). If Ry is hinge, then these rectangles have disjoint interiors so £4 lies
west of /] in this case.

Moving backward in the core sequences, let S and S3 be the maximal rectangles for which
Q1 and Q4 are the top edge rectangles. A symmetric argument to the one in the previous
paragraph shows that if either Sy or Sy is hinge, then ¢ must lie north of 7.

Now suppose that R; and Ry are both non-hinge. In this case R(s2,q3) and R(s2,q2) are
the next edge rectangles in the core sequences of (Qo and )1 respectively, they are adjacent
in a staircase at sa, and they have core points ¢; and ¢y respectively. Iterating the reasoning
from above shows that if the subsequence k. (Q;) of k(Q;) starting at @; contains a left
veering edge for 7 = 1 or ¢ = 2, then ¢4 will lie west of /7. Symmetrically, if the subsequence
k_(Q;) of k(Q;) ending at Q; contains a left veering edge for either i = 1 or i = 2 then ¢}
will lie north of £

Since the core sequence is periodic modulo an element of 71 (M), k4 (Q;) contains a left
veering rectangle if and only if k_(Q;) does. This shows that c¢; lies strictly northwest of ¢y
and hence R(s,c;) lies strictly above R(s,c2) unless both @1 and ()2 are homogeneous.
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FiGURE 22. A diagram of the labeling in the end of the proof of Lemma 5.5.
We have drawn dotted diagonals in the figure as a visual aid, but we emphasize
that Lemma 5.5 logically precedes the drawing of any diagonals.

It remains to show that if both ()1 and ()2 are homogeneous, then ¢; = co. If Q1 and Qo
are both homogeneous, then let so and g3 be as above. Further, let s3,s4... and g4, s, . ..
be the singular points so that the forward core subsequences starting at ()1 and ()9 are

K4 (Q1) = (Q1 = R(s,q1), R(s2,q2), R(s3,3),--.)
and
ki(Q2) = (Q2 = R(s,q2), R(s2,q3), R(s3,q4), - .. ).

See Figure 22. The sequence starting with ()1 converges to ¢ and the sequence starting
with Q2 converges to ¢4. Since R(s;,q;+1) lies strictly above (and is in particular contained
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east-west in) R(s;,q;) for all i, we see that ¢} = ¢3. A symmetric argument moving backward
in the core sequences shows that E{L = (", so we see that ¢; = ¢y as claimed. ]

Lemma 5.5 says that core points fail to be monotonic in staircases precisely when a staircase
has consecutive homogeneous edge rectangles. If n > 2 and Q)1,...,Q, are consecutive
homogeneous edge rectangles in a staircase (i.e. ¢(Q1) = ... = ¢(Qy)), we say that Q1,...,Qp
are pinched.

Each core point ¢ has a unique nontrivial element g generating its stabilizer and translating
upward (i.e. mapping an edge rectangle containing ¢ to one that lies strictly above it). Let
P = P. be the set of all the edge rectangles in P that have core point c. We call P the
preimage of c¢. Note that each edge rectangle belongs to a unique preimage and that each
preimage is g-invariant. We have the following basic fact about preimages, which says that if
a single core sequence associated to a core point ¢ is homogenous, then every core sequence
associated to c is homogeneous.

Lemma 5.6. Let c € P be a core point. Then c is associated to a homogenous edge rectangle
if and only if the preimage of ¢ contains edge rectangles of only one veer.

Proof. For the if statement, if the preimage of ¢ contains only edges of one veer then it is
immediate that every edge rectangle with core point ¢ is homogenous.

Now suppose that Qr and Q1 are respectively right and left veering edge rectangles that
share the core point c. Because they have opposite veer, one must lie strictly above the
other. Suppose without loss of generality that Qg lies above Q1. One can see from a picture
that if Q" is the next edge rectangle in the core sequence for Qp, then Q' is either right
veering or lies strictly beneath Qg. It follows that the core sequence k(Qr) for Q1 must
contain a right veering term. A symmetric argument moving backward in the core sequence
shows that x(QRr) contains a left veering term. This proves the contrapositive of the only if
statement. ([l

If the preimage P of a core point ¢ contains pinched edge rectangles, we say both that c
is pinched and that P is pinched. To review the terminology: a homogeneous edge rectangle
is pinched if it has a neighbor in a staircase which is also homogeneous. A core point is
pinched if it is the core point of a pinched edge rectangle. A preimage is pinched if it is
the preimage of a pinched core point, or equivalently if it contains a pinched edge rectangle.
By Lemma 5.5, if the core points of a staircase are not strictly monotonic, then the corner
singularity of that staircase meets a rectangle in a pinched preimage.

Claim 5.7. There exists a family of rectangles B = {b(Q) < P | Q is an edge rectangle}
satisfying the following properties.

(a) For every edge rectangle @, b(Q) < int(Q) and contains the core point of Q.

(b) If Q1 and Q2 are edge rectangles with distinct core points in the same staircase with
corner singularity p, and Qo lies strictly above Q1, then R(p,x2) lies strictly above
R(p,1) for any x: € b(Q:).

(¢) The family B is w1 (M)-equivariant, meaning b(g- Q) = g-b(Q) for all b(Q) € B and
g€ 7T1(M).

Proof. Let S = {Q;} be the staircase incident to a singular point p. Since the core points of Q;
are monotonic, we can choose a rectangle for each core point which satisfies the monotonicity
condition (b) for S from the claim. See Figure 23. We can do this in a {g)-equivariant way,
where g is the primitive element of 71 (M) stabilizing S. We call these rectangles preliminary
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p

F1aURE 23. Choosing preliminary rectangles around the core points of a stair-
case with corner singularity p, such that the monotonicity condition (b) in
Claim 5.7 is satisfied.

rectangles. We can use these preliminary rectangles to define preliminary rectangles for every
core point in every mi-translate of S by requiring equivariance. We repeat this construction
on every mi-orbit of staircases. The result is that for every edge rectangle we have two
preliminary rectangles, and the collection of all preliminary rectangles is 7 (M )-invariant.
For each edge rectangle @), we can take b(Q) to be the intersection of the two preliminary
rectangles for Q. O

We choose, and fix for the remainder of this section, a family B = {b(Q)} satisfying the
conditions of Claim 5.7. We will call the elements of B core boxes.

We will now construct a pair (A, «) and show that it is an anchor system. First, if @ is
an edge rectangle that is not pinched (the preimage of its core point is not pinched), then
set a(Q) = ¢(Q). If a preimage is pinched, we will coherently choose a-values for each edge
rectangle in the preimage, guided by our collection B of core boxes. Suppose that @ is a
pinched edge rectangle, let P be the preimage of ¢ = ¢(Q), and let P be the union of all
edge rectangles of P. By Lemma 5.6 every rectangle of P has the same veer. Without loss
of generality we will treat the case when each rectangle is right veering.

Claim 5.8. Let a > 1 and Qo € P. There exists an embedding ¥, : P — R? such that
U,(c) =0 and ¥, conjugates the action of g on P to

T
(52) (x,y) =+ (7’ay>
a
where the minus sign occurs if and only if ¢ corresponds to a twisted orbit, and such that:
e if ¢ is untwisted, the singularities of Qo map to £(1,1), and

e if c is twisted, then one singular corner of Qo maps to (1,1) and the other maps to a
point (x,y), for some x,y such that —a < x,y < —1/a.

Proof. Let £, 0" be the vertical and horizontal leaves (i.e. leaves of F s/ “) through c. By def-
inition, the vertical /horizontal leaves through each point of P meet MY giving a coordinate
system on P once we have chosen identifications of both £, ¢"* with R.

If ¢ is untwisted then the dynamics of the action of 71(M) on P allow us to choose
homeomorphisms of each half leaf ¢% (resp. Eg) at ¢ with R, which conjugate the action
of g with multiplication by a (resp. 1/a), so that the associated function P — R? maps the
corners of Qo to (£1,+1).

In the twisted case, we first send the half leaf ¢4 to R via a map f so that the point of
intersection between ¢, and the vertical boundary of Qo goes to 1 and so that the action of
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g? is conjugated to multiplication by a?. Then we define the map on £ by p +— —a (g~ 'p).
The symmetric procedure for the horizontal leaf produces the required coordinates. ]

In both the twisted and untwisted cases, we call Qg the normalizing rectangle for the
coordinates given by ¥,. We fix a particular normalizing rectangle Q.

For any a > 1, and every edge rectangle () in P, we can draw a straight line v in the
U ,-coordinates on P connecting the singularities of Q. Identifying P with its image under
U,, we define a,(Q) to be the point of intersection between 7o and the z-axis (i.e. the
horizontal leaf through ¢). For all @ in P, we have a,(g - Q) = g - aq(Q) since g preserves
straight lines in ¥,-coordinates.

Claim 5.9. There exists a > 1 such that for each edge rectangle Q in P, the point a,(Q)
lies in the core box b(Q).

Proof. By Lemma 4.5, the action of 71 (M) on the set of all edge rectangles is cofinite. If two
elements of P are related by an element of 71 (M), then this element must lie in the stabilizer
of ¢, which is equal to (g). It follows that the action of (g) on P is cofinite.

Let @ be an edge rectangle of P. We claim that as a — 17, a4(Q) — ¢. To see this,
first note that since ¢ is g—invariant, it suffices to prove the claim for any g—translate of Q.
Because the action of (g) on P is cofinite, each @ has a translate lying between Qg and g¥Qq
for some k, not depending on @), and so we replace () with this translate. Then using the
description of the action of g in W,-coordinates from eq. (5.2), we observe that ¥,(g*Qo)
(and ¥,(Qo)) converge to the square with corners at (+1, +1) as a — 00. In the case where ¢
is twisted, this uses the fact (Claim 5.8) that when a is close to 1, the singular corner of the
normalizing rectangle (g in the negative quadrant is approaching (—1, —1). Since @ is above
Qo and below g*Qg, we also must have the same for ¥,(Q) and we conclude that o, (Q) — ¢
asa— 1%,

Next, let Q1,...Qy, be elements of P that together represent each g-orbit. We see that

there exists an a > 1 such that a,(Q;) € b(Q;) for i = 1,...,n since c¢ lies in the interior of
each core box. Since the collection of core boxes is equivariant, this implies that a,(Q) € b(Q)
for all @) in the preimage P. U

Now fix such an a > 1, and define a(Q) = a,(Q) for all @ in the preimage P.

We can perform this procedure for an orbit representative of each pinched preimage, and
extend to all pinched preimages by 71 (M )-equivariance. Since each edge rectangle @ is either
unpinched or is contained in a unique pinched preimage, this equivariantly assigns a point
a(Q) to each edge rectangle Q). Set A = {a(Q)}, where @Q varies over all edge rectangles.

Lemma 5.10. The pair (o, A) is an anchor system.

Proof. It only remains to prove monotonicity in staircases, i.e. for edge rectangles Q1 and Q2
that share a singular corner s, if @)1 is wider than Q2 and a; = a(Q;), then R(s,a;) is wider
and no taller than R(s,as). We assume without loss of generality that @1 and Q2 are right
veering, and for convenience we identify the orthant of s determined by the ; with the first
quadrant of R2.

By Lemma 5.5, monotonicity can only fail if @)1 and @2 share a core point c. In this case,
@1 and @2 lie in the same pinched preimage P, and we can consider these edge rectangles
in the coordinates ¥, where their a-values were chosen. In this case, since () is wider than
(2, and g, and vg, are line segments with disjoint interiors, we see a; lies east of ap. This
immediately implies that R(s,a;) is wider than R(s,a2) and the proof is complete. O
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Lemma 5.3 and Lemma 5.10 together complete the proof of Proposition 5.2.
With Proposition 5.2 in hand, we can produce the fibration p:

Proposition 5.11. There exists a mi-equivariant fibration p: N — P whose restriction to
each face of T is an orientation-preserving embedding into its associated rectangle.

The fibers of p are then oriented lines and the quotient by m; yields an oriented 1-
dimensional foliation positively transverse to 7(2).

Proof. Fix an equivariant family of veering diagonals, as determined by Proposition 5.2. For
each edge of e of 7, map e homeomorphically to the veering diagonal associated to its edge
rectangle. We choose these maps to be equivariant with respect to the 71 (M) action.

If f is a face of 7, then the edges in df are mapped to veering diagonals with disjoint
interiors. Hence, we can equivariantly extend our map so that its restriction to each face
is an orientation preserving embedding. Finally, we extend our map equivariantly over each
tetrahedron of 7 as in Figure 19. In particular, the fibers of the projection in each tetrahedron
are compact intervals that degenerate to points at the angle-0 edges. Using the local picture
around faces and edges of 7, we see that the resulting map p: N — P is a fibration. O

5.2. Step 2: The fiberwise map. We begin by compactifying N to N and extending the
foliation to the boundary components. This will allow us to realize this extension of diagram
(5.1):

P
p q
N 4 ’ N i
(5.3) l l
N—h
L
N h M

Here, M is a renamed M, the universal cover of M, while M is the completion of the universal
cover M , with the metric induced from the inclusion M < M and any fixed metric on M.
Note that M — M is an infinite branched covering, to which the flow ¢ lifts and that the
components of the completion locus are the preimages of singular orbits (we refer to these as
the singular orbits of M ). Hence, the map to the flow space M — P extends equivariantly
to a map M —P.

On the left side of the diagram we compactify N to N by adding torus boundary compo-
nents (done carefully below so as to extend the foliation by p-fibers). We then let N->N
be the universal cover, with the intermediate cover N — N obtained as the one associated

to ker(m1(N) — w1 (M)).

The compactification of N is carried out equivariantly on each tetrahedron s of N. Each
ideal vertex of x has a neighborhood of the form A x (0,1) where A is a cross-sectional
triangle, and moreover the foliation by p-fibers can be taken to be the same on each slice
A x {t}. To see this note that p maps such a neighborhood to a region in P bounded between
two veering diagonals, which can be written as an arc cross (0,1). The p-preimage of each
arc is a cross-sectional triangle foliated by arcs.
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We can therefore compactify « by adding a triangle A x {0} for each ideal vertex, so
that a neighborhood of A is of the form A x [0,1), and the map p extends to the added
faces. We call the resulting polytope & and refer to the added faces as cusp triangles. Doing
this equivariantly, these compactifed tetrahedra glue together along hexagonal faces so that
the quotient is a compactification N of N which is homeomorphic to N minus an open
neighborhood of each cusp. We denote by N the universal cover of N cellulated by the
polytopes K as above.

By construction, the foliation by p-fibers in N equivariantly extends to a foliation of N by
lines and we refer to the leaves of this foliation as p-leaves. We assign to each compactified
tetrahedron % a fixed continuously varying metric along its p-leaf segments which induces a
continuously varying leafwise metric in N.

—~

Defining an initial map. We next construct a preliminary mj-equivariant map h: N - M
Whose restriction h: N — M commutes with the projections to the flow space P. In fact,
h: N — M will commute with the natural projections to P, as we will soon see.

The p-leaves in N , together with their orientations and metric as given above, _can be

identified with R up to translation, and the same holds for the leaves of the flow in M.

~

Lemma 5.12. There exists a w1 -equivariant map h: N — M whose restriction h: N — M
commutes with the projections to the flow space P so that for each p-leaf € in N, the restriction

’f;\g, viewed as a map of oriented lines, is a degree 1 (a,b)-quasi-isometry, where a and b are
independent of the leaf.

Proof. We construct h successively on the skeleta of the completed 2-skeleton of 7. For each
T-edge e of N , the projection p(e) in Pis a diagonal whose closure in P is an arc 1@ with
endpoints at singularities. The restriction of the line bundle M — P to @ is a trivial
bundle, so we can choose a lift of p(e) (i.e. a section of the bundle) whose endpoints are on
singular orbits of M. Thus we have defined h on a closed edge of N whose interior is an edge
of N. We do this for an edge in each mi-orbit and extend equivariantly. For any edge c of
a cusp trlangle A, we note that h(@c) are two points in a single singular orbit of M and so
we extend h over ¢ by mapping it to the segment of the singular orbit joining its endpoints.
This defines » on N in a mi-equivariant way.

The extension over 7-faces of N is similar. For a face F of 7@ its compactification F
in N is a hexagonal face of N. The embedding F — p(F) extends to a map F — p(F)
that collapses the edges of F' contained in cusp triangles to the corresponding singular points
of P. Pulling back the line bundle M — P to F under this map allows us to extend the
section already defined on F(l) to F'. We use this section of the pullback bundle to extend h
over . Note that the restriction to F' commutes with the projections to P by construction.
Again, we extend over a face in each 71—orbit and extend equivariantly, This defines h on the
closures of the T-faces in N.

Finally, we extend the map h continuously to the p-leaf segments. That is, for any leaf
segment « in a compactified tetrahedron &, its endpoints da are in the compactified part of
the 2-skeleton where h has already been defined and commutes with the projections to P.
In particular both endpoints of & map to the same leaf of the flow in M , so that we may
extend h to a constant-speed map from « to that leaf. This completes the construction of
h: N — M with the required properties.




38 M.P. LANDRY, Y.N. MINSKY, AND S.J. TAYLOR

Equivariance means that h descends to a continuous map h: N — M Wthh maps each
boundary torus of N to a singular orbit of M. We then lift h to / h:N — M completing
diagram (5.3). Properness of the deck group m1(M) acting on M and compactness of N
together imply that h is proper. (Note by comparison that h is not proper — the preimage
of a smgular leaf in M is a plane in N whereas the preimage of a singular leaf in M is an
annulus in 0N this is why we need h).

We can now complete the proof of Lemma 5.12 by proving that % has the required prop-
erties.

Coarse Lipschitz: This follows immediately from compactness of N and continuity of h.

Uniform Properness: Consider the lifted map h: N — M. Every leaf in M is properly
embedded — indeed as we know the universal cover is a product whose vertical factors are
the leaves. The same is true in N: here, by construction each leaf meets an infinite non-
repeating sequence of cells of the triangulation, and since these are discrete in N the leaf
must be properly embedded. Now, since as above his a proper map, its restriction to any
leaf must be proper.

Moreover, the map is uniformly proper on leaves: For any point z in M let K be a compact
neighborhood. The preimage of K is a compact set K’, so for all leaves m passing through
K, the preimage of m n K is contained in K’. This implies that the diameter in a leaf of the
preimage of a segment in K is uniformly bounded. After covering a fundamental domain by
finitely many such neighborhoods, we deduce that for any leaf segment in M with diameter
less than (say) 1 there is a uniform bound on the diameter of its preimage by h. This implies
uniform properness over all leaves.

Degree 1: We now check that ivz\ ¢ has degree 1 for for every leaf. That is, we must check that
the “upward” direction along leaves of N maps to the “upward” direction along orbits of M ,
at large scale.

The coorientations on the faces of the tetrahedra in N (from Section 4.1) and the p-fibers
were chosen so that when a leaf passes from a tetrahedron ¢ to ¢’ in the forward direction, ¢’
lies above t, and this means that the rectangle of ¢’ is above that of ¢ in the sense of Section 4:

Fact 5.13. Suppose that t and t' are adjacent tetrahedra of N such that t lies below t' in
the sense that there is an oriented p-leaf passing from t to t'. Then the mazximal rectangle
associated to t lies below the mazximal rectangle associated to t'.

This fact follows from considering the (finitely many) diagrams of a pair of adjacent tetra-
hedra. Now consider the sequence of tetrahedra that a forward ray of ¢ visits. Discreteness
of the rectangles of P implies that these rectangles must have widths going to 0 and heights
going to oo, in the sense of Fact 4.4.

On the other hand, consider a leaf of the flow in M. Fix an equivariant collection of
sections of M — P over maximal rectangles as in Lemma 4.3. The sequence of rectangles
met by a forward flow ray must, by Lemma 4.3, be eventually ordered with later ones lying
above earlier ones. N N

Thus, upward motion in the leaves of both N and M corresponds to the same behavior of
rectangles. Now to connect the two via iAl, note that for each face F' of 7, the restriction of h
to F' can be pushed along the flow in M until it meets the selected section of the rectangle
associated to F. The distance along the flow required for this is uniformly bounded, since
there are only finitely many orbits of faces. It follows, using properness of the map on leaves,
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that, if an upward ray in N meets a sequence of faces Fi,..., then its h image meets all but
finitely many of the associated rectangle sections. Thus, upward rays map to upward rays.
The same idea applies to downward rays.

Quasi-isometry: To finish, we need a lower bound on distances in the image. Identifying
both ¢ and h(¢) with R in a length and orientation preserving way, it suffices to prove the
following: There exists A > 0 independent of £ such that for any x,y € ¢

(5.4) y>x+A = hl(y) > hle(z) + 1.

Uniform properness implies that there exists A > 0, independent of ¢ and x, such that
y > x + A implies the distance between h|;(y) and h|s(x) is greater than 1. Degree 1 implies
that, in fact h|¢(y) lies above hls(z) in the orientation of the image leaf. This implies (5.4).

This (together with coarse-Lipschitz above) suffices to prove that /f\L| ¢ is a quasi-isometry. This
completes the proof of Lemma 5.12. ]

5.3. Step 3: Straightening by convolution. We are now ready to obtain the homeomor-
phism:

~

Pr0p051t10n 5.14. There is a mi-equivariant omentatzon—preservmg homeomorphism f :
N — M which commutes with the fibrations p: N — P and q: M — P.

Once we have this, we’ll denote by f: N — M the homeomorphism obtained by passing
to the quotients. It follows easily that f (7(2)) is ‘topologically transverse’ to the flow ¢ — see
Proposition 5.15 below. Although this is all that we will need in practice, we will show in
Step 4 that this can be promoted to a smooth branched surface transverse to the flow.

Proof. The idea now is to convolve h|y (for each leaf ¢) with a bump function to get the
desired map.

Let A be the constant in property (5.4) in the proof of Lemma 5.12. Let p be a smooth
bump function on R satisfying: p =0, {p =1, p is supported on {|z| < A + 1} and constant

n [—A, A], pis even (p(—z) = p(x)), and increasing on [—A -1 —A]

Now if k£ : R — R is a continuous map we form p » k(t) = { k(y) y) dy, which has the
following properties:

(1) p* k is differentiable.
(2) px commutes with translations. That is, if T'(z) = x +a then px (foT) = (px f)oT
and p* (T'o f) =T o (p* f).

(3) p* is continuous with respect to the compact-open topology on C(R,R).

(4) If k satisfies property (5.4) then (p* k)’ > ¢ > 0, where ¢ depends only on p.

(5) If k is (K, 0)-coarse Lipschitz then (p x k)’ < ¢ where ¢ depends on p, K and 9,

(6) If k is (K, d)-coarse Lipschitz then |p x kK — k| < ¢, where ¢ depends on p, K and 4.
Properties (1), (2) and (3) are standard. Properties (4) and (5) follow from the fact that,
given the properties of p,

A+1

(e (®) = [ (bt )~ kit = )l ()]

A
which is easily verified. Property (6) is also a consequence of the averaging properties of
convolution.
Translation-invariance implies that this convolution operation is well defined on the maps
h\ ¢, because our identification of the leaves with R is well-defined up to translation. We let
p * h denote this operation carried out simultaneously on all the leaves in N. Continuity
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property (3), and the continuity of R and the leafwise metrics that we chose in N, imply that
the result is a continuous map.

By Lemma 5.12, each leafwise h\ ¢ is coarse Lipschitz (with uniform constants) and satisfies
(5.4). Thus, p * R has positive derivative on each leaf, so it is a homeomorphism on leaves,
and it is a bounded distance from h along the leaves (and in particular the two maps are
homotopic). On the leaf space the map is the identity, so it is globally a homeomorphism
from N to M which commutes with the projections to the leaf space.

Finally, p * h is equlvarlant since the group acts by orientation-preserving isometries on
the leaves both in N and M this follows from equivariance of h and translation-invariance
of px. This completes the proof. O

We can now state an immediate application of Proposition 5.14, which is the topological
version of our main result, Theorem 5.1:

Proposition 5.15. There is a homeomorphism f: N — M, inducing the identity on m (M),
such that the image of T is a cooriented branched surface that is topologically positively
transverse to flow lines of .

Here, by ‘topologically positively transverse,” we mean that the image of 7(2) has a branched
surface fibered neighborhood whose oriented fibers are segments of flow lines.

5.4. Step 4: Smoothing. The next proposition completes the proof of Theorem 5.1.

Proposition 5.16. The homeomorphism f: N — M from Proposition 5.15 can be chosen
so that f(T(Q)) s a smooth branched surface which is positively transverse to flow lines of p.

Proof. We will indicate how the previous construction can be adjusted so as to yield a smooth
result. The first step is to give the line bundle N — P a smooth structure with respect to
which sections carried by the branched surface are smooth.

Since the flow is smooth off its singular orbits, the flow space P inherits a smooth structure
from M. After a small equivariant perturbation we may assume that the diagonals are smooth
and that triangles are still embedded. (The diagonals may no longer be transverse to the
stable/unstable foliations, but they are still contained in their respective edge rectangles —
we will improve this in Proposition 5.17).

Next we need to specify the fiberwise metrics on the p-leaves so that they vary smoothly
with respect to the base. Each p-leaf is composed of segments from the foliation of the tetrahe-
dra. We can metrize these segments in each tetrahedron (equivariantly) so that their lengths
vary smoothly and converge to 0 at the 0-angle edges of the tetrahedron, and have derivatives
0 there (we can make higher derivatives match across the edge for greater smoothness).

This allows us to give local trivializations of the bundle p: N — P: Over a small disk
consider a section that lies in the branched surface and use the metric on leaves to define a
trivialization where that section is at constant height. The way we chose the fiber segment
lengths implies that different choices of sections give trivializations for which transition maps
are smooth. Thus we have a smooth structure on the bundle for which sections lying in the
branched surface are smooth.

When we define the map h, we first choose sections over the veering edges. These can be
chosen smoothly on the interiors of the edges. We then extend to the faces of 72) smoothly,
and in such a way that the sections are tangent to each other at the edges. The extension
of h to the p-leaf segments in each tetrahedron can be done at constant speed, so that since
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the maps on the endpoints are smooth by the previous paragraph we find that, in a local
trivialization of p, the map varies smoothly with respect to the coordinates in P. Note that
we do not obtain smoothness of  on the completion points of N , but we only need continuity
there.

The map, which may still not be injective or smooth in the fiber direction, is now averaged
in the convolution step. The final map is smooth in the fiberwise direction because the bump
functlon p is smooth, and it is smooth in the P direction because the fiberwise metrics and the
map I are smooth with respect to the P direction. Thus our final map is a diffeomorphism
and the image of the branched surface is transverse to the flow. O

5.5. Transversality in the flow space. In the interest of recovering as much as possible of
the picture in the suspension flow case, we would also like the smooth veering edges in each
edge rectangle in P to be transverse to both stable and unstable foliations. We note that
this is not needed for the flow-transversality of Proposition 5.16.

Proposition 5.17. The fibration p: N — P can be chosen so that the images of the veering
edges are smooth and transversal to both the stable and unstable foliations.

We note that this is easy if the stable and unstable foliations are at least C?, because then
the rectangles can be smoothly identified with Euclidean rectangles foliated by axis-parallel
lines. Our foliations may not have this regularity, although for dynamical reasons they do
have smooth leaves and line fields which are uniquely integrable. These facts are well-known
for Anosov flows [Ano63] and the proofs also apply more generally to pseudo-Anosov flows
(see [FMO1]). This turns out to be enough.

The Proposition will follow directly from Corollary 5.19 below.

In this section, by smooth we mean at least C?. A smooth quadrilateral is a smooth disk-
with-corners that has four corners and two transverse foliations, so that each foliation is
tangent to two opposite boundary edges. We do not assume that the foliations themselves
are smooth.

Such a quadrilateral has a diffeomorphism to the unit square, taking the two foliations to
foliations that include the horizontal and vertical boundary edges, respectively. From now
on we identify Q with [0, 1]?, we call the foliations F}, and F,, and we say that a diagonal of
@ is a path from (0,0) to (1,1).

Lemma 5.18. Let Q be a smooth quadrilateral. If the line fields of Fy, and F, are uniquely in-
tegrable, then there exists a smooth diagonal which is transverse to both Fy, and F,. Moreover
one can prescribe the tangent direction of the diagonal at each of its endpoints.

We remark that the lemma is false without the unique integrability assumption, so that
there really is something to do here.
As a corollary we have:

Corollary 5.19. Let Q@ be a smooth quadrilateral for which the line fields of Fy and F,
are uniquely integrable, and o a continuous diagonal which is topologically transverse to both
of the foliations. Then o can be C° approzimated by a smooth diagonal transverse to both
foliations.

Here “topologically transverse” means that the diagonal meets every foliation leaf exactly
once.
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Proof of Corollary 5.19. Subdivide « into small segments. Because it is topologically trans-
verse, the endpoints of every segment are opposite corners for a foliated sub-quadrilateral,
so that adjacent quadrilaterals meet exactly at their common corner. We may choose tan-
gent lines at every corner which point into the two adjacent quadrilaterals, and then use
Lemma 5.18 to find a smooth diagonal for each quadrilateral matching the given tangent
direction at the corners. These piece together to a C' diagonal which is transverse to both
foliations and closely approximates o in C°. A further (standard) smoothing step upgrades
this to a smooth diagonal. O

Proof of Lemma 5.18. We will need this calculus lemma, whose proof we omit:

Lemma 5.20. Let oy, : [0,1] — R? be C' curves. Suppose that o, — o pointwise, and al,
converges to a continuous vector field u along a. Suppose moreover that all the functions
t — al,(t) have a common modulus of continuity. Then « is differentiable and o/ = w.

Now we apply this to our setting. Let u, v be C? vector fields on @ that are tangent to Fj,
and F,, respectively. Extend u,v continuously to a small neighborhood of ), and form the
open tangent cone field C' where C(x) = {au(z) + bv(x) : a,b > 0}. Given any fixed a,b > 0,
the vector field au + bv lies in C, and varying over convex combinations a + b = 1 we obtain
a family of vector fields with a common modulus of continuity.

Let pq(x) be a family of bump functions varying smoothly with a € (0,1), with mass 1 and
support of size €(a), such that € — 0 smoothly as a — 0 or a — 1. If the function ¢ is chosen
small enough then, convolving au + bv with p,, we get a family of smooth vector fields &, on
Q in the cone field C, all with a common modulus of continuity, such that £, — u as a — 1
and £, — v as a — 0.

Now for each a € (0, 1), smoothness implies , is uniquely integrable so let «, be an integral
curve starting at the lower-left corner of Q. Thus «, satisfies o/, (t) = &, (aq(t)) € C(aq(t)),
for any ¢ for which the curve is defined. In fact (since &, is smooth) this is defined until it
leaves (), and this must be on the right or top edge since C points into @ at points of the
left and bottom edges.

Now we can take the limit as a — 0. Because a, have bounded derivatives, Arzela-Ascoli
gives us some sequence a, — 0 for which the curves converge to some limit curve ag. We
know that the vector fields o/, (¢) along the curves satisfy a common modulus of continuity
because &, do, and the a, have bounded speed. Thus Lemma 5.20 applies to tell us that «ag
is differentiable and its derivative is just the limit of &, (restricted to «g) which is the vector
field v. That is, g is an integral curve of v starting at the lower left corner, and hence the
left-boundary leaf of the foliation F; by unique integrability. This means ag terminates on
the upper left corner.

Similarly a limit as a — 1 gives «; which terminates on the lower right corner.

Continuity gives us a value of a for which «, terminates on the upper-right corner.

Once we have the desired path «,, we need to perturb it so that it has the desired tangent
directions at the corners. This is more simple: the vector fields u and v are continuous at the
corners. So in a small enough neighborhood of (say) the corner (0,0) they are much closer to
the coordinate vector fields than they are to the direction of a,. Now, thinking of «, as the
graph of a function, add a smooth function with small support near 0 and the appropriate
derivative at 0. O
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6. THE FLOW GRAPH AND ORBITS OF THE FLOW

Let ¢ be a pseudo-Anosov flow without perfect fits on M and let T be the veering triangu-
lation of M = M ~ {singular orbits} dual to ¢. In this section we detail how the flow graph
® uniformly codes orbits of the flow .

Recall that (’):; < M is the union of closed orbits O, of the flow along with all positive
multiples of unstable prong curves in M. We also denote by Z¢ the set of directed cycles of
®. In Section 6.3 we produce a map

. +
g-Zq)_)Osoa

with the property that the directed cycle ¢ is homotopic to §(c¢) in M. We remark that when
§(c) is nonsingular (i.e. a closed orbit in M; not a prong curve), it is the unique closed orbit
of ¢ homotopic to the flow cycle c.

The main theorem of this section (proven in Section 6.3) is a summary of the essential
features of the map §. For its statement, we need one additional definition. Let ~; and -9
be two directed closed curves in M which are positively transverse to 7(2). We say that v
and 79 are transversely homotopic if they are homotopic through closed curves that are
positively transverse to 72,

We also remind the reader that §, denotes the length of the longest fan in 7.

Theorem 6.1 (Closed orbits and the flow graph). The map §: Z — (’);f has the following
properties:

(1) The image v = §(c), which is either a nonsingular closed orbit of ¢ or an unstable
prong curve, is transversely homotopic to ¢ in M.

(2) For each unstable prong curve v, 1 < #3§ 1(y) < 2.

(3) For each nonsingular closed orbit vy of o, either #§ 1(y) < 1 or v is homotopic to
an AB-cycle in which case #F 1 () < 6.

(4) For each nonsingular closed orbit v of p, either 7 is in the image of § or 7y is homo-
topic to an odd AB-cycle.

In short, the flow graph ® encodes all but finitely many primitive orbits of the flow in a
one-to-one fashion. We remark that simple cycles of & can map to nonprimitive orbits of (;
this happens for example in the presence of twisted orbits.

6.1. The flow space and the flow graph. We begin by explaining how the structure of
® is recorded by the maximal rectangles of the completed flow space P.

By the construction of 7, each 7-edge e of the lifted triangulation 7 on M corresponds
to a unique edge rectangle in P. Similarly, faces of 7 correspond to face rectangles and
tetrahedra correspond to maximal rectangles. In fact, we can use Proposition 5.2 to fix a
71 (M )-equivariant map M — P that embeds each T-edge in its edge rectangle so that the
restriction to each face of T is also an embedding. We fix such a map once and for all, and,
abusing terminology, we will also refer to the image of e in P as a 7-edge. For example, a
T-edge e is contained in a maximal rectangle R if and only if its edge rectangle @ is contained
in R. The singularities at the corners of () are necessarily contained in the interiors of the
sides of R.

If @ is the edge rectangle for a 7-edge e, then we denote by either R, or Rg the maximal
rectangle obtained by extending @) vertically along leaves of F* as far as possible, so that e
joins its vertical sides. See Figure 24. In terms of the veering triangulation 7 of M , Re is the
maximal rectangle corresponding to the tetrahedron having e as its bottom edge.
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Q Rq

FIGURE 24. Vertically extending an edge rectangle (left, green) to a maximal
rectangle (right, blue).

We also fix the inclusion ¢: & — M in dual position. In this section, it will be convenient
to identify ® with its image under ¢. Recall that in this position, the vertices of ® agree
with the vertices of the dual graph I' and hence with the triple points of the stable branched
surface B?®.

By [LMT20, Lemma 4.4], .: ® — M is mp-surjective and so the flow graph ® has connected
preimage in the universal cover of M, which we denote by 3. Identifying each T-edge e with
the maximal rectangle R, leads to the following alternative description of ®: the vertices of
® are maximal rectangles and for each maximal rectangle R there are directed edges from
R = Ry to the three rectangles Ry, Rs,, Rs,, where t is the 7-edge joining the horizontal sides
of R and s; and sz are T-edges of R such that the rectangles R;, R, , Rs, have nonoverlapping
interiors (see Figure 25). This is to say that in the rectangle R, the set t U s1 U s9 passes the
“vertical line test.” We will freely use this correspondence between d-vertices and maximal
rectangles.

° Rt

B

FiGUrE 25. The outward &)—edges of the T-edge e in terms of maximal rect-
angles. The dotted lines indicate that those portions of the boundaries of
rectangles do not meet.

We similarly consider the preimage I of the dual graph I' in the universal cover of M.
Each vertex of I' is contained in the interior of a unique tetrahedron of M and hence also



GROWTH RATES AND THE VEERING POLYNOMIAL 45

corresponds to a unique maximal rectangle. Understanding paths in I’ with this perspective
is fairly straightforward:

Lemma 6.2. Let Ry and Ry be mazimal rectangles in P and suppose that Ry lies above R;.
Let v1 and vy be the I'-vertices corresponding to Ry and Ro. Then there exists a directed
T-path from v1 to vs.

Proof. Let T1 and T5 be the T-tetrahedra corresponding to Ry and Ro, respectively. Since Ro
lies above R, the projections of T} and 75 to P must overlap. Hence there is a $-orbit passing
through both 77 and T5. Further observe that whenever an orbit passes from a tetrahedron
T, to an adjacent tetrahedron 73, the maximal rectangle R, associated to T, lies below the
maximal rectangle Rj, associated to T} (see Fact 5.13). Hence, the given orbit must pass first
through the tetrahedron 77 and then through the tetrahedron 75.

By truncating this orbit and adding small segments in 7} and 75, we obtain a path from v
to vy which is positively transverse to 7). After perturbing rel endpoints to make it disjoint
from 7| the sequence of F-faces traversed by this path corresponds to a directed f‘-path
from v; to vs. ]

To understand directed paths in ® it is convenient to work with the dynamic planes of
Section 3, as we now explain.

A singular leaf of either the stable or unstable foliation of P is a leaf homeomorphic to
[0,00) with its endpoint on a singularity of P. A point p of P is a regular point if it does
not lie in a singular leaf of either foliation. We remark that all fixed points of P under the
m1(M)-action are either regular or singular, since singularities are the only fixed points in
their stable/unstable leaves.

Now let p € P be a regular point. A p-rectangle or maximal p-rectangle is a rectangle
or maximal rectangle, respectively, which contains p in its interior. A p-ray is a directed
infinite ray in ® traversing only maximal p-rectangles.

Lemma 6.3. Let R be a maximal p-rectangle for a regular point p € P. There is a unique
p-ray starting at R.

Proof. By definition, there are directed edges from R = R} to Ry, , Rs,, Ri, where R;,, Rs,, Ry
cover R and have disjoint interiors. Since p is a regular point, it is interior to exactly one
of Ry, Rs,, Rt. In other words, every maximal p-rectangle has a unique outgoing &)—edge
connecting it to another maximal p-rectangle. ]

In the next proposition, we associate to each (singular) leaf ¢ of F* a unique dynamic
(half-) plane Dy. As in Section 3.1, we denote by o(v) the unique sector of B® whose top

vertex is v. If R is the maximal rectangle of P corresponding to the vertex v of f, we extend
this notation to o(R) = o(v). The reader can check that if e is an edge of 7, then o(R.) is
the unique sector of B*® dual to e.

Proposition 6.4 (Dynamic planes for stable leaves). Let ¢ be a (singular) leaf of the vertical
foliation F*°. The union
D= |J aw

{nint(R)#

of all sectors of B* associated to mazimal rectangles R that meet £ in their interior is a
dynamic (half-) plane.

Moreover, Dy has the property that for any dual ray (or flow ray) 5 whose vertices corre-
spond to mazximal rectangles that meet £ in their interior, we have Dy = D(7).
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For the proof, we first define the dynamic (half-) plane associated to any increasing sequence
of rectangles. Let A = (A, Ag, As,...) be any sequence of distinct maximal rectangles with
the property that A;,1 lies above A; for all i. We remark that A could be a path in f‘, in CT),
or in neither, though only the I' and ® cases are relevant for us.

By Lemma 6.2, there is a f‘—path from A; to A;y1 for all i. The union of these f‘-paths
gives a (possibly nonunique) f‘—ray ~v4. It follows that A determines a dynamic (half-) plane
D 4, which can be defined by

Dy = D(ya) = UA(U(Ai)%

where A(co) is the descending set of o, is as in Section 3.1. Note that the A(c(A4;)) form
a nested union of descending sets by Lemma 3.3 and so D4 is independent of the choice
of v4. Also, D4 is a dynamic half-plane if and only if 74 is eventually a branch ray. In
terms of rectangles, this is equivalent to the condition that there is a single singularity s such
that either the top or bottom components of all d, A; eventually contain s. To see this, first
note that by Lemma 6.2 it suffices to assume that A is a sequence of consecutive maximal
rectangles in the sense that A; and A; ;1 intersect along a face rectangle F;. Then from the
picture in the flow space, one sees that there exists a singularity s eventually contained in all
OpA; if and only if it is eventually the case that the edge rectangle of intersection between
F; and F;,q always has the opposite veer as the top edge rectangle of A;,1. This exactly
characterizes branch rays; see for example [LMT20, Lemma 4.5].

Proof of Proposition 6.4. First fix an arbitrary maximal rectangle Ay such that o(Ap) is a
sector of Dy, and a sequence A = (Ag, A1, Ag, As, ... ) of distinct maximal rectangles meeting
£ in their interiors with the property that A;,1 lies above A; for all i. Note that ¢ is a singular
leaf with singularity p if and only if A; contains p in its horizontal boundary for i sufficiently
large. We will show that Dy = D 4.

Next let By be any maximal rectangle with o(Bp) a sector of D, and as above let B =
(Boy, B1, Ba, Bs, .. .) be another such sequence of maximal rectangles, determining a dynamic
plane Dp in the same way. We claim that D4 = Dpg. Indeed, let A; be a term of A. By
the discreteness of singularities in P, there exists some j such that B; lies above A; (see
Fact 4.4). By Lemma 6.2 there is a dual path from A; to Bj, so by Lemma 3.3 we have
A(o(A;)) € A(o(Bj)). Since this holds for any rectangle in A, we see that Dy < Dp. The
proof of the reverse inclusion is the same, so we have the equality Ds = Dp.

Since By was an arbitrary maximal rectangle with o(By) < Dy, we conclude that Dy, < D 4.
Moreover, since any rectangle R with o(R) < D 4 lies below some A;, we also have the interior
of R meets ¢. Hence, Dy < D,. This proves that Dy is a dynamic (half-) plane. The moreover
claim is now clear from the construction of D4 and the equality D4 = Dy. ]

For any point p € P that is not a singularity, we further define D, = D, where / is the
unique leaf of F* through p. The planes D, and D,, are called the dynamic planes for ¢
and p, respectively.

Remark 6.5 (Singular leaves and dynamic planes). If ¢ is leaf of F*, then ¢ is singular if
and only if Dy is a dynamic half-plane. Moreover, in this case, any increasing sequence of
rectangles (A;) whose terms all intersect ¢ in their interior has the property that the singular
point p along ¢ is eventually contained in the horizontal boundary of A; for sufficiently large
i.
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l

FIGURE 26. A singular leaf ¢ with singularity p and an increasing sequence
of maximal rectangles that intersect ¢ with the property that p is eventually
contained in the vertical boundary of all terms. The resulting dynamic plane
contains the dynamic half-plane D,.

In this situation, we can pick one of two sides of £ and extend along maximal rectangles
which are contained in that side and which contain p in thier vertical boundary (see Figure 26).
The argument from the proof of Proposition 6.4 shows that doing so produces a unique
dynamic plane containing D,. Since ¢ has two sides, this procedure produces two dynamic
planes that contain Dy. (In fact, these are the only two dynamic planes containing Dy, but we
will not need this.) Moreover, each of these dynamic planes is stabilized by the (necessarily
nontrivial) stabilizers of Dj.

Proposition 6.4 implies that for each regular point p € P, any two p-rays lie in the dynamic
plane for p. Combining with Corollary 3.13 gives us the following lemma.

Lemma 6.6. Let p € P be a reqular point with dynamic plane D. The number of asymptotic
classes of p-rays is equal to the width of D, and hence is at most 6.

With these results relating dynamic planes to the flow space in hand, we can now char-
acterize when closed paths in M are transversely homotopic. This will be essential for the
results in Section 7.

Proposition 6.7 (Transverse homotopies). Let v1 and v2 be two homotopic closed curves
which are positively transverse to 72). Then either they are transverse homotopic or they are
homotopic to branch curves.

Proof. We first perturb ~; and 2 to avoid 7(1). Then each ~; determines a unique I'-cycle to
which it is transversely homotopic. Hence, it suffices to prove the claim when +; and 7o are
I'-cycles. Assume that neither is homotopic to a branch curve.

Lifting a homotopy from 1 to <2, we obtain T'-lines 4; and 5 that are stabilized by
{g) < m1(M). If we intersect the sequence of maximal rectangles associated to 51 (or 42), we
obtain a single p € P by Fact 4.4. By construction, p is stabilized by g and so p is regular.
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F1cURE 27. Homotoping one side of a B®-sector to another through curves

positively transverse to 7(2),

Otherwise p would necessarily be a singularity of P and -; would be homotopic to a branch
curve in the corresponding cusp of M.

Therefore, p determines a dynamic plane D), that contains 4; and 7, by Proposition 6.4.
Applying Lemma 3.17, we see that v, and 72 are homotopic by sweeping across sectors of B?.
Since such homotopies are visibly through curves that are transverse to () (see Figure 27),
the proof is complete. ]

6.2. Lines of ® and the flow. We now focus on associating to each directed line of the
graph ® an orbit of the flow ¢. More precisely, we define a map

§ : {directed lines in &)} P

from directed lines in ® = M to the completed flow space P. Each directed line ¥ in d
corresponds to a sequence of maximal rectangles which become taller in the positive direction
and wider in the negative direction. Then, as in Proposition 6.7, Fact 4.4 implies that the
intersection of the rectangles in this sequence is a single point %(’Ny) € P. See Figure 28. It is
not hard to see that this map is 71 (M )-equivariant and continuous with respect to the usual
topology on the space of lines.

To understand the image of § in P, we again study the structure of dynamic planes.

Define a chain of sectors in a dynamic plane D to be a union of sectors attached as in
Figure 29. More precisely, a chain is a collection of sectors oy, ...,0, such that an entire
bottom branch segment of o; is identified with a top branch segment of ¢, for¢ =1,...,n—1,
and there is a single branch segment that contains a top branch segment of each o; for
i=1,...,n,ie. the union | J;_, 0; is bounded by four branch segments. Two of these are the
top branch segments of the chain and two are the bottom. Note that every sector has two
chains, possibly of length 1. When a chain has length at least 2, we say a branch segment in
its boundary is long if it contains an edge of each sector of the chain and is short otherwise.
See Figure 29 for an example.

We now show that lengths of chains are uniformly bounded by é = §,, which as a reminder
is the length of the longest fan of 7.

Lemma 6.8. Any chain of sectors in a dynamic plane has length less than 6.

Proof. Suppose that C' is a chain of length k£ > 2. An application of Lemma 3.8 shows that
the bottom k& — 1 sectors of C' have top and bottom vertices of the same veer. This means
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Figure 28. The map % sends a :I;—line, which corresponds to a certain bi-
infinite sequence of maximal rectangles, to the unique point in P lying in all
of the rectangles.

FI1GURE 29. A chain of length four. The highlighted branch segments are long,
and the other two branch segments in the boundary of the chain are short.
The vertices indicated by black dots all have the same veer by Lemma 3.8.
Either of the two bottom branch segments could possibly have more vertices
than shown.

that the long top branch segment of C' passes through k£ —1 consecutive non-hinge tetrahedra.
Applying Claim 3.11 gives that these tetrahedra lie in the fan of a single edge. As in the proof
of Proposition 3.10, we note that this implies the existence of a fan of length k—14+2 =k+1
(see [FG13, Observation 2.6]). O

Recall that Lemma 3.7 says that flow rays converge in dynamic planes unless they are
separated by AB strips. The next lemma essentially says that this convergence is rapid, and
is key to proving Proposition 6.12 which says that § is surjective and uniformly finite-to-one
away from singularities.
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Lemma 6.9. Let o be a sector of a dynamic plane D, and let o’ be the sector directly below
o so that the top vertex of o’ is the bottom vertex of o. Then any flow ray of D starting in
the descending set A(c’) < D passes through a vertex in a chain of o.

Proof. Since each flow ray of D starting in A(c’) eventually meets 0A(c’) by Lemma 3.1, we
may suppose that the flow rays in question start at vertices along dA(c’). Moreover, also by
Lemma 3.1, 0A(0”) consists of the negative subrays b; and bs of the branch lines through the
top vertex v’ of /. We will prove the claim for flow rays of D starting at b = by since the
proof for by is the same.

Let S be the union of all sectors in A(c) \ int(A(o’) with bottom vertex lying in b. Note
that one of the chains of sectors of ¢ is contained in S and that every sector in S other than
o has a segment of b as a complete branch segment in its boundary. See Figure 30.

FIGURE 30. The set S (green) as a union of chains of sectors.

Let Cy, C1, ... be the decomposition of S into a union of chains of sectors so that Cj is the
chain of sectors of o in S and the top (short) branch segment of C;;1 whose initial vertex is
along b is identified with a proper branch segment along the bottom of C;. The remainder of
the proof will establish that any flow ray starting at a vertex along b passes through vertices
of S until it exits A(o) at some vertex along Cp, the chain for ¢ in S. The key technical step
is the following claim which implies that the long top branch segment in each chain C; (for
i > 1) is contained in a side of a single sector of A(o).

Claim 6.10. Suppose the short top branch segment of a chain C of sectors in the dynamic
plane D is identified with the lowermost edge in the side of some sector o, < D and that
oq U C is not a chain. Then the long top branch segment of C is contained in the boundary
of a single sector oy of D.

We note that the use of ‘long’ indicates that C' has length at least 2, but the corresponding
claim when C has length 1 is immediate since every edge in D is in the boundary of exactly
two sectors.

Proof of Claim 6.10. This follows almost immediately from Lemma 3.8 after labeling the
veers of each vertex.

In more detail, first note that the veer of the bottommost vertex of C' determines the veer
of every other vertex of o, U C except the top vertex of o,. If £ is the long top branch
segment of C, then every vertex of £ except the final vertex has the same veer as that of the
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bottom-most vertex of C'. The final vertex of ¢, which lies on the bottom branch segment of
04, must have the opposite veer (see the leftmost image in Figure 31, where the vertex colors
indicate opposite veers). Hence, if we let o, be the sector of D not in C' that contains the
last edge in ¢, another application of Lemma 3.8 implies that £ is completely contained in a
side of g3, as in either the center or right image in Figure 31. ]

Now returning to the proof of the lemma, we observe that a flow ray p in D starting at a
vertex along b has as its next vertex the top vertex of a sector in .S, and that this vertex lies
in the top branch segment of some chain C; opposite b. We claim that p (after one or two
additional flow edges) meets the top branch segment of C;_; opposite b. Applying this claim
inductively, we obtained that p eventually meets the top branch segment of Cy opposite b.
Since CY is a chain of ¢, this will complete the proof.

For this final claim, we use Claim 6.10 to see that the top branch segment of C; opposite b
lies in the boundary of a single sector o3. Hence, the next vertex along p is the top vertex of
op, which is either along the branch segment of C;_1 opposite b, as in the center of Figure 31,
or along the interior of a branch segment at the bottom of C;_i, as in the right side of
Figure 31. In the first case, we are immediately finished. In the second, the next flow edge
from the top vertex of oy is through the interior of the sector at the bottom of C;_1. Hence,
the next vertex along p is in the branch segment of C;_1 opposite b as claimed. (I

Remark 6.11. The proof of the above lemma may be easily modified to show the following:
for a sector ¢ in a dynamic plane D, any flow ray in D starting in A(o) passes through a
vertex in a chain of one of the sectors immediately above o in D. In the case when the top
vertex v of o is the bottom vertex of another sector ¢’ in D, the proof is exactly the same
but with the roles of o and ¢’ reversed. If v is not the bottom vertex of any sector in D then
the flow ray will pass through a vertex in a chain of either of the two sectors immediately
above o. See Figure 32. This fact will be used in Section 9.

We now establish the following, which roughly states that ® records orbits of the flow in
a manner which is uniformly finite-to-one.

Proposition 6.12. The map % 1s surjective. If p € P does not lie on a singular stable leaf,
then |51 (p)| < 26, and if p is nonsingular but lies on a singular stable leaf then |1 (p)| < 46.

Proof. For the moment, suppose that p € P does not lie in a singular stable leaf.
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$5Q

FiGURE 32. Picture to accompany Remark 6.11. If the top vertex of o is not
the bottom vertex of a sector in D, then any %-ray in D starting in A(o) must
pass through a vertex in a chain of one of the two sectors immediately above
o. In the picture the chains of the two sectors immediately above ¢ are colored

blue.

Let (R;)i<o be a sequence of maximal p-rectangles that limit to a horizontal leaf through
p. After refining the sequence, we may assume that R;.q lies above R; for each i < —1.
For each R;, let p; = ray,(R;) be the p-ray starting at R;. By Proposition 6.4, each p; is
contained in D = D), the dynamic plane associated to p. Hence, each maximal rectangle R;
corresponds to a vertex v; in D, which is the initial vertex of p;.

Next, let @ be any edge rectangle in P that contains p. As before, let R = Rg be
the maximal rectangle obtained by extending @ vertically and also let R’ be the maximal
rectangle obtained by extending ) horizontally. These correspond to sectors o = o(R) and
o' = o(R') in D, where o lies directly above o’. Indeed, o is the sector of D whose top vertex
corresponds to R and similarly for o’

By the choice of the sequence (R;)i<o, the rectangle @ (and hence R’) lies above R; for
j « 0. By Lemma 6.2 there is a dual path from R; to R/, so by Lemma 3.3 we have
A(o(Rj)) < A(¢’) € D. Hence, we see that p; meets the descending set A(o’) for all j
sufficiently small. So by Lemma 6.9, p; must pass through a sector in one of the two chains
for . Since the number of such sectors is uniformly bounded by Lemma 6.8, we can pass
to a subsequence so that for all j < 0, all p; pass through a fixed vertex vg in the chain for
o = o(Rq) and thereafter agree. Let pg be the %-ray starting at vg.

Iterating this construction for a sequence of edge rectangles Q_1,Q_2,Q_3, ... limiting to
the horizontal leaf through p yields a nested sequence of rays pg_, < pg_, < pg_, < ---,
the union of which is a ®-line £ in D such that each maximal rectangle along ¢ contains p.
Hence, § (I) = p, as required.

For the bound on the preimage, note that any line in F~!(p) is contained in the dynamic
plane D, for p by Proposition 6.4. Since the length of a chain of sectors is less than ¢ by
Lemma 6.8, the argument above implies that there are less than 26 p-lines in D,,.

Next, suppose that p € P lies on a singular stable leaf ¢ but is nonsingular. Since any line
in ® that determines a sequence of maximal rectangles containing p must eventually have p
appearing in the vertical boundary of each of its rectangle, we observe that any line in the
preimage §!(p) is contained in one of the two dynamic planes containing Dy introduced in
Remark 6.5. Applying the same argument as in the previous case but in each of these planes
containing D, produces at least two and less than 44 P-lines mapping to p under 3

Finally, suppose that p € P is a singular point. Pick a singular stable leaf ¢ through p
that is stabilized by some g # 1. Then g stabilizes Dy and we let D be one of the two
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dynamic planes containing D, as in Remark 6.5. Since D is also stabilized by g, D contains
a g-periodic line [ in ® by the proof of Proposition 3.15. Since the sequence of maximal
rectangles associated to [ is g-invariant, the intersection of these rectangles % (1) contains the
fixed point of g, which is the singularity p. This completes the proof. g

6.3. Cycles of ® and closed orbits of . We next define the map § from Theorem 6.1.
Let ¢ be a directed cycle in ®, let & be a lift of ¢ to @, and let g € m;(M) be the deck
transformation that generates the stabilizer of ¢ and translates in the positive direction.
Then g - §(@) = F(g-¢) = (@), so p = F(©) € P is fixed by the action of g. Hence, p
corresponds to either a g-invariant flow line 7 of M or a singularity of P fixed by g. In
the case where p is nonsingular, the directed cycle ¢ is homotopic in M to the closed orbit
v =7/{g) of v and we set F(c) =~

When p = %(E) is a singularity, each rectangle in the g-periodic sequence of maximal rect-
angles along ¢ contains the singularity p in its vertical boundary. Indeed, p must eventually
be in a vertical side of the associated rectangles (by the description of ® in terms of maximal
rectangles) and so by g-periodicity, p must be in a vertical side of every maximal rectangle
associated to ¢. Let £* be the unique leaf of the unstable foliation F* containing p that
meets all the maximal rectangles along ¢. Then ¢“ is invariant under g. Let v be the unique
multiple of the unstable prong curve in M determined by ¢* to which c is homotopic, and set
§(c) = 1.

Recall that (’);r < M is the union of closed orbits O, of the flow along with all positive
multiples of unstable prong curves in M. If we denote by Zg the set of directed cycles of @,
then the above discussion produces a map

. +
8:. 2’7@_)0507

with the property that the directed cycle ¢ is homotopic to §(c) in M. We remark that when
§(c) is nonsingular (i.e. a closed orbit in M; not a prong curve), it is the unique closed orbit
of ¢ homotopic to the flow cycle ¢ since the flow does not have distinct homotopic orbits.

We need to further discuss the case when § (¢) = p is a singularity, or equivalently when
§(c) = ~ is an unstable prong curve. Let 4 be the corresponding lift of v to 1\7 and let
U be the component of M — B* containing 5. Let T be the boundary of a small regular
neighborhood of the singular orbit corresponding to v, and let T be the lift to M of T that
is contained in U. We describe some structure of U and dU that follows from the discussion
in [LMT20, Section 5].

The boundary tesselation by 7 of T can be naturally identified with the tesselation oU n
7@ because 7@ A U is homeomorphic to the product of the tesselation of the cusp with
(0,1) ([LMT20, Lemma 5.2]). Thus it makes sense to speak of upward/downward triangles
and ladders on oU (see [LMT20, Section 2.1.2] for terminology) and the following facts are
contained in Lemmas 5.3-5.5 of [LMT20]. Each upward ladder of dU contains a unique
branch line in its interior. The complementary components of these branch lines are called
bands. Each band B contains a unique downward ladder L in its interior, and any d-line
contained in a given band must lie in L. The structure of ® n B is such that there is at least
one and no more than two asymptotic classes of ®-lines contained in L . Further, if \* is the
unstable leaf of @ corresponding to 7, with projection ¢ in P, then the idea of the proof of
[Lan19, Lemma 2.8] shows that A" intersects T in the core of the ladder on T corresponding
to L, and that L can be characterized as the intersection with B* of all tetrahedra ¢ such
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that the maximal rectangle corresponding to ¢ intersects £“ in its interior and contains p in
its boundary. It follows that ¢ lies in the core of L.
This discussion gives us the following lemma.

Lemma 6.13. Let ¢ be a ®-cycle and v a prong curve such that §(c) = . Then c lies in the
unique band of B® corresponding to the downward ladder determined by . It follows that c
1s transversely homotopic to v and that there are at most two ®-cycles mapping to ¢ under

5.

The next proposition establishes that all but finitely many primitive closed orbits of ¢
are homotopic to directed cycles of ®. Note that if the closed orbit v is homotopic to the
flow cycle ¢, then we necessarily have §(c) = v since no two closed orbits of the flow are
homotopic.

Proposition 6.14. Let v be a nonsingular closed orbit of ¢. Then ~ is homotopic in M to
either a directed cycle of the flow graph ® or an odd AB-cycle in T,

Proof. The closed orbit 7 is homotopic to a (nonunique) I'-cycle ¢. This follows from the fact
that all orbits of ( are positive transverse to 73 and perturbing ~ slightly, if necessary, we
can assume that it misses 7(1). The sequence of faces of 7 intersected by ~ defines a dual
cycle ¢ homotopic to . The proposition now follows from Proposition 3.15. ([l

We are now ready to prove the main theorem of this section.

Proof of Theorem 6.1. For item (1), the definition of § ensures that v = F(c) is homotopic
to cin M. It remains to prove that ¢ and v are transversely homotopic. When 7 is a regular
orbit, this follows immediately from Proposition 6.7. For this, we use that the regular orbit
7 is not homotopic to a branch curve because branch curves in M are homotopic to singular
orbits and no distinct closed orbits in M are homotopic (Lemma 4.2).

If ~ is instead an unstable prong curve,  is homotopic to branch curves corresponding
to the same singular orbit and so Proposition 6.7 does not apply. Instead we simply apply
Lemma 6.13.

Item (2) is also a direct application of Lemma 6.13.

Item (3) essentially follows from Lemma 6.6. For this, let ci,...,¢c, € Z, with §(¢;) = 7.
Let 7 be a fixed lift of v, let g € m1 (M) generate the stabilizer of 7, and let p be the image of
7 in P. Since each ¢; is homotopic to v we can choose lifts ¢; that are also invariant under g.
Hence, p = %(EZ) That is, each ¢; is a p-line in d. By Proposition 6.4, each ¢; is contained
in the dynamic plane D,, and by Lemma 6.6 the number of asymptotic classes of the ¢; is
equal to the width of D. However, if two g-invariant p-lines are asymptotic, then they are
equal. We conclude that n is equal to the width of D,. By Proposition 3.10, the width of
D, is equal to one, unless 7 is homotopic to an AB-cycle. Regardless, the width is no more
than ¢ by Corollary 3.13.

Finally, item (4) follows from Proposition 6.14 and the fact that no distinct closed orbits
of ¢ are homotopic. O

Next we mention a corollary that further connects the flow and triangulation. Recall from
Section 2.4 that cone;(I') ¢ Hy(M;R) denotes the cone of homology directions of 7, which
is the cone positively spanned by the classes of closed curves positively transverse to 7(2).
We proved in [LMT20, Theorem 5.1] that this agrees with the cone positively spanned by ®-
cycles (c.f. Proposition 3.15). In [Fri82b], Fried associates to any flow a cone of homology
directions in first homology which can be thought of as the positive span of classes of nearly



GROWTH RATES AND THE VEERING POLYNOMIAL 55

closed orbits. In the current context, the cone of homology directions of our pseudo-Anosov
flow ¢ is polyhedral and positively spanned by closed orbits of . Since the flow is positively
transverse to 7(2) away from the singular orbits, and each singular orbit has a multiple which
is homotopic to a transversal by Theorem 6.1, it is clear that cone (I') contains Fried’s cone.
Theorem 6.1 also easily implies the reverse containment, giving us the following.

Corollary 6.15 (Homology directions). Suppose that the veering triangulation T is associated
to the flow . Then the image of conei(I") in Hy(M;R) is equal to Fried’s cone of homology
directions for .

We conclude this subsection by showing that the veering triangulation also detects which
orbits of ¢ are twisted.

Lemma 6.16. Let v be a nonsingular closed orbit of ¢ and let ¢ be any directed cycle of T’
homotopic to v. Then v is untwisted if and only if ¢ has an even number of AB—turns.

Proof. As in the proof of Lemma 3.14, ¢ has an even number of AB turns if and only if the
pullback of the tangent bundle over B? is orientable [LMT20, Lemma 5.6]. Lifting to the
universal cover M this is equivalent to a fixed coorientation on Bs being preserved by the
deck transformation g € m (M) with {(g) = stab(¢). (We recall that since M deformation
retracts to B®, the branched surface B is contractable. Hence, its tangent plane bundle is
trivial.) Such an coorientation on B orients all edges of the lifted triangulation 7 and these
orientations are preserved by g. Note that by looking at the intersection of B* with any face
of 7, we see that the widest edge of the face is oriented consistently with respect to the other
edges, i.e. the widest edge is the homological sum of the other two.

Now each vertex crossed by ¢ corresponds to a tetrahedron of 7 and hence to a maximal
rectangle in P. As in the construction of the map §, the intersection of all these maximal
rectangles is the fixed point p of g, which by construction is the projected image of the g-
periodic flow line . Moreover, for any positive ray ¢ of ¢ the intersection of the associated
maximal rectangles is a segment of the stable leaf ¢ through p in P (see Fact 4.4). The
fact that the edges of 7 are coherently oriented along the faces crossed by ¢ translates to
the fact that the 7-edges of the maximal rectangles in our collection coherently cross £ from
one (say the left) side to the other. Since this ordering is preserved by g, the stable leaf ¢
has a g-invariant coorientation. Hence, the stable leaf through 3 (7) also has a coorientation
preserved by g and so the orbit v is untwisted.

Reversing the logic, if £ has a g-invariant coorientation, then we can used this to coherently
orient the 7-edges crossing ¢ and this translates to a coherent orientation on the edges of 7
that is compatible on faces in the above sense and which is g-invariant. Hence, the orientation
on any one of these edges coorients B*in a g-invariant fashion. This implies, again as in
Lemma 3.14, that ¢ has an even number of AB—turns. The proof is complete. O

7. GROWTH RATES OF ORBITS AND THE VEERING POLYNOMIAL

In this section, we show how a modified version of the veering polynomial can detect
growth rates of closed orbits of subsets of the flow, even in the nonlayered setting. Our
main theorems are Theorem 7.1, which relates growth rates of the flow to those of the flow
graph, and Theorem 7.2, which relates the growth rates to the veering polynomial. These
are new even in the case of surfaces contained in the boundary of a fibered face and more
on this special case is discussed in Section 9.2. In Proposition 7.7 we will use these to give a
topological criterion for these growth rates to be strictly greater than 1.
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In Section 8 we extend these results to study growth rates for the closed manifold M after
cutting along a transverse surface.

Cutting along a surface: Let S < M be a properly embedded surface positively transverse
to the flow ¢, and let M|S denote M cut along S, with its components indicated as M|S =
U; M|[;S. We let ¢|S denote the restricted semiflow on M|S and let ¢|;S denote the further
restriction to the component M;|S. Let O|S and O};S denote the directed closed orbits of
]S and ¢|; S, respectively. In particular, O|;S are the closed orbits of ¢ that are contained

Let ® be the flow graph of the veering triangulation 7 and ¢: ® — M be its embedding in
dual position. If S is carried by the veering triangulation 7 then it is positively transverse
to ¢(®) as well as the flow (Theorem 5.1), and we denote by ® . S the flow graph cut along
171(S). Then let ®|.S denote the recurrent subgraph of ®\.5, i.e. the union of edges traversed
by directed cycles of ® . .S. As for ¢, let ®|;S denote the subgraph of ®|S contained in M|;S,
and let Zg|g and Zg|,g denote the directed cycles of ®[S and ®|;S, respectively.

Now let & € HY(M]|;S) be a cohomology class which is positive on the closed orbits O|S;
M]|;S as well as on unstable prong curves that are contained in M|S;. We call any such
class positive with respect to ¢|;S and note that such positive classes determine a (possibly
empty) open cone in H(M|;S).

We then consider for a positive class & the exponential growth rates

(7.1) gry),5() = lim #{y e Ol:S: §(7) < L}7,
and
(7.2) gra),5(6) = Jim #{ce Zaps: §0()) < L}E.

The first main theorem of this section will be:

Theorem 7.1 (Growth rates in M|;S). Let T be a veering triangulation of M with dual flow
@. Consider a surface S carried by 7 and fix a component M|;S of M|S.
For any positive class € € H*(M|;S) the growth rates of ¢|;S and ®|;S exist and

gry),s(8) = gro|,s(6)-

In fact, gr,, (&) > 1 so long as O|;S contains infinitely many primitive orbits. See Propo-
sition 7.7.

To compute these growth rates, we will define a veering polynomial V,,|, g € Z[H1 (M |;S)/torsion]
(see Section 7.4) directly from the Perron polynomial Pg of the flow graph ® and obtain this
corollary:

Theorem 7.2 (Growth rates and the polynomial). Let 7 be a veering triangulation of M
with dual flow . Consider a surface S carried by ) and fiz a component M|;S of M|S.
For any positive € € H(M|;S), the growth rate gry),5(&) is equal to the reciprocal of the

smallest positive root of Vf the veering polynomial of M|;S specialized at §.

:S’

7.1. Cutting with cohomology. We first observe that ®|S depends only on the Poincaré
dual of [S] in HY(M):

Lemma 7.3. The directed cycles of ®|S are exactly the directed cycles of ® that are zero
under 1*n, where n € H' (M) is the Poincaré dual of S.
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Proof. Let c be a directed cycle of ®. If ¢ is in ®|S it misses 1 ~1(9), so n(¢(c)) = 0. Conversely,
if n(¢(c)) = 0, then ¢(c) must miss S since all intersection of ¢(®) with 7(2) are transverse and
positive. 0

Motivated by this, for n € coney(7), define ®|n to be the subgraph of ® whose edges are
traversed by directed cycles that are *np—null. Alternatively, ®|n is the largest recurrent
subgraph of ® on which the pullback of 7 is 0 (see e.g. [LMT20, Lemma 5.10]) We call ®|n
the restricted flow graph for . When 7 is dual to a carried surface S, Lemma 7.3 implies
that ®|n = ®|S. Although this will not play a direct role here, we reconsider this perspective
in Section 9.2.

7.2. Parameterizing orbits of ¢|;S. Recall that OF denotes the union of ¢’s closed orbits
O = O, together with all positive multiples of the finitely many unstable prong curves of M,
and we define O|S accordingly. We have OF|S = (J, OF|;S, where OF|;S are the closed
orbits and unstable prong curves that are contained in M|;S.

Lemma 7.4 (Decomposing orbits). The map §: Z¢ — OF from Theorem 6.1 restricts to a
map

S'|ZS Z@‘is - O+|iS,

whose image is im(F) (1 OT|:S for each component M|;S of M|S.
Moreover, for each directed cycle ¢ of ®|;S, t(c) is homotopic to §(c) within M|;S.

positively transverse

Proof. Fix a component M|;S and let c € Zg|,5 be a directed cycle of ®|;S. Recall from
Theorem 6.1 that v = F(c) is the closed orbit or unstable prong curve of ¢ that is transversely
homotopic to ¢(c). That is, there is a homotopy from ¢(c) to v through curves that are
positively transverse to 7(2). Since S is carried by 7, the curves in this homotopy are also
positively transverse to, and hence disjoint from, S. Since ¢(¢) = M|;S by definition of ®|;S,
we conclude that ¢(c) is homotopic to v within M|;S and so in particular v = §(c) € OF|;S.

Similarly, if v € O%|;S is in the image of §, then any preimage ¢ must be 0 under (*n
(where 7 is the Poincareé dual of S, as in Lemma 7.3), hence ¢ is in ®|S. Just as above, we
may additionally conclude that c € Zg,. O

7.3. Comparing growth rates. We are now ready to prove Theorem 7.1. Let ¢ € HY(M|;5)
be positive with respect to ¢|;S. By definition, £ is positive on O |;S, the set of closed orbits
and unstable prong curves that are contained in M|;S.

Lemma 7.5. If £ € H'(M|;S) is positive, then its pullback 1*¢ to H(®|;S) is positive on
directed cycles.

Proof. By Lemma 7.3, for each directed cycle ¢ of ®[;S the image ¢(c) is homotopic in M|S;
to a closed orbit or unstable prong curve in M|S;. The lemma follows. U

We shall now prove that the growth rates, counting with respect to &, of closed orbits of
¢S and directed cycles of ®[;S exist and are equal:

gry),5(8) = gro|,s(6)-

We will use results from the theory of growth rates of cycles in directed graphs and refer to
McMullen’s paper [McM15].
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Proof of Theorem 7.1. Since 1*¢ is positive on directed cycles of ®|;S (Lemma 7.5), it follows
that gre|,g(§) exists (see e.g. [McM15, Lemma 3.1]).
We first show that

gra),5(6) < liminf #{y € O:S : €(7) < L} 7.

For this, it suffices to assume that grg), (&) > 1, otherwise there is nothing to show. By

Theorem 6.1, there is a constant m such that for any v € OF, #F (y) < m. By Lemma 7.4,
§ maps Zg|,g into OF|[;S and for each directed cycle ¢ of ®[;S, F(c) is homotopic to (c)
within M|;S. From these facts, we have

#{S(c) € 05 : £(8(c)) < L} < #{c € Zg),5 : 17¢(c) < L}

m- #{3(c) € O:S : £(3(c)) < L}.

<
<

Thus we have equality of growth rates:
. 1
gre),s(€) = lim #{F(c) : £(F(e)) < L}7

which shows, in particular, that #{F(c) : £(§(c)) < L} has exponential growth. On the
other hand, the multiples of unstable prong curves in O |;S have at most linear growth so
removing them from our count does not affect the growth rate. Hence,

(7.3) gro),s(§) = lim #{y e Im(F) N Of:S : £(7) < L}
< liminf #{y € O : €(7) < L} .
For the other direction, again note that we can assume that
1 < limsup#{y € O;S : £(7) < L}T

L—

otherwise we are done. Hence, #{v € O|;S : £(7) < L} grows exponentially. By Theorem 6.1
every primitive v € O|;S is in the image of § with at most finitely many exceptions corre-
sponding to closed orbits homotopic to odd AB-cycles. Hence, the image of §|;S misses at
most finitely many primitive orbits in O;]S and their multiples. It then follows easily that

. 1
hILn sup#{y € O0;S : {(7) < L}T < gro|,5(6)s
—00
and the proof is complete. ]

7.4. Adapting the veering polynomial and counting orbits. The last object needed for
our discussion is an adapted version of the veering polynomial. For the directed graph ®|S =
U; @[S, let Py|s and Pg|,5 denote the respective Perron polynomial. For each component
M)|;S of M|S, define its veering polynomial to be

V.5 = tx(Pa),s) € Z[H1(M];S) /torsion],

where i : Z[Hy(®|;S)] — Z[H1(M|;S)/torsion] is the ring homomorphism induced by inclu-
sion.
It not hard to see that

Py|s = H Py|,s

in Z[H(®|S)] = &), Z[H1(®|;S)] since ®|S is the disjoint union of the ®[;S. Indeed, in this
case, the adjacency matrix for ®|S is a block diagonal matrix whose blocks are the adjacency
matrices for the ®[;S.
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Recall from Section 2.3 that any directed graph D has a cycle complex C(D) whose cliques
are the disjoint simple directed cycles of D. Moreover, the Perron polynomial Pp of D is
equal to the clique polynomial of C(D).

Proposition 7.6. Letn € H'(M) be the Poincaré dual to S. The inclusion ®|S — ® induces
an inclusion C(P|S) — C(P) whose image is the full subcomplex spanned by simple cycles that
are zero under t*1).

Hence, Pg|s can be obtained from Py by removing terms which evaluate nontrivially under
7.

Proof. Since ®|S — @ is inclusion, we have the inclusion of vertices C°(®|S) — C°(®). This
amounts to saying that simple cycles of ®|S map to simple cycles of ®. The full inclusion
statement is then equivalent to saying that cycles ¢; and ¢z of ®|S are disjoint if and only if
they are disjoint as cycles in ®. This is equally clear.

Finally, as in Section 2.3, we know that the Perron polynomial Py is equal to

14> -1,
(o2

where the sum is over cliques of C(®). Hence the only terms of Py that do not appear in Pgg
are those composed of multicurves that have positive evaluation under ¢*n. This completes
the proof. O

We henceforth consider Pg|5 as being obtained from Pg by removing the terms that cor-
respond to cycles which are nontrivial under ¢*n.

We can now prove Theorem 7.2 which relates growth rates of ¢ in M|;S to the veering
polynomial:

Proof of Theorem 7.2. Let v: ®|;S — M|;S be as above. Since ¢ is positive, t*£ is positive
on all directed cycles of ®|;S (Lemma 7.5).

By [McM15, Theorem 3.2], grg),s(§) is equal to the reciprocal of the smallest root of the
Perron polynomial of Pg|,s specialized at t*§. (Technically, this is applied to a metric on
®|;S representing t*¢; see [McM15, Lemma 5.1] or [LMT20, Lemma 5.10].) Since

e 1€
Pois = Vs

the result follows from Theorem 7.1. O

We conclude this section with a characterization of when the entropy is positive.

Proposition 7.7. With notation as in Theorem 7.1, the growth rate grw‘is(f) is strictly

greater than 1 for every positive ¢ € H*(M|;S) if and only if there are infinitely many primitive
closed orbits of ¢ contained in M|;S.

Proof. If gr,, (&) > 1, then the claim that there are infinitely many primitive closed orbits
in M|;S is clear, since otherwise the growth of all orbits is linear.

Now suppose that there are infinitely many primitive closed orbits in M|;S. Then, as in
the proof of Theorem 7.1, there are infinitely many closed primitive cycles in ®|;S. Since the
directed graph ®|;S is finite, this mean that it has recurrent components that are neither
trivial nor cyclic. Hence, the growth rate of directed cycles with respect to any positive cocycle
is strictly greater than 1. As this quantity is the same as gr@(ﬁ ), the proof is complete. [J
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8. TRANSVERSE SURFACES AND GROWTH RATES FOR CLOSED MANIFOLDS

In this section, we outline a way in which the results of the previous section extend to closed
3-manifolds. Here the veering triangulation is still the central tool but does not appear in
theorem statements.

Let M be a closed 3-manifold and let ¢ be a pseudo-Anosov flow on M without perfect
fits. Let S be a closed surface in M that is transverse to ¢. For notational simplicity, we will
assume that S is connected. We orient S so that each intersection with an orbit of ¢ is positive
and note that M|S is connected. Let O|S be the set of closed orbits of ¢ that miss S and
hence are contained in M|S. Below, we will define an invariant Vg € Z[H1(M|S)]/torsion

which we call the veering polynomial of M|S. We will call a class ¢ € H'(M]|S) strongly
positive if it is positive on O|S as well as a certain finite collection of curves in 0M|S that
we define below (Section 8.2).

We will prove:

Theorem 8.1. Let ¢ be a pseudo-Anosov flow on M without perfect fits. Let S be a closed
connected surface in M that is transverse to .
For any strongly positive class € € H'(M|S), the growth rate

grys(6) = Jim #{y€ OIS : £(7) < L}*

of closed orbits in M|S exists and equals the reciprocal of the smallest root of the specialization
Vj\s of the veering polynomial.

Recall that M = M ~ {singular orbits} admits a veering triangulation 7. Let ¢: ® —
M < M be the embedding of the flow graph in dual position so that its edges are positively
transverse to 72, Fix S as in the statement of Theorem 8.1 and let € H'(M) be its
Poincaré dual.

We begin by noting that if we also puncture S along the singular orbits of ¢, we obtain
a surface S in M that is positively transverse to the remaining orbits. However, it is not
clear whether § is necessarily carried by the branched surface 7(2) and so the results of the
previous section do not automatically apply. Instead we use the following claim, which is all
we will need.

Claim 8.2 (Homotoping the flow graph). Let S be a closed surface > positively transverse to
p. The flow graph t: ® — M can be isotoped to a map 1o: ® — M so that its edges are
positively transverse to S.

Proof. Since the surface S is positively transverse to ¢, results in [Mos92b] imply that S is
taut and so its Thurston norm equals |x(S)|. Applying the Poincaré-Hopf index formula to
the singular foliation F* n S of S, we see that x(S) = e,(S5), where e, is the combinatorial
Euler class of [Lan20]. Then the main theorem of [Lan20] states that there exists an isotopy
that pushes a certain family of annuli of S into a neighborhood of the singular orbits so
that outside this neighborhood S is carried by 7(2). This implies, in particular, that we may
isotope the flow graph ® in M to be positively transverse to S, as required. ([l

For the proof of Theorem 8.1, we wish to follow along the lines of the proofs for Theorem 7.1
and Theorem 7.2, except that we no longer have the full strength of the veering triangulation
available (see Section 8.2). In what follows, we adapt the argument to only use the fact that
the flow graph & is positively transverse to the surface S.
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As before, we define ® \ S by cutting ® along ¢, 1(S ) and we take its recurrent subgraph
®|S. By construction, the restriction to: ®|S — M|S is defined and ®|S is exactly the
subgraph of ® consisting of edges that are traversed by cycles which are 0 under (jn € H (@)
(c.f. Lemma 7.3).

8.1. Stable and unstable curves. The main complication in studying flows in the cut
manifold M|S is that orbits of the restricted flow may be homotopic into S itself. We begin
by analyzing this possibility.

For any embedded surface S in M that is positively transverse to ¢, we define the singular
foliations .7-";/ “ — Fs/" ~ § on S. The following is an observation that follows easily from
work of Cooper—Long—Reid [CLR94]| in the case of a circular flow and more generally from
Fenley [Fen99b).

Lemma 8.3. Suppose that v is a closed orbit of ¢ that is homotopic to a closed curve c¢ in
S. Then c is homotopic in S to a closed leaf of either F§ or Fg.

Moreover, every closed leaf of F& or Fg can be oriented so that it is homotopic to a closed
orbit of .

Note that the conclusion of the lemma places ¢ into one of at most finitely many homotopy
classes of curves in S and implies that there are at most finitely many closed orbits of ¢
that are homotopic into S. Here we are using the fact that no distinct closed orbits of ¢ are
homotopic (see Lemma 4.2(3)).

We call the closed leaves of ]-"g/ “  with their orientation determined by Lemma 8.3, the
stable/unstable curves of S.

Proof. Consider lifts 7,¢ < S to the universal cover M chosen so that there is a deck trans-
formation g € 71(S) preserving 7, ¢ and S. Further assume that g translates 7 in its positive

direction. We note that S is a properly embedded plane in M that is positively transverse

to the lifted flow. Since S separates M, this implies that S intersects each flow lines at most
once. Let F*/%(¥) be the stable/unstable leaves through 7.

Now consider the prOJeCtIODS;\'EO the flow space Q of M. To keep notation as simple as
possible, the projection of ¥ in M to Q will be denoted by Z. Since 7 is homotopic into S it
has intersection pairing 0 with it, which means by positive transversality of S to the flow that
~ misses S and hence 7 is not contained in S. According to [Fen99b, Proposition 4.3], the
boundary of Sin Qisa disjoint union of leaf lines, which are lines of the foliations Fs/u that
are regular on their §fside, meaning that each compact subsegment of the line is contained
in the boundary of a maximal rectangle whose interior is contained in S. (This is discussed
in more detail in Section 9.1 where a generalization is also proven.)

Let £ be the unique leaf of either the stable or unstable foliation in the boundary of S that
separates 4 from S. Since g stabilizes 4 and S , it also stabilizes ¢. Hence, ¢ fixes a point in
¢ and, because fixed points are unique, we conclude that 4 € £ (Lemma 4.2). If £ is a leaf of
the stable foliation, then the unstable leaf through 5 meets S. Otherwise, £ is a leaf of the
unstable foliation and the stable leaf through 5 7y meets S. This means that one of the stable
or unstable leaves of F*/* through ¥ v intersects S in a g-invariant line. This line descends to

5/u

a closed curve of Fg ¢ homotopic to ¢ in S, and this finishes the proof in this direction.
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Conversely, any closed leaf of J’:;/ “ is contained in a leaf of F** that is either an annulus,
a Mobius band, or singular. In either case, the ‘core’ of this leaf is a closed orbit of ¢ and
the proof is complete. O

8.2. Strongly positive classes in H'(M|S). In our current setting, we would like to have
an analogue of Lemma 7.4 stating that if ¢ is a directed cycle in ®|S and v € O|S is the unique
orbit of ¢ homotopic to to(c), then v and 1o(c) are homotopic in M|S. Unfortunately, this
does not seem to necessarily hold without the additional assumption that S n M is carried by
7 (see the discussion preceding Claim 8.2). We have introduced the stable/unstable curves
of S, and Lemma 8.3, precisely to deal with this issue.

Now define ©?]S to be the set of closed orbits O|S together with positive multiplies of the
stable/unstable curves of S contained in d(M|S). We call a class & € H!(M|S) strongly
positive if it is positive on ©7|S.

Lemma 8.4 (Strong positivity). A class ¢ € HY(M|S) is strongly positive if and only if € is
positive on any oriented curve of M|S that is homotopic in M to a closed orbit of .

Moreover, for any strongly positive & € H'(M|S), the pullback 1o*¢ € HY(®|S) is positive
on directed cycles.

Proof. Let us first show that the two properties are equivalent.

By Lemma 8.3, every oriented curve in O°|S is homotopic in M to a closed orbit of .
Hence, any class £ positive on closed orbits is positive on Oa|5 .

Conversely, suppose that ¢ is positive on @?|S and let ¢ be an oriented curve in M|S that
is homotopic in M to a closed orbit «. Then either this homotopy can be altered to live in
M]|S, and so ¢ is positive on ¢, or 7 is homotopic (in M) to a stable/unstable curve in the
boundary of M|S (Lemma 8.3) which is homotopic in M|S to c. (To see this, note first that
~ can’t cut through S by positive transversality of S, and consider a homotopy from ¢ to ~
that is transverse to S.) Hence, £ is positive on c.

That these statements imply positivity on directed cycles of ®|S follows from Theorem 6.1
because for any directed cycle ¢ of ®|S, 1o(c) is a oriented curve in M|S which is homotopic
in M to a closed orbit of . O

We now turn to the proof of Theorem 8.1.

Proof of Theorem 8.1. Let 1g: ®|S — M|S be as above. Since ¢ is strongly positive, 1o*¢ is
positive on all directed cycles of ®|.S by Lemma 8.4. The proof is the same as for Theorem 7.2,
once we establish that the growth rate gr,, 5(€) exists and equals

gras(§) = lim #{ce Zajs: (to(c)) < L}T.

For this, a slightly more delicate argument is needed since Lemma 7.4 is not available in the
closed setting.

We begin by defining a map $) from directed cycles of ®|S to O?]S. To do so, we make use
of the map §: Zg — O and use the basic fact that since M = M, §(c) is homotopic to ¢o(c)
in M and each unstable prong curve in M is homotopic in M to the corresponding singular
orbit. Define a slight modification §': Zg — O, where O is the set of all closed orbits of ¢
in M, by setting §'(c) = F(c) if F(c) is a nonsingular orbit. Otherwise, F(c) is an unstable
prong curve and we set §'(¢) to be the corresponding singular orbit.

To define ), first suppose that ¢ is a directed cycle in ®|S and that ¢o(c) is homotopic to
F'(c) in M|S. Then $(c) = §'(c) € O]S. Otherwise, as in the proof of Lemma 8.4, 1o(c) is
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homotopic in M|S to some stable/unstable curve in d(M|S). We pick such a stable/unstable
curve and call it $(c). Note that in either case, $(c) is homotopic in M|S to ty(c).

Now the proof is completed exactly as in Theorem 7.1 by using the map $ and recalling that
the stable/unstable curves in O|S have at most linear growth. To apply that argument, it only
remains to show that there is some constant m such that #$~(y) < m for each v € O7S.
Indeed, if 7 is a nonsingular closed orbit § that is interior to M|S, then #H71(y) < #5(v)
which is bounded by Theorem 6.1. If 7 is a singular orbit, then there are deg(y) unstable
prong curves homotopic to 7. Since each of these has at most 2 preimages under §, again
by Theorem 6.1, we are also done in this case. Finally, suppose that + is a multiple of a
stable/unstable curve of S. Note that if directed cycles ¢ and d of ®|.S have H(c) = H(d) = 7,
then ¢o(c) and ig(d) are also homotopic in M. If F(c) is a closed orbit, then §(d) is the same
closed orbit. Otherwise, §(c) and F(d) are homotopic unstable prong curves. In either case,
we again obtain a bound on #§7!(7) and the proof is complete. O

9. ENTROPY FUNCTIONS AND STRETCH FACTORS

Here we consider some applications of Theorem 7.1 and Theorem 7.2. In Section 9.1, we
define and establish properties of the entropy function on the cone of positive cohomology
classes, and in Section 9.2 we collect applications to the classical setting of fibered manifolds
and stretch factors.

9.1. Entropy function on positive cones. Let us return to the setup of Theorem 7.1. To
simplify notation, let N = M|;S be a fixed component of M|S for a surface S carried by
7. Similarly, let ®|N = ®|;S be the flow graph restricted to N and note that it may have
several components, each of which is strongly connected. As before, we consider N with the
restricted semiflow o|N and denote by OT|N its set of closed orbits and positive multiples
of unstable prong curves.

Let C* < H'(N;R) be the cone consisting of positive classes. According to Theorem 7.1,
gryon: C * — [1, ) defines a function that gives the exponential growth rates of closed orbits
of the flow for each £ € C*. Since the value gry| ~ (&) is given by the reciprocal of the smallest
root of Py specialized at +*¢ by Theorem 7.2, we can use results of McMullen to study its
properties.

For this, we define the associated entropy function

enty v (€) = log(gryn(§))

and note that Proposition 7.7 characterizes when entropy is nonzero. Our next theorem
summarizes the entropy function’s basic properties.

Theorem 9.1 (Entropy). The entropy function enty C*t — [0, ) is continuous, convez,
and has degree —1, i.e. enty,n(r - &) = 1/ - enty n(§) for r > 0.

Proof. As noted above, by Proposition 7.7 there is nothing to prove if there are only finitely
many closed primitive orbits in N since then the entropy function is 0. So we assume that
this is not the case. That ent,y has degree —1 follows directly from the definition.

The restricted flow graph ®|N is itself the disjoint union of recurrent subgraphs. For each
such component J, the inclusion ¢: ®|N — N induces a pullback t*: H'(N) — H!(J) that
maps the positive cone C* to the cone C*(J) of positive classes on J, i.e. classes that are
positive on directed cycles of J. Let ent;: C*(J) — [0, 00) denote the corresponding entropy
function. Clearly this function is 0 when J is a cycle. When it is not, since J is strongly
connected, McMullen [McM15, Theorem 5.2] shows that ent s is real-analytic, strictly convex,
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and blows up at the boundary of C*(J) (i.e. tends to infinity along a sequence that converges
to a point in the boundary).

From Theorem 7.1, we know that on C* entropy is equal to the pointwise max over the
components of ®|N:

(9.1) ent,y = entgy o t* = max{ent; o ¥},

and so we immediately obtain that ent,y is continuous and convex. ]

Remark 9.2 (Strongly positive cones for M|S). A version of Theorem 9.1 also applies to the
setup of Section 8, where S is a closed connected transverse surface in the closed manifold M.
In this case, Ct < H'(M]|S) is the cone of strongly positive classes as defined in Section 8.2.

In the special case of a fibered cone (i.e. when S = ¢J as in Section 9.2) it is well-known
that the entropy function on the interior of the fibered cone is real analytic, strictly convex,
and blows up at the boundary [Fri82b, McMO00]. However, this does not generally need to
be the case for enty|y: C* — [0,00) defined here. For example, if the manifold N has a
non-separating properly embedded essential annulus disjoint from all of its closed orbits, then
this annulus is dual to a nontrivial cohomology class a on the boundary of C* that pulls back
to 0 under ¢*: HY(N) — HY(®|N). If u e C*, then {u +ta | t € [0,1]} is a line segment in
C* on which ent, |y is constant, so entyy is not strictly convex in this case. Similarly, if N
contains an essential separating annulus disjoint from the closed orbits, then ent, y may not
be real analytic since more than one term of the maximum in eq. (9.1) may be realized.

However, more can be said if the semiflow |V satisfies stronger dynamical conditions. To
motivate the definition first recall that, as in the proof of Lemma 4.2, the flow ¢ is always
transitive on M, meaning that it has an orbit that is dense in both the forward and backward
directions. It is also well known that the closed orbits of ¢ generate Hy(M;R) as a vector
space. We say that the induced semiflow p|N is essentially transitive if OT|N generates
H{(N;R) as a vector space, and if the semiflow has an orbit that accumulates on each closed
orbit of ¢|N in the forward direction (i.e. the closure of any forward ray contains all closed
orbits) and meets every neighborhood of each end of N that contains an unstable prong
curve. We note that each end of N is either an annulus or torus cross an interval.

The following theorem establishes the strongest properties of ent,y for essentially transi-
tive flows.

Theorem 9.3. If the semiflow ¢|N is essentially transitive, and enty is not identically 0,

@l
then enty,|y is real-analytic, strictly convez, and blows up at the boundary of Ct.

Before beginning the proof, we require an understanding of carried surfaces and their
relation to the flow space. We define a generalized leaf ¢ of the stable/unstable foliation of P
to be either a nonsingular leaf or the union of two singular leaves at the (unique) singularity
they contain. We say that a generalized stable leaf is regular to one of its sides if either it is
nonsingular or the singularity that it contains has exactly one singular unstable leaf meeting
the interior of that side. The definition of a generalized unstable leaf that is regular to one
of its sides is analogous. We note that a generalized leaf ¢ is regular to one side if and only
if every finite segment of ¢ is contained in the boundary of a rectangle R; this rectangle is
necessarily contained in the regular side of £. We also define the boundary of an orthant at
p to be the union of a singular stable leaf at p and a singular unstable leaf at p that are
adjacent in the ordering around p.

Now suppose that S is a connected surface carried by 7 and hence transverse to the flow
. Consider a lift S of S to the universal cover M , and observe that Sisa properly embedded,
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ideally triangulated plane in M (the triangulation being induced by 7) that is positively
transverse to the lifted flow. Since S separates M , this implies that S intersects each flow
line at most once. Hence, the projection of S to the flow space P is a homeomorphism onto its
image and we will consider its image with the projected ideal triangulation. As in Section 8.1,
the projection of T ¢ M to P will be denoted by Z.

The following lemma generalizes [CLR94, Proposition 3.9] and [Fen99b, Proposition 4.3].

Lemma 9.4. The topological boundary of §Am P is a disjoint union of stable and unstable
generalized leaves that are reqular to their S—side, along with boundaries of orthants and
1solated singularities.

Boundaries of orthants correspond to punctures of S whose boundary slopes are those of
prong curves, and isolated singularities correspond to punctures of S whose boundary slopes
are not those of prong curves.

Proof. The region S has an ideal triangulation T inherited from S whose vertices are singu-
larities of P in the closure of S and whose edges are singularity-free diagonals, i.e. T-edges.
We will see that components of the boundary of S , other than isolated singularities, are limit
sets of edges of this triangulation and that these limit sets have the required form.

If z is an isolated singular point in the boundary of S, then S intersects every singular leaf
meeting x. It follows that the corresponding puncture of S has a slope which is not that of
a prong curve. R ~

Let x be a nonsingular point in the boundary of S and let (z;);>0 be a sequence in S
converging to x. We can assume that each z; lies in the interior of an edge e; of 7 and that
€;,€e;+1 are incident to a common face of 7 for each ¢ > 0. Since z is not a singularity, we
may further assume that the e; are distinct.

Let Q; be the edge rectangle of e;. The sequence (Q;) cannot have both an upper bound
and a lower bound with respect to the ‘above/below’ partial order on rectangles. This is due
to the discreteness of singularities as in the proof of Fact 4.4. Without loss of generality,
suppose that there is no rectangle R that lies above each @;. In this case, we will see that
the @; limit to a stable leaf or to a generalized stable leaf. The other case, where (Q;) is has
no lower bound the limit is an unstable leaf or generalized leaf and is handled similarly.

First suppose that the stable leaf ¢ through x is nonsingular. We will show that £ is in the
boundary of S. For this, let R be any maximal rectangle containing a (vertical) leaf segment
of £ through x. For sufficiently large i, x; is contained in the interior of R and ); does not lie
below R. Since @); is the edge rectangle for e; containing x;, it must be that Q; lies above R
for large enough i. By applying the same argument to rectangles R that contain larger and
larger leaf segments of ¢ about x, and using the fact that such rectangles converge to ¢, we
see that @; and hence e; limit to £.

This shows that £ is in the closure of S in P. To see that it is in the boundary, it suffices
to show that no point of ¢ is contained in S. This is easy since any point y € S A ¢ would
be contained in a face f of the triangulation 7 of S which crosses /. However, f would then
have to be crossed by the edges e; for large ¢, contradicting that these are all cells of a fixed
triangulation T .

It remains to consider the case where the (stable) leaf through = contains a singularity
p. The above argument still applies with a few minor modifications. Again, let x;,e;, Q;
be defined as above and let ¢ be the stable generalized leaf through x, containing p, that is
regular to its side that contains infinitely many of the x;. Let R be any maximal rectangle
that contains a leaf segment of £ through x and p in its vertical boundary. If the edges e; do
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not eventually all terminate at the singularity p, then the same argument as above implies
that @;, and hence e;, limit to £. So the entire generalized leaf ¢ is in the boundary of S as
required.

Otherwise, the edges e; eventually all have p as a singular endpoint. In this case, the
rectangles ; and edges e; limit to the singular stable leaf ¢’ through = terminating at p (i.e.
the half of ¢ containing z). Since the set of edges e; is finite up to the m1(S) action, and
these edges all eventually have p as a singular endpoint, there is a g € 71(5) fixing p and an
edge e of T with endpoint p such that (¢7(e));j=0 occurs as a subsequence (e;), and hence
converges to ¢'. This implies that ¢ stabilizes ¢ and hence stabilizes all stable/unstable leaves
at p. But then the sequence (g’(e));<o converges to the unstable leaf ¢” through p such that
¢ U 0" forms the boundary of an orthant. In this case, one easily sees that g € m1(S5) is
peripheral and since it fixes each prong at p the corresponding slope is that of a prong curve
as claimed. O

With Lemma 9.4 in hand, we can turn to the proof of Theorem 9.3.
Proof of Theorem 9.3. The theorem will follow fairly directly from the following claim:

Claim 9.5. If the semiflow @|N s essentially transitive and enty, v s not identically 0, then
the graph ®|N contains a unique component J which is not a cycle. All curves of OT|N are,
up to positive multiples, homotopic to images of directed cycles in J.

Indeed, if J is such a component then Equation (9.1) becomes

ent, y = entyo.*.

ol

Since O1|N generate Hi(N;R), so do the images of directed cycles in J. This implies
that the homomorphism ¢*: H'(N) — H!(J) is injective and maps the boundary of C*
into the boundary of C*(J). Since enty: CT(J) — [0,00) is real-analytic, strictly convex,
and blows up at the boundary (again by [McM15, Theorem 5.2]) this implies the same for
entyy: C* — [0, 00).

We now proceed with the proof of Claim 9.5.

Let « be an orbit of ¢|N which, in the forward direction, accumulates on every closed
orbit in O|N and meets every neighborhood of each end of N that contains an unstable
prong curve.

Fix a lift N to M and let v be a lift of v to N , which is determined up to the action of
m1(N). Let p = 4 be its projection to the flow space P and note that p is not contained in
a singular stable leaf since otherwise v would be attracted to a singular orbit in the forward
direction. N

Let D, be the dynamic plane for p given after Proposition 6.4 and let Yo be a ®-line such
that %(’N)/q)) = p, the existence of which is guaranteed by Proposition 6.12. Note that either
by the construction of Jg or Proposition 6.4, we know that ¥g is contained in D,. Let y¢ be
the projection of g to ®. We claim that

(1) 7o is disjoint from S, and
(2) for any directed cycle ¢ of ®|N, any directed subray fy;g of the the bi-infinite path v
contains a closed subpath d such that as loops in N, d is homotopic to ¢ for some
kE>1.
Note that the second item implies that either F(d) = F(c*) or F(d) and F(c*) are homotopic
unstable prong curves corresponding to the same end of N (Theorem 6.1).
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Let us show how Claim 9.5 follows from these two subclaims. By claim (1) above, vg lies
in some component of ® \ S and so some subray 'yg lies in some component J of ®|S. If
¢ is any directed cycle of ®|N, then by claim (2) there is some directed cycle of J whose
image under § is an element of O |N that is homotopic to a multiple of F(c¢). In particular,
the cone in Hi(J;R) positively generated by directed cycles maps onto the cone in Hi(N;R)
positively generated by OF|N (see Lemma 7.4). This gives the second statement in the claim.
Moreover, item (3) of Theorem 6.1 gives that for all but finitely many primitive directed cycles
c of @ (i.e. the ones for which §(c) is not a prong curve and not homotopic to an AB cycle),
= FHF(c¥)) for all k > 1 and in fact no other directed cycles of ® are homotopic to c* in
M. Tt follows that, outside finitely many exceptions, every primitive directed cycle of ®|N is
actually in J, so all components of ®|N other than J are cycles. If J were a cycle too, then
ent,|y would be identically 0. This proves the Claim.

It remains to establish the two subclaims. For the first, suppose that v¢ intersects some
component S’ of S. Then 5 intersects some lift S" of §' to M in some face f of the
triangulation on 5" induced by 7. Let f S’ be the corresponding triangle in P and let Ry
be the face rectangle determined by f. Since Y¢ is a p-line, Ry contains the point p. If the
regular point p is not contained in S’ then by Lemma 9.4 either the vertical or horizontal leaf
through p is also disjoint from S’. But each side of R contains a singular vertex of f and so
in this case, the vertical or horizontal leaf through p would have to cut through f, giving a
contradiction. This implies that p € f and so the orbit 7 also intersects S This, however,
contradicts the assumption that 7 is contained in N where N is a component of M|S.

For the second subclaim, fix a directed subray 73 of ¢ with initial maximal p-rectangle
Ry and let ¢ be any directed cycle of ®|N. Let & be a lift of ¢ to N and choose g € 7 (N)
to generate its stabilizer so that it translates ¢ in its positive direction. We set ¢ = % (€), set
vYe = §(c) , and let 4, be the lift to N that is also stabilized by g. Note that the projection
of 4. to P is ¢, which is also stabilized by g.

To complete the proof, we first assume that ¢ is a regular point. Fix a maximal ¢g-rectangle
R along the ®-line ¢ and let D, be the dynamic plane for ¢, which contains ¢ by Proposi-
tion 6.4. Also let n be the number of vertices in the chains of sectors associated to the sectors
immediately above o(R) in Dy, as in Remark 6.11. Here we recall that o(R) is the sector
immediately below the vertex in D, corresponding to R.

The fact that v accumulates on . in its positive direction translates into the statement
that there is a sequence h; € 71 (V) such that h;p — ¢ and that h; Ry eventually lies below
the g-rectangle g~("*D(R). To see this, fix an equivariant family of rectangle sections {sg}
as in Lemma 4.3 and let x be the intersection point of 4. with the section over g*(”ﬂ)(R).
Let y be the intersection point of 7 with the section over Ry and let rg be the positive
subray of ¥ starting at y. The positive accumulation of v on 7. implies there exist h; €
m1(N) and t; — oo such that h;(ro(t;)) converges to x. We may choose ¢; so that the flow
segment h;7o([0,t;]) begins at the section over h;(Rp) and ends at the section over g~ (*+1(R).
Applying Lemma 4.3 now tells us that, for i sufficiently large, g~(*D(R) lies above h;Ry.
This is the desired statement.

Further choose 7 sufficiently large that h;p lies in R n g_("H)(R). Hence, the descending
set A(o(R)) < Dy is also contained in the dynamic plane Dy, (Proposition 6.4). Moreover,
Dy, = h;D, contains hﬁg whose initial maximal rectangle h; Ry corresponds to a vertex
contained in A(o(g~™*Y(R))). Then by Lemma 6.9 and Remark 6.11, h;j$ must pass
through a vertex in the chain of one of the sectors above g~(o(R)) for each i = 1,...,n + 1.
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Since for each i there are n of these vertices, hﬁg must pass through two vertices of D,

which lie in the same (g)-orbit. Hence, there is a subpath d of hiy3 such that gF takes its
initial vertex to its terminal vertex. In ®|N, this projects to a closed subpath d of %—{ that
is homotopic to c* as a loop in N, establishing the second claim when ¢ is regular.

When gq is a singular point only minor modifications to the setup are needed. In this case,
v, is an unstable prong curve and 7, is its lift determined by an unstable singular leaf ¢*
emanating from ¢. This time g € m (V) stabilizes ¢* and therefore it stabilizes each orthant
based at g. The fact that v meets each neighborhood of the end of N corresponding to .
implies that there is a sequence h; € 1 (N) such that h;p — ¢. Since the stabilizer of ¢ acts
cofinitely on the orthants at ¢, we can also assume that the h;p all lie in a single half-plane (i.e.
union of two adjecent orthants) cobounded by two consecutive singular stable leaves ¢, {o
emanating from ¢. There is a unique dynamic plane D, containing the dynamic half-planes
Dy, , Dy,, which can be characterized as the union of descending sets A(o(R')) where R’ is
a maximal rectangle with ¢ in its vertical boundary that is contained in the half-space at ¢
cobounded by /1, /5 (see Remark 6.5). Note that g stabilizes D, and so there is a g-periodic
®-line ¥ in D, whose image ¢’ in N is homotopic to ¢. The rest of the proof now goes through
as above after replacing ¢ with ¢/. O

Remark 9.6. Our definition of essentially transitive concerns an orbit which “sees” every
orbit and every unstable prong curve in the forward direction. In fact the conclusions of
Theorem 9.3 also hold if ¢|N has an orbit which in the backward direction accumulates on
every closed orbit and meets every neighborhood of every end of N containing a stable prong
curve. Indeed, after reversing the orientation of ¢ and the coorientation of 7@ we can apply
the argument from above to conclude that the corresponding entropy function is real analytic,
strictly convex, and tends to infinity at the boundary of the positive cone. This implies that
the original entropy function has the same properties.

9.2. Suspension flows and fibered cones. Again returning to Theorem 7.2 (or Theo-
rem 8.1 in the closed case), if we let S = (J, then there exists a (strongly') positive class
¢€in HY(M) (or H*(M)) if and only if the flow ¢ is isotopic to the suspension flow of a
pseudo-Anosov homeomorphism and & lies in the interior of the associated fibered cone R, F.
This follows from either Fried’s criterion for the existence of cross sections [Fri82b, Theorem
D] or a combinatorial analogue proven in [LMT20, Theorem E|. Hence, we conclude that the
growth rate grw(g) of ¢’s closed orbits with respect to £ is given by the reciprocal of the

smallest positive root of the specialization VE of the veering polynomial.

Remark 9.7 (Teichmiiller polynomial). Applying Theorem 7.2 in this setting to the primitive
integral points in the interior of R F, and using the connection to the Teichmiiller polynomial
established in [LMT20, Theorem B], we recover McMullen’s theorem [McMO00, Theorem 5.1]
that the Teichmiiller polynomial computes stretch factors of monodromies associated to the
fibered cone R, F.

Combining [LMT20, Theorem E] with the above discussion, ¢ is circular (i.e. admits a
cross section) if and only if the associated veering triangulation 7 is layered (i.e. admits a
fully carried surface) and this occurs if and only if the associated cone conea(7) = RLF is
fibered (see Theorem 2.2). In this setting, we call F a fully punctured fibered face.

We next focus on the case in which S represents a class in the boundary of the fibered
cone R, F. To this end, let 7 be a layered veering triangulation with dual flow ¢ and let S

1When S = &3, all positive classes are strongly positive.
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be a connected surface carried by 7(2) that is not a fiber. We remark that every primitive
integral class in 0(R4F) is represented by such a surface. Then M|S is connected and any
¢ € HY(M) dual to a class in int(R,F) pulls back under M|S — M to a positive class in
H1(M]|S). Hence, Theorem 7.1 and Theorem 7.2 give the growth rate of the closed orbits
missing S, and in this case more can be said.

Let F be the fibered face associated to 7 and fix a subface S < F. By the relative interior
of the cone R4S we mean the cone on S\ dS (i.e. the interior of RS within the subspace
it spans). If V' = V, is the veering polynomial of 7, let V|S be the polynomial obtained by
deleting the terms that pair positively with S. In more details, if V' = > a4g, the

VIS = Za;g,
=

g = ag if n(g) = 0 for some 7 in the relative interior of R} S and a; = 0 otherwise (c.f.
Proposition 7.6). We note that this definition does not depend on the choice of 7 in the relative
interior of R4 S. This follows from the fact that the cone of homology directions cone; (I') and
coneg(7) = Ry F are dual (Theorem 2.2(2)). Indeed, the basic theory of convex polyhedral
cones in finite-dimensional vector spaces (see e.g [Ful93, Section 1.2]) gives that if n, 7" are
two classes lying in the relative interior of R;S then ker(n) n cone; (T') = ker(n') n coneq (T).

In this setting Theorem 7.1 and Theorem 7.2 easily imply the following:

where a

Corollary 9.8 (Counting orbits missing transverse surfaces). Suppose that M has a fully
punctured fibered face ¥. Let T be the associated veering triangulation and ¢ the associated
suspension flow. Finally, fix a subface S of F and let n € int(RS).

For any £ € int(R,F), the growth rate

(9.2) 81,(&8) = lim #{y € Op:n(y) =0 and £(v) < L}

exists and equals the reciprocal of the smallest root of the specialization V|Sg.
Moreover,

el

(1) The growth rates gr,(§;S) depends only on the face S and not the chosen 1.

(2) If S is any surface carried by T dual to a class in int(R4S), then gr,(§;S) computes
the growth rate (with respect to ) of closed orbits that miss the surface S and is equal
to gry5(§) from Equation (7.1).

(8) The growth rate gr,(&;S) is strictly larger than 1 if and only if there are infinitely
many primitive closed orbits that are n-null.

We remark that a straightforward calculation shows that V'|S € Z[H; (M) /torsion] is equal
to the image of Pg|g under the map induced by the inclusion @[S — M|S — M, regardless of
whether F is fibered. However, in order for V|S to output interesting dynamical information
as in the above result, the fibered hypothesis is essential: there exists a class £ € Hj(M)
which pulls back to a positive class on M|S if and only if F is fibered. For the less trivial
direction of this statement, note that if & € H'(M) is a class pairing positively with every
closed orbit that has zero pairing with n, then £ + kn pairs positively with every closed orbit
of ¢ for sufficiently large k. As a consequence, £ + kn is dual to a cross section to .

Also, we again emphasize that Corollary 9.8 has a natural generalization to closed manifolds
by first puncturing along singular orbits of the suspension flow.

Remark 9.9 (Depth one foliations and stretch factors of endperiodic monodromies). The
growth rates appearing in Corollary 9.8 when £ is integral can be naturally interpreted as
stretch factors of endperiodic homeomorphisms associated to depth one foliations of M (or
more precisely its compact model as in Remark 4.6). Indeed, if S is a surface carried by 7 that
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is not a fiber, then any primitive integral class £ in the interior of the associated fibered cone
gives rise to a depth one taut oriented foliation on M|S that is positively transverse to flow
lines of ¢ (see for example [Ago08, Theorem 3.7]). The foliation restricted to the complement
of the boundary (depth zero) leaves is a fibration over the circle and the first return map
to a fiber (i.e. a depth one leaf) is a endperiodic homeomorphism [Fen92, Lemma 4.1, 4.2].
The growth rate of periodic points of the first return map is equal to 8ry| 5(&), giving a direct
generalization of the stretch factor of a pseudo-Anosov homeomorphism. These stretch factors
will be the subject of future work [LMT22].

We can use these tools to answer the following question of Chris Leininger:

Question 1 (Leininger). Given a fibered face F of a hyperbolic 3—manifold M, what is
the limit set of stretch factors arising from monodromies whose fibers correspond to integral
points in R_F?

It is clear that 1 is such an accumulation point, but in unpublished work Leininger and
Shixuan Li have produced examples where there are accumulation points greater than 1.
To answer Question 1, we introduce the following notation: For each subface S of F define

A(S) = {gr,(;S) : a is an integral point of int(R,F)}.

where gr.,(a; S) is as in Equation (9.2). Also set A = A(J), which is exactly the set of stretch
factors of the monodromies of fibrations corresponding to integral points in R_F. Our goal
is to understand its closure A.

Recall that X’ denotes the derived set of X, i.e. its set of accumulation points. Also
inductively set X? = X and X"*! = (X")".

Theorem 9.10 (Structure of stretch factors). Let A < (1,00) be the set of stretch factors of
the monodromies of fibrations corresponding to integral points in RyF. Then its closure A is
compact, well-ordered under =, and A" = {1} for some 1 < n < dim(H'(M;R)).

Moreover,

e cach number in X' ~ {1} is itself a growth rate in the sense of Corollary 9.8 and an
infinite type stretch factor in the sense of Remark 9.9,

o the accumulation set N is nfinite if and only if there are infinitely many primitive
orbits in O, that are null with respect to some class in R F), and

e the derived length is mazimal (i.e. n = dim(H'(M;R))) if and only if there are
infinitely many primitive orbits in O, that represent a multiple of a vertex class in
the cone of homology directions in Hy(M;R).

Proof. In the proof, we assume that the fibered face F is fully punctured and associated
to the veering triangulation 7 of M. The general case then follows from puncturing along
singular orbits and considering only cohomology pulled back from the original manifold.

We begin by establishing a more technical claim.

Claim 9.11 (going up). Let S be a face of F. Then
—_—
AS) ~ {1} = |J A(T)~ {1},
ToS

where the union is over proper faces T of F that properly contain S.

Moreover, if (\;) is a sequence in A(S) converging to \ € A(S),, then A < A\, for sufficiently
large k.
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Proof of claim. Any integral « in the interior of R.F can be realized as a (multiple of a)
fiber surface S, carried by 7. We note that while the isotopy class of S, is unique, its
carried position is not, but this will not matter here. Since the image of ® in M is positively
transverse to 7(), the nonnegative integral cocycle mq on ® given by mapping each directed
edge to its intersection number with S, represents the pullback of a to ®. Obviously, the
restriction of m, to any subgraph of ® represents the pullback of a to that subgraph.

We first prove the containment A(T) \ {1} < (S)/ ~ {1} for each T o S. Fix an integral
class 7 in the relative interior of R4 T, and let ®|T = ®|n be the subgraph of ® covered by
cycles that are n—null (as in Section 7.1). Also fix a € int(R4F) so that gr(o; ®|T) > 1. For
i > 0 we note that a + in and « agree on cycles of ®|T, while the value of a + in on any
cycle of ®|S not contained in ®|T goes to co with 7. At this point we use the following lemma
about growth rates in graphs. It is probably well-known but for completeness we will include
a proof at the end.

For a directed graph D and positive class « € H*(D) (i.e. class that is positive on directed
cycles), let gr(a; D) denote the growth rate of directed cycles in D with respect to o (as in
Equation (7.2)).

Lemma 9.12. Let D be a directed graph with subgraph D’'. Let o; be a sequence of positive
classes in HY(D) that pull back to the same positive class o« € HY(D'). Then

gr(ai; D) = gr(a; D).
Suppose further that
(1) the «; blow up on the complement of D' (i.e. a;(y) — o0 for each directed cycle v of
D that is not contained in D), and
(2) liminf; , gr(ao;; D) > 1.
Then
gr(ai; D) — gr(a; D)
as v — 0.
We apply Lemma 9.12 to conclude that gr(a + i -n; ®|S) = gr(a; ®|T) > 1 and that
gr(a+i-n; ®|S) — gr(a; ®|T)

as i — o0, and note that this sequence is nonconstant exactly when the containment T > S
is proper. By Theorem 7.1 (and Corollary 9.8(2)) this gives us

gro(a+i-n;8) — gry(e; T)
Thus any point of A(T) is a limit point of A(S).

Conversely, let «; € int(R4F) be a sequence of integral classes so that the sequence of
growth rates A; = gr, (a3 S) is pairwise distinct and converges to A > 1, and let us show that
A € A(T) for some face T D S.

Now let n denote an integral class in the relative interior of R.S (if S = ¢, then by
convention 17 = 0 and ®|n = ®|S = ®). Replace each «; in this sequence with a; + ¢ -n. This
does not change \; = gr(«;;S), but it ensures that «;(y) — oo for any directed cycle of ®
that is not in ®|S.

After passing to a subsequence, we may assume that for each edge e of ®|S either my, (e)
stays bounded for all i or mgy,(e) — o0. Let E be the set of edges whose lengths stay
bounded. Because each m,, is integral, we may pass to a further subsequence and assume
that mq,(e) =: m(e) is constant for each edge e of E.
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We can again apply Lemma 9.12 to the pullback of «; on the graphs E and ®|S, concluding
gr(a;; @|S) — gr(a; F).

This limit is then A since gr(a;; ®[S) = gr.,(a;;S) by Theorem 7.1 and Corollary 9.8. Since
A > 1, F has a nontrivial recurrent subgraph. It remains to find a face T strictly containing
S such that gr(a; E) = gr(a; ®|T).

Set 7; = a; — ;. We claim that for ¢ sufficiently large, 7; is contained in the relative
interior of R, T for some face T that properly contains S. Let v be a directed cycle in ®. If ~
is not contained in @[S, then 7(v) > 0 and so a;(y) — o by definition of . Hence, n;(y) > 0
for large i. If 7 is contained in ®|S but not in E, then again «;(7y) — oo by definition of E
so 1;(y) > 0 for large 4. If v is contained in E then «;(y) = a1(y) so n;(y) = 0. At any rate
ni(7) = 0 and since the cone of homology directions is spanned by finitely many cycles in &
(Theorem 2.2), we may fix i so that n; € R, F.

Let T be the face of F such that 7; is in the relative interior of Ry T. Then from the
previous paragraph we see that F and ®|T have the same directed cycles, namely those where
ni vanishes. Thus gr(a; E) = gr(a; ®|T), and the latter equals gr(a; T) by Theorem 7.1.
Note that S is a proper subface of T because we have assumed the \; are not eventually
constant.

Applying this to all limit points A we obtain the containment

AS) ~ {1} < | A~ {1},

TOS

The final statement, that eventually A\; = A, follows from the first conclusion of Lemma 9.12,
and the fact that A\; = gr(a;;®|S) again by Theorem 7.1. This concludes the proof of
Claim 9.11. ]

The claim now immediately implies that A is well-ordered by > and that the length of
the derived sequence is bounded above by dim(H!(M;R)). Compactness of A was previously
observed by Leininger (see also [Fri82a, Theorem A]), but it also follows from our setup. First
recall that as in the proof of Claim 9.11, the pullback to ® of each integral class a in Ry F
can be represented by a nonnegative, integral cocycle m, that is positive on directed cycles
of ®. By Theorem 7.1, to show that A is bounded above, it suffices to show that grg([m])
is uniformly bounded over all nonnegative, integral cocycles m representing a positive class
[m] € H'(®). This is straightforward: if m is such a cocycle, then we obtain another such
cocycle m’ by declaring that m/(e) = 0 if m(e) = 0 and m/(e) = 1 otherwise, for each directed
edge e of ®. Since m is integral and nonnegative, m’(e) < m(e) for all directed edges e of
®. This implies that gre([m]) < gre([m']). But since there are only finitely many cocycles
taking values in {0, 1}, there is a maximum to their growth rates (after restricting to the ones
that are positive on directed cycles). Hence, A is bounded and so A is compact.

It only remains to prove the additional items. The first item follows from the proof of
Claim 9.11. The second item follows from Corollary 9.8(3), since if («;) is a sequence of
classes with gr(«;) — x > 1, then for all n € N we have gr(na;) = gr(ai)% — . Finally, for
the third item, it is easy to see (again by Corollary 9.8(3)) that the derived length is maximal
if and only if for some 7 in the relative interior of a top dimensional face S of F, there
are infinitely many closed primitive orbits that are n—null. All such orbits must represent a
multiple of the vertex of the cone of homology directions that is dual to R, S. This completes
the proof of Theorem 9.10. ]
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We conclude with a proof of Lemma 9.12. Instead of assuming that the «; pull back to
the same class on D’ it in fact suffices to assume that the pullbacks to H'(D’) converge,
but we will only need the weaker statement. Also, condition (2) could be replaced by the
condition that gr(a; D') > 1, i.e. that D’ contains a directed cycle, but we have chosen to
state Lemma 9.12 so that it can be directly applied in the proof of Theorem 9.10.

Proof of Lemma 9.12. Set A\; = gr(a;; D) and A = gr(a; D'). Clearly, A < \; since D' < D.
Now assume items (1) and (2) from the lemma statement. We claim that \; are bounded
above: for i sufficiently large a;(y) = aq(y) for all directed cycles v of D and this implies
that gr(ay; D) < gr(aq; D). Thus it suffices to show that any accumulation point p > A of
(\i) is equal to A.
Let Pp be the Perron polynomial of D. From eq. (2.2), we see that this is a sum

Pp = Ppr + N,

where Pp/ is the Perron polynomial of D’ consisting of the terms of Pp that correspond to
cycles contained in D’ and where N has terms corresponding to cycles that are not contained
in D'. Specializing (as in Section 2.3), we get

PRi(t™h) = PR(t71) + N(t™h),

where the largest real root of Ppi(t7!) is A; and the largest real root of P&, (t71) is A (see
[McM15, Theorem 1.2]), unless D’ contains no directed cycles. In this last case, we would
have that Pp, =1 and A = 0.

Since the a; blow up on loops not in D', N%(t~!) is a finite sum of terms of the form
at™ % where x; — 00 as i — o0.

Let u be an accumulation point of (A;). Then x> A > 1. Passing to a subsequence we
may assume \; — u, and plugging into the specializations we obtain

0= Ph(A) + N (AT,
Then using the above description of N% and that fact that A\; — pu > 1, we see that
N (A1) — 0 as i — 0. So by continuity of P&, (t7!), we get that p is a root of P&, (t71).
Since A is the largest root, we conclude p = A. This completes the proof of Lemma 9.12. [
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